Menu Expand
Treatise on Geomorphology

Treatise on Geomorphology

John F. Shroder

(2013)

Abstract

The changing focus and approach of geomorphic research suggests that the time is opportune for a summary of the state of discipline.

The number of peer-reviewed papers published in geomorphic journals has grown steadily for more than two decades and, more importantly, the diversity of authors with respect to geographic location and disciplinary background (geography, geology, ecology, civil engineering, computer science, geographic information science, and others) has expanded dramatically. As more good minds are drawn to geomorphology, and the breadth of the peer-reviewed literature grows, an effective summary of contemporary geomorphic knowledge becomes increasingly difficult.

The fourteen volumes of this Treatise on Geomorphology will provide an important reference for users from undergraduate students looking for term paper topics, to graduate students starting a literature review for their thesis work, and professionals seeking a concise summary of a particular topic. Information on the historical development of diverse topics within geomorphology provides context for ongoing research; discussion of research strategies, equipment, and field methods, laboratory experiments, and numerical simulations reflect the multiple approaches to understanding Earth’s surfaces; and summaries of outstanding research questions highlight future challenges and suggest productive new avenues for research. Our future ability to adapt to geomorphic changes in the critical zone very much hinges upon how well landform scientists comprehend the dynamics of Earth’s diverse surfaces. This Treatise on Geomorphology provides a useful synthesis of the state of the discipline, as well as highlighting productive research directions, that Educators and students/researchers will find useful.

  • Geomorphology has advanced greatly in the last 10 years to become a very interdisciplinary field. Undergraduate students looking for term paper topics, to graduate students starting a literature review for their thesis work, and professionals seeking a concise summary of a particular topic will find the answers they need in this broad reference work which has been designed and written to accommodate their diverse backgrounds and levels of understanding
  • Editor-in-Chief, Prof. J. F. Shroder of the University of Nebraska at Omaha, is past president of the QG&G section of the Geological Society of America and present Trustee of the GSA Foundation, while being well respected in the geomorphology research community and having won numerous awards in the field. A host of noted international geomorphologists have contributed state-of-the-art chapters to the work. Readers can be guaranteed that every chapter in this extensive work has been critically reviewed for consistency and accuracy by the World expert Volume Editors and by the Editor-in-Chief himself
  • No other reference work exists in the area of Geomorphology that offers the breadth and depth of information contained in this 14-volume masterpiece. From the foundations and history of geomorphology through to geomorphological innovations and computer modelling, and the past and future states of landform science, no "stone" has been left unturned!

"…the information is comprehensive, and the set successfully pulls together an overview of existing geomorphic knowledge. Given the multidisciplinary nature of the field, this resource will be useful to students in geology, geography, and environmental sciences."Summing Up: Highly recommended. --CHOICE Reviews Online, June 2014

"…the readership is expected to range from undergraduates looking for material for their term papers to professionals seeking pointers to productive future research directions…it should be an invaluable source of information on the geomorphological processes that Holocene scientists encounter and often need to know more about." --The Holocene, April 2014


Table of Contents

Section Title Page Action Price
e9780123747396v1 1
Front Cover 1
TREATISE ON GEOMORPHOLOGY 4
CONTENTS 6
EDITOR-IN-CHIEF 8
VOLUME EDITORS 10
CONTRIBUTORS TO VOLUME 1 12
CONTENTS OF ALL VOLUMES 14
PREFACE 28
FOREWORD 30
1.1 Introduction to the Foundations of Geomorphology 32
1.1.1 Introduction to Geomorphology 32
1.1.2 Establishment of the Discipline 34
1.1.3 Cycle and Process: Early and Middle Twentieth-Century Trends 35
1.1.4 Climate and Humans: Late Twentieth and Early Twenty-First-Century Trends 36
1.1.5 Historical and Conceptual Foundations 37
1.1.5.1 The History of Geomorphology 37
1.1.5.1.1 The scientific roots of geomorphology before 1830 37
1.1.5.1.2 Major themes in British and European geomorphology in the nineteenth century 37
1.1.5.1.3 Geomorphology and nineteenth-century explorations of the American West 37
1.1.5.1.4 Geomorphology in the first half of the twentieth century 37
1.1.5.1.5 The mid-twentieth revolution in geomorphology 37
1.1.5.1.6 Geomorphology in the late twentieth century 38
1.1.5.2 Changing Concepts and Paradigms 38
1.1.5.2.1 Philosophy and theory in geomorphology 38
1.1.5.2.2 Spatial and temporal scales in geomorphology 38
1.1.5.2.3 Tectonism, climate, and geomorphology 38
1.1.5.2.4 Process in geomorphology 38
1.1.5.2.5 Denudation, planation, and cyclicity: myths, models, and reality 38
1.1.5.2.6 Sediments and sediment transport 38
1.1.5.2.7 Systems and complexity in geomorphology 38
1.1.5.2.8 Geomorphology and late Cenozoic climate change 38
1.1.5.3 Investigative Traditions and Changing Technologies 39
1.1.5.3.1 The field, the first and latest court of appeal: an Australian cratonic landscape and its wider relevance 39
1.1.5.3.2 Laboratory and experimental geomorphology: examples from fluvial and aeolian systems 39
1.1.5.3.3 Present research frontiers in geomorphology 39
1.1.5.3.4 Geomorphology for future societies 39
References 39
Biographical Sketch 41
1.2 The Scientific Roots of Geomorphology before 1830 42
1.2.1 Introduction 44
1.2.1.1 The Twin Roots of Geomorphology 44
1.2.2 The Distant Past 44
1.2.2.1 The Classical World of the Mediterranean Basin 45
1.2.2.2 Early Science in Islamic and Eastern Cultures 45
1.2.2.3 Medieval and Renaissance Science in Europe 45
1.2.3 Scientific Revolution and Enlightenment, 1600-1830 46
1.2.3.1 The Scientific Revolution in Seventeenth-Century Europe 46
1.2.3.2 The Enlightenment of the Eighteenth Century 46
1.2.4 Roots in Historical Earth Science, 1600-1830 48
1.2.4.1 The Time Factor and Earth’s Age 48
1.2.4.2 Catastrophism 49
1.2.4.3 Uniformitarianism 51
1.2.5 Roots in Classical Mechanics, 1600-1830 55
1.2.5.1 Fluid Dynamics and Fluvial and Aeolian Processes 55
1.2.5.2 Soil Mechanics and Slope Processes 59
1.2.5.3 Coastal Processes and Glacier Mechanics 61
1.2.6 Prospects for Geomorphology after 1830 61
1.2.6.1 Catastrophism: Descent and Resurrection 61
1.2.6.2 Uniformitarianism: Rigidity and Flexibility 62
1.2.6.3 Toward a Dynamic Geomorphology 63
1.2.7 Conclusion 64
References 65
Biographical Sketch 67
1.3 Major Themes in British and European Geomorphology in the Nineteenth Century 68
1.3.1 Introduction 68
1.3.2 The Glacial Theory: A Preposterous Notion 69
1.3.2.1 Glaciation beyond Europe 70
1.3.2.2 The Eventful Ice Age 70
1.3.3 Beyond the Ice Sheets: The Seeds of Climatic Geomorphology and Climate Change 71
1.3.3.1 Extra-Glacial Phenomena and the Germination of Climatic Geomorphology 71
1.3.3.2 Loess 71
1.3.3.3 Deserts 72
1.3.3.4 Coral Reefs and other Tropical Coastal Features 73
1.3.3.5 Deep Weathering, Laterite, and the Tropics 74
1.3.4 River Valleys and the Power of Fluvial Denudation 75
1.3.5 The Decay of Rocks 77
1.3.6 Mountain-Building 78
1.3.7 Conclusion 79
References 80
Biographical Sketch 83
1.4 Geomorphology and Nineteenth-Century Explorations of the American West 84
1.4.1 Introduction 84
1.4.2 Pre-Nineteenth Century 85
1.4.3 Lewis and Clark 86
1.4.4 Fur Trappers and Traders 87
1.4.5 Army Topographers 88
1.4.6 Geographical and Geological Field Surveys 89
1.4.7 G.K. Gilbert 90
1.4.8 Concluding Comments 92
References 92
Biographical Sketch 94
1.5 Geomorphology in the First Half of the Twentieth Century 95
1.5.1 Introduction 96
1.5.2 William Morris Davis and a Paradigm for Geomorphology 96
1.5.3 Davisian Reasoning 98
1.5.4 Articulation of the Davisian Paradigm 98
1.5.4.1 The Davisian Cycle for Arid Regions 99
1.5.4.2 Davis on Coastal Geomorphology 99
1.5.4.3 Davis on Glaciers and Glacial Geomorphology 99
1.5.4.4 Davisian Theory Applied to Karst Topography 99
1.5.4.5 Davis and Coral Atolls 100
1.5.5 Tectonic Considerations in Relation to Davisian Theory 100
1.5.6 Local Opposition to Davis 101
1.5.7 Davisian Doctrines Applied Overseas: Some Examples 101
1.5.7.1 Australasia 101
1.5.7.2 Britain 101
1.5.7.3 France 102
1.5.7.4 China 102
1.5.8 German Opposition to Davisian Ideas: Walther Penck’s Alternative 102
1.5.9 Germany and America: Differences of Opinion 104
1.5.10 Lester King in Africa: Davis Rewritten 105
1.5.11 Periglacial Geomorphology 107
1.5.12 The Beginnings of Quantitative and Experimental Geomorphology 107
1.5.13 Stream Patterns and Drainage Development 111
1.5.14 Landforms Produced by Etching 111
1.5.15 The Movement of Sand and Soil by Wind: Bagnold’s Investigations 112
1.5.16 Conclusion 113
References 114
Biographical Sketch 116
1.6 The Mid-Twentieth Century Revolution in Geomorphology 117
1.6.1 Introduction 119
1.6.2 The Quantitative Revolution 119
1.6.3 The Process Revolution 122
1.6.4 Theoretical Reappraisals 129
1.6.4.1 Equilibrium and Grade 129
1.6.4.2 Systems Theory 130
1.6.4.3 Time, Space, and Thresholds 130
1.6.5 The Plate-Tectonic Revolution 132
1.6.6 The Climate-Change Revolution 133
1.6.7 The Revolution in Geochronology 134
1.6.8 Conclusion 136
References 136
Biographical Sketch 138
1.7 Geomorphology in the Late Twentieth Century 139
1.7.1 Introduction 140
1.7.2 New Technologies in Geomorphology 140
1.7.3 Process Geomorphology 141
1.7.3.1 Fluvial Geomorphology 142
1.7.3.2 Coastal Geomorphology 143
1.7.3.3 Aeolian Geomorphology 143
1.7.3.4 Modeling 145
1.7.4 Landscape Development and Tectonic Geomorphology 145
1.7.5 Chaos, Self-Organized Criticality, and Non-linear Dynamic Systems 146
1.7.6 Connecting to Ecology: Biogeomorphology 148
1.7.7 Conclusions 150
References 150
Biographical Sketch 154
1.8 Philosophy and Theory in Geomorphology 155
1.8.1 Introduction 155
1.8.2 Distinguishing between Philosophy and Theory 155
1.8.3 Approaching Geomorphology 156
1.8.4 The Two Geomorphologies Problem 157
1.8.5 The Geomorphic Frame of Systems Analysis 158
References 159
Biographical Sketch 160
1.9 Spatial and Temporal Scales in Geomorphology 161
1.9.1 Introduction 161
1.9.2 Changing Foci of Time and Space 162
1.9.2.1 Evolution to Processes 162
1.9.2.2 Processes to Systems 163
1.9.2.3 Systems to Complexity 163
1.9.3 Conceptualizing Time and Space in Geomorphology 163
1.9.3.1 Absolute Time and Absolute Space 164
1.9.3.1.1 Absolute time and temporal scales 164
1.9.3.1.2 Absolute space and spatial scales 165
1.9.3.2 Relative Space and Time (Space-Time) 167
1.9.3.2.1 Relative time(-space) 168
1.9.3.2.2 Relative space(-time) 169
1.9.3.2.3 Relative space-time 170
1.9.3.3 Relational Spacetime 171
1.9.4 Spacetime Scales: Where and How Do We Go From Here? 172
1.9.5 Conclusion 173
References 174
Biographical Sketch 176
1.10 Tectonism, Climate, and Geomorphology 177
1.10.1 Introduction 179
1.10.2 Tectonism and Tectonic Change 180
1.10.2.1 Tectonic Concepts - Stabilism versus Mobilism 180
1.10.2.2 The Mechanics of Plate Tectonics 180
1.10.2.3 Plate Interiors 182
1.10.2.4 Plate Margins 185
1.10.3 Weather, Climate, and Climate Change 186
1.10.3.1 The Nature of Weather and Climate 186
1.10.3.2 Early Explanations of Climate Change 186
1.10.3.3 Probable Causes of Climate Change 191
1.10.4 Tectonism, Climate, and Geomorphology: Spatial Considerations 191
1.10.4.1 Latitude and Location 191
1.10.4.2 Continentality versus Oceanicity 192
1.10.4.3 Ocean Gateways and Land Corridors 195
1.10.4.4 Continental Elevation and Relief Barriers 195
1.10.4.5 Nature and Extent of Vegetation Cover 195
1.10.5 Tectonism, Climate, and Geomorphology: Temporal Changes since 300Ma 195
1.10.5.1 The Nature and Rate of Change 196
1.10.5.2 The Supercontinent of Pangea 196
1.10.5.3 Opening of the Atlantic Ocean and Tethys 198
1.10.5.4 Opening of the Southern Ocean 201
1.10.5.5 Uplift of North America’s Western Cordillera 201
1.10.5.6 Uplift of the Andes 204
1.10.5.7 Uplift of the Eurasian Cordillera and Tethys Closure 207
1.10.5.8 Closure of the Central American Isthmus 209
1.10.5.9 Volcanism 210
1.10.6 Geomorphic Feedbacks to Climate and Tectonism 212
1.10.6.1 Denudation, Sedimentation, and Isostasy 213
1.10.6.2 Biogeochemical Feedbacks 216
1.10.6.3 Relative Sea-Level change 216
1.10.7 Conclusion 217
References 217
Biographical Sketch 220
1.11 Process in Geomorphology 221
1.11.1 Introduction 222
1.11.2 Conceptions of Process at the Inception of Geomorphology 222
1.11.3 Evolving Conceptions of Process in Geomorphology 223
1.11.4 Strahler and the Foundation of the Process Paradigm 224
1.11.5 Systems and Process 226
1.11.6 The Mechanics and Mathematics of Process 227
1.11.7 Elaboration of the Process Paradigm 227
1.11.7.1 Challenges to Equilibrium 227
1.11.7.2 Nonlinear Behavior: Thresholds and Complex Response 228
1.11.7.3 Nonlinear Dynamical Systems 229
1.11.7.4 Process and Measurements 229
1.11.7.5 Process and Mathematical Modeling 229
1.11.7.6 Process Criticisms 230
1.11.7.7 Process Expanded 230
1.11.8 Philosophical Perspectives on Process 231
1.11.9 Conclusion 233
References 233
Biographical Sketch 235
1.12 Denudation, Planation, and Cyclicity: Myths, Models, and Reality 236
1.12.1 Introduction 240
1.12.2 Denudation: Foundations of the Concept before 1830 240
1.12.3 Planation: A Prolonged Debate, 1830-1960 243
1.12.3.1 Marine Planation 243
1.12.3.2 Subaerial Planation 244
1.12.3.2.1 Peneplanation 246
1.12.3.2.2 Pediplanation 247
1.12.3.2.3 Panplanation 247
1.12.3.2.4 Eolation 248
1.12.3.2.5 Glacial planation 248
1.12.3.2.6 Cryoplanation 248
1.12.3.2.7 Etchplanation 248
1.12.3.3 Compound Planation 249
1.12.4 Cyclicity in Geomorphology 250
1.12.4.1 Early Concepts of Earth Cycles 250
1.12.4.2 The Cycle Mania of the Nineteenth Century 251
1.12.4.3 The Ascent and Supremacy of the Davisian Cycle of Erosion, 1880-1930 251
1.12.4.4 The Descent of the Davisian Cycle of Erosion, 1930-1960 254
1.12.4.5 Alternative Planation Cycles during the Davisian Hegemony 255
1.12.5 The Quest for Reality 255
1.12.5.1 The Penckian Model 255
1.12.5.2 Crustal Mobility - Plate Tectonics 256
1.12.5.3 Process and Form Revisited 257
1.12.5.4 Crustal Instability - Denudation and Isostasy 258
1.12.6 Conclusion 260
References 260
Biographical Sketch 263
1.13 Sediments and Sediment Transport 264
1.13.1 Introduction 265
1.13.2 Key Concepts 266
1.13.2.1 The Froude Number 266
1.13.2.2 The Reynolds Number 266
1.13.2.3 The Prandlt and von Kármán Boundary-Layer Concepts 266
1.13.2.4 Nikuradse’s Sand Grain Roughness 267
1.13.2.5 The Rouse Number 268
1.13.3 The Properties of Sediment 269
1.13.3.1 Particle Size and Its Measurement 269
1.13.3.1.1 Particle-size scales 269
1.13.3.1.2 Particle-size measurement 271
1.13.3.2 Particle Shape 272
1.13.3.2.1 Sphericity 272
1.13.3.2.2 Roundness 274
1.13.3.3 Sediment Size Distributions 274
1.13.4 Initiation of Sediment Motion 276
1.13.4.1 The Hjulström Curve 276
1.13.4.2 The Shields Curve 277
1.13.4.3 Bagnold’s (1936) Equation 279
1.13.5 Sediment Transport 279
1.13.5.1 Grove Karl Gilbert 279
1.13.5.2 Ralph Alger Bagnold 282
1.13.5.3 Douglas Lamar Inman 284
1.13.6 Conclusions 284
References 284
Biographical Sketch 287
1.14 Systems and Complexity in Geomorphology 288
1.14.1 The Complexity of Landscapes 289
1.14.1.1 Models of Landscapes 290
1.14.2 Early Work on Systems and Complexity 291
1.14.2.1 The Systems Approach to Science 291
1.14.2.2 Deterministic Chaos and Fractals 291
1.14.2.3 Self-Organization and Emergence in Complex Systems 292
1.14.2.3.1 Positive and negative feedback 292
1.14.2.3.2 Complexity and scale 293
1.14.2.3.3 Emergence 293
1.14.2.3.4 Self-organized criticality 293
1.14.2.3.5 Why is self-organization surprising? A matter of thermodynamics 294
1.14.2.3.6 Cellular automata models of self-organizing complex systems 294
1.14.2.3.7 Context and boundaries in self-organizing systems 295
1.14.3 Systems and Complexity in Geomorphology 295
1.14.3.1 Field and Laboratory Studies of Self-Organization in Landscapes 295
1.14.3.1.1 Early observations 295
1.14.3.1.2 Geomorphological studies 296
1.14.3.1.3 Self-organized criticality 296
1.14.3.2 Self-Organizing Complex Systems Approaches to Landscape Modeling 296
1.14.3.2.1 A first generation of geomorphological models of self-organizing complex systems 296
1.14.3.2.2 A second generation of geomorphological models of self-organizing complex systems 297
1.14.4 Discussion 297
1.14.4.1 Does Landscape Complexity Arise from Underlying Simplicity? 297
1.14.4.1.1 A possible return to simplicity for landscape models 297
1.14.4.1.2 Landscape polygenesis and palimpsests 297
1.14.4.1.3 A tradeoff? The complications of an underlying simplicity 298
1.14.4.1.4 Simplicity: a faith-based hope? 298
Acknowledgments 299
References 299
Biographical Sketch 301
1.15 Geomorphology and Late Cenozoic Climate Change 302
1.15.1 Introduction 305
1.15.2 Climatic Geomorphology 306
1.15.3 Late Cenozoic Climates and Climate Change 307
1.15.3.1 A Primer on Earth’s Climates 307
1.15.3.2 A Primer on Climate Change 307
1.15.3.3 Early Foundations of Paleoclimatology 310
1.15.3.4 Revolution in Paleoclimatology, Paleooceanography, and Geochronology 312
1.15.3.5 Modeling 314
1.15.4 Marine Archives 315
1.15.5 Ice-Core Archives 320
1.15.6 Lake Archives 322
1.15.7 Aeolian Archives 327
1.15.7.1 Loess and Loess-like Deposits 328
1.15.7.2 Sand Dunes and Sand Sheets 329
1.15.8 Relevance of Climate Archives to Geomorphology 330
1.15.8.1 Climate Archives as Geomorphic Indicators 330
1.15.8.2 Geomorphic Links to Climate Cycles 332
1.15.9 Conclusion 333
References 334
Biographical Sketch 337
1.16 The Field, the First, and Latest Court of Appeal: An Australian Cratonic Landscape and its Wider Relevance 338
1.16.1 Introduction 338
1.16.2 Bornhardts and Associated Features 340
1.16.2.1 Description 340
1.16.2.2 Origin of Bornhardts 341
1.16.2.3 Bornhardts as Congeners of Corestone Boulders 341
1.16.2.4 Bornhardts as Two-Stage Forms: Field Tests and Evidence 343
1.16.2.5 Scarp Recession and Exposure of the Weathering Front 343
1.16.3 Domical Bornhardts and the Origin and Age of Sheet Fractures 344
1.16.3.1 Sheet Fractures - Offloading Questioned 344
1.16.3.2 Sheet Fractures as Planes of Dislocation 345
1.16.4 Other Aspects of Bornhardts 346
1.16.4.1 Do Bornhardts have Roots? 346
1.16.4.2 Bornhardt Variants - Climatic Impacts and Partial Etching 347
1.16.5 Flared Slopes and their Significance 347
1.16.5.1 Origin 348
1.16.5.2 Evidence Of and From Protection 349
1.16.6 Age Considerations 349
1.16.6.1 Exhumed Forms 349
1.16.6.2 Stratigraphic/Topographic Dating 349
1.16.6.3 Stepped Inselbergs and Episodic Exposure 350
1.16.6.4 Survival 351
1.16.7 Conclusions 352
References 352
Biographical Sketch 355
1.17 Laboratory and Experimental Geomorphology: Examples from Fluvial and Aeolian Systems 356
1.17.1 Philosophical Basis 357
1.17.2 Origin and Evolution of Hardware Modeling of Fluvial and Aeolian Systems 358
1.17.3 Advantages of Hardware Models over Field Experiments 360
1.17.4 Challenges in Scaling Laboratory Experiments 361
1.17.5 The Nuts and Bolts of Hardware Simulation in Geomorphology 362
1.17.5.1 Facilities 362
1.17.5.1.1 River modeling flumes 362
1.17.5.1.2 Hydraulic flumes 364
1.17.5.1.3 Wind tunnels 365
1.17.5.2 Instrumentation 367
1.17.5.2.1 Measurement of fluid motion: Water 367
1.17.5.2.2 Measurement of fluid motion: Air 368
1.17.5.2.3 Measurement of fluid motion: Leading edge technologies 369
1.17.5.2.4 Measurement of sediment motion 371
1.17.5.2.5 Measurement of bed morphology 372
1.17.6 Transformative Concepts 374
1.17.7 The Future of Experimentation in Geomorphology 375
1.17.8 Concluding Remarks 375
References 376
Biographical Sketch 378
1.18 Present Research Frontiers in Geomorphology 380
1.18.1 Introduction 381
1.18.2 Research at the Interface of Geomorphology and Ecology 382
1.18.2.1 You Say Biogeomorphology, I Say Ecohydrology... 382
1.18.2.2 Concepts and Progress in Biogeomorphological Interaction Modeling 384
1.18.2.3 Data Acquisition: Survey Technologies for High-Resolution Biogeomorphological Data 385
1.18.3 Integrative Thinking - Earth System Science and Landscape Evolution 385
1.18.3.1 Earth System Science and Geomorphology 385
1.18.3.2 Extraterrestrial Geomorphology: ESS by Analogy 386
1.18.3.3 Modeling Landscapes and Complex Systems 387
1.18.4 Geospatial Data Applications 388
1.18.5 Dealing with Threats to Coastal Environments: Better Understanding of Coastal Processes and Geomorphology 390
1.18.5.1 Rock Coast Geomorphology 390
1.18.5.2 Technologies for Detecting, Monitoring, and Modeling Coastal Geomorphology 391
1.18.6 Aeolian Research: New Impetus, New Technologies, and an Emerging Force 392
1.18.7 Dating Agencies: Advances in Methods and Data Handling 394
1.18.7.1 OSL or Optical Dating 394
1.18.7.2 Exposure Dating Using Terrestrial Cosmogenic Nuclides (TCN) 395
1.18.7.3 Age Models 396
1.18.8 Concluding Remarks 396
Acknowledgments 397
References 397
Biographical Sketch 406
1.19 Geomorphology for Future Societies 408
1.19.1 Introduction 411
1.19.2 Geomorphology Past and Present 411
1.19.2.1 Past Geomorphology 412
1.19.2.2 Present Geomorphology 412
1.19.3 The Future I: Environmental Challenges to Society 413
1.19.3.1 Human Population: Recent Trends and Future Projections 413
1.19.3.2 Climate Change 413
1.19.3.3 Relative Sea-Level Change 414
1.19.3.4 Seismicity and Volcanism 414
1.19.3.5 Water Issues 415
1.19.3.6 Changing Land-Cover and Land-Use Practices 415
1.19.4 The Future II: The Research Role of Geomorphology 416
1.19.4.1 Climate Change 416
1.19.4.1.1 Glaciation 418
1.19.4.1.2 Permafrost 418
1.19.4.1.3 Rivers 419
1.19.4.1.4 Wind 419
1.19.4.2 Relative Sea-Level Change 419
1.19.4.3 Seismicity and Volcanism 420
1.19.4.4 Water Resources 421
1.19.4.5 Sea Ice, Land Cover, and Land-Use Practices 424
1.19.4.5.1 Sea ice and snow cover 424
1.19.4.5.2 Vegetation cover and fire 424
1.19.4.5.3 Vegetation clearance 424
1.19.4.5.4 Agricultural land use 425
1.19.4.5.5 Mining 428
1.19.4.5.6 Roads, railways, seaports, and airports 428
1.19.4.5.7 Urban and industrial land use 429
1.19.5 The Future III: Applied Geomorphology 429
1.19.5.1 People and Environment: An Historical Perspective on Planning and Management 429
1.19.5.2 Education 431
1.19.5.3 Engineering Geomorphology: Solutions and Limitations 431
1.19.5.4 Planning 433
1.19.5.5 Environmental Management 436
1.19.6 Conclusion 439
References 439
Biographical Sketch 441
e9780123747396v2 442
Front Cover 442
TREATISE ON\rGEOMORPHOLOGY 445
CONTENTS 447
EDITOR-IN-CHIEF 449
VOLUME EDITOR 451
CONTRIBUTORS TO VOLUME 2 453
CONTENTS OF ALL VOLUMES 455
PREFACE 469
FOREWORD 471
2.1 Quantitative Modeling of Geomorphology 473
2.1.1 Introduction 473
2.1.2 Structure of this Volume 475
Acknowledgments 476
References 477
Biographical Sketch 477
2.2 Nine Considerations for Constructing and Running Geomorphological Models 478
2.2.1 Introduction 479
2.2.2 Model Construction 481
2.2.2.1 Suitability of the Model for the Question and Observational Data at Hand 484
2.2.2.2 Model Parsimony 486
2.2.2.3 Dimensional Analysis 487
2.2.2.4 Benchmarks 488
2.2.2.5 Other Model Construction Issues 489
2.2.3 Running the Model 489
2.2.3.1 Sensitivity Analysis 490
2.2.3.2 Calibration 490
2.2.3.3 Observation and Model Data Exploration 492
2.2.3.4 Uncertainty Assessment 494
2.2.3.5 Alternative Models, Data, and Questions 496
2.2.4 Concluding Remarks 497
Acknowledgments 497
References 497
Biographical Sketch 500
2.3 Fundamental Principles and Techniques of Landscape Evolution Modeling 501
2.3.1 Fundamental Processes and Equations 501
2.3.1.1 Conservation of Mass and Overland/Open-Channel Flow 501
2.3.1.2 Soil Production and Colluvial Transport on Hillslopes 502
2.3.1.3 Erosion and Deposition by Overland and Open-Channel Flow 505
2.3.2 Solution Methods 506
2.3.2.1 Methods for Diffusive Equations 506
2.3.2.2 Methods for Advective Equations 506
2.3.2.3 Methods for Solving Nonlinear Equations 508
2.3.2.4 Combining Process Models and Minimizing Grid-Resolution Dependence 509
2.3.3 Conclusions 514
References 514
Biographical Sketch 515
2.4 A Community Approach to Modeling Earth- and Seascapes 516
2.4.1 Background 516
2.4.2 Concept of a Community Modeling System 517
2.4.3 Open-Source and Readily Available Code 517
2.4.4 Community Modeling and the CSDMS Approach 517
2.4.5 Challenges 520
2.4.6 Summary 520
References 520
e9780123747396v3 693
Front Cover 693
TREATISE ON GEOMORPHOLOGY 696
CONTENTS 698
EDITOR-IN-CHIEF 700
VOLUME EDITOR 702
CONTRIBUTORS TO VOLUME 3 704
CONTENTS OF ALL VOLUMES 706
PREFACE 720
FOREWORD 722
3.1 Remote Sensing and GIScience in Geomorphology: Introduction and Overview 724
3.1.1 Introduction 726
3.1.2 Geospatial Technology and Fieldwork 726
3.1.3 Remote Sensing and Geomorphology 728
3.1.3.1 Photography and Videography 728
3.1.3.2 Imaging Spectroscopy 729
3.1.3.2.1 Sensor parameters 729
3.1.3.2.2 Reflectance properties and applications 730
3.1.3.3 Microwave Remote Sensing 733
3.1.3.4 The Atmosphere and Climate Forcing 733
3.1.3.5 Land-Cover Assessment and Mapping 735
3.1.3.6 Near-Surface Geophysics 735
3.1.4 GIS and Geomorphology 735
3.1.4.1 Digital Terrain Modeling (DTM) 736
3.1.4.2 Terrain Analysis 736
3.1.4.3 Landform Mapping 737
3.1.4.4 Spatial Hydrology 738
3.1.4.5 Erosion Modeling 740
3.1.4.6 Natural Hazards 741
3.1.4.7 Visualization 742
3.1.5 Conclusions 743
References 744
Biographical Sketch 747
3.2 Ground, Aerial, and Satellite Photography for Geomorphology and Geomorphic Change 748
3.2.1 Introduction 749
3.2.2 Data Acquisition 749
3.2.2.1 Photographic Scale 752
3.2.2.2 Temporal Coverage 753
3.2.2.3 Digital Cameras and Videography 754
3.2.2.3.1 Gigapan technology 755
3.2.2.4 Thermal Imaging Technology and Geomorphology 756
3.2.3 Image Interpretation 756
3.2.3.1 Change Detection 757
3.2.4 Conclusions 761
References 763
Relevant Websites 764
Biographical Sketch 765
3.3 Microwave Remote Sensing and Surface Characterization 766
3.3.1 Types of Microwave Sensors 768
3.3.2 Microwave Remote-Sensing Principles 770
3.3.2.1 Frequency or Wavelength Considerations 770
3.3.2.2 Resolution 771
3.3.2.2.1 Beam-limited resolution 771
3.3.2.2.2 Pulse-limited resolution 771
3.3.2.3 Polarization 772
3.3.2.4 Scattering, Surface Compositions, and Surface Roughness 773
3.3.3 Altimeters 774
3.3.3.1 Theory of Operation 774
3.3.3.2 Example Echo Profile 776
3.3.3.3 Geomorphological Applications 779
3.3.4 Synthetic-Aperture Radars 780
3.3.4.1 Theory of Operation 781
3.3.4.2 Geomorphological Applications 785
3.3.5 Stereo SAR 788
3.3.5.1 Theory of Operation 788
3.3.5.2 Geomorphological Applications 791
3.3.6 Interferometric SAR 792
3.3.6.1 Theory of Operation 792
3.3.6.2 Geomorphological Applications 797
3.3.7 Summary 798
References 800
Biographical Sketch 801
3.4 Remote Sensing of Land Cover Dynamics 803
3.4.1 Introduction 803
3.4.2 Remote Sensing of Land Cover 804
3.4.2.1 Discrete Information and Hard Classification 804
3.4.2.2 Landscape Metrics and Biophysical Change 805
3.4.2.3 Soft and Fuzzy Classification 805
3.4.2.4 Change Detection 805
3.4.2.5 Spatial and Temporal Scale 806
3.4.2.6 Surface Dynamics and Land Cover 806
3.4.2.7 Impervious Surfaces and Runoff 807
3.4.3 Case Studies 807
3.4.3.1 Coastal Impervious Runoff 807
3.4.3.2 Shoreline Change Analysis using a Multitemporal Radar 811
3.4.3.3 Dynamic Feature Extraction: Riverine Flood Inundation 811
3.4.4 Land-Cover Change Modeling 814
3.4.4.1 Emergence and Milestones 814
3.4.4.2 Proximate and Ultimate Drivers of Land Change 818
3.4.4.3 Modeling Approaches 819
3.4.4.3.1 Spatial modeling approaches 819
3.4.4.3.1.1 Multicriteria evaluation 820
3.4.4.3.1.2 Statistical regression 820
3.4.4.3.1.3 Dynamic spatial simulation 821
3.4.5 Future Research Directions 821
References 822
Biographical Sketch 825
3.5 Near-Surface Geophysics in Geomorphology 826
3.5.1 Introduction 827
3.5.2 Gravity 828
3.5.2.1 Strengths 829
3.5.2.2 Limitations 829
3.5.2.3 Gravity Case Studies 829
3.5.2.3.1 Faulting 829
3.5.2.3.2 Volcanic processes 829
3.5.2.3.3 Topography and weathering 830
3.5.2.3.4 Slope processes 832
3.5.2.3.5 Coastal processes and sea-level change 832
3.5.2.3.6 Glacial and periglacial processes 832
3.5.3 Magnetics 832
3.5.3.1 Strengths 832
3.5.3.2 Limitations 833
3.5.3.3 Case Studies 833
3.5.3.3.1 Faulting 833
3.5.3.3.2 Volcanic processes 833
3.5.3.3.3 Topography and weathering 833
3.5.3.3.4 Glacial and periglacial processes 833
3.5.4 Resistivity and EM Methods 833
3.5.4.1 Strengths 835
3.5.4.2 Limitations 835
3.5.4.3 Case Studies 835
3.5.4.3.1 Faulting 835
3.5.4.3.2 Volcanic processes 835
3.5.4.3.3 Topography and weathering 835
3.5.4.3.4 Slope processes 835
3.5.4.3.5 Coastal processes 836
3.5.4.3.6 Fluvial processes 836
3.5.4.3.7 Glacial and periglacial processes 836
3.5.5 Ground-Penetrating Radar 836
3.5.5.1 Strengths 838
3.5.5.2 Limitations 838
3.5.5.3 Case Studies 838
3.5.5.3.1 Faulting 838
3.5.5.3.2 Volcanic processes 838
3.5.5.3.3 Topography and weathering 838
3.5.5.3.4 Slope processes 840
3.5.5.3.5 Coastal processes and sea-level change 842
3.5.5.3.6 Aeolian processes 842
3.5.5.3.7 Fluvial processes 842
3.5.5.3.8 Glacial and periglacial processes 842
3.5.6 Seismic Methods 842
3.5.6.1 Strengths 844
3.5.6.2 Limitations 844
3.5.6.3 Case Studies 844
3.5.6.3.1 Faulting 844
3.5.6.3.2 Volcanic processes 845
3.5.6.3.3 Topography and weathering 845
3.5.6.3.4 Slope processes 845
3.5.6.3.5 Coastal processes and sea-level change 845
3.5.6.3.6 Fluvial processes 845
3.5.6.3.7 Glacial and periglacial processes 845
3.5.7 Combining Geophysical Methods 845
3.5.8 Discussion and Conclusions 846
3.5.8.1 Practical Considerations 846
3.5.8.2 Integrating Geophysics, Remote Sensing, and Geographic Information Systems 848
References 848
Biographical Sketch 852
3.6 Digital Terrain Modeling 853
3.6.1 Introduction 854
3.6.2 Background 854
3.6.3 DTM Representation 856
3.6.3.1 Land Surface 856
3.6.3.2 Scales and Land Surface 857
3.6.3.3 Data Structures 861
3.6.3.3.1 Raster (grid) 861
3.6.3.3.2 Triangulated irregular network (TIN) 863
3.6.3.3.3 Contour lines 863
3.6.3.3.4 Breaklines 863
3.6.3.3.5 Mass points 863
3.6.4 Data Sources 864
3.6.4.1 Terrestrial Laser Scanning Techniques 864
3.6.4.2 Terrestrial Photogrammetry Techniques (TPT) 866
3.6.4.3 Airborne Laser Scanning 867
3.6.4.4 Interferometric Synthetic Aperture Radar 868
3.6.5 Preprocessing 869
3.6.5.1 Point-Cloud Reduction Techniques 870
3.6.5.1.1 Decimation 870
3.6.5.1.2 Filtering 870
3.6.5.1.3 Segmentation 871
3.6.5.2 Surface Interpolation 871
3.6.6 DTM Error Assessment 873
3.6.6.1 Error Issues 873
3.6.6.1.1 Global errors 873
3.6.6.1.2 Local errors 874
3.6.6.1.3 Systematic errors 874
3.6.7 Geomorphological Applications 874
3.6.7.1 High-Resolution DTMs 875
3.6.7.2 High-Resolution DTMs and Scale 877
3.6.7.3 Data Fusion 877
3.6.7.4 Temporal Data Acquisition 877
3.6.8 Conclusions 878
References 879
Biographical Sketch 884
3.7 Geomorphometry 885
3.7.1 Introduction 886
3.7.2 Digital Terrain Modeling 887
3.7.2.1 Representation 887
3.7.2.2 Data Capture 888
3.7.2.3 Data Preprocessing and DEM Construction 890
3.7.2.4 Error and Artifacts 891
3.7.3 Land-Surface Parameters 892
3.7.3.1 Primary Parameters 892
3.7.3.2 Secondary Land-Surface Parameters 896
3.7.3.2.1 Hydrology 896
3.7.3.2.2 Climatology 898
3.7.4 Land-Surface Objects and Landforms 901
3.7.5 Conclusions 903
References 904
Biographical Sketch 909
3.8 Remote Sensing and GIScience in Geomorphological Mapping 910
3.8.1 Introduction 911
3.8.2 Background 913
3.8.2.1 Remotely Sensed Data 913
3.8.2.1.1 Aerial photographs 913
3.8.2.1.2 Satellite images 913
3.8.2.1.3 Digital elevation models 914
3.8.2.1.4 Supplementary data 915
3.8.2.2 GIScience 915
3.8.2.2.1 Mapping approaches 917
3.8.3 Glacial Landscapes and Landforms 917
3.8.3.1 Glacial Landforms 918
3.8.3.2 Data Processing and Visualization 918
3.8.3.2.1 Aerial photographs 918
3.8.3.2.2 Satellite images 919
3.8.3.2.3 Digital elevation models 920
3.8.3.3 GIS-based Mapping 921
3.8.4 Volcanic Terrain and Landforms 922
3.8.4.1 Satellite Images 924
3.8.4.2 Digital Elevation Models 926
3.8.4.3 GIS-Based Mapping 929
3.8.5 Landslide Mapping 930
3.8.5.1 Terrestrial and Airborne Photography 930
3.8.5.2 Satellite Imagery 931
3.8.5.3 Digital Elevation Models 932
3.8.5.3.1 LiDAR 932
3.8.5.3.2 Radar 932
3.8.5.3.3 ASTER 934
3.8.5.3.4 Geomorphometric analysis 934
3.8.5.4 GIS Modeling 935
3.8.5.5 GIS-based Landslide Inventories 935
3.8.5.6 GIS-based Landslide Assessment Maps 935
3.8.6 Fluvial Landscapes and Landforms 936
3.8.6.1 Aerial Photographs 936
3.8.6.2 Airborne And Satellite Sensors 937
3.8.6.3 Active Sensors 938
3.8.6.4 Geographic Information Systems 938
3.8.7 Conclusion 941
References 942
Biographical Sketch 949
3.9 GIS-Based Soil Erosion Modeling 951
3.9.1 Introduction 952
3.9.2 Background 953
3.9.2.1 Erosion Processes 953
3.9.2.2 Spatial Variability 953
3.9.2.3 Temporal Variability 953
3.9.2.4 GIS-Based Erosion Modeling 955
3.9.3 Foundations in Erosion Modeling 957
3.9.3.1 Sediment Transport and Net Erosion/Deposition Equations 957
3.9.3.2 Detachment and Sediment Transport Capacities 958
3.9.4 Simplified Models of Erosion Processes 960
3.9.4.1 Detachment Capacity Limited Case 960
3.9.4.2 Transport Capacity Limited Case 961
3.9.4.3 Process-Form Relationship 962
3.9.4.4 Path-Sampling Transport Modeling 963
3.9.4.5 Gully Erosion 964
3.9.4.6 Statistical Modeling 965
3.9.4.7 Landscape Evolution Modeling 965
3.9.5 GIS Implementation 966
3.9.5.1 Coupling GIS and Models 966
3.9.5.2 Derived Model Parameters 967
3.9.5.3 Analysis and Visualization 967
3.9.6 Case Studies 967
3.9.6.1 North Carolina Piedmont 968
3.9.6.2 Mediterranean Landscape Evolution 971
3.9.7 Conclusion and Future Directions 976
Acknowledgments 977
References 977
Biographical Sketch 980
3.10 Remote Sensing and GIS for Natural Hazards Assessment and Disaster Risk Management 982
3.10.1 Introduction 987
3.10.2 Background 989
3.10.2.1 Trends in Disaster Statistics 989
3.10.2.2 Disaster-Risk Management Framework 991
3.10.2.3 Risk-Analysis Framework 993
3.10.3 Hazard Assessment 994
3.10.3.1 Scale and Hazard Assessment 995
3.10.3.2 Spatial Data for Hazard Assessment 996
3.10.3.2.1 Hazard inventories and triggering events 996
3.10.3.2.2 Environmental factors 999
3.10.3.3 Hazard Assessment Examples 1001
3.10.3.3.1 Global hazard assessment 1001
3.10.3.3.2 (Inter)National hazard assessment 1002
3.10.3.3.3 Provincial and municipal level 1002
3.10.3.3.4 Community level 1003
3.10.4 Elements-At-Risk and Vulnerability 1004
3.10.4.1 Elements-At-Risk Information 1004
3.10.4.1.1 Collaborative mapping and Mobile-GIS 1004
3.10.4.1.2 Population data 1004
3.10.4.1.3 Building data 1006
3.10.4.2 Vulnerability 1006
3.10.5 Multi-Hazard Risk Assessment 1009
3.10.5.1 Qualitative Approaches 1010
3.10.5.2 Quantitative Approaches 1011
3.10.5.3 Spatial Risk Visualization 1012
3.10.6 Conclusions 1013
Acknowledgements 1016
References 1016
Biographical Sketch 1021
3.11 Geovisualization 1022
3.11.1 Introduction 1023
3.11.2 Background 1024
3.11.2.1 Historical Context 1024
3.11.2.2 Geomorphology and Geovisualization 1026
3.11.2.3 Applications and Emergent Technologies 1027
3.11.3 Visual Processing 1028
3.11.3.1 Detection of Landforms 1029
3.11.3.2 Image Enhancement 1030
3.11.3.3 Enhancement of DEMs 1032
3.11.3.3.1 Regional-residual separation 1032
3.11.3.3.2 Land-surface parameters 1033
3.11.3.4 Recommendations for Terrain Visualization 1035
3.11.4 Visual Interaction 1036
3.11.4.1 Display 1036
3.11.4.2 Digitization and Overlay 1036
3.11.4.3 2D to 2.5D in Space 1037
3.11.4.4 3D in Space 1038
3.11.4.5 Virtual Globes 1038
3.11.5 Visual Outputs 1039
3.11.5.1 Geomorphological Maps 1039
3.11.5.1.1 Legend systems 1039
3.11.5.1.2 Map design 1039
3.11.5.2 Digital Mapping 1041
3.11.5.2.1 Open standards 1042
3.11.5.2.2 GeoPDF 1042
3.11.5.2.3 Principles of web mapping and WebGIS 1042
3.11.6 Conclusions 1044
References 1045
Biographical Sketch 1048
e9780123747396v4 1049
Front Cover 1049
TREATISE ON GEOMORPHOLOGY 1052
CONTENTS 1054
EDITOR-IN-CHIEF 1056
VOLUME EDITOR 1058
CONTRIBUTORS TO VOLUME 4 1060
CONTENTS OF ALL VOLUMES 1062
PREFACE 1076
FOREWORD 1078
4.1 Overview of Weathering and Soils Geomorphology 1080
4.1.1 Previous Major Works in Weathering and Soils Geomorphology 1080
4.1.1.1 Relevant Topics not Covered in this Text 1082
4.1.2 What Constitutes Weathering Geomorphology? 1084
4.1.2.1 Weathering Voids 1084
4.1.2.2 Weathering-Resistant Landforms 1085
4.1.2.3 Weathering Residua: Soils and Sediments 1085
4.1.2.4 Weathered Landscapes 1085
4.1.3 Major Themes, Current Trends, and Overview of the Text 1085
4.1.3.1 Synergistic Systems 1086
4.1.3.2 Environmental Regions 1086
4.1.3.3 Processes at Different Scales 1087
4.1.3.4 Soils Geomorphology, Regolith, and Weathering Byproducts 1087
4.1.4 Conclusion 1088
References 1088
Biographical Sketch 1090
4.2 Synergistic Weathering Processes 1091
4.2.1 Introduction 1091
4.2.1.1 Definitions of Weathering and the Synergy Issues They Raise 1091
4.2.2 Getting to the Heart of Weathering and Its Synergies 1093
4.2.3 Scale Issues and Understanding Weathering Synergies 1094
4.2.3.1 Timescales and Weathering 1094
4.2.3.2 Spatial Scales and Weathering 1095
4.2.4 Concepts to Help Understand Weathering Synergies across Scales 1097
4.2.4.1 Nonlinear Weathering Systems 1097
4.2.4.2 Weathering- and Transport-Limited Systems 1098
4.2.4.3 The Critical Zone: An Aid to Understanding Weathering Synergies? 1100
4.2.5 Weathering Process Synergies 1100
4.2.5.1 Microscale Synergies between Weathering Mechanisms 1100
4.2.5.2 Synergies between Weathering Agents and Processes 1101
4.2.5.3 Synergies between Weathering Processes and Weathering Landform Evolution 1101
4.2.5.4 Synergies Linking Weathering Processes Across Temporal and Spatial Scales 1102
4.2.5.5 Synergies between Weathering and Erosion 1103
4.2.5.6 Synergistic Weathering Processes: Toward the Future 1103
References 1104
Biographical Sketch 1105
4.3 Pedogenesis with Respect to Geomorphology 1106
4.3.1 Introduction 1107
4.3.2 Pedogenic Processes 1108
4.3.3 Pedogenesis and Landscape Evolution 1108
4.3.3.1 Ferricrete and Laterite 1109
4.3.3.2 Calcrete and Dolocrete 1109
4.3.3.3 Gypcrete 1109
4.3.3.4 Silcrete 1109
4.3.3.5 Duricrusts and Landscape Evolution 1110
4.3.4 Soil Chronosequences 1110
4.3.5 Soils as Indicators of Landscape Stability 1111
4.3.5.1 Landscape Evolution in the Midwestern US 1113
4.3.6 Soils and Climate Change 1114
4.3.7 Soil-Slope Relationships 1114
4.3.7.1 The Catena Concept 1114
4.3.7.2 Catenas in Different Climates 1115
4.3.8 Hillslope/Soil Process Interaction 1117
4.3.9 Soils and Sedimentation 1117
4.3.9.1 Aeolian Sedimentation 1117
4.3.9.2 Fluvial Sedimentation 1118
4.3.10 Conclusions 1119
References 1119
Biographical Sketch 1122
4.4 Nanoscale: Mineral Weathering Boundary 1123
4.4.1 Introduction to Nanoscale Weathering 1124
4.4.2 Nanoscale Techniques for Geomorphologists 1124
4.4.2.1 Nanoscale Resolution Electron Microscopy 1124
4.4.2.2 Linking Scales through Digital Image Processing 1126
4.4.3 Applying Nanoscale Strategies to Contemporary Issues in Geomorphic Weathering 1127
4.4.3.1 Biotic Weathering 1128
4.4.3.2 Crossing the Nanoscale to Micron-Scale Threshold 1130
4.4.3.3 Connecting Etching to Weathering Forms 1131
4.4.3.4 Rock-Surface Alternation of Dust 1134
4.4.3.5 Silica Mobility in Rock Coatings and Case Hardening 1137
4.4.3.6 Thermal Stresses 1138
4.4.3.7 Silica Glaze Formation on Mars by Water Vapor Deposition 1139
4.4.3.8 Nanoscale View of Rock Polishing 1140
4.4.4 Conclusion 1142
References 1145
Biographical Sketch 1148
4.5 Rock Coatings 1149
4.5.1 Introduction to Rock Coatings 1150
4.5.2 Interpreting Rock Coatings through a Landscape Geochemistry Approach 1150
4.5.2.1 First-Order Control: Geomorphic Stability 1152
4.5.2.2 Second-Order Control: Subaerial Exposure of Subsurface Coatings 1152
4.5.2.3 Third-Order Control: Competition from Lithobionts 1157
4.5.2.4 Fourth-Order Control: Transport Pathways 1160
4.5.2.5 Fifth-Order Control: Barriers to Transport 1163
4.5.3 Importance of Rock Coatings in Geomorphology 1167
4.5.4 Conclusion 1169
References 1173
Biographical Sketch 1176
4.6 Weathering Rinds: Formation Processes and Weathering Rates 1177
4.6.1 Introduction 1177
4.6.2 Previous Research on Weathering Rinds 1178
4.6.3 Temporal Changes in Rock Properties 1178
4.6.4 Formation Processes of Weathering Rinds 1183
4.6.5 A Porosity Concerned Model of Weathering Rind Development 1184
4.6.6 Conclusions 1187
References 1187
Biographical Sketch 1189
4.7 Tafoni and Other Rock Basins 1190
4.7.1 Introduction 1191
4.7.1.1 Tafoni 1191
4.7.1.2 Gnamma 1192
4.7.1.3 Climatic and Geographic Influences 1193
4.7.2 Morphological Classification and Rate of Development 1195
4.7.2.1 Tafoni 1195
4.7.3 Stages of Tafone Development 1196
4.7.3.1 Gnammas 1197
4.7.4 Stages of Gnamma Progression 1198
4.7.5 Processes of Development 1199
4.7.5.1 Lithologic Influences 1199
4.7.5.2 Environmental Influences and Salinity 1201
4.7.5.3 Biotic Influences 1201
4.7.5.4 Climate and Insolation 1202
4.7.5.5 Feedback Cycles 1203
4.7.6 Summary 1204
References 1204
Biographical Sketch 1205
4.8 Weathering Mantles and Long-Term Landform Evolution 1206
4.8.1 Introduction 1206
4.8.2 Weathering Mantles and How They Form 1207
4.8.3 Deep Weathering Through Geological Time 1210
4.8.4 Etching and Stripping 1212
4.8.5 Geomorphological Signatures of Etchsurfaces 1216
4.8.5.1 Inselbergs 1216
4.8.5.2 Multiconvex Relief 1218
4.8.5.3 Basins 1220
4.8.5.4 Plains 1221
4.8.6 Conclusions 1221
References 1221
Biographical Sketch 1223
4.9 Catenas and Soils 1224
4.9.1 Introduction 1225
4.9.2 The Catena Concept 1225
4.9.3 Elements and Characteristics of Catenas 1227
4.9.3.1 Summits 1227
4.9.3.2 Shoulders and Free Faces 1228
4.9.3.3 Backslopes 1228
4.9.3.4 Footslopes 1228
4.9.3.5 Toeslopes 1228
4.9.3.6 Catenary Variation as Affected by Sediments and Climate 1229
4.9.4 Soil Variation on Catenas - Why? 1229
4.9.5 Soil Drainage Classes along Catenas 1233
4.9.6 The Edge Effect 1234
4.9.7 Summary 1235
References 1235
Biographical Sketch 1237
4.10 Weathering and Hillslope Development 1238
4.10.1 Introduction 1238
4.10.2 Fundamentals 1239
4.10.2.1 Weathering-Limited and Transport-Limited Slopes 1239
4.10.2.2 Short-Term and Long-Term Controls and Feedback 1239
4.10.2.3 Working Definitions 1240
4.10.3 Weathering and Rock Slope Evolution 1240
4.10.3.1 Strength of Weathered Rock Masses 1240
4.10.3.2 Weathering-Induced Rock Slope Failures 1242
4.10.3.3 Caprock Failures above Weathered Base 1243
4.10.4 Deep Weathering and Landslides 1245
4.10.4.1 Deep Weathering Profiles and their Properties 1245
4.10.4.2 Landslides in Weathered Terrains 1247
4.10.4.3 Geomorphic Signatures of Mass Movements in Weathered Materials 1247
4.10.5 Weathering and Slope Landforms 1249
4.10.5.1 Boulders and Boulder Fields 1249
4.10.5.2 Tors 1252
4.10.5.3 Flared Slopes 1255
4.10.6 Conclusions 1255
References 1256
Biographical Sketch 1257
4.11 Weathering in the Tropics, and Related Extratropical Processes 1258
4.11.1 Overview 1259
4.11.1.1 Heritage 1259
4.11.1.2 The Tropical Geomorphic Region: Defining ’Tropical’ in Geography and Time 1262
4.11.2 Weathering Processes and Their Relation to Tropical Conditions 1263
4.11.2.1 Factors 1263
4.11.2.2 The Processes 1264
4.11.2.3 End Products of the Weathering Process 1265
4.11.2.4 Rates of Weathering 1268
4.11.2.5 Weathering Maxima Outside the Tropics 1268
4.11.3 Weathering-Related Landforms of the Tropics 1269
4.11.3.1 Weathering Voids: Solutional Landforms 1269
4.11.3.2 Weathering-Resistant Landforms 1270
4.11.3.3 Deep Weathering Mantles 1271
4.11.4 Conclusion 1272
References 1272
Biographical Sketch 1275
4.12 Weathering in Arid Regions 1276
4.12.1 Introduction 1277
4.12.2 Climate and Weathering - Presumed Connections and Observed Disparities 1279
4.12.2.1 Temperature 1279
4.12.2.1.1 Air temperature 1280
4.12.2.1.2 Rock and sediment temperature 1280
4.12.2.2 Moisture Availability 1282
4.12.2.2.1 Rainfall 1282
4.12.2.2.2 Dewfall and fog 1282
4.12.2.2.3 Groundwater 1283
4.12.3 Nature and Complexity of Weathering Processes 1283
4.12.3.1 Insolation Weathering (Thermoclastis) 1284
4.12.3.2 Salt Weathering 1286
4.12.3.2.1 Crystallization 1288
4.12.3.2.2 Hydration/dehydration phase change 1289
4.12.3.2.3 Thermal expansion/contraction 1291
4.12.3.2.4 Chemical dissolution effects 1291
4.12.3.3 Frost (Freeze-Thaw) Weathering 1291
4.12.3.4 Chemical Weathering 1292
4.12.3.4.1 Mobilization and removal of elements 1293
4.12.3.4.2 Mobilization and precipitation of elements 1293
4.12.3.5 Biological weathering 1294
4.12.3.5.1 Biochemical effects 1295
4.12.3.5.2 Biophysical effects 1296
4.12.4 The Desert Weathering System 1297
4.12.4.1 System Components 1297
4.12.4.1.1 Materials 1297
4.12.4.1.2 Processes 1297
4.12.4.1.3 Form/morphology 1297
4.12.4.1.4 Environment 1297
4.12.4.2 Desert Weathering - A Nonlinear Dynamic System? 1297
4.12.4.2.1 Feedback mechanisms 1298
4.12.4.2.2 Magnitude and frequency 1298
4.12.4.2.3 Form convergence (equifinality) 1298
4.12.4.2.4 Sensitivity and system components 1300
4.12.4.3 Scale Issues (Spatial and Temporal) 1300
4.12.5 Inheritance and the Concept of Palimpsest 1301
4.12.6 Conclusion 1301
References 1303
Biographical Sketch 1306
4.13 Coastal Weathering 1307
4.13.1 Introduction 1307
4.13.1.1 The Coastal Weathering Environment: Definition 1307
4.13.1.2 Conditions in the Coastal Weathering Environment 1308
4.13.2 Marine Salt in the Coastal Environment 1309
4.13.2.1 The Nature of Marine Salts 1309
4.13.2.2 Salts in the Atmosphere: Uptake and Transfer 1309
4.13.2.3 Onshore Salt Deposition 1310
4.13.2.4 Salts in Coastal Rocks 1311
4.13.3 Weathering Processes Facilitated by the Coastal Environment 1312
4.13.3.1 Mechanical Weathering Processes 1312
4.13.3.1.1 Thermal variation 1312
4.13.3.1.2 Slaking 1312
4.13.3.1.3 Phase changes 1313
4.13.3.2 Chemical Weathering Processes 1314
4.13.3.2.1 Dissolution 1314
4.13.3.3 Biological Weathering Processes 1314
4.13.3.3.1 Macrobiological processes 1314
4.13.3.3.2 Microbiological processes 1314
4.13.3.4 Complexity and Rates of Rock Weathering by Salts 1315
4.13.4 Coastal Landforms Associated with Weathering 1316
4.13.4.1 Shore Platforms 1317
4.13.4.2 Tafoni (Singular Tafone) 1317
4.13.4.3 Honeycomb Weathering 1318
4.13.5 Conclusion 1320
4.13.5.1 Environmental Factors 1320
4.13.5.2 Lithological Factors 1320
4.13.5.3 Process Factors 1320
References 1321
Biographical Sketch 1323
4.14 Chemical Weathering in Cold Climates 1324
4.14.1 Introduction 1325
4.14.2 Chemical Weathering Processes 1325
4.14.2.1 Solution 1325
4.14.2.2 Hydrolysis 1325
4.14.2.3 Hydration 1326
4.14.2.4 Ion Exchange 1326
4.14.2.5 Oxidation/Reduction 1326
4.14.2.6 Carbonation 1326
4.14.2.7 Chelation 1326
4.14.2.8 Controls on Rates of Chemical Weathering 1326
4.14.3 Bedrock Weathering 1327
4.14.4 Rock Coatings 1328
4.14.5 Soil Development in Cold Climates 1329
4.14.6 Chemical Weathering in Glacial and Proglacial Environments 1332
4.14.7 Chemical Denudation in Arctic and Alpine Environments 1332
4.14.8 Conclusions 1333
References 1333
Biographical Sketch 1336
4.15 Mechanical Weathering in Cold Regions 1337
4.15.1 Introduction 1338
4.15.1.1 The Literature 1338
4.15.1.2 Weathering Processes 1339
4.15.1.3 Landforms Associated with Weathering 1339
4.15.2 Weathering Processes in Cold Regions 1339
4.15.2.1 Introduction 1339
4.15.2.2 Frost Weathering 1340
4.15.2.2.1 Background to the freeze-thaw concept 1340
4.15.2.2.2 Freeze-thaw in cold regions: Laboratory studies 1340
4.15.2.2.3 Thermal and moisture conditions 1341
4.15.2.2.4 Rock properties 1342
4.15.2.2.5 From the past to the present 1342
4.15.2.3 Weathering by Wetting and Drying 1343
4.15.2.4 Thermal Stress Fatigue/Thermal Shock 1344
4.15.2.4.1 Thermal stress within the cold region context 1345
4.15.2.5 Salt Weathering 1345
4.15.2.6 Dilatation/Pressure Release 1346
4.15.2.7 Where Are We at - Where Do We Go? 1347
4.15.3 Landforms 1348
4.15.3.1 Landform Associations 1348
4.15.4 Where are We at and Where are We Going? 1351
References 1351
Biographical Sketch 1355
4.16 Soil Chronosequences 1356
4.16.1 Introduction 1356
4.16.2 Soil Characteristics Supporting Chronosequence Development 1357
4.16.2.1 Organic Enrichment 1357
4.16.2.2 Leaching of Soluble Salts 1357
4.16.2.3 Translocation of Clay Minerals 1357
4.16.3 Issues Complicating the Development and Use of Chronosequences 1358
4.16.4 Chronosequence Applications 1358
4.16.4.1 Marine and Fluvial Terraces 1358
4.16.4.2 Glacial and Periglacial Chronosequences 1358
4.16.4.3 Vegetation Change and Management Issues 1359
4.16.4.4 Fire Disturbance 1360
4.16.4.5 Climate Change and Carbon Sequestration 1360
4.16.5 Summary and Conclusion 1361
References 1361
Biographical Sketch 1362
4.17 Weathering and Sediment Genesis 1363
4.17.1 Weathering, Sediments, and the Rock Cycle 1364
4.17.2 Processes: Disintegration and Chemical Alteration 1364
4.17.3 Factors of Weathering Relevant to Sediment Production 1366
4.17.3.1 Parent Material 1366
4.17.3.2 Climate 1366
4.17.3.3 Drainage and Topographic Relief 1366
4.17.4 Sediment Maturity and Weathering in Transport 1367
4.17.5 Types of Sediment 1367
4.17.5.1 Scree (or ’talus’) and Other Rock Fragments 1367
4.17.5.2 Sand 1367
4.17.5.3 Silt 1367
4.17.5.4 Clay 1368
4.17.6 The Role of Weathering in Cementing Sediment 1370
4.17.7 Summary 1370
References 1370
Biographical Sketch 1372
e9780123747396v5 1373
Front Cover 1373
TREATISE ON\rGEOMORPHOLOGY 1376
CONTENTS 1378
EDITOR-IN-CHIEF 1380
VOLUME EDITOR 1382
CONTRIBUTORS TO VOLUME 5 1384
CONTENTS OF ALL VOLUMES 1386
PREFACE 1400
FOREWORD 1402
5.1 Dedication to Dr. Kurt Lang Frankel 1404
References 1404
5.2 Tectonic Geomorphology: A Perspective 1406
5.2.1 Introduction 1407
5.2.2 Development of Tectonic Geomorphology and Advances Related to the Discipline 1407
5.2.3 Recent Research Foci (Subdisciplines) 1410
5.2.3.1 Landscape and Tectonic Evolution of Active Plate Margins 1410
5.2.3.2 Mountain Building 1410
5.2.3.3 Development of Fault and Fold Systems 1411
5.2.3.4 Evolution of Passive Margins, Continental Interiors, and Plateau Uplift 1411
5.2.3.5 Volcanic Geomorphology 1411
5.2.3.6 Paleoseismology and Seismic Hazard Assessment 1412
5.2.3.7 Tectonics, Climate Change and Erosion, and Polygenetic Landscapes 1412
5.2.4 Future Advances 1412
Acknowledgments 1413
References 1413
Biographical Sketch 1415
5.3 Continental-Continental Collision Zone 1416
5.3.1 Introduction 1417
5.3.2 Southern Alps of New Zealand 1420
5.3.2.1 Overview of Geology and Geomorphology 1420
5.3.2.2 Steady State 1420
5.3.2.3 Orography, Subduction Polarity, and Range Symmetry 1422
5.3.3 Africa-Europe Collision 1422
5.3.3.1 Pyrenees 1422
5.3.3.1.1 Overview of geology and geomorphology 1422
5.3.3.1.2 Origin and significance of low-relief surfaces 1423
5.3.3.2 Alps 1424
5.3.3.2.1 Overview of geology and geomorphology 1424
5.3.3.2.2 Cause of recent uplift of the Alps 1425
5.3.3.2.3 Range width and climate change 1426
5.3.4 Arabia-Eurasia Collision 1426
5.3.4.1 Overview of Geology and Geomorphology 1426
5.3.4.2 Mantle Lithosphere Delamination, Uplift, and Drainage Reorganization 1427
5.3.5 India-Asia Collision 1429
5.3.5.1 Himalaya 1429
5.3.5.1.1 Monsoon precipitation and climate-tectonic coupling 1429
5.3.5.1.2 Channel flow 1429
5.3.5.1.3 Syntaxes - tectonic aneurysms 1430
5.3.5.2 Tibet 1431
5.3.5.2.1 Paleoaltimetry 1431
5.3.5.2.2 Lower crustal flow 1431
5.3.5.2.3 Drainage reorganization, uplift, and crustal shear 1432
5.3.5.2.4 Landslides and glacial dams 1433
5.3.6 Ancient Orogens 1433
5.3.7 Conclusion 1434
References 1434
Biographical Sketch 1439
5.4 Transform Plate Margins and Strike-slip Fault Systems 1440
5.4.1 Introduction 1441
5.4.2 General Tectonic Setting 1442
5.4.3 Advances in Studying Continental Transform Systems 1446
5.4.3.1 Geochronology and Thermochronology 1447
5.4.3.2 Remote Sensing 1448
5.4.3.3 Tectonic Geodesy 1449
5.4.4 Major Continental Transform Plate Boundaries and Strike-slip Fault Systems 1450
5.4.4.1 Pacific-North America Plate Boundary 1450
5.4.4.1.1 San Andreas Fault 1451
5.4.4.1.2 Eastern California shear zone-Walker Lane: An Evolving Plate Boundary 1453
5.4.4.1.3 Garlock Fault: An Intracontinental Transform 1458
5.4.4.2 Pacific-Australian Plate Boundary 1458
5.4.4.3 Caribbean-North American Plate Boundary 1458
5.4.4.4 Himalayan-Tibetan Orogen Strike-slip Systems 1458
5.4.4.5 Alaska 1460
5.4.4.6 North and Eastern Anatolian-Dead Sea Fault System 1460
5.4.4.7 Miscellaneous 1460
5.4.5 Important Questions and Future Directions 1460
5.4.5.1 Constancy of Seismic Strain Accumulation and Release 1461
5.4.5.2 Quantifying Deformation Rates 1462
5.4.5.3 Calibrating and Cross-Checking Geochronometers 1466
5.4.6 Conclusions 1468
Acknowledgments 1469
References 1469
Biographical Sketch 1473
5.5 Tectonic Geomorphology of Passive Margins and Continental Hinterlands 1474
5.5.1 Introduction 1474
5.5.2 Igneous and Tectonic Processes Associated with Rifting 1479
5.5.3 Prerifting Continental Topography and Elevation 1481
5.5.4 Postrifting Evolution of Marginal Escarpments 1482
5.5.4.1 King’s Scarp Retreat Model - Backwearing 1482
5.5.4.2 Pinned Drainage Divide - Downwearing 1482
5.5.4.3 Downwarping of the Continental Margin 1483
5.5.4.4 Isostasy and Flexure 1484
5.5.4.5 Perspectives from Integrating Low-Temperature Geochronology and Numerical Modeling 1486
5.5.4.6 Sinuosity of Escarpments 1486
5.5.4.7 Low-Relief Passive Margins without a Marginal Escarpment 1486
5.5.5 Evolution of Continental Hinterlands 1488
5.5.5.1 Cyclic Erosion 1488
5.5.5.2 Dynamic Topography 1489
5.5.5.3 Plate Boundary Stresses and Lithospheric Buckling 1490
5.5.5.4 Implications for Continent-Wide Erosion Cycles and the Origin of Uplifts 1491
5.5.6 Concluding Remarks 1492
Acknowledgments 1492
References 1492
Relevant Website 1495
Biographical Sketch 1495
5.6 Plateau Uplift, Regional Warping, and Subsidence 1496
5.6.1 An Introduction to Surface and Deep Features of High Plateaus 1497
5.6.1.1 Components and Scales of Landscape Dynamics 1497
5.6.1.2 Definition and Types of Plateaus at Earth’s Surface 1498
5.6.1.3 The Main High Plateaus 1500
5.6.1.3.1 The Tibetan plateau 1500
5.6.1.3.2 The Altiplano-Puna plateau 1501
5.6.1.3.3 The Colorado Plateau 1501
5.6.1.3.4 The Eastern Anatolian plateau 1501
5.6.1.3.5 The East African and Ethiopian plateaus 1501
5.6.1.3.6 The southern African plateau 1501
5.6.1.4 Deep Structures of the Main High Plateaus 1502
5.6.1.4.1 Continent-continent collision plateaus (Tibet and Anatolian plateaus) 1502
5.6.1.4.1.1 The Tibetan Plateau 1502
5.6.1.4.1.2 The Eastern Anatolian and Iranian plateaus 1504
5.6.1.4.2 Ocean-continent collision plateau (The Andes) 1504
5.6.1.4.3 Intraplate plateaus (Colorado and African plateaus) 1505
5.6.1.4.3.1 The Colorado Plateau 1505
5.6.1.4.3.2 The East African (Kenyan) and Ethiopian plateaus 1507
5.6.1.4.3.3 The Southern African plateau 1507
5.6.1.5 High Plateaus: Uplifted Peneplains, Growing Plateau or Applanation at High Elevation? 1507
5.6.1.6 On the Existence of Past High Plateaus in the Earth History 1509
5.6.2 Evidence for Plateau Uplift, Regional Warping, and Subsidence 1510
5.6.2.1 Geomorphic Markers 1510
5.6.2.1.1 Low-relief, high-elevation erosional surfaces 1510
5.6.2.1.2 Drainage network development and reorganization on a plateau 1511
5.6.2.1.3 River longitudinal profiles: Steepness indices 1511
5.6.2.1.4 Longitudinal paleoprofile reconstruction of rivers 1512
5.6.2.2 Paleoaltimetry from Sedimentology 1513
5.6.2.2.1 Paleoaltimetry from marine sediments 1513
5.6.2.2.2 Paleoaltimetry from paleohorizontality of lacustrine sediments 1513
5.6.2.2.3 Paleoaltimetry from paleoslopes: Large-scale patterns of deposition 1513
5.6.2.2.4 Grain size distribution in piedmont sedimentation 1514
5.6.2.3 Paleoaltimetry Data Based on Paleobotany 1514
5.6.2.4 Paleoaltimetry Data Based on Stable Isotopes 1516
5.6.2.4.1 Paleoaltimetry data based on the stable isotopic records (delta18O and delta2H) of carbonates derived from... 1516
5.6.2.4.2 Paleoaltimetry data based on the abundance of 18O13C16O (Delta47): The ’carbonate clumped’ isotope... 1517
5.6.2.5 Paleoaltimetry Data Based on Paleoatmospheric Pressure from Basalt Vesicularity 1518
5.6.2.6 Paleoaltimetry Data Based on Cosmogenic Nuclides 1518
5.6.2.7 Cooling-History and Erosion Rates as a Proxy for Rock or Surface Uplift 1519
5.6.2.7.1 Vertical profiles of thermochronological data combined with other lines of evidence as a proxy for rock and... 1519
5.6.2.7.2 Horizontal profiles of thermochronological data combined with other lines of evidence as a proxy for... 1520
5.6.2.7.3 Incision rates obtained from thermochronological data combined with other lines of evidence as a proxy for uplift 1520
5.6.3 Tectonic Mechanisms and Associated Surface Uplift Rates for Plateau Uplift, Regional Warping, and Subsidence 1521
5.6.4 Plateau Uplift and Global Climate Change 1522
5.6.5 Conclusion 1523
Acknowledgments 1523
References 1523
Biographical Sketch 1530
5.7 Tectonic Geomorphology of Active Folding and Development of Transverse Drainages 1532
5.7.1 Introduction 1533
5.7.2 Lateral Propagation of Reverse Faults and Related Folds 1533
5.7.3 Geomorphic Evidence of Lateral Fold Propagation 1534
5.7.4 Geomorphic Methods to Analyze Laterally Propagating Folds 1535
5.7.5 Santa Ynez Mountains 1537
5.7.6 Complex Lateral Propagation 1538
5.7.7 Development of Transverse Drainage 1542
5.7.8 Directivity of Earthquake Energy and Lateral Fold Propagation: A Hypothesis of Tectonic Extrusion 1545
5.7.9 Conclusions 1548
References 1548
Biographical Sketch 1549
5.8 Volcanic Landforms and Hazards 1551
5.8.1 Introduction 1553
5.8.2 Tectonic Settings 1553
5.8.2.1 Subduction-related Volcanism 1553
5.8.2.2 Hot-Spots 1554
5.8.2.3 Zones of Extension 1555
5.8.3 Variety of Volcanic Landforms 1555
5.8.3.1 Classification of Volcanic Landforms 1555
5.8.3.2 Major Controls on Landform Types 1555
5.8.3.3 Major Types of Volcanic Eruption 1557
5.8.3.3.1 Pelean eruptions 1557
5.8.3.3.2 Plinian eruptions 1557
5.8.3.3.3 Vesuvian eruptions 1558
5.8.3.3.4 Vulcanian eruptions 1558
5.8.3.3.5 Strombolian eruptions 1559
5.8.3.3.6 Other eruptions 1559
5.8.3.4 Major Types of Volcanoes 1560
5.8.3.4.1 Cinder (Scoria) cone volcanoes 1560
5.8.3.4.2 Composite volcanoes 1561
5.8.3.4.3 Shield volcanoes 1563
5.8.3.4.4 Lava domes 1563
5.8.3.4.5 Caldera versus crater 1564
5.8.3.4.6 Submarine volcanoes 1566
5.8.3.4.7 Mud volcanoes 1566
5.8.3.4.8 Geysers, fumaroles, hot springs 1567
5.8.3.4.9 Lava tubes 1569
5.8.4 Evolving Volcanic Landforms 1570
5.8.4.1 Parícutin Cinder Cone 1570
5.8.4.2 Kavachi, Solomon Islands 1572
5.8.4.3 Surtsey 1572
5.8.4.4 Iceland 1572
5.8.4.5 Kilauea 1572
5.8.4.6 Mount St. Helens 1573
5.8.4.7 Mount Rainer 1574
5.8.4.8 Krakatau 1574
5.8.4.9 Mount Etna 1578
5.8.4.10 Canary Islands 1578
5.8.5 Ancient Volcanic Settings 1578
5.8.5.1 Supervolcanic Eruptions 1578
5.8.5.1.1 Toba caldera 1579
5.8.5.1.2 Yellowstone caldera 1581
5.8.5.2 Flood Basalts 1582
5.8.5.2.1 Columbia river basalt group 1582
5.8.5.2.2 Deccan traps 1583
5.8.6 Volcanic Hazards 1584
5.8.6.1 Direct Hazards 1584
5.8.6.1.1 Pyroclastic flow 1584
5.8.6.1.2 Tephra 1584
5.8.6.1.3 Direct blast 1585
5.8.6.1.4 Lava flows 1585
5.8.6.1.5 Dangerous gases 1586
5.8.6.2 Indirect Hazards 1586
5.8.6.2.1 Tephra 1586
5.8.6.2.2 Lahar 1586
5.8.6.2.3 Debris avalanches, landslides, and tsunamis 1586
5.8.6.2.4 Climate change 1588
5.8.6.3 Volcanic Hazard Mitigation 1590
5.8.7 Future Challenges in the Study of Volcanic Landforms and Hazards 1592
Acknowledgments 1592
References 1592
Biographical Sketch 1595
5.9 Hot Spots and Large Igneous Provinces 1596
5.9.1 Introduction 1598
5.9.1.1 Types of Hot Spot Magmatic Structures 1599
5.9.1.2 What is a Hot Spot Volcano? 1600
5.9.2 Hot Spot Volcanic Chains 1601
5.9.2.1 Volcanic Chain Analysis 1601
5.9.2.1.1 Long-lived age-progressive volcanism 1602
5.9.2.1.2 Short-lived age-progressive volcanism 1602
5.9.2.1.3 No age-progressive volcanism 1602
5.9.2.2 Volcanic Chain Analysis. The Hawaii-Emperor Example 1602
5.9.2.2.1 Young stage of the Hawaiian chain: The Southeastern Islands, from Hawaii to Kaula 1603
5.9.2.2.2 Oldest stage of the Hawaiian chain: The Northwestern Islands, from Nihoa to the Kure atoll 1603
5.9.2.2.3 Emperor Chain: From Colahan to Meiji seamounts 1603
5.9.2.3 Hot Spot Chains and Plate Tectonics 1604
5.9.3 Hot Spot Volcanoes 1607
5.9.3.1 Edifices - General Morphology 1607
5.9.3.2 Construction versus Destruction 1610
5.9.3.3 Model of Building 1611
5.9.3.3.1 Submarine preshield stage 1611
5.9.3.3.2 Shield-building stage 1612
5.9.3.3.3 Postshield stage 1612
5.9.3.3.4 Erosional and late volcanism 1612
5.9.3.3.5 Atoll and seamounts 1612
5.9.3.4 Volcanic and Tectonic Morphologies 1612
5.9.3.4.1 Summit areas, calderas and pit craters 1612
5.9.3.4.2 Cones, eruptive fissures and rift zones 1615
5.9.3.4.3 Lava flow fields 1618
5.9.3.4.4 Faults, slides, and slumps 1619
5.9.3.5 Erosional Morphologies 1620
5.9.3.5.1 Influence of volcano shape 1620
5.9.3.5.2 Influence of volcanic activity 1621
5.9.3.5.3 Influence of geology and lithology 1621
5.9.3.6 Submarine Morphologies 1624
5.9.3.6.1 Submarine volcanic activity 1625
5.9.3.6.2 Formations built by volcaniclastic materials 1626
5.9.3.6.3 Sedimentary volcaniclastic systems 1626
5.9.4 Conclusion 1630
Acknowledgments 1631
References 1631
Biographical Sketch 1635
5.10 Tectonic Geomorphology of Normal Fault Scarps 1637
5.10.1 Introduction 1638
5.10.2 Basin and Range Province 1641
5.10.3 Slope Retreat Versus Recline 1642
5.10.4 Modeling the Decay of Transport-Limited Scarps 1646
5.10.5 Limitation of the Geometric Model for Normal Fault Scarp Decay 1649
5.10.6 Summary 1651
References 1651
Biographical Sketch 1652
5.11 Landslides Generated by Earthquakes: Immediate and Long-Term Effects 1653
5.11.1 Introduction 1654
5.11.2 Overview of Landslide Occurrence in Earthquakes 1654
5.11.2.1 Numbers and Classification of Earthquake-Induced Landslides 1655
5.11.2.2 Relation of Landslide Occurrence to Ground Shaking, Topography, Materials, and Hydrologic Conditions 1658
5.11.2.2.1 Distribution of landslides related to earthquake magnitude and shaking intensities 1659
5.11.2.2.2 Topographic, hydrologic, and geologic indicators of landslide occurrence 1661
5.11.2.2.3 Detailed landslide distribution from an individual earthquake: example from the 1989 Loma Prieta, California... 1662
5.11.3 Geomorphic and Postearthquake Effects of Earthquake-Induced Landslides 1662
5.11.4 Conclusions 1666
References 1666
Biographical Sketch 1669
5.12 Paleoseismology 1670
5.12.1 Introduction 1671
5.12.1.1 Scope of Paleoseismology 1672
5.12.1.2 Paleoseismology’s Relation to Tectonic Geomorphology 1672
5.12.2 Earthquake Recurrence Models 1673
5.12.2.1 Characteristic Earthquake Model 1674
5.12.2.2 Time-/Slip-Predictable Model 1675
5.12.3 Recent Methodological Developments in Paleoseismology 1676
5.12.3.1 Remote Sensing Technologies 1676
5.12.3.2 Fault Trenching 1676
5.12.3.3 Numerical Dating 1677
5.12.4 On-Fault Paleoseismology 1681
5.12.4.1 Fault Length and Dimension 1681
5.12.4.2 Timing of Paleoearthquakes and Slip per Event 1684
5.12.4.3 Long-term Slip Rate 1688
5.12.5 Off-Fault Paleoseismology 1688
5.12.5.1 Marine Terraces 1688
5.12.5.2 Paleoliquefaction Features 1688
5.12.5.3 Tsunami Deposits (Tsunamiites) 1690
5.12.5.4 Earthquake-Triggered Landslides 1691
5.12.5.5 Earthquake-Triggered Cracks 1693
5.12.6 Contribution to Seismic Hazards 1693
5.12.7 Challenges 1697
Acknowledgments 1697
References 1697
Biographical Sketch 1701
5.13 Glacially Influenced Tectonic Geomorphology: The Impact of the Glacial Buzzsaw on Topography and Orogenic Systems 1703
5.13.1 Introduction 1703
5.13.2 Basics of Glacial Erosion 1704
5.13.2.1 Erosional Processes 1704
5.13.2.2 Glacial Erosion and Glacier Sliding 1705
5.13.2.3 Rates of Glacial Erosion 1705
5.13.2.4 Complexities and Exceptions 1707
5.13.3 Glacial Erosion and Topography 1707
5.13.3.1 Alpine Glacial Topography 1707
5.13.3.2 Specific Models of Evolving Glacial Topography 1709
5.13.4 Influence of Glaciers on Tectonics 1711
5.13.4.1 The Glacial Buzzsaw Hypothesis 1711
5.13.4.2 Glacial Erosion and Climate-Tectonic Coupling 1714
5.13.4.3 Orogen and Landscape Response to Glacial Climate Change 1715
5.13.5 Discussions and Conclusions 1716
References 1717
Biographical Sketch 1720
5.14 Tectonic Aneurysms and Mountain Building 1721
5.14.1 Introduction 1722
5.14.2 Tectonic Aneurysm: Conceptual Model 1724
5.14.2.1 Terminology 1724
5.14.2.2 Geologic Expression of Tectonic Aneurysms 1724
5.14.2.2.1 Physical setting 1724
5.14.2.2.2 Geomorphic setting 1725
5.14.2.2.3 Metamorphism 1728
5.14.2.2.4 Observations in the fixed reference frame: geophysics 1730
5.14.2.2.5 Timing, rate, and duration of metamorphism and exhumation 1730
5.14.2.3 Discussion and Summary, Geologic Expression 1733
5.14.3 Physics and Boundary Conditions of the Tectonic Aneurysm 1735
5.14.3.1 Solid Earth: Mechanical Conditions for Tectonic Aneurysms 1735
5.14.3.1.1 Rheological and thermal considerations 1735
5.14.3.1.2 Mantle trajectory 1737
5.14.3.1.3 Topographic stress 1737
5.14.3.1.4 Discussion and summary of mechanical effects 1737
5.14.3.2 The Surface Boundary 1737
5.14.3.2.1 Erosional requirements 1738
5.14.3.2.2 Energy sources and erosion 1738
5.14.3.2.3 Fluvial systems 1738
5.14.3.2.4 Glacial systems 1740
5.14.3.2.5 Emergent behavior: Self-organized balance between uplift and erosion 1741
5.14.3.2.6 Summary, surface boundary 1743
5.14.4 Geodynamics of the Tectonic Aneurysm 1743
5.14.4.1 Numerical Models 1743
5.14.4.2 The Corner Model 1743
5.14.4.3 The Generalized Macroscale Himalayan Model (GMHM) 1743
5.14.4.3.1 Strain softening and drainage formation 1745
5.14.4.4 Early Stages of Aneurysm Development: Southern Alaskan Example 1745
5.14.4.5 Geodynamic Summary 1747
5.14.5 Conclusions 1747
5.14.5.1 Model Summary 1747
Acknowledgments 1748
References 1748
Biographical Sketch 1751
5.15 The Influence of Middle and Lower Crustal Flow on the Landscape Evolution of Orogenic Plateaus: Insights from the... 1753
5.15.1 Introduction 1754
5.15.2 Development and Geophysical Characteristics of the Tibetan Plateau 1754
5.15.3 Gravitational Potential Energy Gradients and the Dynamics of Middle Crustal Flow 1758
5.15.4 Geomorphology and Tectonics of the Tibetan Plateau 1758
5.15.4.1 Long-Wavelength Topographic Variations, South to North (Transect A-Aprime) 1759
5.15.4.1.1 Are E-W corrugations related to middle-lower crustal flow? 1762
5.15.4.1.2 Has Tibetan middle crust extruded at the Himalayan front? 1763
5.15.4.2 Long-Wavelength Topographic Variations, West to East (Transect B-Bprime) 1764
5.15.4.2.1 Does the gradual west-to-east decrease in mean elevation indicate eastward flow of the middle crust? 1764
5.15.4.3 Short-Wavelength Topographic Variations on the Tibetan Plateau 1765
5.15.5 A Self-Consistent Model of the Cenozoic Topographic Evolution of the Tibetan Plateau, Assuming Lower and Middle... 1765
5.15.6 Feedbacks among Middle-Lower Crustal Flow, Landscape Evolution, and Climate 1766
5.15.7 Conclusions 1767
Acknowledgments 1767
References 1767
Biographical Sketch 1772
5.16 Polygenetic Landscapes 1773
5.16.1 Introduction 1775
5.16.2 Early Conceptual Models for Landscape Evolution 1776
5.16.2.1 Davis Model: Cycle of Erosion 1776
5.16.2.2 Penck Model: Uplift and Denudation Related 1776
5.16.2.3 King Model: Pediplanation 1777
5.16.2.4 Büdel Model: Etchplanation 1778
5.16.2.5 Critique of Early Landscape Evolution Models 1778
5.16.3 System and Equilibrium Models 1778
5.16.3.1 Geomorphic Systems 1778
5.16.3.2 Tectonic Geomorphology 1780
5.16.3.3 Dynamic Equilibrium and Dynamic Meta-Stable Equilibrium 1780
5.16.3.4 Time-Dependent and Time-Independent Landforms 1780
5.16.3.5 Landscape Sensitivity 1780
5.16.3.6 High-Magnitude-Low-Frequency Processes versus Low-Magnitude-High-Frequency Processes 1781
5.16.3.7 Critique of Equilibrium Concepts 1782
5.16.4 Models for Feedback between Climate and Tectonics 1782
5.16.4.1 Climatic Instability and Paraglaciation 1782
5.16.4.2 Glacial Buzzsaw 1784
5.16.5 Relief Production 1784
5.16.5.1 Unloading and Uplift 1784
5.16.5.2 Tectonic Aneurysm 1785
5.16.5.3 Glacial Protection 1785
5.16.6 Landscape Evolution and Scale 1785
5.16.6.1 Continental Scale Landscapes 1785
5.16.6.2 Regional-Scale Landscapes 1785
5.16.6.3 Landform Scale 1787
5.16.7 Mathematical and Computational Modeling 1787
5.16.8 Conclusion 1793
References 1794
Biographical Sketch 1796
e9780123747396v6 1797
Front Cover 1797
TREATISE ON\rGEOMORPHOLOGY 1800
CONTENTS 1802
EDITOR-IN-CHIEF 1804
VOLUME EDITOR 1806
CONTRIBUTORS TO VOLUME 6 1808
CONTENTS OF ALL VOLUMES 1810
PREFACE 1824
FOREWORD 1826
6.1 New Developments of Karst Geomorphology Concepts 1828
6.1.1 Introduction 1828
6.1.2 Processes of Carbonate Karst 1829
6.1.3 Rates, Dates, and Evolution of Carbonate Karst 1829
6.1.4 Surface Processes and Landforms in Carbonate Karst 1830
6.1.5 Subsurface Processes and Landforms 1831
6.1.6 Karst Variation over a Range of Environmental Settings 1836
6.1.7 Noncarbonate Karst 1838
6.1.8 Conclusion 1839
References 1839
e9780123747396v7 2311
Front Cover 2311
TREATISE ON GEOMORPHOLOGY 2314
CONTENTS 2316
EDITOR-IN-CHIEF 2318
VOLUME EDITORS 2320
CONTRIBUTORS TO VOLUME 7 2322
CONTENTS OF ALL VOLUMES 2324
PREFACE 2338
FOREWORD 2340
7.1 Mountain and Hillslope Geomorphology: An Introduction 2342
Biographical Sketch 2343
7.2 Regolith and Soils of Mountains and Slopes 2345
7.2.1 Introduction 2346
7.2.2 Mountain Types 2346
7.2.2.1 Types of Slopes 2349
7.2.2.2 Processes Acting on Mountain Tops and Slopes 2349
7.2.2.3 Nature of Regolith on Mountains and Slopes 2353
7.2.3 Summary 2359
References 2359
Relevant websites 2359
Biographical Sketch 2360
7.3 Stress, Deformation, Conservation, and Rheology: A Survey of Key Concepts in Continuum Mechanics 2361
7.3.1 Introduction 2362
7.3.2 Continuum 2363
7.3.3 Force 2363
7.3.4 Stress 2363
7.3.4.1 Total Stress 2364
7.3.4.2 Stresses Acting on Arbitrarily Oriented Surfaces 2365
7.3.4.3 Pore Water, Hydraulic Head, and Pore-Water Pressure 2366
7.3.4.4 Effective Stress 2366
7.3.5 Deformation 2369
7.3.5.1 Normal Strain 2369
7.3.5.2 Shear Strain 2371
7.3.5.3 Rotation 2371
7.3.5.4 Strains in an Arbitrarily Oriented Coordinate System 2372
7.3.6 Rate of Deformation 2372
7.3.7 Conservation 2373
7.3.7.1 Conservation of Mass 2374
7.3.7.2 Conservation of Linear Momentum 2375
7.3.8 Constitutive Relations 2376
7.3.8.1 Linearly Elastic Material 2377
7.3.8.1.1 Relationships between stress and normal strain 2377
7.3.8.1.2 Relationships between shear stress and shear strain 2378
7.3.8.1.3 Relationship between pressure and dilatation 2379
7.3.8.2 Linearly Viscous Fluid 2379
7.3.8.3 Plasticity - the Coulomb Failure Rule 2381
7.3.9 Example Application 2381
7.3.9.1 Conservation of Momentum and Stress Equilibrium 2381
7.3.9.2 Effective Stress and Effective Stress Equilibrium 2381
7.3.9.3 Effective Stress and Elastic Strain 2382
7.3.9.4 Displacement Formulation of Constitutive Relations and Groundwater Flow 2382
7.3.10 Concluding Remarks 2383
References 2383
Biographical Sketch 2384
7.4 Influence of Physical Weathering on Hillslope Forms 2385
7.4.1 Introduction: Modes of Physical Weathering 2385
7.4.2 Physical Weathering and Its Effect on Geomorphic Processes 2386
7.4.2.1 Weathering Products from Physical Weathering 2386
7.4.2.2 Effect of Weathering on Mass Movement (Slope Processes) 2386
7.4.2.3 Strength Reduction from Weathering 2386
7.4.3 Sheeting Joints from Unloading (Pressure Release) 2387
7.4.3.1 Microsheeting in Granite 2387
7.4.3.2 Exfoliation Rates of Sheeting Joints for Granite Dome 2388
7.4.4 Effect of Slaking on Structural Landforms and Mass Movement 2388
7.4.4.1 Effect of Slaking on Rock-Controlled Landforms 2388
7.4.4.2 Effect of Slaking on Landslides on Mudstone Hillslopes 2389
7.4.5 Effect of Crystal Growth Weathering (Salt Fretting and Frost Shattering) on Landforms and Mass Movement 2390
7.4.5.1 Effect of Frost Weathering on Periglacial Landforms 2390
7.4.5.2 Effect of Frost Weathering on Rockfall and Talus Slope Development 2391
7.4.5.3 Effect of Salt Weathering on Tafoni and Pan Formation 2391
7.4.5.4 Effect of Crystal Growth Weathering on Notch Formation 2391
7.4.5.5 Effect of Frost Action and Notch Formation on Cliff Collapse 2392
7.4.6 Conclusion 2394
References 2395
Biographical Sketch 2396
7.5 Influence of Chemical Weathering on Hillslope Forms 2397
7.5.1 Introduction 2397
7.5.2 A General Mass Balance Model of Hillslope Evolution Including Chemical Weathering 2397
7.5.2.1 The Chemical Weathering Mass-Loss Term 2398
7.5.2.2 The Soil Production Term and Chemical Weathering 2399
7.5.2.3 The Sediment Transport Term and Chemical Weathering 2400
7.5.3 Feedbacks between Chemical Weathering and Geomorphic Processes 2402
7.5.4 Conclusions 2404
References 2404
Biographical Sketch 2406
7.6 Rates of Denudation 2407
7.6.1 Introduction 2407
7.6.2 A Word about Nomenclature and Units 2408
7.6.3 Techniques Used to Determine Spatially Averaged Denudation Rates 2408
7.6.4 Controls of Denudation Rates 2408
7.6.5 Temporal and Spatial Scales of Denudation Rate Measurements 2411
References 2411
Biographical Sketch 2413
7.7 Surface-Runoff Generation and Forms of Overland Flow 2414
7.7.1 Introduction 2414
7.7.2 Hillslope Hydrology, Overland Flow, and Surface Runoff 2415
7.7.3 Processes That Generate Surface Runoff 2415
7.7.3.1 Infiltration-Excess Overland Flow 2415
7.7.3.2 Saturation-Excess Overland Flow 2416
7.7.4 Factors Affecting Surface-Runoff Generation 2417
7.7.4.1 Climate 2417
7.7.4.2 Soil Properties and Vegetation 2419
7.7.4.3 Rainfall Characteristics 2419
7.7.4.4 Topography 2420
7.7.4.5 Land Management 2421
7.7.5 Importance of Scale and Hydrologic Connectivity 2421
7.7.6 Conclusions 2422
References 2422
Biographical Sketch 2425
7.8 Flood Generation and Flood Waves 2426
7.8.1 Introduction 2426
7.8.2 The Concept of Hydrological Connectivity 2427
7.8.3 Flood Generation in Drylands 2429
7.8.4 Flood Generation in Temperate Regions 2430
7.8.5 Flood Waves 2432
7.8.6 Summary and Conclusion 2432
References 2433
Biographical Sketch 2435
7.9 Analysis of Flash-Flood Runoff Response, with Examples from Major European Events 2436
7.9.1 Introduction 2436
7.9.2 Runoff Generation under Intense Rainfall 2437
7.9.3 Examination of Runoff Characteristics from Major Flash Floods Monitored in Europe 2439
7.9.4 Location and Data Characterization 2439
7.9.5 Characterizing Runoff Coefficient 2441
7.9.6 Conclusions 2442
References 2443
Biographical Sketch 2444
7.10 Conceptualization in Catchment Modeling 2446
7.10.1 Introduction 2447
7.10.2 Models and Simulation 2448
7.10.3 Scale and Scaling 2449
7.10.4 Model Error and Model Testing 2450
7.10.5 Concept-Development Simulation, What If 2451
7.10.5.1 Is Horton Overland Flow the Dominant Runoff-Generation Mechanism for an R-5-like Catchment? 2451
7.10.5.2 What are the Upstream Hydrologic-Response and Sediment-Transport Dynamics for a Searsville-Like Dam? 2451
7.10.5.3 What are the Hydrologic-Response and Sediment-Transport Dynamics for a Kaho’olawe-Like Island? 2454
7.10.6 Coos Bay Case Study 2454
7.10.6.1 Site Overview 2454
7.10.6.2 Hydrogeologic Units 2456
7.10.6.3 Hydrologic-Response Instrumentation 2456
7.10.6.4 Major Conclusions from Analysis of Hydrologic Observations 2457
7.10.6.5 BVP for Hydrologic Simulation 2457
7.10.6.6 Hydrologic Simulation 2457
7.10.6.7 Slope-Stability Assessment 2457
7.10.6.8 What Was Learned from the Hydrologic Simulations and Slope Failure Assessment? 2458
7.10.7 Summary 2459
Acknowledgments 2459
References 2459
BiographicalSketch 2462
7.11 Rill and Gully Development Processes 2463
7.11.1 Concepts and Classifications 2463
7.11.2 Rill Development and Erosion Processes 2465
7.11.3 General Approaches on Rill Erosion 2466
7.11.4 Gully Development and Erosion Processes 2467
7.11.5 Gully Erosion Approaches 2468
7.11.5.1 Threshold Approaches 2468
7.11.5.2 Gully Headwall Retreat and Sidewall Erosion 2469
7.11.5.3 Estimation of Gully Erosion 2469
7.11.6 Conclusions 2470
References 2470
Biographical Sketch 2472
7.12 Land Use and Sediment Yield 2473
7.12.1 Introduction 2473
7.12.2 Human Impact and Land-Use Change 2474
7.12.3 Field Evidence of Human-Induced Soil Erosion 2474
7.12.4 Land Use and Sediment Yield at Different Spatial Scales 2475
7.12.5 Quantification of Human-Induced Sediment Yield: Ways Forward 2475
7.12.6 Conclusion 2476
References 2476
Biographical Sketch 2478
7.13 Processes, Transport, Deposition, and Landforms: Quantifying Creep 2479
7.13.1 Introduction 2479
7.13.2 Conceptual Models for Creep 2481
7.13.3 Quantifying Creep 2483
7.13.3.1 Physical Tracers 2483
7.13.3.2 Fallout Short-Lived Isotopes 2484
7.13.3.3 Meteoric 10Be 2485
7.13.3.4 OSL Dating 2488
7.13.3.5 Integrating Soil Production Rates 2489
7.13.4 Conclusion 2490
Acknowledgement 2490
References 2490
Biographical Sketch 2492
7.14 Processes, Transport, Deposition, and Landforms: Slides 2493
7.14.1 Introduction 2493
7.14.2 Types of Sliding 2493
7.14.2.1 Rotational Slides 2494
7.14.2.2 Translational Slides 2495
7.14.2.3 Compound Slides 2496
7.14.2.4 Complex Slides 2496
7.14.3 Initiation of Slides 2497
7.14.4 Reactivation of Ancient Landslides 2497
7.14.5 Concluding Remarks 2497
References 2497
Biographical Sketch 2498
7.15 Processes, Transport, Deposition, and Landforms: Flow 2499
7.15.1 Introduction: Flow Processes on Hillslopes 2500
7.15.2 Size Matters: Scale Issues 2500
7.15.3 Flow Types 2501
7.15.3.1 Fluid Flow 2501
7.15.3.2 Granular Flow 2501
7.15.3.3 Grain-in-Fluid Flows 2502
7.15.4 Flows on Hillslopes 2502
7.15.5 Initiation of Flows 2503
7.15.6 Flow Characteristics 2504
7.15.7 Deposition and Entrainment in Slope Flows 2505
7.15.8 Examples of Flows on Hillslopes: Debris Flows 2505
7.15.9 Examples of Flows on Hillslopes: Earth Flows 2506
7.15.9.1 Rapid Earth Flows 2507
7.15.10 Examples of Flows on Hillslopes: Peat Flows 2508
7.15.10.1 Initiation 2508
7.15.10.2 Motion and Deposition 2508
7.15.10.3 Geomorphic Signature 2508
7.15.11 Concluding Remarks 2509
References 2509
Biographical Sketch 2510
7.16 Processes, Transport, Deposition, and Landforms: Topple 2512
7.16.1 Toppling 2512
References 2514
Biographical Sketch 2514
7.17 Processes, Transport, Deposition, and Landforms: Rockfall 2515
7.17.1 Introduction 2515
7.17.2 Distribution of Rockfalls 2516
7.17.3 Rockfall Inventories 2516
7.17.4 Rockfall Triggers 2517
7.17.5 Rockfall Movement 2519
7.17.6 Talus Slopes 2520
7.17.6.1 Talus Materials and Fall Sorting 2521
7.17.7 Modeling of Rockfall Activity 2521
References 2522
Biographical Sketch 2523
7.18 Long-Runout Landslides 2524
7.18.1 Introduction 2524
7.18.2 Catastrophic Long-Runout Landslides 2526
7.18.2.1 Types and Characteristics of Long-Runout Landslides 2526
7.18.2.2 Peculiarities of Volcanic Long-Runout Landslides 2527
7.18.3 Causes and Triggers 2528
7.18.3.1 Theories and Dynamics of Long Runout 2529
7.18.3.2 Experimental and Numerical Insights 2531
7.18.3.3 Geomorphic Consequences 2532
7.18.3.4 Hazard Implications 2534
7.18.4 Conclusions and Outlook 2535
References 2537
Biographical Sketch 2539
7.19 Mass-Movement Causes: Overloading 2541
7.19.1 Introduction 2541
7.19.2 Qualitative Case Study on Overloading with Water, Road Fill, and Landslide Debris 2542
7.19.3 Incorporation of Surcharge in Quantitative Slope Stability Analysis 2543
7.19.4 Importance of Overloading as a Parameter Influencing Slope Stability 2544
References 2545
Biographical Sketch 2546
7.20 Mass-Movement Causes: Water 2548
7.20.1 Introduction 2548
7.20.2 The Underground Material 2548
7.20.3 Water and Plasticity of Soils 2549
7.20.4 Pore-Water Pressure in the Void System 2549
7.20.5 Water in Different Landslide Types 2550
References 2551
Biographical Sketch 2552
7.21 Mass-Movement Causes: Changes in Slope Angle 2553
7.21.1 Introduction 2553
7.21.2 Slow Changes in Slope Angle 2553
7.21.3 Sudden Changes in Slope Angle 2553
7.21.4 Changing Slope Angles in Landscape Evolution Models 2555
References 2556
Biographical Sketch 2556
7.22 Mass-Movement Causes: Glacier Thinning 2558
7.22.1 Introduction 2558
7.22.2 Landslides in Soil 2558
7.22.2.1 Exposure of Glacial Sediment 2559
7.22.2.2 Paraglacial Dam Break Floods and Related Debris Flows 2559
7.22.2.3 Melting of Ground Ice 2560
7.22.3 Landslides in Rock 2560
7.22.3.1 Glacial Conditioning of Rock Masses 2560
7.22.3.2 Landslides on Glacially Conditioned Rock Slopes 2561
7.22.4 Conclusions 2562
References 2562
Biographical Sketch 2563
7.23 Mass-Movement Causes: Earthquakes 2564
7.23.1 Introduction 2565
7.23.2 Landslide Types and Triggering Characteristics 2565
7.23.3 Geographic Distributions of Landslides 2566
7.23.4 Characteristics of Landslide Distributions 2567
7.23.5 Geomorphic Effects of Earthquake-Triggered Landslides 2568
7.23.6 Summary and Conclusion 2569
References 2569
Biographical Sketch 2570
7.24 Mass-Movement Style, Activity State, and Distribution 2571
7.24.1 Mass-Movement Style 2571
7.24.1.1 Falling 2571
7.24.1.2 Toppling 2572
7.24.1.3 Sliding 2572
7.24.1.4 Flowing 2573
7.24.1.5 Spreading 2575
7.24.1.6 Creeping 2575
7.24.2 Activity State 2575
7.24.2.1 Pre-Failure Movement 2575
7.24.2.2 Failure 2575
7.24.2.3 Reactivation 2575
7.24.2.4 Activity State 2576
7.24.3 Mass-Movement Distribution 2576
7.24.3.1 Distribution of Mass-Movement Disasters 2578
References 2578
Biographical Sketch 2579
7.25 Lateral Spreading 2580
7.25.1 Introduction 2580
7.25.2 Morphological Description, Causes and Evolution 2581
7.25.2.1 Rock Spreading 2582
7.25.2.1.1 Rock spreading in homogeneous rock masses 2582
7.25.2.1.2 Rock spreading in brittle formations overlying ductile terrains 2582
7.25.2.2 Soil Spreading 2585
7.25.3 Hazard and Planning Implications 2586
References 2587
Biographical Sketch 2588
7.26 Mass-Movement Hazards and Risks 2590
7.26.1 Introduction 2591
7.26.2 The Physical Context 2591
7.26.2.1 The Energy of Processes 2591
7.26.2.2 Mass Movement 2591
7.26.2.3 Mass Movement in Mountains 2591
7.26.3 The Human Context 2592
7.26.4 Social and Physical Environmental Change 2592
7.26.5 Concepts: Hazard, Risk, and Susceptibility 2594
7.26.5.1 Hazard 2594
7.26.5.2 Risk 2594
7.26.5.3 Susceptibility 2594
7.26.5.4 Vulnerability 2594
7.26.6 Assessing Hazard and Risk 2594
7.26.6.1 The Nature of Mass-Movement Hazard 2595
7.26.6.1.1 Dynamic or static 2595
7.26.6.1.2 Site specific or nonsite specific 2595
7.26.6.1.3 Landslide type 2595
7.26.6.1.4 Intensity of landslides 2595
7.26.6.2 Where Landslides Occur: Susceptible Terrain 2596
7.26.6.3 Frequency of Occurrence 2596
7.26.6.4 Risk 2597
7.26.7 Conclusion 2597
References 2597
Biographical Sketch 2599
7.27 Avoidance and Protection Measures 2600
7.27.1 Introduction 2601
7.27.2 Risk Acceptance 2602
7.27.3 Hazard Avoidance 2602
7.27.4 Hazard Reduction Strategies 2603
7.27.4.1 Avoiding or Reducing Landslide Occurrence 2603
7.27.4.2 Slope Maintenance 2603
7.27.4.2.1 Slope protection 2604
7.27.4.2.2 Implementation of best practices 2604
7.27.4.3 Reducing Driving Forces: Landslide Remediation 2605
7.27.4.3.1 Removal of the unstable mass 2605
7.27.4.3.2 Modification of the slope geometry (regrading) 2605
7.27.4.3.3 Drainage 2605
7.27.4.4 Increasing Resisting Forces 2606
7.27.4.4.1 Internal slope reinforcement 2606
7.27.4.4.2 Surface slope reinforcement 2607
7.27.4.5 Reducing Landslide Severity 2608
7.27.5 Strategies for Consequences Reduction 2609
7.27.5.1 Reducing Vulnerability 2609
7.27.5.2 Strengthening the Exposed Elements 2609
7.27.5.3 Adaptation Measures 2609
7.27.5.4 Protecting the Exposed Elements 2610
7.27.5.5 Alert Systems 2610
7.27.6 Concluding Remarks 2611
References 2611
Biographical Sketch 2613
7.28 Numerical Modeling of Flows and Falls 2614
7.28.1 Introduction 2614
7.28.2 Basic Model Principles 2615
7.28.2.1 The Energy-Line Method 2615
7.28.2.2 Dynamic Mass Movement Modeling 2616
7.28.2.3 Dynamic Flood Modeling 2617
7.28.3 Modeling of Flows 2617
7.28.3.1 Energy-Line-Based Models 2617
7.28.3.2 Dynamic Modeling of Large-Scale Flows 2618
7.28.4 Modeling of Rockfall 2620
7.28.5 Future Challenges in Mass Movement Modeling 2621
Acknowledgment 2622
References 2622
Biographical Sketch 2623
7.29 Changing Hillslopes: Evolution and Inheritance; Inheritance and Evolution of Slopes 2625
7.29.1 Introduction 2626
7.29.2 Hillslope Evolution 2627
7.29.2.1 Historical Context 2627
7.29.2.2 Fisher’s Cliff Retreat (1866) 2627
7.29.2.3 Davis’ Graded Slopes and Their Progressive Downwearing (1899) 2627
7.29.2.4 Penck’s Slope Replacement (Originally Published in 1924 in German with the Title ’Die Morphologische Analyse’,... 2629
7.29.2.5 Wood’s Slope Cycle 2629
7.29.2.6 King’s Parallel Slope Retreat (1953) 2629
7.29.2.7 Gilbert (1877) Revisited: Hack’s Dynamic Equilibrium (1960) 2629
7.29.2.8 Process-Based Modeling and the Continuity Equation 2630
7.29.3 The Inheritance of Landforms Predating Plio-Pleistocene Climate Change 2630
7.29.4 The Inheritance of Landforms during Glacial-Interglacial Fluctuations 2631
7.29.5 Bedrock Landscapes 2632
7.29.5.1 What is a Bedrock Landscape? 2632
7.29.5.2 Changes from V-Shaped to U-Shaped Valleys and Back Again 2633
7.29.6 Soil-Mantled Landscapes 2635
7.29.6.1 Soil Production Mechanisms and Rates 2635
7.29.6.2 Soil Transport Rates 2636
7.29.6.2.1 The modification of soil-mantled terrain during glacial-interglacial fluctuations 2636
7.29.6.3 Process-Based Models and Inheritance Timescales 2638
7.29.7 Discussion and Conclusions 2639
Acknowledgment 2642
References 2642
Biographical Sketch 2646
7.30 Hillslope Processes and Climate Change 2647
7.30.1 Introduction 2647
7.30.2 Climate Change 2648
7.30.3 Landslides and Climate Coupling 2650
7.30.4 Landslides and Climate Change 2652
7.30.5 Landslides as Inheritance of Global and Regional Climate Change, at Different Temporal Scales 2653
7.30.6 Landslides and Long-Term Climate Changes 2654
7.30.7 Landslides and Short-Term Climate Variability 2655
7.30.8 Hazard Issues in a Changing Environment 2656
References 2657
Biographical Sketch 2659
7.31 Hillslope Processes in Cold Environments: An Illustration of High-Latitude Mountain and Hillslope Processes and Forms 2661
7.31.1 Introduction 2661
7.31.2 Weathering Processes and Regolith Formation 2662
7.31.3 Slow Mass Wasting 2668
7.31.3.1 Solifluction 2668
7.31.3.2 Permafrost Creep and Rock Glaciers 2670
7.31.3.3 Nivation and Cryoplanation 2671
7.31.4 Rapid Mass Movement: Active Layer Detachment Failures 2671
7.31.5 Impacts of Climate Change on Hillslope Processes and Forms 2673
7.31.6 Conclusion 2674
Acknowledgments 2675
References 2675
Biographical Sketch 2677
7.32 Hillslope Processes in Temperate Environments 2678
7.32.1 Introduction 2679
7.32.2 Overview of Hillslope Processes in Temperate Environments 2679
7.32.2.1 Transport-Limited Hillslopes 2679
7.32.2.2 Strength-Limited Hillslopes 2682
7.32.3 Lithologic Controls 2682
7.32.3.1 Bedrock Strength and Hillslope Angles 2682
7.32.3.2 Bedding/Foliation Orientation 2683
7.32.4 Competition between Processes on Hillslopes and in Channels 2686
7.32.5 Upslope- and Downslope-Directed Coupling 2686
7.32.5.1 Supply-Limited Basins - Upslope-Directed Coupling 2686
7.32.5.2 Transport-Limited Basins - Downstream-Directed Coupling 2686
7.32.5.3 Decoupled Hillslopes 2689
7.32.6 To Thresholds and Beyond 2689
7.32.7 From Hillslopes to Channels: Decreasing Sediment Discharge during the Holocene 2689
7.32.8 Beneath Permafrost Elevations: Hillslope Processes in a Changing Climate 2691
Acknowledgments 2693
References 2693
Biographical Sketch 2695
7.33 Semiarid Hillslope Processes 2696
7.33.1 Introduction to the Semiarid Environment 2696
7.33.2 Semiarid Hillslope Characteristics 2697
7.33.3 Soil-Surface Characteristics and Geomorphological Processes on Semiarid Hillslopes 2698
7.33.3.1 Soil-Surface Sealing and Crusting 2698
7.33.3.2 Rock Fragments and Pavements 2699
7.33.3.3 Processes at the Soil Surface 2699
7.33.4 Effects of Plants and Geomorphological Processes 2700
7.33.5 Scale Aspects of Semiarid Hillslope Processes 2701
References 2702
Biographical Sketch 2703
7.34 Hillslope Processes in Arid Environments 2704
7.34.1 Introduction 2704
7.34.2 Arid Hillslope Processes 2704
7.34.2.1 Wind 2704
7.34.2.2 Salt 2706
7.34.2.3 Water 2709
7.34.2.4 Biota 2710
7.34.2.5 Seismicity 2711
7.34.3 Discussion 2711
7.34.3.1 Effect of Precipitation on Erosion Rates and Processes 2711
7.34.3.2 Inheritance of Topography and Morphology 2712
7.34.4 Conclusion 2713
References 2713
Biographical Sketch 2715
7.35 Hillslope Processes in Tropical Environments 2716
7.35.1 Introduction 2716
7.35.2 The Weathering Mantle and Its Origin 2717
7.35.2.1 Functional Relationships between Weathering Rate and Denudation 2717
7.35.3 The Role of Mass Movements in the Landscape 2718
7.35.3.1 Weathering Mantles, Hillslope Hydrology, and Geotechnical Properties 2718
7.35.3.2 Slope Failure Caused by Rainstorms 2719
7.35.3.3 Recurrence Intervals and Aspects of the Long-Term Effects of Landsliding 2719
7.35.3.4 Creep 2720
7.35.4 Surface-Wash Processes on Hillslopes 2720
7.35.4.1 Wash Processes and Rill Action 2720
7.35.4.2 Gully Erosion 2721
7.35.5 Conclusion 2721
References 2721
Biographical Sketch 2722
7.36 Extraterrestrial Hillslope Processes 2723
7.36.1 Introduction 2723
7.36.2 The Effects of Gravity 2725
7.36.2.1 Angle of Repose 2725
7.36.2.2 Shear Strength 2726
7.36.2.3 Changes in Morphology and Mass-Movement Actions 2727
7.36.3 The Effect of Climate 2728
7.36.3.1 Insolation 2728
7.36.3.2 Atmosphere and Precipitation 2731
7.36.3.3 Raindrop Impact 2732
7.36.3.4 Overland Flow 2732
7.36.3.5 Subsurface Flow 2734
7.36.4 Summary 2735
Acknowledgments 2735
References 2735
Biographical Sketch 2737
e9780123747396v8 2738
Front Cover 2738
TREATISE ON GEOMORPHOLOGY 2739
CONTENTS 2743
EDITOR-IN-CHIEF 2745
VOLUME EDITORS 2747
CONTRIBUTORS TO VOLUME 8 2749
CONTENTS OF ALL VOLUMES 2751
PREFACE 2765
FOREWORD 2767
8.1 The Development and History of Glacial and Periglacial Geomorphology 2769
8.1.1 Periglacial Geomorphology 2770
8.1.1.1 Introduction 2770
8.1.1.2 The Historical Context 2770
8.1.1.3 The Weakness of Traditional Periglacial Geomorphology 2770
8.1.1.4 Periglacial Landscapes 2771
8.1.1.5 Frost-Action and Cold-Climate Weathering 2772
8.1.1.6 Frozen Ground 2772
8.1.1.7 Periglacial Processes and Landforms 2773
8.1.1.7.1 Permafrost-related processes 2773
8.1.1.7.2 Azonal processes 2773
8.1.1.8 Disciplinary Considerations 2775
8.1.1.8.1 The growth of geocryology 2775
8.1.1.8.2 The changing nature of geomorphology and quaternary science 2776
8.1.1.9 Societal Relevance of Periglacial Geomorphology 2777
8.1.1.9.1 Periglacial geomorphology and global climate change 2777
8.1.1.9.2 Periglacial geomorphology and cold regions geotechnical engineering 2777
8.1.1.9.3 Periglacial geomorphology conclusions 2777
8.1.2 Glacial Geomorphology 2778
8.1.2.1 Introduction 2778
8.1.2.2 The Glacial Theory 2778
8.1.2.3 Early Process Observations and Models 2779
8.1.2.4 The Cycle of Glacial Denudation 2779
8.1.2.5 Measurements, Process Models, and Landscape Development 2779
8.1.2.6 Deformable Beds, Advanced Computing, and Cosmogenic Nuclides 2780
8.1.2.7 Glacial Geomorphology, Tectonics, and Hazards 2781
8.1.2.8 Glacial Geomorphology Conclusions 2781
References 2782
Biographical Sketch 2786
8.2 Identifying Glacial and Interglacial Periods to Assess the Long-Term Climate History of Earth 2787
8.2.1 Introduction 2787
8.2.2 Direct and Indirect Glacial Evidence 2790
8.2.3 Climate Models and Application to Geologic Time 2790
8.2.4 Glacials and Interglacials in Gondwana 2791
8.2.5 Hysteresis of Glaciations in the Permo-Carboniferous 2792
8.2.6 Possibility of Glaciations in the Cretaceous 2793
8.2.7 Summary 2795
References 2795
Biographical Sketch 2797
8.3 Quaternary-Pleistocene Glacial and Periglacial Environments 2798
8.3.1 Introduction 2798
8.3.2 North America 2799
8.3.3 Europe 2802
8.3.4 Asia 2804
8.3.5 Australasia 2805
8.3.6 Africa 2805
8.3.7 Central and South America 2806
8.3.8 Antarctica 2809
8.3.9 Summary and Conclusions 2809
References 2809
Biographical Sketch 2812
8.4 Classification of Ice Masses 2813
8.4.1 Introduction 2814
8.4.2 Morphological Classification 2814
8.4.2.1 Unconstrained by Topography 2814
8.4.2.1.1 Ice sheet 2814
8.4.2.1.2 Ice cap 2814
8.4.2.1.3 Ice stream 2814
8.4.2.1.4 Outlet glacier 2815
8.4.2.1.5 Ice shelf 2815
8.4.2.2 Constrained by Topography 2816
8.4.2.2.1 Icefield 2816
8.4.2.2.2 Valley glacier 2816
8.4.2.2.3 Cirque glacier 2817
8.4.2.2.4 Piedmont glacier 2817
8.4.2.2.5 Hanging glacier 2817
8.4.3 Thermal Classification 2817
8.4.3.1 Temperate (’Warm’) 2818
8.4.3.2 Cold 2818
8.4.3.3 Polythermal 2818
8.4.4 Conclusions 2819
References 2819
Relevant Websites 2820
Biographical Sketch 2820
8.5 Ice Properties and Glacier Dynamics 2821
8.5.1 Deformation of Glacier Ice 2822
8.5.2 Force Balance 2822
8.5.3 Modeling Glacier Flow 2823
8.5.3.1 Perfect Plasticity 2823
8.5.3.2 Lamellar Flow 2824
8.5.3.3 Basal Sliding 2824
8.5.3.4 Ice Temperature 2824
8.5.3.5 Lateral Drag 2825
8.5.3.6 Ice-Shelf Spreading 2825
8.5.3.7 Continuity 2825
8.5.4 Glacier Instability 2826
8.5.4.1 Subglacial Hydrology 2826
8.5.4.2 Release of Back Stress 2826
8.5.4.3 Marine Instability 2826
8.5.5 Concluding Remarks 2827
References 2827
Biographical Sketch 2828
8.6 Water in Glaciers and Ice Sheets 2829
8.6.1 Introduction 2829
8.6.2 Sources of Glacial Meltwater 2829
8.6.3 Storage of Water in Glaciers 2831
8.6.4 Methods of Studying Glacier Hydrology 2831
8.6.5 Glacier Hydrological Systems 2832
8.6.5.1 Supraglacial and Englacial Water Flow 2832
8.6.5.2 Subglacial Water Flow 2833
8.6.6 Subglacial Water Pressure 2834
8.6.6.1 Subglacial Water Pressure and Effective Normal Pressure 2834
8.6.6.2 Water Pressure Gradients 2835
8.6.7 Discharge Fluctuations 2836
8.6.7.1 Jökulhlaups 2837
8.6.8 Glacial Meltwater Erosion 2838
8.6.8.1 Mechanical Erosion 2838
8.6.8.2 Chemical Erosion 2839
8.6.9 Hydrological Effects on Glacier Motion 2839
8.6.10 Conclusions 2840
References 2840
Biographical Sketch 2841
8.7 Glacial Erosion Processes and Rates 2842
8.7.1 Introduction 2842
8.7.2 Processes of Glacial Erosion 2843
8.7.3 Plucking and Entrainment of Rock Fragments by Ice 2844
8.7.4 Abrasion 2846
8.7.5 Rates of Glacial Erosion 2847
8.7.6 Conclusion 2849
References 2850
Biographical Sketch 2850
8.8 Erosional Features 2851
8.8.1 Introduction 2852
8.8.2 Small-Scale Erosional Forms 2852
8.8.2.1 Striations and Chattermarks 2852
8.8.2.2 s-Forms (Also Known as p-Forms) 2852
8.8.3 Intermediate-Scale Forms 2854
8.8.3.1 Roche Moutonnées, Whalebacks and Rock Drumlins 2854
8.8.3.2 Drumlins, Crag and Tails, and Large-Scale Flutings 2856
8.8.3.3 Tunnel Channels 2858
8.8.4 Large-Scale Erosional Forms 2858
8.8.4.1 Glacial Troughs and Fjords 2858
8.8.4.2 Rock Basins 2861
8.8.4.3 Knock and Lochain 2862
8.8.4.4 Glacial Lakes 2862
8.8.4.5 Cirques and Overdeepenings in Glacial Valleys 2862
8.8.4.6 Streamlined Hills 2863
References 2863
Biographical Sketch 2867
8.9 Erosional Landscapes 2868
8.9.1 Introduction 2868
8.9.2 Landscapes of Local Glaciation 2869
8.9.2.1 Alpine Landscapes 2869
8.9.2.1.1 Glacial cirques 2869
8.9.2.1.2 Glacial valleys 2869
8.9.3 Landscapes of Regional and Continental Glaciation 2872
8.9.3.1 Landscape of Selective Linear Erosion 2872
8.9.3.2 Landscape of Areal Scouring 2872
8.9.3.3 Landscape of Little or No Erosion 2873
8.9.3.3.1 Topographic perspective 2874
8.9.3.3.2 Landform perspective 2874
8.9.3.3.3 Process perspective 2875
8.9.3.4 Landscape Distributions, The Temporal Perspective 2875
8.9.4 Landscape Development and Interpretation 2876
References 2878
Biographical Sketch 2879
8.10 Depositional Processes 2881
8.10.1 Introduction 2881
8.10.2 Glacial Transport 2882
8.10.3 Glacial Deposition 2882
8.10.3.1 Supraglacial Till 2883
8.10.3.2 Subglacial Till 2883
8.10.3.3 Subglacial Shear Zone 2884
8.10.3.4 Changes in Subglacial Deformation Over Space and Time 2886
8.10.3.5 Rheological Processes Within the Deforming Layer 2887
8.10.3.6 Erosion Within the Deforming Layer 2887
8.10.3.7 Hydrological Processes Within the Deforming Layer 2888
8.10.3.8 Clast Movement and Till Fabric 2888
8.10.4 Concluding Remarks 2890
8.10.4.1 Subglacial Till 2890
8.10.4.2 The Future 2890
References 2891
Biographical Sketch 2894
8.11 Depositional Features 2895
Introduction 2896
8.11.1 Transport 2898
8.11.2 Deposition 2899
8.11.2.1 Landforms/Bedforms Directly Attributable to Active/Passive Ice Activity 2899
8.11.2.1.1 Drumlins 2901
8.11.2.1.2 Fluted moraines, and mega-scale glacial lineations (MSGLs) 2901
8.11.2.1.3 Rogen moraines 2902
8.11.2.1.4 Marginal moraines 2902
8.11.2.2 Landforms/Bedforms Indirectly Attributable to Active/Passive Ice Activity 2903
8.11.2.2.1 Esker systems 2904
8.11.2.2.2 Kames and kame terraces 2904
8.11.2.2.3 Outwash fans and deltas 2905
8.11.2.2.4 Till deltas/tongues and grounding-lines 2905
8.11.3 Future Perspectives 2905
References 2906
8.12 Fluvial Processes in Proglacial Environments 2909
8.12.1 Introduction 2910
8.12.2 Fundamentals 2910
8.12.3 Glacial Effects on Water and Sediment Supply to Rivers 2911
8.12.3.1 Water Supply 2911
8.12.3.2 Sediment Supply 2912
8.12.3.3 Topography 2913
8.12.3.4 Summary 2913
8.12.4 Proglacial River Morphology 2913
8.12.5 Extreme Events 2914
8.12.5.1 Glacier Types 2914
8.12.5.2 Timescales 2915
8.12.6 Examples of Proglacial Environments 2915
8.12.6.1 Comparison of Franz Josef and Fox Glacier Proglacial Environments 2915
8.12.6.2 Comparison of Waiho and Callery Proglacial Environments 2916
8.12.7 Summary and Concluding Remarks 2916
References 2918
Biographical Sketch 2918
8.13 Watershed Hydrology in Periglacial Environments 2919
8.13.1 Why is Periglacial Hydrology Unique? 2919
8.13.1.1 Water Movement 2920
8.13.1.1.1 Physics 2920
8.13.1.1.2 Hillslope processes 2921
8.13.1.1.3 Streamflow 2922
8.13.1.2 Storage 2925
8.13.1.2.1 Snow 2925
8.13.1.2.2 Ice 2927
8.13.1.2.3 Lakes and wetlands 2927
8.13.1.3 Energy Exchange 2928
8.13.1.3.1 Energy balance in periglacial watersheds 2928
8.13.1.3.2 Climate change and periglacial watersheds 2930
8.13.2 Unique Vulnerabilities 2931
8.13.2.1 Seasonal Frost Regions 2932
8.13.2.2 Arctic Regions 2932
8.13.2.3 Mountainous Glacier Regions 2935
References 2936
Biographical Sketch 2939
8.14 Ground Ice and Cryostratigraphy 2941
8.14.1 Introduction 2942
8.14.2 Description of Ice within Frozen Ground 2943
8.14.2.1 Ice Content 2943
8.14.2.2 Cryostructures 2943
8.14.2.3 Cryofacies 2947
8.14.2.4 Ice Contacts 2947
8.14.2.4.1 Freezing contacts 2947
8.14.2.4.2 Thaw contacts 2948
8.14.2.4.3 Erosional contacts 2948
8.14.2.5 Mapping of Ground Ice 2948
8.14.3 Genetic Types of Ground Ice 2949
8.14.3.1 Pore Ice 2949
8.14.3.2 Segregated Ice 2950
8.14.3.3 Intrusive Ice 2951
8.14.3.4 Wedge Ice 2952
8.14.3.5 Pool Ice 2952
8.14.3.6 Dilation-Crack Ice 2953
8.14.3.7 Sublimation Ice 2953
8.14.3.8 Buried Ice 2953
8.14.3.9 Transitional, Compound, and Deformed Ice Formations 2954
8.14.4 Cryostratigraphy 2954
8.14.4.1 Principles 2955
8.14.5 Transition Zone 2955
8.14.5.1 Distribution 2955
8.14.5.2 Significance 2956
8.14.5.3 Origin 2957
8.14.6 Massive Ice and Icy Sediments 2958
8.14.6.1 Distribution and Characteristics 2958
8.14.6.2 Origin of Massive Ice 2959
8.14.6.2.1 Model 1: Intrasedimental massive ice 2959
8.14.6.2.2 Model 2: Buried glacier ice 2959
8.14.6.2.3 Model 3: Subglacial permafrost aggradation 2960
8.14.6.2.4 Ice-sheet-permafrost interactions during glacial-to-interglacial cycles 2960
8.14.6.3 Interpretation of Massive Ice 2960
8.14.7 Ice Wedges and Soil Wedges 2961
8.14.7.1 Palaeoenvironmental Significance 2961
8.14.7.1.1 Ground-surface stability 2961
8.14.7.1.2 Permafrost history 2962
8.14.7.1.3 Relict ice wedges 2962
8.14.7.1.4 Soil veins and wedges of secondary infilling (Pseudomorphs) 2962
8.14.7.1.5 Relict primary sand wedges 2962
8.14.7.1.6 Soil veins and small soil wedges 2963
8.14.8 Yedoma and Related Deposits 2963
8.14.8.1 Origin 2963
8.14.8.2 Paleoenvironmental Significance 2965
8.14.9 Summary and Future Research 2965
References 2966
Biographical Sketch 2969
8.15 Permafrost: Formation and Distribution, Thermal and Mechanical Properties 2970
8.15.1 Introduction 2971
8.15.2 Thermal Properties of Permafrost 2971
8.15.2.1 Background 2971
8.15.2.2 Basics 2972
8.15.3 Mechanical Properties of Permafrost 2975
8.15.3.1 Background 2975
8.15.3.2 Basics 2975
8.15.4 The Global Distribution of Permafrost 2977
8.15.4.1 Arctic and Subarctic Permafrost in the Northern Hemisphere 2977
8.15.4.2 Alpine Permafrost 2980
8.15.4.3 Antarctica Permafrost 2983
8.15.5 Permafrost and Climate Variability 2984
8.15.5.1 Observations during the Instrumental Period 2984
8.15.5.2 Heat Flow and Permafrost Modeling 2984
8.15.5.3 GHG Release and Permafrost 2987
8.15.6 Conclusion Remark 2987
References 2988
Biographical Sketch 2990
8.16 Palsas and Lithalsas 2991
8.16.1 Introduction 2992
8.16.2 Segregation Ice 2992
8.16.3 Palsas 2993
8.16.3.1 Terminology 2993
8.16.3.2 Forms and Dimensions 2994
8.16.3.3 Peat on Palsas and Ice in Peat 2994
8.16.3.4 Surface Characteristics 2995
8.16.3.5 The Mineral Core, Segregation Ice, and Aggradational Ice 2995
8.16.3.6 Climate and the Distribution of Palsas 2996
8.16.3.7 Age of Palsas 2996
8.16.3.8 Origin of Palsas 2996
8.16.3.9 The Thaw of Palsas and Their Cyclic Development 2997
8.16.3.10 Remnants after Melting 2998
8.16.4 Lithalsas 2998
8.16.4.1 Terminology 2998
8.16.4.2 Morphology 2998
8.16.4.3 Surface Characteristics 2999
8.16.4.4 Mineral Composition and Ice Segregation 2999
8.16.4.5 Climate and Lithalsa Distribution 3000
8.16.4.6 Mechanism of Formation 3000
8.16.4.7 Thawing of Lithalsas 3002
8.16.5 Conclusion 3002
References 3003
Biographical Sketch 3005
8.17 Rock Glaciers 3006
8.17.1 Introduction 3006
8.17.2 Definition 3009
8.17.3 Objectives 3010
8.17.4 Rock Glaciers as Part of the Mountain System 3010
8.17.5 The Rock Glacier System 3011
8.17.6 Form 3012
8.17.7 Surface Morphology 3012
8.17.8 Processes: Movement 3013
8.17.9 Origin and Internal Structure 3016
8.17.9.1 Ice-cored Structure 3017
8.17.9.2 Ice-Cemented Structure 3018
8.17.9.3 Continuum 3019
8.17.10 Fabric Analysis 3020
8.17.11 Distribution and Climate 3020
8.17.12 Rock Glacier Age 3021
8.17.13 Geophysical Methods Applied to Rock Glaciers 3023
8.17.14 Rates of Flow/Creep 3025
8.17.15 Hydrology 3025
8.17.16 Geospatial Techniques 3030
8.17.17 Climate Change and Hazards 3031
8.17.18 Martian Rock Glaciers 3034
8.17.19 Future Research 3034
References 3035
Biographical Sketch 3041
8.18 Pingos 3042
8.18.1 Terminology 3043
8.18.1.1 Definition of Pingo 3043
8.18.1.2 Seasonal Frost Mounds 3047
8.18.1.3 Perennial Frost Mounds 3047
8.18.2 Regional Distribution and Characteristics of Pingos 3047
8.18.2.1 European Studies 3048
8.18.2.1.1 Greenland 3048
8.18.2.1.2 Svalbard Archipelago 3050
8.18.2.2 The Origin of the Emergence Pingo Group 3050
8.18.2.3 North American Studies 3052
8.18.2.3.1 Origin of the broad-based mound in the North Slope, Alaska 3054
8.18.2.4 Asian/Siberian Studies 3055
8.18.2.4.1 Siberia 3055
8.18.2.5 Central Asia 3055
8.18.2.6 Outer Solar System 3057
8.18.2.7 Mars 3057
8.18.2.7.1 Polar PLFs: Large impact craters 3057
8.18.2.7.2 Mid-latitude PLFs: Utopia Planitia 3058
8.18.2.7.3 Equatorial PLFs: A range of contexts 3059
8.18.3 Geographic Characteristics of a Forming Pingo 3059
8.18.3.1 Open-System Pingo 3059
8.18.3.2 Closed-System Pingo 3059
8.18.4 Hydrology of the Pingo 3060
8.18.4.1 Groundwater Pressure 3060
8.18.4.2 Ice Formation 3060
8.18.5 Future Research 3062
References 3063
Biographical Sketch 3065
8.19 Patterned Ground and Polygons 3066
8.19.1 Introduction and Scope 3066
8.19.2 Background 3067
8.19.3 Observation and Classification 3068
8.19.4 Monitoring and Experimentation 3072
8.19.5 Theory and Numerical Modeling 3073
8.19.6 Conclusion 3078
References 3078
Biographical Sketch 3080
8.20 Thermokarst Terrains 3081
8.20.1 Introduction 3082
8.20.2 Thermokarst Landforms 3082
8.20.3 Degradation Processes and Stages 3088
8.20.4 Factors Affecting Permafrost Degradation 3089
8.20.5 Conclusions 3091
References 3091
Biographical Sketch 3092
8.21 Thermokarst Lakes, Drainage, and Drained Basins 3093
8.21.1 Permafrost and Thermokarst Lakes in the Arctic and Subarctic 3094
8.21.2 Regional and Global Importance of Thermokarst Lakes 3094
8.21.3 Distribution of Thermokarst Lakes in the Arctic and Subarctic 3096
8.21.4 Thermokarst Lake Formation and Morphology 3099
8.21.5 Hydrological Dynamics of Thermokarst Lakes 3104
8.21.6 Oriented Thermokarst Lakes 3106
8.21.7 Drainage of Thermokarst Lakes 3108
8.21.8 Drained Thermokarst Lake Basins and Thermokarst Lake Cycle 3113
8.21.9 Outlook 3116
Acknowledgments 3117
References 3117
Biographical Sketch 3121
8.22 Thermokarst and Civil Infrastructure 3122
8.22.1 Introduction 3124
8.22.2 Active Layer 3125
8.22.2.1 Definition 3125
8.22.2.2 Physical Active-Layer Processes 3126
8.22.2.2.1 Propagation of thawing and freezing fronts 3126
8.22.2.2.2 Zero-curtain effect 3126
8.22.2.2.3 Ice segregation 3127
8.22.2.2.4 Frost heave and thaw subsidence 3127
8.22.2.2.5 Cryoturbation 3127
8.22.2.3 Active-Layer Thickness 3127
8.22.3 Transition Zone 3128
8.22.4 Thermokarst 3129
8.22.4.1 Definitions 3129
8.22.4.2 Causes of Thermokarst 3129
8.22.4.2.1 Ground ice 3129
8.22.4.2.2 Ground ice quantity 3129
8.22.4.2.3 Types of ground ice 3130
8.22.4.2.4 Increase in active-layer thickness 3130
8.22.4.3 Thawing Processes and Thermokarst 3131
8.22.4.3.1 Erosional processes 3131
8.22.4.3.2 Subsidence processes 3132
8.22.5 Engineering in Permafrost Regions 3134
8.22.5.1 Background 3134
8.22.5.2 Permafrost and Civil Infrastructure 3134
8.22.5.2.1 Roads, runways, and railways 3134
8.22.5.2.2 Buildings 3135
8.22.5.2.3 Municipal services 3136
8.22.5.2.4 Oil and gas pipelines 3136
8.22.5.2.5 Mining 3137
8.22.5.2.6 Agriculture 3137
8.22.6 Conclusions 3138
References 3138
Biographical Sketch 3140
8.23 Mass Movement Processes in the Periglacial Environment 3142
8.23.1 Introduction 3143
8.23.2 Slope Stability and Thaw Consolidation and their Role in Periglacial Mass Wasting 3143
8.23.2.1 Slope Mechanics 3144
8.23.2.1.1 Shear strength and strength 3144
8.23.2.1.2 Ice segregation and frost heaving 3145
8.23.2.1.3 Soil consolidation and material strength during thaw 3145
8.23.3 Classification and Processes of Mass Wasting 3146
8.23.3.1 Slow Mass Movement Types 3146
8.23.3.1.1 Creep 3146
8.23.3.1.2 Solifluction 3147
8.23.3.2 Rapid Mass Movement 3148
8.23.3.2.1 Rockfalls 3148
8.23.3.2.2 Snow avalanches 3149
8.23.3.2.3 Slushflows 3150
8.23.3.2.4 Retrogressive thaw slumps 3150
8.23.3.2.5 Active layer detachment failures 3150
8.23.4 Mass Wasting Deposits in a Paleoenvironmental Context 3151
8.23.5 The Role of Periglacial Mass Wasting as an Indicator of Global Environmental Change 3154
8.23.6 Conclusion 3155
References 3155
Biographical Sketch 3159
8.24 Evolution of Slopes in a Cold Climate 3160
8.24.1 Introduction 3161
8.24.2 Cryoplanation Mechanism and Landforms 3161
8.24.2.1 Cryopediments 3162
8.24.2.2 Cryoplanation Terraces 3162
8.24.2.2.1 Morphology and controlling factors 3162
8.24.2.2.2 Processes and (paleo)climatic significance 3163
8.24.3 Talus Slopes, Including Stratified Slope Deposits 3163
8.24.3.1 Definition and Geographic Distribution 3163
8.24.3.2 Morphology and Processes 3165
8.24.3.2.1 Rockfall as primary process and resulting morphology 3165
8.24.3.2.2 Secondary reworking processes: Debris flows and snow avalanches 3165
8.24.3.3 Surface Processes and Constitutive Materials 3165
8.24.3.4 Stratified Slope Deposits within Talus Landforms (Including the Grèzes Litées) 3167
8.24.3.4.1 Definition and geographical distribution 3167
8.24.3.4.2 Bedding and sedimentary structures 3167
8.24.3.4.3 Forming processes 3167
8.24.3.5 Talus-Slope Evolution 3169
8.24.3.5.1 Rates of debris supply/rockwall retreat and paraglacial activity 3169
8.24.3.5.2 Paleoenvironmental implications of talus slopes and stratified slope deposits 3170
8.24.4 Blockfields 3171
8.24.4.1 Definition and Geographic Distribution 3171
8.24.4.2 Form Characteristics 3171
8.24.4.3 Block Accumulation Processes 3173
8.24.4.4 Origin, Age, and Paleoenvironmental Significance of Autochthonous Blockfields 3173
8.24.4.4.1 The Quaternary periglacial model - short to mid-term formation 3173
8.24.4.4.2 The pre-Pleistocene (Neogene) model - long-term formation 3174
8.24.4.4.3 A unified scheme of blockfield formation: Neogene inheritance and Quaternary development 3175
8.24.5 Block Streams 3175
8.24.5.1 Definition and Geographic Distribution 3175
8.24.5.2 Form Characteristics 3176
8.24.5.3 Processes 3178
8.24.5.4 (Paleo)Climatic Meaning and Dating of Relict Block Streams 3178
8.24.6 Research Perspectives 3179
References 3180
Biographical Sketch 3183
8.25 Aeolian Processes in Periglacial Environments 3184
8.25.1 Introduction 3184
8.25.2 Background 3187
8.25.3 Why Is There Aeolian Activity In Periglacial Environments? 3188
8.25.3.1 Wind 3188
8.25.3.2 Sediment Supply 3189
8.25.3.3 Moisture 3191
8.25.4 Cold-Climate Aeolian Features 3192
8.25.4.1 Adhesion Laminae 3192
8.25.4.2 Niveo-Aeolian Sediments 3193
8.25.4.3 Abraded Surfaces 3193
8.25.4.4 Secondary Effects 3194
8.25.5 Summary 3195
References 3195
8.26 Climate Change Impacts on Cold Climates 3198
8.26.1 Introduction - Cold Climate Regions 3198
8.26.2 Impact of Climate Change on the Glacial System 3202
8.26.2.1 Introduction 3202
8.26.2.2 From Greenhouse to Icehouse: the Onset of Cenozoic Ice Sheets 3203
8.26.2.3 Establishment of Hyperarid, Polar-Desert Conditions in Antarctica 3210
8.26.2.4 Ice Sheets Fluctuations 3211
8.26.2.5 Holocene Glacier Variations 3211
8.26.3 Climate Change and Sea Level in Cold Regions 3212
8.26.4 Climate Change and Permafrost Dynamics 3214
8.26.5 Biologic Bellwether of Climatic Changes in Cold Regions 3214
8.26.5.1 Adélie Penguin Colonies and the Heritage of Penguin Settling in Antarctica 3217
8.26.5.2 Southern Elephant Seals on the Antarctic Coasts 3218
8.26.5.3 Response of Adélie Penguins and Southern Elephant Seals to Climate and Habitat Changes 3220
References 3223
Biographical Sketch 3227
8.27 Geomorphology and Retreating Glaciers 3228
8.27.1 Introduction 3228
8.27.2 Moraines and the Thermal Regime Process-Form Continuum 3229
8.27.3 Glacifluvial Landform-Sediment Assemblages 3232
8.27.4 Landsystems in Deglaciated Terrain 3232
8.27.4.1 High-relief Terrain 3232
8.27.4.2 Intermediate-relief Terrain 3235
8.27.4.3 Low-relief Terrain 3236
8.27.4.4 Glaciers and Overdeepenings 3239
8.27.4.5 Surging Glaciers 3240
8.27.5 Landsystem Superimposition and Spatio-temporal Change 3242
References 3244
Biographical Sketch 3246
8.28 The Glacial and Periglacial Research Frontier: Where from Here? 3247
8.28.1 Introduction 3247
8.28.2 The Glacial Research Frontier - Status 3248
8.28.3 The Periglacial Research Frontier - Status 3253
8.28.4 Permafrost-Glacier Interactions 3255
8.28.5 Comparing the Glacial and Periglacial Geomorphology Research Frontiers - Focus and Scale 3256
8.28.6 Where from Here? 3257
Acknowledgments 3260
References 3260
Biographical Sketch 3267
e9780123747396v9 3268
Front Cover 3268
TREATISE ON\rGEOMORPHOLOGY 3271
CONTENTS 3273
EDITOR-IN-CHIEF 3275
VOLUME EDITOR 3277
CONTRIBUTORS TO VOLUME 9 3279
CONTENTS OF ALL VOLUMES 3281
PREFACE 3295
FOREWORD 3297
9.1 Treatise on Fluvial Geomorphology 3299
9.1.1 Introduction and Overview 3299
Reference 3302
Biographical Sketch 3303
9.2 A River Runs Through It: Conceptual Models in Fluvial Geomorphology 3304
9.2.1 The Geomorphic Field Problem 3304
9.2.2 Hierarchy of Analysis Frameworks 3305
9.2.2.1 Level 1: Fundamental Physical Frameworks 3305
9.2.2.2 Level 2: Geological Analysis Frameworks 3305
9.2.2.3 Level 3: Fundamental Concepts in Fluvial Geomorphology 3306
9.2.3 A Braided River of Conceptual Models in Fluvial Geomorphology 3307
9.2.3.1 The Master Braids: Gilbert and Davis 3307
9.2.3.1.1 The Balance of Forces 3307
9.2.3.1.2 The Cycle of Erosion 3308
9.2.3.2 Secondary Channels: Conceptual Models from the Golden Age of Geomorphology 3309
9.2.3.2.1 The Graded River 3309
9.2.3.2.2 Lane’s (and Borland’s) Balance 3310
9.2.3.2.3 Dynamic Equilibrium and Thresholds 3310
9.2.3.2.4 Analysis of Hydraulic Geometry 3311
9.2.3.2.5 Frequency and Magnitude of Geomorphic Processes 3312
9.2.3.2.6 Bankfull Flow as an Indicator of Channel-Forming Processes 3313
9.2.3.3 The Fluvial System 3313
9.2.3.3.1 Channel Classification 3314
9.2.3.3.2 Sediment Budgets 3315
9.2.3.4 Landscape Evolution Modeling and the Search for Geomorphic Laws 3315
9.2.4 The Field Problem Revisited 3316
References 3317
Biographical Sketch 3318
9.3 Subsurface and Surface Flow Leading to Channel Initiation 3320
9.3.1 Micro-Scale Flow Processes 3321
9.3.2 Hillslope-Scale Flow Processes 3322
9.3.2.1 Subsurface Flow 3322
9.3.2.1.1 Unsaturated flow 3322
9.3.2.1.2 Lateral flow 3324
9.3.2.1.3 Subsurface structure 3326
9.3.2.2 Overland Flow 3327
9.3.2.2.1 Local controls on overland flow 3328
9.3.2.2.2 Hillslope-scale controls on overland flow 3328
9.3.2.3 Landscape and Climate Context 3329
9.3.3 Channel Initiation 3332
9.3.3.1 Initiation Mechanisms 3332
9.3.3.2 Landscape and Climate Context 3334
9.3.4 Summary and Perspectives 3336
References 3336
Biographical Sketch 3340
9.4 Network-Scale Energy Distribution 3341
9.4.1 Introduction 3341
9.4.2 Energy Expenditure and OCNs 3342
9.4.3 Global Energy Expenditure 3344
9.4.4 Local Energy Expenditure 3345
References 3346
Biographical Sketch 3347
9.5 Reach-Scale Flow Resistance 3348
9.5.1 Introduction 3348
9.5.2 Traditional Approaches to Reach-Scale Flow Resistance 3350
9.5.2.1 The Chézy and Darcy-Weisbach Equations 3350
9.5.2.2 Components of Flow Resistance 3350
9.5.2.3 Some General Issues 3351
9.5.2.4 The Manning Equation 3351
9.5.3 Physics-Based Approaches to Resistance 3352
9.5.3.1 The Logarithmic Velocity Profile 3352
9.5.3.2 Logarithmic Resistance Laws 3353
9.5.3.3 Relating Roughness Height to Bed Characteristics 3353
9.5.3.4 Other Physics-Based Approaches 3354
9.5.4 How Well Do Standard Equations Predict Total Resistance? 3355
9.5.5 Recent Developments 3358
9.5.5.1 Vegetation Resistance 3358
9.5.5.2 Shallow Flows 3358
9.5.5.3 Alternative Equations for Reach Resistance 3361
9.5.5.4 Roughness Representation in Numerical Flow Models 3362
9.5.6 Summary and Research Directions 3364
References 3364
Biographical Sketch 3366
9.6 Turbulence in River Flows 3367
9.6.1 Introduction 3368
9.6.1.1 Historical Perspective 3368
9.6.1.2 Recent Trends 3369
9.6.2 Defining and Measuring Turbulence 3369
9.6.2.1 Defining Turbulence 3369
9.6.2.2 Flow Visualization 3371
9.6.2.3 Measuring Velocity Fluctuations 3371
9.6.2.4 Analyzing Velocity Fluctuations 3372
9.6.3 The Nature of Turbulence in River Flows 3375
9.6.3.1 Turbulent Boundary Layers 3375
9.6.3.2 Turbulent Boundary Layers in Rivers 3376
9.6.3.3 Bed Roughness and Turbulence 3377
9.6.3.4 Large-Scale Morphology and Turbulent Flows 3378
9.6.3.5 Flow Obstructions 3380
9.6.4 Concluding Comments 3381
References 3382
Biographical Sketch 3384
9.7 The Initiation of Sediment Motion and Formation of Armor Layers 3385
9.7.1 Critical Shear Stress 3385
9.7.1.1 Introduction 3385
9.7.1.2 Force Balance for Grain Motion 3386
9.7.1.3 Measurements to Estimate Critical Shear Stress 3388
9.7.1.3.1 Methods to define motion 3388
9.7.1.3.2 Comparison of different methods 3389
9.7.1.4 Influence of Channel Bed Parameters on the Initiation of Sediment Motion 3390
9.7.1.4.1 Grain size 3390
9.7.1.4.2 Other parameters 3391
9.7.1.5 Mechanics of Grain Motion Local Grain and Turbulence Flow Parameters 3392
9.7.1.5.1 Grain parameters that influence motion 3392
9.7.1.5.2 Turbulence flow parameters that affect sediment motion 3393
9.7.1.6 Stochastic Predictions of Particle Motion 3394
9.7.2 Armor Formation 3395
9.7.3 Conclusions and Future Directions 3397
References 3397
Biographical Sketch 3400
9.8 Bedload Kinematics and Fluxes 3401
9.8.1 Introduction 3402
9.8.2 The General Character of Bedload 3402
9.8.3 Grain Kinematics 3404
9.8.3.1 The Two-Part Process of Bedload 3404
9.8.3.2 Grain Displacement and Virtual Velocity 3406
9.8.3.3 Grain Exchange 3408
9.8.3.4 Modeling Dispersion 3408
9.8.4 Fluxes 3410
9.8.4.1 Flow, Sediment, and Transport Rates 3410
9.8.4.2 Estimating Flux 3412
9.8.4.2.1 Kinematic approach 3412
9.8.4.2.2 Morphological approach 3414
9.8.4.2.3 Eulerian approach 3414
9.8.5 Future Directions 3415
9.8.5.1 Deepen Understanding of Bedload Mechanics 3416
9.8.5.2 Generalize Patterns of Grain Dispersion 3416
9.8.5.3 Refine Understanding of the Controls over Fluxes 3416
9.8.5.4 Expand Insight into River Behavior through Improved Flux Estimation 3416
References 3417
Biographical Sketch 3421
9.9 Suspended Load 3422
9.9.1 Introduction 3422
9.9.2 Suspension of Noncohesive Sediment 3423
9.9.2.1 Entrainment Functions 3426
9.9.2.1.1 Relation of Garcia and Parker (1991) 3426
9.9.2.1.2 Relation of Smith and McLean (1977) 3426
9.9.2.2 Size of Sediment in Suspension 3426
9.9.2.3 Effects of Stratification 3428
9.9.3 Suspension of Cohesive Sediment 3428
9.9.4 Sampling of Suspended Sediment 3430
9.9.4.1 Automatic and Emerging Technology Samplers 3431
9.9.5 Future Directions of Research 3432
References 3432
Biographical Sketch 3434
9.10 Bedforms in Sand-Bedded Rivers 3435
9.10.1 Introduction 3436
9.10.2 The Classical Concept of a Continuum of Bedforms 3436
9.10.3 Bedform Typology and Classification 3438
9.10.3.1 Lower-Regime Bedforms 3438
9.10.3.2 Upper-Regime Bedforms 3442
9.10.4 Bedforms and Flow Resistance 3443
9.10.5 Flow over Bedforms 3444
9.10.6 The Origin of Bedforms 3447
9.10.6.1 Initiation Types 3448
9.10.6.2 Theories of Bedform Initiation 3448
9.10.7 Growth and Diminution 3450
9.10.7.1 Bedform Field Growth from a Flat Sand Bed at Constant Flow 3451
9.10.7.2 Individual Bedform Growth and Diminution at Constant Flow 3451
9.10.7.3 Bedform Field Growth and Diminution due to Changes in Flow 3452
9.10.8 Bedform Kinematics and Sediment Transport 3453
9.10.9 Preservation 3454
9.10.10 Summary and Future Research Directions 3455
References 3457
9.11 Wood in Fluvial Systems 3461
9.11.1 Introduction 3461
9.11.2 Defining Wood 3462
9.11.2.1 Size, Shape, and Density 3462
9.11.2.2 Dead and Living Wood 3464
9.11.3 Wood Retention in Fluvial Systems 3464
9.11.3.1 How Much Wood Can a River Channel Store? 3464
9.11.3.2 Wood and Channel Dimensions 3468
9.11.3.2.1 Wood accumulation styles in small to medium channels 3469
9.11.3.2.2 Wood accumulation styles in medium to large channels 3471
9.11.3.3 Transitions in Wood Accumulation Styles along the River Continuum 3472
9.11.4 Wood Dynamics 3474
9.11.4.1 Conceptualizing Wood Budgets 3474
9.11.4.2 Modeling Wood Budgets 3476
9.11.4.3 Wood Mobility 3476
9.11.5 Wood and Landforms 3478
9.11.5.1 The Patch Scale 3478
9.11.5.2 The Reach and Landscape Scales 3479
9.11.6 Conclusions 3480
9.11.6.1 Wood and Fluvial Geomorphology 3480
9.11.6.2 Broader Implications of Wood in Rivers 3481
Acknowledgments 3482
References 3482
Biographical Sketch 3486
9.12 Influence of Aquatic and Semi-Aquatic Organisms on Channel Forms and Processes 3487
9.12.1 Introduction 3487
9.12.2 Boundary Conditions 3488
9.12.2.1 Large Grazing Mammals and Channel Geometry 3488
9.12.2.2 Beavers and Channel Slope 3489
9.12.2.3 Summary of Biological Controls on Boundary Conditions 3491
9.12.3 Sediment Transport 3491
9.12.3.1 Macroinvertebrates on Critical Shear Stress 3491
9.12.3.2 Fishes and Sediment Mobilization 3492
9.12.3.3 Summary of Biological Controls on Sediment Transport 3492
9.12.4 Influence of Macroinvertebrates and Anadromous Fishes on Dissolved Load Transport 3493
9.12.5 Aquatic Vegetation and Channel Hydraulics 3494
9.12.6 Opportunities for Future Research 3495
References 3496
Biographical Sketch 3499
9.13 Geomorphic Controls on Hyporheic Exchange Across Scales: Watersheds to Particles 3501
9.13.1 Introduction 3502
9.13.2 The Effect of Geomorphology on HEFs 3503
9.13.2.1 The Whole Network to Segment Scale 3503
9.13.2.2 The Reach Scale - Setting the Potential for Hyporheic Exchange 3504
9.13.2.2.1 Losing and gaining reaches 3504
9.13.2.2.2 Changes in saturated cross-sectional area 3506
9.13.2.3 The Subreach to Channel-Unit Scale - Hydrostatic Processes 3507
9.13.2.3.1 Step-pool and pool-riffle sequences 3507
9.13.2.3.2 Meander bends and point bars 3508
9.13.2.3.3 Back channels and floodplain spring brooks 3508
9.13.2.3.4 Secondary channels and islands 3509
9.13.2.3.5 Spatial heterogeneity in saturated hydraulic conductivity 3510
9.13.2.4 The Bedform Scale - Hydrodynamic Processes 3510
9.13.2.5 The Particle Scale - Turbulent Diffusion 3511
9.13.3 Discussion 3511
9.13.3.1 Multiple Features Acting in Concert 3511
9.13.3.2 Change in Processes Driving HEF through the Stream Network 3512
9.13.4 Conclusion 3513
References 3513
Biographical Sketch 3515
9.14 Reciprocal Relations between Riparian Vegetation, Fluvial Landforms, and Channel Processes 3517
9.14.1 Introduction 3518
9.14.1.1 Fluvial Landforms 3519
9.14.1.2 Lateral Zonation 3521
9.14.1.3 Longitudinal Patterns of Plant Organization 3524
9.14.2 Approaches to Characterizing Riparian Vegetation 3524
9.14.2.1 Individuals and Distributions 3525
9.14.2.2 Populations and Structured Population Modeling 3526
9.14.2.3 Communities and Cover Types 3526
9.14.2.4 Guilds and Functional Groups 3527
9.14.3 How Riparian Vegetation Affects Fluvial Geomorphic Processes 3529
9.14.3.1 Channel Cross-Sectional Form 3530
9.14.3.1.1 Mechanical effects of vegetation 3531
9.14.3.1.2 Hydraulic effects of vegetation 3532
9.14.3.2 Channel Planform 3532
9.14.4 Conclusions 3537
References 3537
Biographical Sketch 3541
9.15 Landslides in the Fluvial System 3542
9.15.1 Introduction 3542
9.15.2 Landslides in the Fluvial System 3542
9.15.2.1 Effects of Landslide Erosion on Drainage Basins 3542
9.15.2.2 Geomorphic Hillslope-Channel Coupling 3543
9.15.2.3 Geomorphic Coupling Interface 3546
9.15.2.4 Landslide Dams 3546
9.15.2.5 Consequences of Landslide Sediment in River Channels 3549
9.15.2.6 Landslide-Derived Sediment Yields 3550
9.15.2.7 Modeling Landslides in the Fluvial System 3552
9.15.3 Conclusions and Outlook 3553
Acknowledgments 3554
References 3554
Biographical Sketch 3557
9.16 River Meandering 3558
9.16.1 Introduction 3558
9.16.2 Research Phases and Topics 3560
9.16.3 Approaches and Methods 3562
9.16.3.1 Empirical Approaches 3562
9.16.3.1.1 Field measurements and observations 3562
9.16.3.1.2 Map and remote sensing evidence 3563
9.16.3.1.3 Techniques of meander morphology and change analysis 3563
9.16.3.2 Theoretical and Numerical Modeling Approaches 3563
9.16.3.2.1 Experimental modeling 3565
9.16.4 Empirical Evidence and Analysis 3566
9.16.4.1 Morphology 3566
9.16.4.2 Morphological Change 3567
9.16.4.3 Meander Processes 3570
9.16.4.3.1 Flow patterns and sediment movement 3570
9.16.4.3.2 Bank erosion 3573
9.16.4.3.3 Deposition and bar formation 3573
9.16.4.4 Bedrock and Incised Meanders 3574
9.16.4.5 Spatial Distribution and Controls on Characteristics 3574
9.16.5 Theoretical and Conceptual Explanations 3575
9.16.5.1 Fundamental Physical and Numerical Analyses 3575
9.16.5.2 Conceptual Analyses 3577
9.16.5.3 Experimental, Modeling and Numerical Analysis Results 3578
9.16.6 Perspective and Synthesis 3579
9.16.6.1 Future Research 3580
9.16.7 Conclusions 3580
References 3581
Biographical Sketch 3586
9.17 Morphology and Dynamics of Braided Rivers 3587
9.17.1 Introduction 3588
9.17.2 Occurrence and Development of Braiding 3589
9.17.2.1 General Conditions for Braiding 3589
9.17.2.2 Quantitative Analysis of Regime Controls of Braiding 3590
9.17.2.3 Braiding Development: Observation and Theory 3592
9.17.3 Braided River Morphology and Morpho-Dynamics 3594
9.17.3.1 Introduction 3594
9.17.3.2 Hydraulic Geometry and River Topography 3594
9.17.3.3 Bars 3598
9.17.3.4 Bifurcations and Confluences 3599
9.17.3.5 The Braided Channel Network: Morphology and Dynamics 3600
9.17.3.6 The Braided Channel Network: Spatial Scaling 3602
9.17.4 Bedload Transport and Morpho-Dynamics 3603
9.17.5 Conclusion 3605
References 3606
Biographical Sketch 3610
9.18 Hydraulic Geometry: Empirical Investigations and Theoretical Approaches 3611
9.18.1 Introduction 3612
9.18.2 Conceptual Basis for Hydraulic Geometry 3613
9.18.2.1 Regime Relations for Unlined Canals 3613
9.18.2.2 Adapting Regime Relations to Alluvial Streams 3613
9.18.2.3 Empirical Hydraulic Geometry 3613
9.18.2.4 Theoretical Hydraulic Geometry 3614
9.18.3 Recent Research 3616
9.18.3.1 At-a-Station Relations 3616
9.18.3.2 Downstream Relations 3617
9.18.3.2.1 Defining formative discharge 3617
9.18.3.2.2 Empirical hydraulic geometry 3618
9.18.3.2.3 Theoretical hydraulic geometry 3621
9.18.4 Summary and Future Research 3624
9.18.4.1 At-a-Station Relations 3624
9.18.4.2 Downstream Relations 3624
References 3625
Biographical Sketch 3627
9.19 Anabranching and Anastomosing Rivers 3628
9.19.1 Introduction 3628
9.19.2 Why Do Rivers Anabranch? 3630
9.19.3 Modeling and Theoretical Developments 3633
9.19.4 Vegetation 3634
9.19.5 Anabranching Longevity 3634
9.19.6 Types of Anabranching River 3635
9.19.6.1 Type 1: Cohesive Sediment (Anastomosing) Rivers 3636
9.19.6.2 Type 2: Sand-Dominated Island-Form Rivers 3638
9.19.6.3 Type 3: Mixed Load Laterally Active Rivers 3638
9.19.6.4 Type 4: Sand-Dominated Ridge-Form Rivers 3638
9.19.6.5 Type 5: Gravel-Dominated Laterally Active Rivers 3639
9.19.6.6 Type 6: Gravel-Dominated Stable Rivers 3639
9.19.7 Management of Anabranching Rivers 3640
9.19.8 Conclusion 3640
References 3641
Biographical Sketch 3643
9.20 Step-Pool Channel Features 3644
9.20.1 Introduction 3645
9.20.2 Step-Pool Channel Morphology 3645
9.20.2.1 Woody Debris Step-Pools 3646
9.20.2.2 Bedrock Step-Pools 3646
9.20.2.3 Scale Consideration 3646
9.20.2.4 Subunit-Scale Step-Pool Features 3646
9.20.2.5 Unit-Scale Step-Pool Features 3648
9.20.2.6 Reach-Scale Step-Pool Features 3648
9.20.2.7 Identification of Step-Pool Units and Their Features 3650
9.20.3 The Formation of Step-Pool Units 3650
9.20.4 The Frequency of Step-Pool Units and Their Morphology 3651
9.20.5 Step-Pool Hydraulics and Flow Resistance 3652
9.20.5.1 Flow Regime 3652
9.20.5.2 Flow Resistance 3654
9.20.6 Sediment Transport and Channel Stability 3656
9.20.6.1 Mobilization of Steps 3656
9.20.6.2 Sediment Transport 3657
9.20.6.3 Effect of Sediment Supply on Sediment Transport and Form Roughness 3657
9.20.7 Summary and Research Directions 3658
References 3659
Biographical Sketch 3661
9.21 Pool-Riffle 3662
9.21.1 Pool-Riffle Morphology 3663
9.21.2 Pool and Riffle Definitions 3663
9.21.2.1 Runs and Glides 3664
9.21.3 Pool Formation and Maintenance 3664
9.21.3.1 Sedimentological Maintenance Theories 3665
9.21.3.2 Turbulence in Pools 3666
9.21.4 Pool and Riffle Geometry 3666
9.21.4.1 Pool Volume 3667
9.21.4.1.1 Pool filling 3667
9.21.4.2 Pool Approach Conditions and Obstruction Shapes 3668
9.21.4.3 Pool-Exit Conditions 3668
9.21.4.4 Riffle and Run Geometry 3669
9.21.5 Pool-Riffle Spacing and Percent Area 3669
9.21.5.1 Percent Pool and Riffle Area 3671
9.21.6 Sediment Sorting 3671
9.21.6.1 Tracer Particle Studies in Pools and Riffles 3671
9.21.7 Future Directions in Pool and Riffle Research 3672
9.21.7.1 Characterization of Turbulent Events and Form Friction 3672
9.21.7.2 Influence on Pool-Riffle Sequence Adjustments on the Quality of Aquatic Habitat 3673
9.21.7.3 Predicting Channel Morphology under Different Climates and Land Uses 3673
9.21.8 Conclusions 3673
References 3673
Biographical Sketch 3676
9.22 Fluvial Terraces 3677
9.22.1 Introduction 3677
9.22.2 Fluvial Terrace Definition and General Description 3679
9.22.3 Terrace Geochronology 3682
9.22.4 Features and Processes of Rivers and Watersheds that Contain Terraces 3683
9.22.5 Graded and Steady-State Stream Profiles and Their Relation to Rerraces 3686
9.22.6 Strath Genesis 3689
9.22.7 Terrace Genesis 3696
9.22.7.1 Terraces and Tectonics 3697
9.22.7.2 Base Level and Knickpoints 3697
9.22.7.3 Terraces and Climate 3697
9.22.7.4 Periodic Forcing of Terrace Formation 3698
9.22.7.5 Evidence for and Effects of Unsteady Sediment Yields 3699
9.22.7.6 Holocene Alluvial and Bedrock Valleys 3702
9.22.7.7 The Role of Discharge Unsteadiness 3705
9.22.7.8 Process Linkage and the Integrated Model 3705
9.22.8 Summary and Future Research Directions 3706
References 3706
Biographical Sketch 3710
9.23 Waters Divided: A History of Alluvial Fan Research and a View of Its Future 3711
9.23.1 Introduction 3712
9.23.2 Formative Boundary Conditions for Alluvial Fan 3714
9.23.3 Processes that Supply Sediment to Alluvial Fans 3717
9.23.4 Processes Observed on Fans 3721
9.23.5 Hypotheses Guiding Field and Experimental Work 3723
9.23.6 Morphometry 3723
9.23.7 Hydraulic Geometry 3729
9.23.8 Sedimentology 3731
9.23.8.1 Quantitative Sedimentology 3731
9.23.8.2 Descriptive Stratigraphy 3734
9.23.9 Geologic Record of Fans 3736
9.23.9.1 Surficial Mapping and Dating 3736
9.23.9.2 Deeper Stratigraphic Record 3738
9.23.10 Experimental Approaches 3740
9.23.11 Models of Fan Evolution 3742
9.23.12 The Record of Hazards on Alluvial Fans 3743
9.23.13 Discussion 3745
9.23.13.1 What Generalizations Can We Make? 3745
9.23.13.2 Needs for the Future 3747
Acknowledgments 3750
References 3750
Biographical Sketch 3756
9.24 Quantitative Paleoflood Hydrology 3757
9.24.1 Introduction 3757
9.24.2 Quantitative Paleoflood Hydrology 3758
9.24.2.1 Development of Paleoflood Records 3758
9.24.2.2 Paleoflood Age Determination 3761
9.24.2.3 Paleoflood Discharge Determination 3763
9.24.2.3.1 Paleocompetence 3763
9.24.2.3.2 Hydraulic analysis 3763
9.24.2.4 Flood Frequency Analysis 3765
9.24.3 A Paleoflood Case Study: The Llobregat River 3766
9.24.4 Concluding Remarks and Perspectives 3768
References 3769
Biographical Sketch 3772
9.25 Outburst Floods 3773
9.25.1 Introduction 3773
9.25.2 Flood Sources 3778
9.25.2.1 Floods from Breached Valley Blockages 3779
9.25.2.1.1 Ice dams 3779
9.25.2.1.2 Landslide dams 3781
9.25.2.1.3 Volcanogenic dams 3783
9.25.2.1.4 Constructed dams 3783
9.25.2.1.5 Other types of valley blockages 3784
9.25.2.2 Floods from Breached Basins 3784
9.25.2.2.1 Basins marginal to ice sheets 3785
9.25.2.2.2 Moraine-rimmed basins 3785
9.25.2.2.3 Tectonic basins 3787
9.25.2.2.4 Volcanic basins 3787
9.25.2.2.5 Other types of basins 3789
9.25.2.3 Floods from Release of Subglacial and Subterranean Storage 3790
9.25.2.3.1 Subglacial and englacial impoundments 3790
9.25.2.3.2 Groundwater 3791
9.25.2.4 Floods from Unusual Sources 3791
9.25.3 Outburst Flood Magnitude and Behavior 3791
9.25.3.1 Breaching Processes 3792
9.25.3.2 Peak Discharge 3793
9.25.3.2.1 Overtopping 3793
9.25.3.2.2 Ice tunneling and erosion 3795
9.25.3.2.3 Other processes 3796
9.25.3.3 Downstream Flood Behavior 3796
9.25.3.4 Erosional and Depositional Features from Outburst Floods 3797
9.25.4 Summary 3799
Acknowledgment 3799
References 3799
Relevant Websites 3807
Biographical Sketch 3807
9.26 Global Late Quaternary Fluvial Paleohydrology: With Special Emphasis on Paleofloods and Megafloods 3809
9.26.1 Introduction 3810
9.26.2 Types of Global Fluvial Paleohydrological Studies 3810
9.26.3 Alluvial Chronologies 3811
9.26.4 Paleofloods 3812
9.26.4.1 Southwestern US 3812
9.26.4.2 Other US and Canada 3812
9.26.4.3 Australia 3812
9.26.4.4 Southern Asia 3812
9.26.4.5 China and Japan 3812
9.26.4.6 Europe 3815
9.26.4.7 Middle East 3815
9.26.4.8 Southern Africa 3815
9.26.4.9 South America 3815
9.26.5 Megafloods 3815
9.26.5.1 Alaskan and Cordilleran Megafloods 3815
9.26.5.2 Laurentide Megafloods 3817
9.26.5.3 Patagonian Megafloods 3818
9.26.5.4 Icelandic Megafloods 3818
9.26.5.5 Northern European Megafloods 3818
9.26.5.6 Central Asian Mountain Megafloods 3818
9.26.5.7 Eurasian Lowland Megafloods 3819
9.26.5.8 Antarctic 3819
9.26.6 Discussion 3820
Acknowledgments 3820
References 3820
Biographical Sketch 3825
9.27 Steep Headwater Channels 3826
9.27.1 Introduction: What Is a Steep Headwater Channel? 3827
9.27.2 Morphological Types of Steep Headwater Channels 3829
9.27.2.1 Alluvial and Nonalluvial Reaches 3829
9.27.2.2 Channel Morphology 3830
9.27.3 How Do Steep, Headwater Channels Function? 3832
9.27.4 The Scale of Headwater Channels 3835
9.27.4.1 The Magnitude and Frequency of Events 3835
9.27.4.2 Hydraulic Geometry 3835
9.27.5 Sediment Flux 3838
9.27.5.1 Wash Load 3839
9.27.5.2 Bed Material Transport 3840
9.27.5.3 Debris Flow 3843
9.27.6 Wood in Steep Headwater Channels 3843
9.27.7 Summary: Current Research Directions 3844
Acknowledgment 3844
References 3844
Biographical Sketch 3847
9.28 Bedrock Rivers 3848
9.28.1 Introduction 3849
9.28.1.1 Definition and Occurrence 3849
9.28.1.2 Importance of Bedrock Rivers 3849
9.28.1.3 Relation to Other Chapters in Volume 9 3850
9.28.2 Flow Hydraulics and Channel Morphology 3850
9.28.2.1 Overview of Flow Hydraulics 3850
9.28.2.2 Controls on the Width of Bedrock Rivers 3851
9.28.3 Erosion Processes and Bedforms 3853
9.28.3.1 Abrasion 3853
9.28.3.2 Plucking 3854
9.28.3.3 Cavitation and Corrosion 3854
9.28.3.4 Debris Flow Scour 3855
9.28.3.5 Process Interactions 3855
9.28.3.6 Models of River Incision into Bedrock 3855
9.28.3.6.1 Essentials 3855
9.28.3.6.2 Bed cover and tools 3856
9.28.3.6.3 Erosion thresholds and flood frequency 3856
9.28.4 River Profiles and Landscape Relief 3856
9.28.4.1 Longitudinal River Profiles - Steady-State Forms 3858
9.28.4.1.1 Controls on channel concavity 3858
9.28.4.1.2 Controls on channel steepness 3859
9.28.4.2 Implications for Landscape Relief at Steady State 3859
9.28.4.2.1 Scales of relief and relation to channel steepness 3859
9.28.4.2.2 Channel steepness, local relief, and erosion rate 3861
9.28.4.3 Longitudinal River Profiles - Transient Evolution 3862
9.28.4.3.1 Transient river profile evolution by knickpoint retreat 3863
9.28.4.3.2 Knickpoints in steady landscapes 3865
9.28.5 Tectonic Interpretation of River Profiles 3865
9.28.6 Concluding Remarks 3867
References 3868
Biographical Sketch 3871
9.29 Incised Channels 3872
9.92.1 Introduction 3872
9.29.2 Temporal and Spatial Trends of Incision 3873
9.29.3 Channelization 3875
9.29.4 Channelization Programs in the Mid-Continent, USA 3877
9.29.4.1 Effects of Channelization in the Mid-Continent, USA: Excess Flow Energy 3878
9.29.4.2 Responses: Channel Evolution in the Mid-Continent, USA 3878
9.29.5 Case Studies: Incision by Channelization and Reduced Sediment Supply 3881
9.29.5.1 West Tarkio Creek, Iowa and Missouri, USA 3881
9.29.5.2 Regional Summary: Mid-Continent, USA 3881
9.29.5.3 Case study: Arno River, Central Italy 3882
9.29.6 Stream Power, Flow Energy, and Channel Adjustment 3884
9.29.6.1 A Naturally Occurring Upstream Disturbance in an Alpine Environment 3886
9.29.6.2 Comparison with a Channelized System in a Coastal Plain Environment 3887
9.29.7 Simulation of the Effect of Bank Materials on Channel Incision 3888
9.29.8 Discussion and Conclusions 3889
References 3890
Biographical Sketch 3892
9.30 Streams of the Montane Humid Tropics 3893
9.30.1 Introduction 3893
9.30.1.1 Historic Perspective 3894
9.30.1.2 Environmental Settings of TMSs 3894
9.30.1.3 Tectonic Settings 3895
9.30.1.4 Modern Climate 3895
9.30.1.5 Paleoclimate 3896
9.30.1.6 Vegetation of Tropical Montane Watersheds 3897
9.30.2 Hydrology and Aquatic Ecology of TMSs 3897
9.30.2.1 Runoff Generation in TMSs 3897
9.30.2.2 Floods and Storm Flows 3898
9.30.2.3 Aquatic Ecology of Tropical Rivers 3898
9.30.3 Water Quality and Denudation 3899
9.30.3.1 Water Quality 3899
9.30.3.2 Denudation 3899
9.30.4 Channel Morphology of TMSs 3900
9.30.4.1 Drainage Networks of TMSs 3900
9.30.4.2 Longitudinal Profiles and Hydraulic Geometry 3900
9.30.4.3 Channel Features 3900
9.30.4.4 Floodplains and Riparian Zones 3901
9.30.4.5 Role of Instream Wood 3902
9.30.5 Response to Anthropogenic Disturbances 3903
9.30.5.1 Land-Use Change 3903
9.30.5.2 Dams and Water Diversions 3903
9.30.5.3 Climate Change 3903
9.30.6 Conclusions 3903
References 3904
Biographical Sketch 3909
9.31 Dryland Fluvial Environments: Assessing Distinctiveness and Diversity from a Global Perspective 3910
9.31.1 Introduction 3911
9.31.2 Growth of the Idea of a Distinct Fluvial Geomorphology of Drylands 3911
9.31.3 Recognition of Greater Diversity in the Fluvial Geomorphology of Drylands 3912
9.31.4 Dryland River Characteristics 3913
9.31.4.1 Dryland River Hydrology 3914
9.31.4.1.1 Flood properties 3914
9.31.4.1.2 Flow hydraulics 3915
9.31.4.1.3 Temporal flow variability 3917
9.31.4.1.4 Spatial flow variability 3918
9.31.4.2 Sediment Transport and Yield 3918
9.31.4.2.1 Coarse bedload sediment transport 3919
9.31.4.2.2 Suspended sediment transport 3920
9.31.4.2.3 Pedogenic mud aggregate transport 3920
9.31.4.2.4 Dissolved sediment and particulate organic transport 3921
9.31.4.2.5 Total sediment yield 3921
9.31.4.3 River Form and Change 3922
9.31.4.3.1 River styles 3922
9.31.4.3.2 Temporal aspects of river channel change 3922
9.31.4.3.3 Spatial aspects of river channel change 3924
9.31.4.4 Dryland River Sedimentology 3925
9.31.4.4.1 Channel-bed sediments 3925
9.31.4.4.2 Floodplain sediments 3925
9.31.4.5 Equilibrium and Nonequilibrium Dryland River Behavior 3926
9.31.5 Toward a Global Perspective on Dryland Rivers 3926
9.31.6 Recent Trends in Dryland Fluvial Research and Future Research Directions 3928
9.31.6.1 Modern Dryland River Characteristics 3928
9.31.6.2 Dryland River Behavior over Longer (Cenozoic) Timescales 3928
9.31.6.3 Integrating Results from Short-Term and Longer-Term Studies of River Behavior 3929
9.31.6.4 Where Is the Current Research Frontier? 3930
9.31.7 Conclusion 3932
Acknowledgment 3932
References 3932
Biographical Sketch 3942
9.32 Large River Floodplains 3943
9.32.1 Definition and Scale 3943
9.32.2 Conditions for Creation of a Large River Floodplain 3944
9.32.3 Distinctive Characteristics of Large Rivers and Floodplains 3946
9.32.4 Sedimentation Processes and Forms of Large Floodplains 3947
9.32.5 Floodplain Construction by Single-Thread Sinuous Rivers 3949
9.32.5.1 Bar Accretion and Bank Erosion of Floodplains 3949
9.32.5.2 Floodplain Construction from Overbank Sedimentation 3951
9.32.5.3 Sedimentation in the Distal Floodplain 3956
9.32.5.4 Consequences of Single-Thread Channel Mobility for Floodplain Construction 3957
9.32.6 Floodplain Construction by Single-Thread Braided Rivers 3963
9.32.7 Floodplain Construction by Anabranching Rivers 3968
9.32.8 Summary 3973
Acknowledgments 3973
References 3973
Biographical Sketch 3975
9.33 Field and Laboratory Experiments in Fluvial Geomorphology 3977
9.33.1 Background 3978
9.33.2 Introduction to Field Experiments 3978
9.33.2.1 Experiments at the Channel-Unit Scale 3979
9.33.2.2 Experiments at the Channel-Reach Scale 3979
9.33.2.3 Experiments at the Basin Scale 3979
9.33.2.3.1 Kissimmee River and Everglades 3980
9.33.2.3.2 Colorado River in Grand Canyon 3980
9.33.2.4 Trends and Future Possibilities in Field Experiments 3980
9.33.3 Introduction to Flume Experiments 3981
9.33.3.1 Interactions between the Flow and the Channel Boundaries 3982
9.33.3.2 Sediment Dynamics 3982
9.33.3.2.1 Entrainment 3982
9.33.3.2.2 Transport 3983
9.33.3.2.3 Deposition 3983
9.33.3.3 Bedforms 3983
9.33.3.4 Instream Wood 3984
9.33.3.5 Channel Processes and Biota 3984
9.33.3.6 Channel Patterns 3984
9.33.3.7 Erosion of Cohesive Channels: Knickpoints, Canyons, and Terraces 3984
9.33.3.8 Depositional Landforms 3985
9.33.3.9 Drainage Networks 3985
9.33.3.10 Trends and Future Directions in Flume Experiments 3985
References 3985
Biographical Sketch 3991
9.34 Numerical Modeling in Fluvial Geomorphology 3992
9.34.1 Introduction 3992
9.34.1.1 Why Model? 3992
9.34.1.2 What Is a Model? 3993
9.34.1.3 Types of Model 3993
9.34.2 Examples of Models 3994
9.34.2.1 Small-Scale Models 3994
9.34.2.1.1 Discrete particle models 3994
9.34.2.1.2 Hydraulic geometry models 3995
9.34.2.2 Reach-Scale Models 3995
9.34.2.2.1 1D flow models and integration of sediment transport 3995
9.34.2.2.2 CFD models 3995
9.34.2.2.3 Meandering planform models 3996
9.34.2.2.4 Alluvial architecture models 3997
9.34.2.2.5 Reach-based cellular models 3998
9.34.2.3 Catchment Scale Models 3999
9.34.3 Issues and Future Prospects 4001
9.34.3.1 Calibration and Validation 4001
9.34.3.2 Data/Boundary Conditions 4001
9.34.3.3 Nonlinearity 4003
9.34.3.4 Uncertainty 4003
9.34.4 Conclusions 4004
References 4005
Biographical Sketch 4008
9.35 Remote Data in Fluvial Geomorphology: Characteristics and Applications 4009
9.35.1 Introduction 4009
9.35.2 Types and Brief History of Remote Data 4010
9.35.2.1 Aerial Photographs 4010
9.35.2.2 Satellite Images 4010
9.35.2.3 Airborne Digital Images 4012
9.35.2.4 Topographic Data and 3D Models 4013
9.35.2.4.1 Topographic data from photogrammetry 4013
9.35.2.4.2 Topographic data from airborne LiDAR 4013
9.35.2.4.3 Topographic data from satellite InSAR 4015
9.35.2.4.4 Topographic and 3D data from modern surveying and scanning 4015
9.35.3 Recent Applications of Remote Data in Fluvial Geomorphology 4015
9.35.3.1 Aerial Photographs 4015
9.35.3.2 Airborne Digital Images 4016
9.35.3.3 Satellite Images 4017
9.35.3.4 Topographic Data from Photogrammetry 4017
9.35.3.5 Topographic Data from Airborne LiDAR and Satellite InSAR 4017
9.35.3.6 Topographic and 3D Data from Modern Terrestrial Surveying and Scanning 4020
9.35.4 Problems and Future Perspectives 4020
Acknowledgments 4022
References 4022
Biographical Sketch 4027
9.36 Geomorphic Classification of Rivers 4028
9.36.1 Introduction 4028
9.36.2 Purpose of Classification 4028
9.36.3 Types of Channel Classification 4029
9.36.3.1 Stream Order 4029
9.36.3.2 Process Domains 4030
9.36.3.3 Channel Pattern 4030
9.36.3.4 Channel-Floodplain Interactions 4033
9.36.3.5 Bed Material and Mobility 4035
9.36.3.6 Channel Units 4037
9.36.3.7 Hierarchical Classifications 4037
9.36.3.8 Statistical Classifications 4043
9.36.4 Use and Compatibility of Channel Classifications 4043
9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 4045
9.36.6 Future Needs and Directions 4051
9.36.6.1 Standardization and Sample Size 4051
9.36.6.2 Remote Sensing 4052
9.36.7 Conclusion 4053
Acknowledgements 4054
References 4054
Biographical Sketch 4065
9.37 Impacts of Land-Use and Land-Cover Change on River Systems 4066
9.37.1 Introduction 4066
9.37.2 Landscape Sensitivity and Scale 4067
9.37.2.1 Landscape Sensitivity 4068
9.37.2.2 Scales of Space and Time 4068
9.37.3 Hydrogeomorphic Changes Caused by Land Use 4069
9.37.3.1 Changes to Flood Regimes 4069
9.37.3.2 Soil Erosion 4070
9.37.3.3 Sediment Yields and Delivery Ratios 4071
9.37.3.4 Impacts of Urbanization 4073
9.37.3.5 Impacts of Climate Change 4074
9.37.3.6 Impacts of Water Transfers and Allocations 4075
9.37.4 Impacts on Fluvial Systems 4076
9.37.4.1 Rills, Gullies, Headwater Streams, and Longitudinal Connectivity 4076
9.37.4.2 Morphologic Changes due to Changing Flood Magnitudes and Sediment Production 4077
9.37.4.3 Episodic Erosion and Sedimentation 4079
9.37.4.3.1 Time, episodicity, and neocatastrophism 4079
9.37.4.3.2 Aggradation, degradation, bed waves, and sediment waves 4079
9.37.4.3.3 Legacy sediment 4079
9.37.4.4 Contamination from Mining and Industrial Pollutants 4080
9.37.5 Historical Perspective: Episodic Land-Use Change and Sediment Production 4081
9.37.5.1 The Development and Spread of Agriculture 4082
9.37.5.2 Pre-Columbian Land Use, Erosion, and Sedimentation in the Americas 4083
9.37.5.3 Introduction of Intensive Agriculture to the Colonies 4084
9.37.6 Conclusion 4085
References 4086
Biographical Sketch 4091
9.38 Flow Regulation by Dams 4092
9.38.1 Introduction 4092
9.38.2 Hydrologic Impacts of Flow Regulation 4093
9.38.2.1 Developing Appropriate Metrics of Hydrologic Change 4093
9.38.3 Geomorphic Impacts of Flow Regulation 4095
9.38.3.1 Changes to Channel Properties Following Flow Regulation 4095
9.38.3.2 Linking Sediment Regime to Geomorphic Adjustments 4097
9.38.3.3 Longitudinal Trends of Flow Regulation 4100
9.38.3.4 Impacts of Reservoir Storage to Global Sediment and Geochemical Budgets 4100
9.38.4 Contribution of Dam Studies to Geomorphic and Ecological Theory 4101
9.38.5 Conclusions 4102
Acknowledgements 4103
References 4103
Biographical Sketch 4106
9.39 Urbanization and River Channels 4107
9.39.1 Introduction 4107
9.39.2 Approaches to Investigating Urbanization in River Systems 4108
9.39.3 Nature of Urbanization 4110
9.39.3.1 Changing Surface Cover 4110
9.39.3.2 Changes in Hydrologic Processes 4111
9.39.3.3 Alterations in Sediment and Water Quality Regimes 4112
9.39.3.4 Regulations, Policies, and Practices 4112
9.39.4 Effects on the Fluvial System 4113
9.39.4.1 Direct Effects 4113
9.39.4.2 Adjustments and Morphological Responses 4113
9.39.4.3 Changes in Ecology and Aquatic and Riparian Habitats 4116
9.39.5 Implications, Opportunities, and Challenges for Management 4117
9.39.5.1 Urban Hazards 4117
9.39.5.2 Predicting Urban Effects 4118
9.39.5.3 Tools for Management and Restoration 4118
9.39.5.4 The Urban Stream Syndrome 4120
9.39.6 Conclusion and Prospect 4120
Acknowledgments 4120
References 4120
Biographical Sketch 4124
9.40 Impacts of Humans on River Fluxes and Morphology 4126
9.40.1 Introduction 4126
9.40.2 Human-Induced Drivers of Changing Rivers 4127
9.40.2.1 Land Use 4127
9.40.2.2 Urbanization 4129
9.40.2.3 Dams and Reservoirs 4129
9.40.2.4 Levee Construction 4132
9.40.2.5 Channel Straightening 4133
9.40.2.6 Climate Change 4134
9.40.3 Human Impacts and Integrated Management Responses 4135
References 4137
Biographical Sketch 4139
9.41 Geomorphologist’s Guide to Participating in River Rehabilitation 4141
9.41.1 Introduction 4141
9.41.2 Background 4142
9.41.3 Context of River Rehabilitation 4144
9.41.4 Dilemmas in Rehabilitation 4146
9.41.4.1 Complexity, Universality, Comprehensivity 4147
9.41.4.2 Process-Based Rehabilitation 4149
9.41.4.3 Learning Lessons, Choosing Winners 4153
9.41.5 Standard Rehabilitation Practice? 4154
9.41.6 Final Thoughts 4155
Acknowledgments 4155
References 4155
Biographical Sketch 4158
e9780123747396v10 4159
Front Cover 4159
TREATISE ON GEOMORPHOLOGY 4162
CONTENTS 4164
EDITOR-IN-CHIEF 4166
VOLUME EDITOR 4168
CONTRIBUTORS TO VOLUME 10 4170
CONTENTS OF ALL VOLUMES 4172
PREFACE 4186
FOREWORD 4188
10.1 Perspectives on Coastal Geomorphology: Introduction 4190
10.1.1 Introduction 4190
10.1.2 Nearshore Processes 4191
10.1.3 Morphodynamic Systems 4191
10.1.4 Coastal Environments 4192
References 4193
Biographical Sketch 4193
10.2 The Four Traditions of Coastal Geomorphology 4194
10.2.1 Introduction 4196
10.2.2 Concepts from the Distant Past 4196
10.2.3 Questions of Time and Space 4199
10.2.3.1 The Time Factor 4199
10.2.3.2 The Space Factor: Mapping Coasts and Plumbing Seas 4200
10.2.4 The Earth-Science Perspective - The Landlubbers 4201
10.2.4.1 Renaissance, Scientific Revolution, and Enlightenment, 1500-1800 4201
10.2.4.2 Coastal Form and Process Refined, 1800-1950 4203
10.2.5 The Mathematical Theorists 4207
10.2.5.1 Foundations of Tide Theory before 1850 4208
10.2.5.2 Refinements of Tide Theory after 1850 4208
10.2.5.3 Foundations of Water-Wave Theory before 1850 4208
10.2.5.4 Refinement of Water-Wave Theory after 1850 4209
10.2.5.5 Theories on Ocean and Nearshore Currents, 1850-1950 4210
10.2.6 The Ocean Science Perspective - The Seafarers 4210
10.2.6.1 Renaissance, Exploration, and Scientific Revolution before 1850 4210
10.2.6.2 Emergence of Scientific Oceanography, 1850-1950 4211
10.2.6.3 Relative Sea-Level Change 4212
10.2.7 The Coastal Engineering Tradition 4215
10.2.8 Conclusion: Welding Noble Traditions into Modern Practice 4219
10.2.8.1 Information Technology 4219
10.2.8.2 Coastal Tectonics 4220
10.2.8.3 Relative Sea-Level Change 4220
10.2.8.4 Coastal Processes 4221
10.2.8.5 Rates and Predictions of Coastal Change 4222
10.2.8.6 Coastal Management 4223
References 4223
Biographical Sketch 4227
10.3 Waves 4228
10.3.1 Introduction 4229
10.3.2 Linear Waves 4230
10.3.2.1 Nature and Limitations of Linear Wave Theory 4230
10.3.2.2 Descriptors of Coastal Waves 4232
10.3.2.2.1 Implications for modeling 4235
10.3.2.3 Shoaling and Breaking of Linear Waves 4236
10.3.2.3.1 Wave propagation 4236
10.3.2.3.2 Wave breaking and surf zone waves 4237
10.3.2.4 Currently Available Linear Models 4240
10.3.3 Nonlinear Waves 4241
10.3.3.1 Introduction 4241
10.3.3.2 Overview of Theories 4242
10.3.3.2.1 Stokes waves 4243
10.3.3.2.2 Boussinesq theories 4243
10.3.3.2.3 NSWE 4248
10.3.3.2.4 Reynolds-averaged Navier-Stokes (RANS) models 4248
10.3.3.2.5 Parameterization of nonlinear parameters in linear wave models 4249
10.3.4 Long-Period Waves 4249
10.3.4.1 Introduction 4249
10.3.4.2 Nature of Long-Period Waves 4250
10.3.4.3 Forcing and Suppression of Long-Period Motion 4252
10.3.4.4 Magnitude and Cross-Shore Pattern of Infragravity Wave Energy 4255
10.3.4.5 Long-Period Motion and Morphodynamics 4256
10.3.5 Summary and Conclusions 4258
References 4258
Biographical Sketch 4262
10.4 Sediment Transport 4263
10.4.1 Introduction 4264
10.4.2 Measuring Nearshore Sediment Transport 4265
10.4.2.1 Measurement Devices for Suspended Load 4265
10.4.2.2 Measurement Devices for Bedload 4267
10.4.2.3 Measurement of Total Sediment Transport 4267
10.4.3 Sediment Mobilization and Suspension 4268
10.4.4 Cross-Shore Sediment Transport 4271
10.4.4.1 Transport Mechanisms 4271
10.4.4.2 The Cross-Shore Distribution of Suspended Sediment Transport 4276
10.4.4.3 Cross-Shore Suspended Sediment Transport on Dissipative, Intermediate, and Reflective Beaches 4277
10.4.4.4 Sediment Transport in 3D Morphological Settings 4277
10.4.4.5 The Role of Bedload Transport 4279
10.4.4.6 Numerical Models of Cross-Shore Sediment Transport and Beach Profile Change 4279
10.4.5 Longshore Sediment Transport 4280
10.4.6 Swash Zone Sediment Transport 4282
10.4.7 Concluding Remarks 4290
References 4290
Biographical Sketch 4294
10.5 Beach Morphodynamics 4295
10.5.1 Introduction 4296
10.5.2 Beach Morphodynamics 4298
10.5.2.1 Beach Time Series 4299
10.5.2.2 Empirical Relationships 4299
10.5.2.3 Beach Experiments 4299
10.5.2.4 Swash Morphodynamics 4300
10.5.2.5 Geological Control on Beach Morphodynamics 4301
10.5.2.6 Morphodynamics and High Magnitude Events 4302
10.5.2.7 Wave-Beach-Dune Interactions 4303
10.5.2.8 Engineering Impacts on Morphodynamics 4303
10.5.2.9 Shoreface Morphodynamics 4303
10.5.2.10 Beach Monitoring 4304
10.5.2.11 Modeling 4305
10.5.2.12 Beach Ecology 4306
10.5.3 Beach Morphodynamics - Status 4306
10.5.3.1 Instantaneous 4306
10.5.3.2 Event 4307
10.5.3.2.1 Beach experiments 4307
10.5.3.2.2 Video and remote technology 4307
10.5.3.2.3 Beach types and states 4308
10.5.3.3 Large Scale Coastal Behavior (Engineering) 4309
10.5.3.4 Geological 4311
10.5.4 Beach Morphodynamics - the Way Forward 4311
10.5.4.1 Impacts of Climate Change 4311
10.5.4.2 Sediment Transport 4311
10.5.4.3 Beach Erosion 4312
10.5.4.4 Beach Type and Changes in Beach Type 4312
10.5.4.5 Formation of Rhythmic Features 4312
10.5.5 Discussion and Conclusion 4312
References 4313
Relevant Websites 4317
Biographical Sketch 4318
10.6 Nearshore Bars 4319
10.6.1 Introduction 4320
10.6.2 Nearshore Bar Morphology 4322
10.6.3 What Mechanism(s) Related to Waves, Currents, and Sediment Transport in the Nearshore Lead to the Formation of... 4325
10.6.3.1 Template Models of Bar Formation 4326
10.6.3.2 Self-Organizational Models of Bar Formation 4327
10.6.4 How Do Controls Such as Sediment Size, Nearshore Slope, and Wave Climate Determine Whether Nearshore Bars Form on... 4328
10.6.5 What Are the Mechanisms Related to Waves, Currents, and Sediment Transport That Control Morphological Change in... 4330
10.6.6 How Do Factors Such as Sediment Size, Nearshore Slope, and Wave Climate Interact with the Short-Term... 4332
10.6.7 Summary and Conclusions 4334
References 4334
Biographical Sketch 4337
10.7 Tidal Inlets and Lagoons along Siliciclastic Barrier Coasts 4338
10.7.1 Introduction 4339
10.7.2 What is a Tidal Inlet? 4339
10.7.3 Inlet Morphology 4339
10.7.3.1 Tidal Deltas 4339
10.7.3.1.1 Flood-tidal delta 4340
10.7.3.1.2 Ebb-tidal delta 4341
10.7.3.2 Ebb-Tidal Delta Morphology 4341
10.7.4 Tidal Inlet Formation 4341
10.7.4.1 Breaching of a Barrier 4342
10.7.4.2 Spit Building Across a Bay 4342
10.7.4.3 Drowned River Valleys 4342
10.7.4.4 Lateral Inlet Migration 4342
10.7.4.5 Landward Inlet Migration 4342
10.7.5 Tidal Inlet Relationships 4343
10.7.5.1 Inlet Throat Area - Tidal Prism Relationship 4343
10.7.5.1.1 Variability 4343
10.7.5.2 Ebb-Tidal Delta Volume - Tidal Prism Relationship 4344
10.7.5.2.1 Variability 4344
10.7.6 Sand Transport Patterns 4344
10.7.6.1 General Trends of Sand Dispersal 4344
10.7.6.2 Inlet Sediment Bypassing 4344
10.7.6.2.1 Stable inlet processes 4344
10.7.6.2.2 Ebb-tidal delta breaching 4345
10.7.6.2.3 Inlet migration and spit breaching 4346
10.7.6.2.4 Bar complexes 4346
10.7.7 Tidal Inlet Effects on Adjacent Shorelines 4346
10.7.7.1 Number and Size of Tidal Inlets 4346
10.7.7.2 Tidal Inlets as Sediment Sinks 4346
10.7.7.3 Changes in Ebb-Tidal Delta Volume 4347
10.7.7.4 Wave Sheltering 4347
10.7.7.5 Effects of Inlet Sediment Bypassing 4347
10.7.7.5.1 Drumstick barrier model 4347
10.7.7.6 Human Influences 4348
10.7.8 Coastal Lagoons 4348
10.7.8.1 Lagoons as Equilibrium Landforms 4349
10.7.8.2 Expanding and Shrinking Lagoons 4350
10.7.8.2.1 Expanding lagoons 4350
10.7.8.2.2 Shrinking lagoons 4350
10.7.8.3 Lagoon hydrodynamics 4350
10.7.9 Lagoon Inlet Response to Sea-Level Rise 4352
10.7.10 Conclusions 4352
References 4352
Biographical Sketch 4354
10.8 Morphodynamics of Barrier Systems: A Synthesis 4355
10.8.1 Introduction 4363
10.8.2 Trailing-Edge Coasts 4366
10.8.2.1 Barrier Systems along the New England Coast, United States (Paraglacial) 4366
10.8.2.1.1 Geologic setting 4366
10.8.2.1.2 New classification of paraglacial barriers: the New England prototype 4367
10.8.2.1.3 Recent advances and future directions 4368
10.12.2.2 Barrier Systems along Mid-Atlantic Bight, United States: Cape Charles, Virginia to Montauk Point, New York 4369
10.8.2.2.1 Geologic setting 4369
10.8.2.2.2 Coastal geomorphology and processes 4370
10.8.2.2.2.1 Primary geomorphic units of the Mid-Atlantic Bight coast 4370
10.8.2.2.2.2 Classic studies of barrier systems of Mid-Atlantic Bight 4372
10.8.2.2.5 Quantitative overview of wave energy, tides, currents, weather, storms, and predominant wind directions 4372
10.8.2.2.6 Synthesis of regional morphodynamics, shoreline change, and barrier-system evolution 4373
10.8.2.2.7 Current and future research, developments, and issues for Mid-Atlantic Bight 4374
10.8.2.3 Geologic Framework of North Carolina’s Barrier Island Systems, United States 4375
10.8.2.3.1 Geologic setting 4375
10.8.2.3.2 Types of North Carolina barrier systems 4377
10.8.2.3.3 Human modification and natural process on the barrier systems 4378
10.8.2.3.4 Future research directions 4378
10.8.2.4 Barrier Systems along the Georgia Bight, United States: Cape Fear, North Carolina to Cape Canaveral, Florida 4378
10.8.2.4.1 Geologic setting 4379
10.8.2.4.2 Coastal geomorphology, processes, and dynamics 4379
10.8.2.4.2.1 Primary geomorphic zones 4379
10.8.2.4.2.2 Classic studies 4380
10.8.2.4.2.3 Physical processes 4380
10.8.2.4.2.4 Regional morphodynamics, shoreline change, and barrier-system evolution 4381
10.8.2.4.3 Research, developments, and issues 4381
10.8.2.5 Barrier Systems along the Florida Atlantic Coast, United States 4381
10.8.2.5.1 Geologic setting 4381
10.8.2.5.2 Barrier-island morphodynamics 4382
10.8.2.5.3 Future research 4384
10.8.2.6 Barrier Systems of the Santa Catarina Coast, Southeastern Brazil 4384
10.8.2.6.1 Geologic setting 4384
10.8.2.6.2 Coastal geomorphology and processes 4387
10.8.2.6.2.1 Coastal setting 4387
10.8.2.6.2.2 Geomorphic units 4388
10.12.2.6.3 Research along the Santa Catarina coast 4388
10.8.2.6.4 Future research directions 4388
10.8.2.7 Barrier Systems along the Wadden Sea: European North Sea Coast (German Bight) 4390
10.8.2.7.1 Geologic setting 4390
10.8.2.7.2 Coastal geomorphology and processes 4391
10.8.2.7.3 Significant current research developments 4392
10.8.2.7.4 Future research directions 4392
10.8.2.8 Australian Barrier Systems 4393
10.8.2.8.1 Geologic setting 4393
10.8.2.8.2 Coastal geomorphology and processes 4394
10.8.2.8.3 Barrier research 4394
10.8.2.8.4 Future directions for research 4396
10.8.3 Marginal Sea Coasts 4396
10.8.3.1 Morphodynamics of Barrier Systems along the Gulf of Mexico Coast of Florida, United States: Sanibel Island to... 4396
10.8.3.1.1 Geologic setting 4396
10.8.3.1.2 Barrier-island morphodynamics 4398
10.8.3.1.3 Future research 4400
10.8.3.2 Barrier Systems along the North-Central Gulf of Mexico Coast, United States: Alabama, Mississippi, and Louisiana 4400
10.8.3.2.1 Geologic setting 4402
10.8.3.2.2 Coastal geomorphology and processes 4403
10.8.3.2.2.1 Louisiana barrier systems 4403
10.8.3.2.2.1.1 Isles Dernieres 4403
10.8.3.2.2.1.2 Bayou Lafourche 4404
10.8.3.2.2.1.3 Plaquemines 4404
10.8.3.2.2.1.4 Chandeleur Islands 4404
10.8.3.2.2.2 Inner-shelf shoals: submerged barrier systems 4405
10.8.3.2.2.3 Mississippi barrier systems 4405
10.8.3.2.2.3.1 Cat Island 4405
10.8.3.2.2.3.2 Ship Island 4406
10.8.3.2.2.3.3 Horn Island 4406
10.8.3.2.2.3.4 Petit Bois Island 4406
10.8.3.2.2.4 Alabama barrier systems 4406
10.8.3.2.3 Significant current research, developments, and issues 4406
10.8.3.2.4 Future research directions 4406
10.8.3.3 Barrier Systems along Northwest Gulf of Mexico Coast, United States: Texas 4406
10.8.3.3.1 Geologic setting 4406
10.8.3.3.2 Coastal geomorphology and processes 4407
10.8.3.3.2.1 Geographic zones 4407
10.8.3.3.2.2 Classic studies 4407
10.8.3.3.2.3 Coastal processes 4407
10.8.3.3.2.4 Regional morphodynamics, shoreline change, and barrier-island evolution 4407
10.8.3.3.3 Current research 4407
10.8.3.3.4 Future work 4409
10.8.4 Collision Coasts 4409
10.8.4.1 Barrier Systems along the Gulf of Alaska, Pacific Ocean 4410
10.8.4.1.1 Geologic setting 4410
10.8.4.1.2 Coastal geomorphology and barriers 4411
10.8.4.1.3 Significant current research and future developments 4413
10.8.4.2 New Zealand Barrier Systems 4413
10.8.4.2.1 Geologic setting 4414
10.8.4.2.2 Coastal geomorphology and processes 4414
10.8.4.2.3 Significant current research 4414
10.8.4.2.4 Future research 4414
10.8.5 Migration and Morphodynamics of Barrier Systems: Primary Factors 4414
10.8.6 Future Research Directions and Suggestions 4416
Acknowledgements 4417
References 4417
Biographical Sketch 4429
10.9 Coastal Gravel Systems 4434
10.9.1 Introduction 4435
10.9.2 Difficulties in Undertaking Gravel-Beach Morphodynamic Analysis 4436
10.9.3 Scale Differentiation of Coastal Gravel Systems 4438
10.9.4 Short-Term Controls: Beachface Processes and Responses 4438
10.9.4.1 General Gravel-Beachface Hydrodynamics 4438
10.9.4.2 Morphology of Gravel Beachfaces 4439
10.9.4.3 The Step 4440
10.9.4.4 The Berm and Cusps 4441
10.9.5 Morpho-Sedimentary Approaches to Gravel-Beach Morphodynamic Domains 4442
10.9.6 Tidal Modulation 4444
10.9.7 Gravel-Beach Profile Variation 4444
10.9.8 Extreme Events, Barrier Overtopping, and Overwashing: Bridging Short- to Long-Term Morphodynamic Processes 4445
10.9.9 Barrier Resilience and the Morphodynamic Perspective 4448
10.9.10 Morphodynamics and Long-Term Gravel Barrier Development 4450
10.9.11 Morphodynamic Implications of Human Intervention on Gravel Systems 4451
10.9.12 Conclusions 4452
References 4453
Biographical Sketch 4455
10.10 Beach and Dune Interaction 4456
10.10.1 Introduction 4456
10.10.2 Process-Scale Aeolian Transport from Beach to Dune 4457
10.10.2.1 Boundary Layers, Sediment Entrainment, and Transport 4457
10.10.2.2 Transport Models 4457
10.10.2.3 Surface Moisture and Crusts 4458
10.10.2.4 Topographic Variability and Vegetation 4459
10.10.2.5 Fetch 4461
10.10.3 Beach-Dune Interaction at Tidal and Storm-Scales 4461
10.10.3.1 Transport Potential and Sediment Supply 4461
10.10.3.2 Beach and Backshore Accretion 4463
10.10.3.3 Backshore Erosion and Dune Scarping 4465
10.10.3.4 Wrack and Lag 4466
10.10.4 Beach-Dune Interaction over the Holocene 4466
10.10.5 Beach-Dune Interaction Models 4468
10.10.6 Conclusions 4471
References 4471
Biographical Sketch 4477
10.11 Rock Coasts 4478
10.11.1 Introduction 4478
10.11.2 Processes 4479
10.11.2.1 Sea Level 4480
10.11.2.2 The Role of Tides 4480
10.11.2.3 Waves 4480
10.11.2.3.1 Wave quarrying 4480
10.11.2.3.2 Abrasion 4481
10.11.2.4 Weathering 4481
10.11.2.4.1 Salt weathering 4482
10.11.2.4.2 Wetting and drying 4482
10.11.2.5 Biology 4482
10.11.2.6 Mass Movement 4483
10.11.3 Rocky Coast Landforms 4484
10.11.3.1 Relict, Composite, and Plunging Sea-Cliffs 4485
10.11.3.2 Shore Platforms 4486
10.11.3.2.1 Near-horizontal platforms 4487
10.11.3.2.2 Sloping platforms 4488
10.11.3.3 Inheritance 4489
10.11.4 Rock Coast Modeling 4489
10.11.4.1 Coastal Profiles 4489
10.11.4.2 Plan Shape 4491
10.11.5 Conclusions 4492
References 4492
Biographical Sketch 4496
10.12 Estuaries 4497
10.12.1 Introduction 4497
10.12.2 Definition and Distribution 4498
10.12.2.1 Characteristics and Dimensions 4499
10.12.3 Classification of Estuaries 4500
10.12.3.1 Geomorphic Classification 4500
10.12.4 Estuarine Morphodynamics: Physical Factors 4501
10.12.4.1 Sea Level 4501
10.12.4.2 Tides 4502
10.12.4.3 Waves 4503
10.12.4.4 River Discharge 4503
10.12.5 Morphodynamics and Evolution 4504
10.12.5.1 Sediment Transport in Estuaries 4504
10.12.5.2 Estuarine Geomorphic and Sedimentary Facies 4504
10.12.5.2.1 Tide-dominated estuaries 4504
10.12.5.2.2 Wave-dominated estuaries 4505
10.12.5.2.3 Mixed wave-tide-dominated estuaries 4505
10.12.5.2.4 River-dominated estuaries 4505
10.12.6 Estuarine Subenvironments 4505
10.12.6.1 Lower Intertidal 4506
10.12.6.1.1 Tidal flats 4506
10.12.6.1.2 Bedforms 4506
10.12.6.2 Upper Intertidal Zone 4507
10.12.6.2.1 Unconsolidated shorelines 4507
10.12.6.2.2 Cohesive shorelines 4508
10.12.6.3 Geomorphic-Biotic Interactions 4509
10.12.6.4 Human-Modified Estuarine Systems 4510
10.12.6.5 Restoration Practices 4511
10.12.7 Future Issues 4511
References 4512
Biographical Sketch 4516
10.13 Coral Systems 4517
10.13.1 Introduction 4518
10.13.2 Reef Systems and Geomorphic Complexity 4519
10.13.2.1 The Importance of Ecological Processes for Geomorphic Development 4519
10.13.2.2 An Eco-Morphodynamic Framework for Coral Reef Development 4522
10.13.2.3 Reef Landforms and the Importance of the Carbonate Sediment Factory 4524
10.13.3 The Distribution and Evolution of Coral Reefs 4526
10.13.4 Geomorphic Development of Holocene Coral Reefs 4527
10.13.4.1 The Internal Anatomy of Reef Framework 4528
10.13.4.2 Styles of Reef Growth 4530
10.13.4.3 Reef Growth and Sea-Level Dynamics 4532
10.13.5 Rates of Reef Growth 4532
10.13.6 Developments in Geomorphology of Sedimentary Landforms 4533
10.13.7 Lagoon Sedimentation and Geomorphic Development of Reefs 4536
10.13.8 Reef Island Morphology and Evolution 4537
10.13.8.1 Long-Term Controls on Reef Island Evolution 4539
10.13.8.2 The Relationship between Sea-Level Change, Reef Growth, and Island Formation 4539
10.13.8.3 Recognition of the Importance of Sediment Supply on Island Building 4540
10.13.8.4 Process Controls on Island Development 4541
10.13.8.5 Reef Island Morphodynamics 4543
10.13.9 Summary and Conclusions 4544
References 4545
Biographical Sketch 4548
10.14 Mangrove Systems 4549
10.14.1 Introduction 4550
10.14.1.1 Geomorphology and Mangrove Morphodynamics 4551
10.14.2 Large-Scale Controls on Mangroves 4552
10.14.2.1 Global Distribution 4552
10.14.2.2 Geological Controls on Mangrove Distributions 4553
10.14.2.3 Mangrove Forest Development and Long-Term Sea-Level Change 4554
10.14.3 Regional Scale Dynamics of Mangrove Forests 4555
10.14.3.1 Introduction 4555
10.14.3.2 Microtidal, Deltaic Settings 4556
10.14.3.3 Meso- to Macrotidal, Deltaic-Estuarine Settings 4557
10.14.3.4 Open Coasts 4557
10.14.3.5 Carbonate Settings 4557
10.14.4 Local-Scale Dynamics 4557
10.14.4.1 Water Movement in Mangroves 4558
10.14.4.2 Wave Dissipation in Mangroves 4561
10.14.4.3 Sedimentation Processes in Mangroves 4562
10.14.4.3.1 Timescales of sedimentation 4562
10.24.4.3.2 Inorganic surface sedimentation 4563
10.14.4.4 Organic Near-Surface Sedimentation 4565
10.14.4.5 Subsurface Processes and Surface-Elevation Change 4566
10.14.5 Regional, Event-Based Dynamics 4567
10.14.5.1 Mangrove Surface-Elevation Change, Hurricanes, and Cyclones 4568
10.14.5.2 Mangroves and Tsunamis 4570
10.14.6 Mangroves and Global Environmental Change 4571
10.14.7 Concluding Remarks: Geomorphology and Mangroves in the Twentieth Century 4572
References 4575
Biographical Sketch 4580
10.15 Developed Coasts 4581
10.15.1 Introduction 4582
10.15.2 The Impact of Humans through Time 4582
10.15.3 Altering Landforms to Suit Human Needs 4583
10.15.3.1 Altering Landforms through Use 4584
10.15.3.2 Reshaping Landforms 4585
10.15.3.3 Altering Landform Mobility 4586
10.15.3.4 Changing Conditions due to Activities Outside the Coastal Zone 4587
10.15.4 Nourishing Beaches 4587
10.15.4.1 Designs and Locations 4587
10.15.4.2 Considerations for Transport Alongshore 4588
10.15.5 Building Dunes 4588
10.15.5.1 Nourishing Dunes 4589
10.15.5.2 Building Dunes by Natural Processes on Nourished Beaches 4589
10.15.5.3 Building Dunes Using Sand Fences 4590
10.15.5.4 Building Dunes Using Vegetation 4590
10.15.6 Effects of Structures 4590
10.15.6.1 Protection Structures 4591
10.15.6.2 Structures for Boating and Navigation 4592
10.15.6.3 Recreation Structures on the Beach 4592
10.15.6.4 Buildings 4593
10.15.6.5 Support Infrastructure 4593
10.15.7 Characteristics of Human-Altered Landforms 4593
10.15.7.1 Location 4593
10.15.7.2 Dimensions 4594
10.15.7.3 Orientation 4594
10.15.7.4 Topographic Variability 4594
10.15.7.5 Sediment Characteristics 4594
10.15.7.6 Mobility 4595
10.15.8 Distinguishing Natural from Human-Created Landforms 4595
10.15.9 Cyclic Change versus Progressive Change 4595
10.15.10 Maintaining or Restoring Natural Processes, Structure, and Functions 4596
10.15.10.1 Determining Appropriate Levels of Dynamism 4596
10.15.10.2 Altering or Removing Shore-Protection Structures 4596
10.15.10.3 Introducing Compatible Management Options at the Local Level 4597
10.15.11 Dune-Management Options in Spatially Restricted Environments 4597
10.15.12 Prognosis 4599
References 4600
Biographical Sketch 4605
10.16 Evolution of Coastal Landforms 4606
10.16.1 Introduction 4607
10.16.2 Role of Tectonics in Coastal Evolution 4607
10.16.3 Sea Level Influence on Coastal Evolution 4609
10.16.3.1 Quaternary Sea-Level Changes 4612
10.16.3.2 Late Holocene Conditions 4613
10.16.4 Evolution of Coastal Environments 4614
10.16.4.1 Fluvial Deltas 4614
10.16.4.2 Estuaries 4616
10.16.4.3 Barrier Island Systems 4618
10.16.4.4 Tidal Inlets 4624
10.16.4.5 Tidal Deltas 4625
10.16.5 Rocky Coasts 4627
10.16.5.1 Leading Edge Rocky Coasts 4627
10.16.6 Glaciated Coasts 4627
10.16.7 Rocky Carbonate Coasts 4629
10.16.8 Case Histories of Coastal Evolution 4630
10.16.8.1 Gulf of Mexico Barriers with Emphasis on Texas and Florida 4630
10.16.8.2 North Sea Barrier-Inlet Systems 4633
10.16.8.3 Mississippi River Delta Area 4633
10.16.8.4 Panhandle of Alaska 4634
10.16.8.5 Southeastern Australia and Bahamas 4635
10.16.9 Summary 4635
References 4635
Biographical Sketch 4637
e9780123747396v11 4638
Front Cover 4638
TREATISE ON GEOMORPHOLOGY 4641
CONTENTS 4643
EDITOR-IN-CHIEF 4645
VOLUME EDITORS 4647
CONTRIBUTORS TO VOLUME 11 4649
CONTENTS OF ALL VOLUMES 4651
PREFACE 4665
FOREWORD 4667
11.1 Aeolian Geomorphology: Introduction 4669
11.1.1 Introduction 4669
11.1.2 Historical Development and Contemporary State 4670
11.1.2.1 Bagnold Legacy 4670
11.1.2.2 Rise and Fall of Single Dune Studies 4670
11.1.2.3 Planetary Analogs 4670
11.1.2.4 Rise of Dust 4670
11.1.2.5 Remote Sensing 4670
11.1.2.6 Quaternary Climate Change and Aeolian Processes and Landforms 4672
11.1.2.7 Modeling of Processes and Forms 4672
11.1.2.8 Scaling from Process Studies to Landscape Level 4673
11.1.3 Future Trends 4673
Acknowledgments 4673
References 4673
Biographical Sketch 4674
11.2 Fundamentals of Aeolian Sediment Transport: Boundary-Layer Processes 4675
11.2.1 Introduction 4676
11.2.2 Classic Boundary Layer Concepts 4676
11.2.3 Velocity Profiles in Clean Air 4678
11.2.4 Steady-State Boundary Layers with Saltation 4682
11.2.5 Wind Unsteadiness and Turbulent Events 4685
11.2.6 Summary and Conclusions 4688
References 4688
Biographical Sketch 4690
11.3 Fundamentals of Aeolian Sediment Transport: Aeolian Sediments 4691
11.3.1 Introduction 4691
11.3.2 Measuring Aeolian Sediments 4692
11.3.3 Characteristics of Aeolian Sediments 4693
11.3.3.1 Dune Sands 4693
11.3.3.1.1 Particle size 4693
11.3.3.1.2 Shape 4694
11.3.3.1.3 Color 4694
11.3.3.1.4 Mineralogy 4695
11.3.3.2 Dusts 4696
11.3.3.2.1 Dust particle size and aggregation 4696
11.3.3.2.1.1 Particle size 4696
11.3.3.2.1.2 Saharan dust particle size 4697
11.3.3.2.1.2.1 Particle size and source area processes 4697
11.3.3.2.1.2.2 Particle size and distance from source 4698
11.3.3.2.1.3 Chinese dust particle size 4700
11.3.3.2.1.4 Aggregate size 4701
11.3.3.2.2 Dust mineralogy and elemental composition 4701
11.3.3.2.2.1 Saharan dusts 4702
11.3.3.2.2.1.1 Long-distance dusts over the Atlantic Ocean 4702
11.3.3.2.2.1.2 Local southern Saharan dusts 4703
11.3.3.2.2.1.3 Long-distance and local north Saharan dusts 4703
11.3.3.2.2.2 Chinese dusts 4704
11.3.3.2.3 Dust biological and organic characteristics 4704
11.3.3.2.3.1 Biological characteristics of dusts 4705
11.3.3.2.3.2 Organic characteristics of dusts 4705
11.3.4 Concluding Comments 4705
References 4706
Biographical Sketch 4710
11.4. Fundamentals of Aeolian Sediment Transport: Dust Emissions and Transport - Near Surface 4711
11.4.1 Introduction 4711
11.4.2 Threshold of Entrainment for Dust 4712
11.4.3 Dust Emissions by Saltation: Thresholds and Particle Flux 4715
11.4.4 Controls on the Emission Process I: Particle Size, Moisture, Binding Energy (Crusting) 4717
11.4.4.1 Particle Size 4717
11.4.4.2 Moisture 4718
11.4.4.3 Soil Texture and Crusting 4719
11.4.5 Controls on the Emission Process II: Roughness 4721
11.4.6 Disturbance Effects on Dust Emissions 4722
11.4.7 Electrostatic Effects and Dust Emissions 4724
11.4.8 Conclusions 4726
References 4727
Biographical Sketch 4731
11.5 Fundamentals of Aeolian Sediment Transport: Long-Range Transport of Dust 4732
11.5.1 Introduction 4733
11.5.2 Dust Transport Patterns and Pathways 4734
11.5.2.1 Spatial Patterns 4734
11.5.2.2 Main Seasonal Patterns 4737
11.5.2.3 Transport Routes 4739
11.5.3 Meteorological Processes Associated with Dust Long-Range Rransport Pattern and the Seasonal Cycle 4739
11.5.3.1 Asian Dust Transport Toward the North Pacific Ocean 4739
11.5.3.2 North African Dust Transport Toward the North Tropical Atlantic Ocean 4741
11.5.4 Properties of Transported Dust 4744
11.5.5 Impacts of Long-Range Transported Dust 4746
11.5.5.1 Radiative Impact 4746
11.5.5.2 Impact on Biogeochemistry 4747
11.5.5.3 Dust as a Tracer of Climate 4747
11.5.6 Conclusion 4748
Acknowledgments 4748
References 4748
Biographical Sketch 4752
11.6 Fundamentals of Aeolian Sediment Transport: Wind-Blown Sand 4753
11.6.1 Introduction 4753
11.6.2 Historical Perspectives 4754
11.6.3 Turbulent Boundary Layers 4754
11.6.4 Modes of Aeolian Transport 4756
11.6.5 Initiation of Grain Motion 4757
11.6.5.1 Variability of Grain Size 4758
11.6.5.2 Variability of A 4758
11.6.5.3 Intermittent Transport 4760
11.6.5.4 Response Time 4761
11.6.6 Transport Models 4761
11.6.7 Wind-Blown Sand in Natural Environments 4762
11.6.7.1 Slope Effects 4763
11.6.7.2 Bonding Agents 4764
11.6.7.2.1 Moisture 4764
11.6.7.2.2 Inorganic and organic crusts 4764
11.6.7.3 Vegetation 4765
11.6.7.4 Transport Rate Unsteadiness 4766
11.6.7.5 Fetch 4766
11.6.7.6 Horizontal Variability 4766
11.6.7.7 Vertical Flux Profile 4768
11.6.8 Measuring Transport 4769
11.6.9 Research Prospects 4770
References 4770
Biographical Sketch 4776
11.7 Fundamentals of Aeolian Sediment Transport: Airflow Over Dunes 4777
11.7.1 Introduction 4778
11.7.2 Flow-Form-Sediment Transport Interactions in Dune Systems 4778
11.7.3 Boundary Layer Flow over Complex Terrain 4779
11.7.4 Airflow Dynamics Over and Around Dunes 4781
11.7.4.1 Flow Within and Around Discrete Roughness Elements 4781
11.7.4.2 Topographic Forcing and Stoss (Windward) Slope Flow Dynamics 4782
11.7.4.3 Surface Shear Stress Distributions on the Stoss Slope 4783
11.7.4.4 The Role of Dune Shape in Stoss Slope Flow Dynamics 4785
11.7.4.5 Secondary Airflow Patterns in the Lee of Dunes 4786
11.7.4.6 Response of Lee-Side Flow Patterns to Changes in Incident Flow Angle and Dune Form 4789
11.7.4.7 Sedimentological and Geomorphic Significance of Lee-Side Secondary Flow Patterns 4792
11.7.4.8 Insights on the Role of Microturbulence and Turbulent Reynolds Stress in Aeolian Sediment Transport over Dunes 4795
11.7.5 Conclusions 4796
References 4797
Biographical Sketch 4801
11.8 Fundamentals of Aeolian Sediment Transport: Aeolian Abrasion 4802
11.8.1 Introduction 4803
11.8.1.1 Grain-to-Grain Abrasion 4803
11.8.1.2 Aeolian Abrasion of Landforms 4803
11.8.2 Target Characteristics 4805
11.8.2.1 Ventifacts 4805
11.8.2.2 Yardangs 4805
11.8.3 Abrader Characteristics 4806
11.8.3.1 The Efficacy of Sand versus Other Materials 4806
11.8.3.2 Composition 4807
11.8.3.3 Size 4807
11.8.3.4 Shape 4807
11.8.4 Environmental Factors 4807
11.8.4.1 Wind Speed and Shear Stress 4807
11.8.4.2 Wind Direction 4808
11.8.4.3 Particle Supply, Wind Frequency, and Integrated Flux 4809
11.8.4.4 Local Topography 4809
11.8.4.5 Local Rock Distribution 4810
11.8.5 Planetary Comparisons 4810
11.8.5.1 Mars 4810
11.8.5.2 Venus 4812
11.8.5.3 Titan 4812
11.8.6 Conclusions 4812
References 4813
Biographical Sketch 4815
11.9 Loess and its Geomorphic, Stratigraphic, and Paleoclimatic Significance in the Quaternary 4817
11.9.1 Introduction 4818
11.9.2 Definition of Loess 4819
11.9.3 Spatial Distribution of Loess 4820
11.9.3.1 Europe 4820
11.9.3.2 Asia 4821
11.9.3.3 North America 4823
11.9.3.4 South America 4823
11.9.3.5 Australia and New Zealand 4824
11.9.3.6 Africa and the Middle East 4824
11.9.4 Sedimentology of Loess 4824
11.9.5 Mineralogy and Geochemistry of Loess 4828
11.9.6 Genesis of Loess Deposits 4830
11.9.7 Loess Stratigraphy 4834
11.9.7.1 Loess Deposits versus Paleosols 4834
11.9.7.2 Loess Stratigraphy in China 4834
11.9.7.3 Loess Stratigraphy in Midcontinental North America 4835
11.9.7.4 Loess Stratigraphy in Europe 4837
11.9.8 Loess Geochronology 4837
11.9.8.1 Luminescence Dating 4837
11.9.8.2 Radiocarbon Dating 4838
11.9.8.3 Magnetic Susceptibility in Loess deposits as a Correlation Tool 4842
11.9.9 Paleoclimatic and Paleoenvironmental Interpretation of Loess Deposits 4842
11.9.9.1 Paleowinds and Reconstruction of Atmospheric Circulation 4842
11.9.9.2 Paleosols and Landscape Stability: Implications for Past Vegetation 4843
11.9.9.3 Loess Snails and Their Relation to Paleoclimate 4843
11.9.9.4 Loess Sediment Availability as a Paleoclimate Indicator 4845
11.9.10 Summary 4848
Acknowledgments 4848
References 4848
Biographical Sketch 4851
11.10 Clay Deposits 4852
11.10.1 Introduction 4852
11.10.2 Clay Mineralogy and Geomorphic Processes 4853
11.10.2.1 Clay Geochemistry and Fundamental Properties 4853
11.10.2.2 The Origins of Clays in the Natural Environment 4854
11.10.2.3 Methods in the Identification and Analysis of Aeolian Clays 4854
11.10.2.4 Clay Mineral Properties and Aeolian Processes 4855
11.10.3 Clay Landforms and Landscapes 4856
11.10.3.1 Clay Dunes and Lunettes 4856
11.10.3.1.1 Clay-rich lunettes 4857
11.10.3.1.2 Sand-rich lunettes 4857
11.10.3.1.3 Other source-bordering clay dune settings 4859
11.10.3.2 Clay Sheet Deposits 4859
11.10.3.2.1 Parna, loessic clays, and desert loess 4859
11.10.3.2.2 Nature of deposits 4861
11.10.3.3 Clay Playas/Pans 4861
11.10.3.3.1 Playa occurrence 4861
11.10.3.3.2 Playa formation 4862
11.10.3.3.3 Nature of deposits 4863
11.10.4 The Importance of Aeolian Clay Landscapes 4863
11.10.4.1 Soil Formation 4863
11.10.4.2 Palaeoenvironmental Significance 4864
11.10.4.3 Anthropogenic Disturbance to Clay Landforms 4864
11.10.5 Summary 4865
References 4865
Biographical Sketch 4868
11.11 Dune Morphology and Dynamics 4869
11.11.1 Introduction 4869
11.11.2 Classification and Key Controls 4870
11.11.2.1 Classification of Dune Types 4870
11.11.2.2 Key Controls on Dune Type 4870
11.11.2.3 Complex and Compound Dunes 4871
11.11.3 Dune Dynamics 4872
11.11.4 Dune Morphology and Processes 4874
11.11.4.1 Barchan Dunes and Transverse Ridges 4874
11.11.4.2 Linear Dunes 4875
11.11.4.3 Star Dunes 4878
11.11.5 Dune Interactions and Equilibrium 4879
11.11.5.1 Self-organizing dune patterns 4879
11.11.5.2 Analytical Models 4880
11.11.6 Conclusion and Research Requirements 4884
References 4884
Biographical Sketch 4886
11.12 Sand Seas and Dune Fields 4887
11.12.1 Introduction 4887
11.12.1.1 Historical Perspective 4888
11.12.2 Fundamental Controls on the Formation of Sand Seas 4889
11.12.3 Distribution of Sand Seas in Relation to Climate, Topography, and Sand Transport Systems 4891
11.12.3.1 Global Perspective 4891
11.12.3.2 Relations to Topography 4895
11.12.3.3 Relations to Wind Regimes 4896
11.12.4 Sediments of Sand Seas 4896
11.12.4.1 Source of Sand for Sand Seas 4897
11.12.4.2 Remote-Sensing of Dune Sediment Characteristics and Transport Pathways 4897
11.12.5 Dune Patterns in Sand Seas 4898
11.12.5.1 Analysis of Dune Patterns 4900
11.12.5.2 Controls of Dune Patterns 4903
11.12.5.3 Distribution of Dune Morphologic Types 4905
11.12.5.4 Dune Pattern Development 4907
11.12.6 The Importance of the Quaternary Legacy 4909
11.12.7 Key Issues and Research Needs 4910
References 4911
Biographical Sketch 4913
11.13 Aeolian Stratigraphy 4914
11.13.1 Introduction 4915
11.13.1.1 Wind Ripple Lamination 4915
11.13.1.2 Airfall Lamination 4915
11.13.1.3 Grainflow/Avalanche Cross-Strata 4916
11.13.1.4 Aeolian Plane-Bed Lamination 4917
11.13.1.5 Adhesion Ripples 4917
11.13.1.6 Aeolian Deflation Lags 4917
11.13.1.7 Physically Deformed Strata 4917
11.13.1.8 Chemically Deformed Strata 4917
11.13.1.9 Pedoturbation and Paleosols in Aeolian Strata 4918
11.13.1.10 Bioturbation in Aeolian Strata 4918
11.13.2 Bounding Surfaces 4918
11.13.2.1 Reactivation Surfaces 4918
11.13.2.2 Superposition Surfaces 4919
11.13.2.3 Interdune Surfaces 4919
11.13.2.4 Super Surfaces 4920
11.13.3 Sedimentary Models for Dunes, Interdune, and Sandsheet Strata 4920
11.13.3.1 Barchan Dunes 4920
11.13.3.2 Transverse Dunes 4921
11.13.3.3 Linear Dunes 4921
11.13.3.4 Star Dunes 4922
11.13.3.5 Parabolic Dunes 4922
11.13.3.6 Lunettes 4923
11.13.3.7 Nebkhas 4924
11.13.3.8 Zibar 4924
11.13.3.9 Sand-Sheets 4924
11.13.3.10 Interdunes (Wet, Damp, Dry) 4924
11.13.3.11 Megadunes 4925
11.13.3.12 Compound Dunes 4925
11.13.3.13 Complex Dunes 4925
11.13.3.14 Computer Simulations of Dune Strata 4925
11.13.3.15 Natural Variation 4925
11.13.3.16 The Nature of the Aeolian Record 4926
11.13.4 Aeolian Stratigraphic Models 4926
11.13.4.1 Sequence Stratigraphy in Aeolian Sediments 4926
11.13.4.2 Aeolian System Construction 4927
11.13.4.3 Aeolian System Accumulation 4927
11.13.4.4 Aeolian System Bypass, Destruction, Deflation and Super Surface Generation 4929
11.13.4.5 Aeolian System Preservation 4931
11.13.4.6 Dynamic Models for the Generation of Aeolian Successions 4931
11.13.5 Conclusion 4934
References 4934
Biographical Sketch 4936
11.14 Abraded Systems 4937
11.14.1 Introduction: Landscapes of Aeolian Abrasion 4938
11.14.2 Ventifacts 4938
11.14.2.1 Settings and Environmental Requirements for Ventifact Formation 4938
11.14.2.2 The Age of Ventifacts 4939
11.14.2.3 Surface Features 4939
11.14.2.4 Relationship of Features to Wind Direction 4941
11.14.2.5 Ventifact Environments 4942
11.14.2.5.1 The periglacial and paraglacial landscape 4942
11.14.2.5.2 Coastal ventifacts 4943
11.14.2.5.3 Ventifacts in the desert 4943
11.14.2.5.4 Ventifacts on Mars 4943
11.14.2.6 Ventifacts in the Geological Record 4943
11.14.2.7 Summary of Similarities and Differences between Ventifact Environments 4943
11.14.3 Yardangs 4944
11.14.3.1 Introduction 4944
11.14.3.2 Initial Conditions and Environmental Requirements for Yardang Formation 4944
11.14.3.3 Yardang Form and the Development of Streamlining 4945
11.14.3.4 The Geometry of Yardangs: Length-To-Width Proportions and Yardang Spacing 4946
11.14.3.5 Scale Variation over Distance 4946
11.14.3.6 Erosional Processes 4946
11.14.3.6.1 Erosion by water 4946
11.14.3.6.2 Wind erosion: Abrasion and deflation 4947
11.14.3.6.3 Chemical weathering, solution, and salt weathering 4947
11.14.3.6.4 Mass movement 4947
11.14.3.7 The Age of Yardangs, the Evolution of Yardang Systems, and their Role as Wind Indicators 4948
11.14.3.8 Yardang Systems and Desert Dust 4948
11.14.4 Desert Depressions 4948
11.14.4.1 Introduction 4948
11.14.4.2 Deflation Hollows and Pans 4948
11.14.4.3 Large Wind-Eroded Basins 4949
11.14.5 Inverted Topography 4949
11.14.6 Conclusions 4949
References 4950
Biographical Sketch 4954
11.15 Extraterrestrial Aeolian Landscapes 4955
11.15.1 Overview 4956
11.15.1.1 Mars 4957
11.15.1.1.1 Aeolian features 4959
11.15.1.1.2 Atmosphere and circulation 4959
11.15.1.2 Venus 4962
11.15.1.2.1 Aeolian features 4962
11.15.1.2.2 Atmosphere and circulation 4964
11.15.1.3 Titan 4964
11.15.1.3.1 Aeolian features 4964
11.15.1.3.2 Atmosphere and circulation 4965
11.15.2 Creation of Aeolian Depositional Landscapes 4965
11.15.2.1 Aeolian Sediment State 4965
11.15.2.1.1 Sediment state on Earth 4965
11.15.2.2 Mars 4966
11.15.2.2.1 Sediment state 4966
11.15.2.2.2 Sediment supply 4966
11.15.2.2.3 Sediment availability 4966
11.15.2.2.4 Transport capacity 4967
11.15.2.3 Venus 4967
11.15.2.3.1 Sediment supply 4967
11.15.2.3.2 Sediment availability 4967
11.15.2.3.3 Transport capacity 4967
11.15.2.4 Titan 4967
11.15.2.4.1 Sediment supply 4967
11.15.2.4.2 Sediment availability 4968
11.15.2.4.3 Transport capacity 4968
11.15.2.5 Depositional Sinks - Continuity at Basin Level 4968
11.15.2.5.1 Mars 4968
11.15.2.5.2 Venus and Titan 4969
11.15.3 Emergent Structures in Depositional Aeolian Landscapes 4969
11.15.3.1 Self-Organization 4969
11.15.3.2 Dune Field Patterns 4969
11.15.3.3 Bedform Scaling 4971
11.15.4 Erosional Landscapes 4971
11.15.4.1 Review of Deflation and Abrasion on Earth 4972
11.15.4.2 Deflation and Abrasion Elsewhere in the Solar System 4972
11.15.4.3 Comparison Between Earth and Other Bodies 4973
11.15.5 Unanswered Questions 4974
11.15.5.1 Mars 4974
11.15.5.2 Venus 4974
11.15.5.3 Titan 4975
11.15.6 Conclusions 4975
References 4975
Biographical Sketch 4979
11.16 Modeling Aeolian Landscapes 4981
11.16.1 Introduction 4982
11.16.1.1 Chapter Framework 4982
11.16.2 Conceptual Models 4982
11.16.3 Point Models: Dune Mobility 4985
11.16.4 Transect Models 4985
11.16.4.1 Coupled Airflow-Sand Transport Models 4987
11.16.5 3D and Quasi-3D Models 4988
11.16.5.1 Cellular Automata 4990
11.16.6 Reflections and Prospective 4991
References 4993
Biographical Sketch 4995
11.17 Coastal Dunes 4996
11.17.1 Introduction 4997
11.17.2 Foredunes 4997
11.17.2.1 Incipient Foredunes 4997
11.17.2.2 Established Foredunes 5000
11.17.3 Foredune Plains 5003
11.17.4 Blowouts 5005
11.17.4.1 Formation 5006
11.17.4.2 Morphology 5007
11.17.4.3 Evolution 5007
11.17.5 Parabolic Dunes 5011
11.17.5.1 Morphology 5011
11.17.5.2 Initiation 5012
11.17.5.3 Evolution 5013
11.17.6 Transgressive Dune Sheets and Dunefields 5014
11.17.6.1 Initiation 5014
11.17.6.2 Types and Forms 5016
11.17.6.3 Dune Sheets and Dunefield Morphologies 5017
11.17.6.4 Evolution 5018
11.17.7 Conclusion 5020
Acknowledgments 5020
References 5020
Biographical Sketch 5023
11.18 Aeolian Paleoenvironments of Desert Landscapes 5024
11.18.1 Introduction 5025
11.18.1.1 The Nature of Aeolian Paleoenvironments in Desert Landscapes 5025
11.18.1.2 Sources of Evidence of Aeolian Paleoenvironments 5025
11.18.1.3 History of Research and Major Issues 5025
11.18.2 Sandy Paleoenvironments 5026
11.18.2.1 Distribution 5026
11.18.2.2 Interactions between Controlling Variables 5029
11.18.2.3 Circulation Changes 5031
11.18.2.4 Sediment Supply 5031
11.18.3 Chronologies of Paleo-Aeolian Systems 5033
11.18.3.1 Multiple Events and Compound Dune Landscapes 5033
11.18.3.2 Multiple Events and Complex Accumulation Records 5033
11.18.3.3 Sampling Stratigraphy 5036
11.18.3.4 Preservation Potential 5037
11.18.4 Future Prospects 5038
References 5039
Biographical Sketch 5042
11.19 Cold-Climate Aeolian Environments 5043
11.19.1 Introduction 5044
11.19.2 Winds in Cold-Climate Environments 5045
11.19.2.1 Frontal Winds 5045
11.19.2.2 Pressure-Gradient Winds 5046
11.19.2.3 Katabatic Winds 5046
11.19.2.4 Foehn Winds 5046
11.19.2.5 Cold-Air Influences on Atmospheric Density 5046
11.19.2.5.1 Last glacial winds 5046
11.19.2.5.2 Cold-climate winds and climate change 5047
11.19.3 Sediment Supply and Availability in Cold Environments 5048
11.19.3.1 Sediment Supply 5048
11.19.3.2 Sediment Availability 5048
11.19.4 Cold-Climate Aeolian Processes and Features 5050
11.19.4.1 Deflation 5050
11.19.4.2 Loess and Dust 5050
11.19.4.3 Sand Dunes and Sand Sheets 5050
11.19.4.4 Niveo-Aeolian Processes 5051
11.19.4.5 Sand Wedges 5052
11.19.4.6 Ventifacts 5053
11.19.4.7 Oriented Lakes 5053
11.19.5 Contemporary Cold-Climate Aeolian Environments 5054
11.19.5.1 Glacially Proximal Cold-Polar Environments 5054
11.19.5.2 Continental Cold-Polar Environments 5055
11.19.5.3 Seasonally Cold Environments 5056
11.19.5.4 High-Altitude Environments 5057
11.19.6 Relict Cold-Climate Aeolian Systems 5057
11.19.6.1 North America 5057
11.19.6.2 Europe 5059
11.19.7 Conclusions 5059
References 5060
Biographical Sketch 5062
11.20 Anthropogenic Environments 5063
11.20.1 Introduction 5063
11.20.2 Human-Induced Wind Erosion - A Global Perspective 5064
11.20.3 Anthropogenic Factors that Influence Wind Erosion 5067
11.20.3.1 Tillage Effects 5068
11.20.3.2 Effects of Vegetation 5069
11.20.4 Environmental Effects of Wind Erosion 5070
11.20.5 Techniques for Studying Wind Erosion 5072
11.20.5.1 Field Studies 5072
11.20.5.2 Field Equipment to Estimate Wind Erosion 5073
11.20.5.3 Modeling Wind Erosion 5074
11.20.5.4 An Indirect Method to Estimate Wind Erosion 5075
11.20.6 Control of Anthropogenic Wind Erosion 5075
11.20.7 Future Outlook and Perspectives 5076
References 5076
Biographical Sketch 5081
11.21 Critical Environments: Sand Dunes and Climate Change 5082
11.21.1 Introduction 5082
11.21.2 The Effect of Drought on Vegetation Cover - Conceptual Modeling 5083
11.21.3 The Singularity of Dune Sand Texture and Its Effect on the Sand Moisture and Vegetation Cover 5084
11.21.3.1 The Effect of Soil Texture on the Rate of Infiltration, Available Soil Moisture, and Salt Distribution in Arid... 5085
11.21.3.2 Wind Erosion and Its Effect on Mobility and Stability of Sand Dunes 5085
11.21.3.3 The Inverse-Texture Effect 5087
11.21.4 Drought and Mega-Drought and Its Effect on Sand Dunes Activation 5087
11.21.5 Biocrust and Its Effect on the Stability of Sand Dunes 5088
11.21.6 Past Climate Events and Their Effect on the Present Status of Fixed and Mobile Sand Dunes Fields 5090
11.21.7 Vegetated Linear Dunes and Their Implications for the Sand Seas 5091
11.21.8 Closing Remarks 5092
References 5093
Biographical Sketch 5095
11.22 Linked Aeolian-Vegetation Systems 5096
11.22.1 Introduction 5096
11.22.2 How Vegetation Impacts Sand Transport 5097
11.22.3 How Aeolian Transport Impacts Soil and Vegetation 5099
11.22.4 Feedbacks between Aeolian Transport and Vegetation 5103
11.22.5 Managed Ecosystems 5103
11.22.6 Summary 5104
References 5104
Biographical Sketch 5107
e9780123747396v12 5108
Front Cover 5108
TREATISE ON GEOMORPHOLOGY 5111
CONTENTS 5113
EDITOR-IN-CHIEF 5115
VOLUME EDITORS 5117
CONTRIBUTORS TO VOLUME 12 5119
CONTENTS OF ALL VOLUMES 5121
PREFACE 5135
FOREWORD 5137
12.1 The Role of Biota in Geomorphology: Ecogeomorphology 5139
12.1.1 Introduction to Ecogeomorphology 5139
12.1.2 Chapter Sequence and Topics in this Volume 5139
References 5142
Biographical Sketch 5143
12.2 Riverine Habitat Dynamics 5144
12.2.1 Introduction 5144
12.2.1.1 Some Definitions and Concepts 5144
12.2.1.1.1 Habitat 5144
12.2.1.1.2 Spatial characteristics of habitat 5145
12.2.1.1.3 Habitat dynamics 5145
12.2.2 Habitat Dynamics of Selected Biota in Riverine Ecosystems 5146
12.2.2.1 Pallid Sturgeon 5147
12.2.2.2 Bigheaded Carps 5150
12.2.2.3 Sedentary Organisms: Native Freshwater Mussels 5150
12.2.2.4 Cottonwood Communities 5150
12.2.2.5 Shorebirds: Terns and Plovers 5151
12.2.3 Implications and Applications of Habitat Dynamics 5151
12.2.3.1 Problem Diagnosis: Understanding Stressors, Habitat Grain, and Habitat Extent 5151
12.2.3.2 Hydrodynamics and Habitat Regime 5152
12.2.3.3 Morphodynamics and Habitat Regime 5152
12.2.4 Conclusions 5154
References 5154
Biographical Sketch 5157
12.3 Wood Entrance, Deposition, Transfer and Effects on Fluvial Forms and Processes: Problem Statements and Challenging... 5158
12.3.1 Introduction 5159
12.3.2 Space-Time Framework of Wood Dynamics 5160
12.3.2.1 Input Processes of LW 5160
12.3.2.2 Controls on Transfer Processes of LW 5161
12.3.2.2.1 Hydraulic processes controlling wood transport 5161
12.3.2.2.2 Amount of in-channel wood and ability to move 5162
12.3.2.2.3 Residence time and decomposition 5163
12.3.2.3 Regional Characters Controlling Abundance, Distribution, and Residence Time of LW 5163
12.3.3 LW Effects on Fluvial Processes, Channel Morphology, and Riparian Features 5165
12.3.3.1 Wood Jam Effects on the Hydraulic Conditions and Transport of Material 5165
12.3.3.2 LW Effects on Channel Morphology and Grain Size Pattern 5165
12.3.3.3 Relative Influence of LW According to Channel Size 5167
12.3.3.4 Geomorphological Effects of LW on Riparian Areas 5168
12.3.4 In-Channel Wood and River Management 5169
12.3.4.1 Ecological Benefits of LW 5169
12.3.4.2 Risks and Nuisances Associated with LW 5169
12.3.4.3 Applications of Knowledge in Terms of Restoration and Sustainable Management 5171
References 5171
Biographical Sketch 5174
12.4 River Processes and Implications for Fluvial Ecogeomorphology: A European Perspective 5175
12.4.1 Introduction 5175
12.4.2 The Long-term Perspective: Past, Present, and Future Trends in Channel Adjustments 5176
12.4.2.1 Past Trends in Channel Adjustment 5176
12.4.2.2 Riparian Vegetation and Channel Change 5177
12.4.2.3 Impacts of Climate Change on Channel Dynamics 5179
12.4.3 Progress in Understanding and Modeling Channel Processes Related to Fluvial Ecogeomorphology 5180
12.4.3.1 Sediment Transport 5180
12.4.3.2 Bank Erosion 5181
12.4.3.3 Channel Pattern 5182
12.4.4 River Processes and Ecogeomorphology 5184
12.4.4.1 Ecological and Geomorphic Processes 5184
12.4.4.2 Fluvial Geomorphology and River Restoration in Europe 5184
12.4.4.3 Hydromorphology and WFD 5185
References 5186
Biographical Sketch 5189
12.5 Riparian Vegetation and the Fluvial Environment: A Biogeographic Perspective 5191
12.5.1 Introduction 5191
12.5.2 Early History: Pattern and Process in Riparian Zones 5192
12.5.3 Influence of Hydrogeomorphology on Vegetation: Evolution from Descriptive to Quantitative Studies 5193
12.5.4 Specific Mechanisms of Hydrogeomorphic Impact 5194
12.5.4.1 Flood Energy 5194
12.5.4.2 Sedimentation 5194
12.5.4.3 Prolonged Inundation 5195
12.5.4.4 Water-Table Depth and Dynamics 5195
12.5.4.5 Soil Chemistry 5196
12.5.4.6 Propagule Dispersal 5196
12.5.5 Influence of Vegetation on Geomorphology 5197
12.5.6 Feedbacks between Vegetation and Hydrogeomorphology 5198
12.5.7 Patterns in Published Literature 5200
12.5.7.1 The Sample and Coding 5201
12.5.7.2 General Characteristics of the Sampled Literature 5202
12.5.7.3 Differences among Biomes 5203
12.5.7.4 Scale-Related Differences 5204
12.5.7.5 Hydrogeomorphic Mechanisms in the Context of Scale and Biogeography 5205
12.5.8 Patterns and Perceptions Revealed in the Literature 5206
References 5207
Biographical Sketch 5211
12.6 The Impacts of Vegetation on Roughness in Fluvial Systems 5213
12.6.1 Introduction 5214
12.6.2 In-Stream Emergent Vegetation 5215
12.6.2.1 Reach-Scale Impacts of Emergent Vegetation 5216
12.6.2.2 Hydraulics and Turbulence 5216
12.6.2.3 Emergent Vegetation and Sediment Transport 5217
12.6.3 In-Stream Submerged Vegetation 5218
12.6.3.1 Reach-Scale Impacts of Submerged Vegetation 5218
12.6.3.2 Hydraulics and Turbulence 5220
12.6.3.3 Submerged Vegetation and Sediment Transport 5221
12.6.4 Streambank Vegetation 5221
12.6.4.1 Reach-Scale Impacts of Streambank Vegetation 5222
12.6.4.2 Hydraulics and Turbulence 5222
12.6.4.3 Streambank Vegetation and Sediment Transport 5223
12.6.5 Floodplain Vegetation 5223
12.6.5.1 Reach-Scale Impacts of Floodplain Vegetation 5223
12.6.5.2 Hydraulics and Turbulence 5224
12.6.5.3 Floodplain Vegetation and Sediment Transport 5226
12.6.6 Future Directions 5226
References 5227
Biographical Sketch 5231
12.7 Vegetation Ecogeomorphology, Dynamic Equilibrium, and Disturbance 5232
12.7.1 Introduction 5232
12.7.2 Vegetation Patterns 5233
12.7.3 Hillslopes 5234
12.7.4 Riparian Vegetation, Fluvial Processes, and Landforms 5234
12.7.4.1 Systems in Dynamic Equilibrium 5236
12.7.4.2 Systems in Nonequilibrium States 5237
12.7.5 Dynamic Equilibrium and the Erosional-Depositional Environment 5240
12.7.6 Summary 5241
Acknowledgments 5242
References 5242
Biographical Sketch 5244
12.8 The Reinforcement of Soil by Roots: Recent Advances and Directions for Future Research 5245
12.8.1 Introduction 5246
12.8.1.1 Root Tensile Strength 5246
12.8.2 Calculating Root Reinforcement 5249
12.8.2.1 The Use of Fiber-Bundle Models in Root-Reinforcement Modeling 5251
12.8.2.1.1 Load apportionment alternatives in FBMs 5252
12.8.2.1.2 Effect of changing root orientations in an FBM 5253
12.8.2.1.3 Displacement over which root reinforcement is effective 5253
12.8.2.1.4 Using a Monte Carlo approach in FBMs 5254
12.8.2.2 Root Architecture Measurement and Modeling 5255
12.8.2.3 Hydraulic and Hydrologic Effects of Vegetation 5256
12.8.3 Root-Reinforcement and Geomorphologic Processes at Different Spatial Scales 5257
12.8.4 Conclusions and Direction of Future Research 5258
References 5259
Biographical Sketch 5261
12.9 Dendrogeomorphology: Dating Earth-Surface Processes with Tree Rings 5263
12.9.1 Introduction 5264
12.9.2 Tree Rings and Earth-Surface Processes 5264
12.9.2.1 Basic Patterns of Tree Growth 5264
12.9.2.2 How Do Earth-Surface Processes Affect Tree Growth? 5264
12.9.2.2.1 Wounding of trees (scars) and resin-duct formation 5265
12.9.2.2.2 Tilting of stems 5266
12.9.2.2.3 Stem burial 5266
12.9.2.2.4 Decapitation of trees and elimination of branches 5267
12.9.2.2.5 Root exposure and damage 5267
12.9.2.2.6 Elimination of neighboring trees 5268
12.9.2.2.7 Colonization of landforms after surface-clearing disturbances 5269
12.9.2.3 Sampling Design and Laboratory Analyses 5269
12.9.2.3.1 Field approach and sampling design 5269
12.9.2.3.2 Laboratory approach: sample preparation and analysis 5271
12.9.3 What Earth-Surface Processes Have Been Analyzed with Tree Rings? 5272
12.9.3.1 Surface Erosion 5272
12.9.3.2 Hydrological Processes 5272
12.9.3.3 Landslides 5273
12.9.3.4 Snow Avalanches 5273
12.9.3.5 Rockfalls 5273
12.9.3.6 Earthquakes and Volcanic Activity 5273
12.9.3.7 Permafrost Processes 5274
12.9.3.8 Dendroglaciology 5274
12.9.4 Research Perspectives: Looking to Future Developments 5275
References 5277
Biographical Sketch 5281
12.10 Tree-Ring Records of Variation in Flow and Channel Geometry 5283
12.10.1 Introduction 5283
12.10.2 Tree-Ring Methods in the Riparian Setting 5284
12.10.2.1 Dating of Tree Establishment, Injury, and Shifts in Growth Rate 5284
12.10.2.2 Dating of Tree Burial 5285
12.10.2.3 Tree-Ring Dating in Comparison to Other Methods Used in Riparian Zones 5286
12.10.3 Using Establishment Dates of Riparian Pioneer Trees to Determine Flood History and Flood-Plain Dynamics 5286
12.10.3.1 Restrictive Establishment Requirements of Riparian Pioneer Trees in Arid and Semi-Arid Regions 5286
12.10.3.2 Reproduction of Riparian Pioneer Trees Depends upon Channel Change Driven by Floods 5287
12.10.3.3 The Spatial Pattern of Trees of Different Ages Provides a Record of Channel Change 5288
12.10.3.4 Methodology for Determining Area-Age Distributions of Pioneer Trees 5289
12.10.3.5 Steady-State Flood Plain with Exponential Area-Age Relation - A Null Model 5291
12.10.3.6 Flood Hydrology, Channel Change, and Dominant Discharge 5291
12.10.4 Forest Area-Age Distributions in Cottonwood-Dominated Systems: An Illustration of the Use of Tree Rings to... 5292
12.10.4.1 Regional Climate and Riparian Vegetation 5292
12.10.4.2 Small, Semi-Arid Low-Elevation Watersheds in Eastern Colorado 5294
12.10.4.3 Large, Humid, High-Elevation Watersheds in the Northern Rocky Mountains 5295
12.10.4.4 Intermediate Cases: Watersheds Dominated by Low-Elevation Snowmelt and Thunderstorms 5297
12.10.4.5 Summary of Section 12.10.4 5299
References 5300
Relevant Websites 5302
Biographical Sketch 5302
12.11 Peatland Geomorphology 5303
12.11.1 Introduction 5304
12.11.2 Definition of Peatlands 5304
12.11.3 Geomorphology of Intact Peatlands 5304
12.11.3.1 Hydrological Control of Raised-Mire Topography: The Groundwater-Mound Hypothesis 5305
12.11.3.2 Streamlined Peatland Forms 5306
12.11.3.3 Patterned Peatlands 5306
12.11.3.4 Peatland Fluvial Systems 5307
12.11.3.5 Palsa Mires and Polygonal Mires 5308
12.11.4 Geomorphology of Eroding Peatlands 5309
12.11.4.1 Causes and Occurrence of Peat Erosion 5309
12.11.4.2 Patterns of Peat Erosion 5310
12.11.4.3 Peat Erosion Processes 5310
12.11.4.3.1 Gully erosion 5310
12.11.4.3.2 Wind erosion 5311
12.11.4.3.3 Peat mass movements 5311
12.11.4.4 Magnitude of Peat Erosion 5312
12.11.4.5 Erosion, Revegetation, and Restoration 5312
12.11.5 Techniques in Peatland Geomorphology 5313
12.11.5.1 Remote Sensing and Geospatial Analysis 5313
12.11.5.2 Measuring Physical Properties of Peat 5313
12.11.5.3 Measuring Peat Erosion 5314
12.11.6 Putting It All Together: Peatland Function and Ecosystem Services 5314
References 5316
Biographical Sketch 5319
12.12 Ecogeomorphology of Salt Marshes 5320
12.12.1 Effects of Invertebrates and Vegetation on Marsh-Sediment Transport 5321
12.12.1.1 Effects of Vegetation-Sediment Transport Interactions on Marsh Elevation 5321
12.12.1.2 Effects of Vegetation and Invertebrates on the Erosion of the Marsh Edge 5322
12.12.1.3 Effects of Vegetation-Sediment Transport Interaction on Marsh-Channel Networks 5324
12.12.2 Feedbacks between Salt-Marsh Vegetation and Platform Elevation 5325
12.12.3 Long-Term Marsh Stability and Biogeochemical Cycling 5327
12.12.4 Modeling Intertidal Ecogeomorphology 5330
Acknowledgments 5333
References 5333
Biographical Sketch 5335
12.13 Ecogeomorphology of Tidal Flats 5339
12.13.1 Physiography, Sedimentology, and Stratigraphy of Tidal Flats 5340
12.13.1.1 Tidal Flats Deposits 5341
12.13.2 Biofilms in Tidal Flat Sediments 5346
12.13.2.1 What are Biofilms? 5346
12.13.2.2 Diatom Biofilms 5347
12.13.2.3 Cyanobacterial Biofilms 5347
12.13.2.4 Green Algal Biofilms 5347
12.13.2.5 Sediment Stabilization by Biofilms 5347
12.13.2.6 Extracellular Polymeric Substances 5347
12.13.2.7 Effects of Biofilms on Physical Properties and Processes 5349
12.13.2.8 Biotic Mediation of Bedforms 5350
12.13.2.9 Destabilization - Buoyant Biofilms 5350
12.13.2.10 Biofilms and Rainfall 5350
12.13.2.11 Biofilms as Geomorphological Agents 5350
12.13.2.12 Biofilms Biogeochemistry 5350
12.13.3 Tidal Flats Vegetation and Sediment Transport Interactions 5351
12.13.3.1 Modification of Near-Bed Hydrodynamics 5351
12.13.3.2 Vegetation Density Effects 5352
12.13.3.3 Feedbacks and Bistability 5353
Acknowledgments 5354
References 5354
Biographical Sketch 5356
12.14 Valley Plugs, Land Use, and Phytogeomorphic Response 5359
12.14.1 Introduction 5359
12.14.1.1 Fluvial Processes 5359
12.14.1.2 Channelization 5361
12.14.2 Valley-Plug Formation 5362
12.14.2.1 Geology 5362
12.14.2.2 Land-Use Practices 5364
12.14.3 Fluvial-Geomorphic Responses 5365
12.14.3.1 Hydrologic Regimes 5365
12.14.3.2 Sedimentation 5366
12.14.4 Vegetative Responses 5367
12.14.4.1 Germination 5367
12.14.4.2 Species Composition and Structure 5367
12.14.5 Restoration 5368
12.14.6 Summary 5369
References 5371
Biographical Sketch 5373
12.15 Fire as a Geomorphic Agent 5374
12.15.1 Introduction 5375
12.15.2 Soil 5375
12.15.2.1 Hydrophobicity 5376
12.15.2.2 Infiltration 5376
12.15.2.3 Nutrients 5377
12.15.2.4 Organic Matter and Litter 5377
12.15.2.5 Microbial and Faunal Activity 5378
12.15.2.6 Soil Temperature and Moisture 5378
12.15.3 Weathering 5378
12.15.4 Erosion 5379
12.15.4.1 Surface Erosion 5379
12.15.4.2 Gully/Rill Formation 5382
12.15.4.3 Mass Movements 5382
12.15.4.4 Wind Erosion 5382
12.15.5 Hydrology 5383
12.15.5.1 Runoff 5383
12.15.5.2 Streamflow 5383
12.15.5.3 Sediment Loads and Channel Morphology 5384
12.15.5.4 Large Woody Debris and Riparian Zones 5384
12.15.6 Prehistoric Fire 5384
12.15.7 Geomorphic and Topographic Influences on Fire 5385
12.15.8 Conclusion 5385
References 5385
Biographical Sketch 5389
12.16 The Faunal Influence: Geomorphic Form and Process 5390
12.16.1 Introduction 5390
12.16.2 Categories of Geomorphic Impacts by Animals 5391
12.16.2.1 Trampling and Loading 5391
12.16.2.2 Digging 5393
12.16.2.3 Burrowing 5395
12.16.2.4 Beaver Damming 5395
12.16.3 Geomorphic Impacts of Domesticated and Feral Animals 5395
12.16.4 Zoogeomorphology at Ecotones 5396
12.16.5 Conclusion 5396
References 5397
Biographical Sketch 5398
12.17 Microbioerosion and Bioconstruction 5399
12.17.1 Introduction 5399
12.17.2 What Are Microbes and Why Are They Important to Geomorphology? 5400
12.17.3 What Do We Know about Microbial Contributions to Geomorphology? - a Brief Historical Review 5402
12.17.4 State-of-the-Art of Microbial Contributions to Geomorphology - Case Study Environments 5403
12.17.4.1 Arctic, Antarctic, and High Mountain Environments 5403
12.17.4.2 Rocky Coasts and Coral Reefs 5404
12.17.4.3 Hot Desert Environments 5405
12.17.4.4 Ruiniform Landscapes 5405
12.17.5 Current Key Questions in Microbial Geomorphology 5406
References 5406
Biographical Sketch 5408
12.18 The Geomorphic Impacts of Animal Burrowing and Denning 5409
12.18.1 Introduction 5409
12.18.2 Haplotaxida - Earthworms 5410
12.18.3 Isoptera and Hymenoptera 5410
12.18.3.1 Termites and Ants 5410
12.18.3.2 Bees 5410
12.18.4 Salmoniformes - Salmon and Trout 5411
12.18.5 Testudines - Gopher Tortoises and Related Species 5411
12.18.6 Procellariiformes - Wedge-tailed and Sooty Shearwaters 5412
12.18.7 Lagomorphs (Lagomorpha) - Rabbits and Pikas 5412
12.18.8 Rodents (Rodentia) 5412
12.18.8.1 Gophers 5412
12.18.8.2 Ground Squirrels 5413
12.18.8.3 Marmots 5413
12.18.8.4 Voles and Zokors 5414
12.18.9 Carnivores (Carnivora) 5414
12.18.9.1 Badgers 5414
12.18.9.2 Grizzly Bears 5415
12.18.10 Soricomorpha - Moles 5415
12.18.11 Conclusions 5415
References 5415
Biographical Sketch 5418
12.19 Effects of Ants and Termites on Soil and Geomorphological Processes 5419
12.19.1 Introduction 5419
12.19.2 Geographic Distribution and Diversity 5420
12.19.3 Effects of Ants and Termites on Soil Physical Properties 5420
12.19.3.1 Development of Surface and Sub-Surface Structures 5420
12.19.3.1.1 Elevated ant nests in seasonally flooded environments 5421
12.19.3.1.2 Termitaria: Structures of mound-building termites 5421
12.19.3.1.3 Stone lines 5422
12.19.3.2 Soil Turnover and Soil Development 5422
12.19.3.2.1 Soil turnover by ants and termites 5422
12.19.3.2.2 Effects on soil particle size and clay mineralogy 5423
12.19.3.2.3 Soil profile development or profile homogenization? 5424
12.19.3.3 Soil Porosity, Infiltration and Water Storage 5424
12.19.3.4 Soil Erosion 5425
12.19.4 Effects of Ants and Termites on Soil Chemical Processes 5426
12.19.4.1 Effects on Movement of Organic Matter 5426
12.19.4.2 Effects on Soil Chemistry 5426
12.19.5 Impacts of Alien Species: The Imported Fire Ant (Solenopsis invicta) as an Example 5427
12.19.6 Conclusions 5428
Acknowledgments 5428
References 5428
Biographical Sketch 5430
12.20 Beaver Hydrology and Geomorphology 5431
12.20.1 Introduction 5431
12.20.2 History and Geographic Distribution of Beaver 5432
12.20.3 Main Hydrologic Signatures of Beaver 5432
12.20.4 Influence of Beaver Activities on the Water Cycle 5433
12.20.4.1 Surface-Water Storage 5434
12.20.4.2 Streamflow 5435
12.20.4.3 Evapotranspiration 5436
12.20.4.4 Surface Water-Groundwater Exchange 5437
12.20.5 Beaver Geomorphology - Landforms and Sedimentation 5438
12.20.6 Conclusions and Future Challenges 5440
References 5440
Biographical Sketch 5443
12.21 Interactions among Hydrogeomorphology, Vegetation, and Nutrient Biogeochemistry in Floodplain Ecosystems 5445
12.21.1 Floodplains and Their Essential Interactive Processes 5446
12.21.2 The Template of Hydrogeomorphology in Floodplains 5446
12.21.2.1 History of Hydrogeomorphic Concepts in Rivers 5446
12.21.2.2 Hydrogeomorphic Controls on Floodplain Ecosystems 5447
12.21.3 Controls of Vegetation in Floodplains 5448
12.21.3.1 Hydrogeomorphic Controls of Vegetation 5448
12.21.3.2 Influence of Vegetation on Hydrogeomorphology 5449
12.21.3.3 Biogeochemical Controls on Vegetation 5449
12.21.3.4 Other Biota 5449
12.21.4 Controls of Nutrient Biogeochemistry in Floodplains 5450
12.21.4.1 Hydrogeomorphic Controls of Nutrient Biogeochemistry 5450
12.21.4.2 Influence of Vegetation on Nutrient Biogeochemistry 5452
12.21.4.3 Biogeochemical Controls on Hydrogeomorphology? 5452
12.21.5 Case Studies 5452
12.21.5.1 Hummock/Hollow Geomorphology in Peatlands and Floodplains 5452
12.21.5.2 Coastal Plain Floodplains 5453
12.21.5.3 Montane Floodplains 5454
12.21.5.4 Desert Streams 5454
12.21.6 Conclusions 5455
References 5455
Biographical Sketch 5459
e9780123747396v13 5460
Front Cover 5460
TREATISE ON\rGEOMORPHOLOGY 5463
CONTENTS 5465
EDITOR-IN-CHIEF 5467
VOLUME EDITORS 5469
CONTRIBUTORS TO VOLUME 13 5471
CONTENTS OF ALL VOLUMES 5473
PREFACE 5487
FOREWORD 5489
13.1 Geomorphology of Human Disturbances, Climate Change, and Hazards 5491
13.1.1 Introduction 5492
13.1.2 Background 5492
13.1.2.1 Early Concepts of Population, Technology, and Environmental Impacts 5493
13.1.2.2 Structure of the Volume 5494
13.1.3 Human Impacts on Geomorphic Systems 5494
13.1.3.1 Anthropogenic Geomorphology 5494
13.1.3.2 Scales of Space and Time 5495
13.1.4 Impacts of Climate and Climate Change on Geomorphic Systems 5495
13.1.4.1 Climatic Geomorphology 5495
13.1.4.2 Impacts of Climate Change on Geomorphic Systems 5496
13.1.4.3 The Human Role in Early Climate Warming 5496
13.1.5 Geomorphic Hazards 5497
13.1.6 Nuclear Detonations as a Geomorphic Agent 5498
13.1.7 Restoration, Stabilization, Rehabilitation, and Management 5499
13.1.8 Conclusion 5500
References 5500
Biographical Sketch 5502
13.2 Impacts of Vegetation Clearance on Channel Change: Historical Perspective 5504
13.2.1 Introduction 5504
13.2.2 Historical Perspective on Observation and Research 5505
13.2.3 Linking Vegetation Clearance to Channel Change: Recently Colonized Landscapes 5506
13.2.3.1 North America 5506
13.2.3.2 Effects of Forest-Clearing Practices on Channel Change 5509
13.2.3.3 Australia and New Zealand 5510
13.2.3.4 South America 5511
13.2.4 The Mediterranean Region and Europe 5511
13.2.5 Further Examples Linking Vegetation Clearance to Channel Change 5514
13.2.6 Summary of Trends 5514
References 5515
Biographical Sketch 5517
13.3 Land-Use Impacts on the Hydrogeomorphology of Small Watersheds 5518
13.3.1 Introduction 5519
13.3.2 Hydrogeomorphic Systems in Small Watersheds 5519
13.3.2.1 Hillslope Hydrology 5519
13.3.2.2 Upland Erosion 5519
13.3.2.3 Stream Networks 5521
13.3.3 Land-Use Impacts on Hydrogeomorphic Systems: An Overview 5521
13.3.4 Land-Use Impacts on Upland Areas of Small Watersheds 5522
13.3.4.1 Timber Extraction and Other Vegetation Destruction 5522
13.3.4.2 Grazing and Crop Cultivation 5524
13.3.4.3 Urbanization 5527
13.3.4.4 Synopsis 5528
13.3.5 Land-Use Impacts on Stream Channels in Small Watersheds 5528
13.3.5.1 Impacts on Water and Sediment Delivery 5528
13.3.5.2 Impacts on Stream Networks 5528
13.3.5.3 Channel Adjustments to Vegetation Removal 5529
13.3.5.4 Channel Adjustments to Agricultural Land Use 5529
13.3.5.5 Channel Adjustments to Urbanization 5531
13.3.5.6 Synopsis 5533
13.3.6 Conclusions 5533
References 5534
Biographical Sketch 5537
13.4 Impacts of Early Agriculture and Deforestation on Geomorphic Systems 5538
13.4.1 Introduction 5539
13.4.1.1 Goals and Scope of Chapter 5539
13.4.2 Emergence and Geomorphic Impacts of Early Agriculture 5540
13.4.2.1 Importance of Agriculture to Geomorphology 5540
13.4.2.2 Quaternary Sediment Yields 5541
13.4.2.2.1 The Neolithic 5541
13.4.2.3 The Onset of Agriculture in North Central China 5542
13.4.2.4 Mesopotamia and Spread of Agriculture to Eastern Mediterranean 5544
13.4.2.5 Neolithic Expansion Across Europe 5545
13.4.2.5.1 Deforestation of Europe 5546
13.4.2.6 Pre-European Land Use in the New World 5546
13.4.2.6.1 Assumptions of pristine landscapes 5546
13.4.2.6.2 Pre-Columbian human impacts in North America 5548
13.4.3 Intensification of Agriculture in Eurasia 5548
13.4.3.1 Increasing Potential for Geomorphic Effectiveness 5549
13.4.3.2 Explanations for Advanced Eurasian Technology 5550
13.4.4 Introduction of European Agriculture to the New World 5551
13.4.4.1 Colonial Impacts in North America 5551
13.4.4.2 Colonial Impacts in Australasia 5552
13.4.4.3 Assumptions of Ubiquitous Geomorphic Impacts by Colonization 5552
13.4.4.4 Loss of Environmental Restraints 5552
13.4.5 Modern Agricultural and Deforestation Impacts 5553
13.4.5.1 Forest Transition and Reforestation 5553
13.4.6 Conclusion 5553
References 5554
Biographical Sketch 5557
13.5 Grazing Influences on Geomorphic Systems 5558
13.5.1 Introduction 5558
13.5.2 General Geomorphic Impacts of Grazing 5558
13.5.3 Grazing Impacts of Restricted Native Populations of Animals 5559
13.5.4 Grazing Impacts of Feral Animals 5560
13.5.4.1 Feral Burros 5560
13.5.4.2 Feral Horses 5561
13.5.5 Grazing Impacts of Domesticated Animals 5561
13.5.6 Conclusions 5562
References 5562
Biographical Sketch 5563
13.6 Impacts of Mining on Geomorphic Systems 5564
13.6.1 Introduction 5565
13.6.2 Types of Mines and Mining History 5566
13.6.2.1 Types of Mining and Associated Landforms 5566
13.6.2.1.1 Materials mined 5566
13.6.2.1.2 Types of mining by nature of excavation 5567
13.6.2.2 History of Mining 5571
13.6.3 The Current Scenario 5574
13.6.3.1 Mineral Consumption and Comparison with Other Geomorphic Processes 5574
13.6.3.2 Mining Landscapes and Landscape Change 5575
13.6.3.2.1 Comparisons of landscapes, waste rock, and geography 5575
13.6.3.2.2 Open pits 5575
13.6.3.3 Coal-Mining Landscapes 5575
13.6.3.3.1 Phosphate-mining landscapes 5576
13.6.3.3.2 Oil extraction landscapes 5576
13.6.3.3.3 Sand and gravel-mining landscapes: Rivers and floodplains 5577
13.6.3.3.4 Sand and gravel-mining landscapes: Coasts and lakes 5578
13.6.3.3.5 Sand and gravel-mining landscapes: Glacial deposits 5579
13.6.4 Mining and Geomorphic Hazards 5579
13.6.4.1 Above-Ground Hazards 5579
13.6.4.1.1 Mining and hillslope failures 5579
13.6.4.1.2 Mine tailings and tailings dams failures 5579
13.6.4.2 Below-Ground Hazards 5580
13.6.4.2.1 Underground mining and subsidence 5580
13.6.4.2.2 Catastrophic floods in underground mines 5580
13.6.5 Geomorphology and Mine Reclamation 5581
13.6.6 Conclusion 5582
References 5582
Relevant Websites 5585
Biographical Sketch 5585
13.7 Hydrogeomorphic Effects of Reservoirs, Dams, and Diversions 5586
13.7.1 Introduction 5586
13.7.1.1 Impacts of Dams on Downstream Rivers 5587
13.7.1.2 The Geomorphological Basis for the Sustainable Management of River Ecosystems 5587
13.7.2 Water Benefit - Environmental Impact Dilemma 5588
13.7.2.1 Water Resources and Dam Building 5588
13.7.2.2 Changing Flows and Sediment loads 5588
13.7.2.2.1 Changing flow regimes 5588
13.7.2.2.2 Changing sediment fluxes 5589
13.7.2.3 Environmental Response to Flow Regulation: The Platte River, USA 5589
13.7.3 Channel Changes Associated with Dams and Flow Regulation 5590
13.7.3.1 Changing Channel Styles 5591
13.7.3.1.1 Major reduction in sediment load (QdegLbequal)apCCplus wplusdplusnplusS- 5592
13.7.3.1.2 Major reduction in discharge (QequalLbdeg)apCC-w-d-n-Splus 5593
13.7.3.1.3 Changes within rigid-boundary channels 5594
13.7.3.1.4 Deterioration of the channel bed 5595
13.7.3.2 Complex Response of Channel Forms 5595
13.7.3.2.1 Rates of adjustment 5596
13.7.3.2.2 Role of vegetation in driving channel narrowing 5597
13.7.3.2.3 Influence of pre-dam channel conditions and post-dam flood events 5597
13.7.3.2.4 Historical context of human interferences 5598
13.7.4 The Future of River Regulation 5598
13.7.4.1 Restoring Natural Flow Regimes 5599
13.7.4.2 Restoring the Natural Sediment Regime 5599
13.7.4.3 Flushing Flows 5599
13.7.4.4 Dam Removal 5600
13.7.4.5 The Geomorphological Imperative 5600
References 5600
Biographical Sketch 5604
13.8 Climatic Geomorphology 5605
13.8.1 Introduction 5605
13.8.2 The Dawning of Climatic Geomorphology 5607
13.8.3 The Establishment of Climatic Geomorphology 5608
13.8.4 The Development of Climatic Geomorphology 5609
13.8.5 Climatic Geomorphology: Processes and Morphoclimatic Zonation 5610
13.8.6 The Zonal Concept in Climatic Geomorphology 5613
13.8.7 The Main Morphoclimatic Zones 5615
References 5619
Biographical Sketch 5621
13.9 Climate Change and Aeolian Processes 5622
13.9.1 Introduction 5622
13.9.2 Conceptual Framework 5623
13.9.3 Dust Events and Climate Variability 5623
13.9.4 Dune Systems 5627
13.9.4.1 Late Holocene and Historical Record of Dune Movement and Deposition 5628
13.9.4.2 Decadal-Scale Changes 5630
13.9.4.3 Response to Interannual Climate Variability 5631
13.9.5 Modeling the Response of Aeolian Systems to Climate Change 5633
13.9.5.1 Dust Sources and Transport 5633
13.9.5.2 Dune Systems 5633
13.9.6 Aeolian System Response to Future Climates 5636
13.9.7 Conclusions 5639
References 5639
Biographical Sketch 5641
13.10 Glacial Responses to Climate Change 5642
13.10.1 Introduction 5643
13.10.2 Glaciers and the Cryosphere Components in the Climate System 5644
13.10.3 The Development of Internationally Coordinated Glacier Observation 5648
13.10.3.1 Historical Background 5648
13.10.3.2 An Integrated Strategy 5649
13.10.4 Documented Changes and Challenges for the Future 5651
13.10.4.1 Accelerated Glacier Mass Loss 5651
13.10.4.2 Predominant Worldwide Glacier Retreat 5653
13.10.4.3 Shrinking of Glaciers in Entire Mountain Ranges 5655
13.10.5 Scenarios, Impacts, and Adaptation 5656
13.10.5.1 Glacier Vanishing and Water 5656
13.10.5.2 Landscape, Surface Processes, and Hazards 5657
13.10.5.3 Challenges for Monitoring Glacier Evolution 5659
References 5661
Biographical Sketch 5665
13.11 Response of Periglacial Geomorphic Processes to Global Change 5666
13.11.1 Introduction 5667
13.11.1.1 The Periglacial Environment 5667
13.11.2 Permafrost 5667
13.11.3 Periglacial Processes 5668
13.11.3.1 Frost Action 5668
13.11.3.1.1 Frost weathering 5668
13.11.3.1.2 Frost heaving 5668
13.11.3.1.3 Frost sorting 5668
13.11.3.1.4 Frost cracking 5669
13.11.3.2 Cryogenic Weathering and Pedogenesis 5669
13.11.3.3 Hillslope Processes 5669
13.11.3.4 Fluvial Processes 5669
13.11.3.5 Aeolian Processes 5670
13.11.4 Climate Change and Permafrost 5670
13.11.4.1 Permafrost Warming 5670
13.11.4.2 Increased Active Layer Thickness 5671
13.11.5 Geomorphic Responses to Global Change 5673
13.11.5.1 Thermokarst 5673
13.11.5.2 Thermal Erosion 5673
13.11.5.3 Hillslope Responses 5673
13.11.5.4 Fluvial Responses 5675
13.11.5.5 Frost Phenomena 5676
13.11.6 Conclusions 5676
References 5677
Biographical Sketch 5679
13.12 Natural Hazards, Landscapes, and Civilizations 5680
13.12.1 Introduction 5681
13.12.2 Slow Change or a Series of Disasters 5681
13.12.2.1 The Younger Dryas Period and the Initiation of Agriculture 5681
13.12.2.2 The Mid-Holocene End of the Green Sahara 5682
13.12.3 Past Great Disasters 5682
13.12.3.1 The Black Sea Flood and the Spread of Indo-European People 5683
13.12.3.2 The First Intermediate Period in the Pharaoh Dynasties and the 4.2ka Global Event 5683
13.12.3.3 The Moche Collapse in Peru in About AD 600 5683
13.12.3.4 The Classical Maya Decline About AD 900 in Central America 5684
13.12.3.5 The Norse Greenland Demise at the Beginning of the Little Ice Age 5685
13.12.3.6 The Colonization of Pacific islands 5685
13.12.4 Recent Disasters 5686
13.12.4.1 The Volcanic Eruption of Laki in AD 1783-84 5686
13.12.4.2 The AD 1883 Krakatau Eruption and Indonesia Independence 5686
13.12.4.3 The Indian Ocean Tsunami of 2004 and the Separatist Movement in Aceh 5687
13.12.4.4 The AD 2005 Hurricane Katrina and Ethnicity Changes in New Orleans 5688
13.12.5 Discussion 5688
13.12.5.1 Factors Leading to Disaster 5688
13.12.5.2 Positive Effects of Sudden Environmental Changes 5689
13.12.5.3 Is Modern Society Vulnerable to Rapid Environmental Change? 5689
13.12.5.4 Toward Solutions 5690
13.12.6 Conclusions 5690
References 5691
Biographical Sketch 5693
13.13 Tsunami 5694
13.13.1 Introduction 5694
13.13.2 Tsunamis as a Natural Process 5696
13.13.3 Historic Records 5696
13.13.4 Hybrid Records 5697
13.13.5 Geological Records 5698
13.13.6 Geomorphological Records 5702
13.13.6.1 Where to from Here? 5704
13.13.7 Conclusions 5706
References 5706
Biographical Sketch 5708
13.14 Factors Influencing Volcanic Hazards and the Morphology of Volcanic Landforms 5709
13.14.1 Prologue/Introduction 5710
13.14.2 Volcanic Phenomena 5711
13.14.2.1 Topography 5711
13.14.2.2 Hydrology 5712
13.14.3 Global Volcanic Features 5713
13.14.3.1 Oceanic Ridges (Rift Zones) 5713
13.14.3.2 Subduction Zones 5714
13.14.4 Regional Features (gt100km) 5715
13.14.4.1 Continental Flood Basalts 5716
13.14.4.2 Ignimbrite Plateaus 5716
13.14.4.3 Hot Spot Tracks 5717
13.14.4.4 Continental Rift Valleys 5717
13.14.4.5 Volcanic Cone Fields 5718
13.14.5 Local Features (lt100km) 5718
13.14.5.1 Constructional Landforms and Processes 5718
13.14.5.1.1 Lava flows and domes 5718
13.14.5.1.2 Pyroclastic flows 5721
13.14.5.1.3 Fumarolic mounds and sinter/travertine terraces and deposits 5721
13.14.5.2 Destructional Landforms and Processes 5721
13.14.5.2.1 Pit craters 5721
13.14.5.2.2 Maars 5722
13.14.5.2.3 Tuff rings 5722
13.14.5.2.4 Diatremes 5722
13.14.5.2.5 Calderas 5723
13.14.5.2.6 Debris avalanches/sector collapse 5724
13.14.5.3 Composite Features 5724
13.14.5.3.1 Shield volcanoes 5724
13.14.5.3.2 Strato- or composite volcanoes 5725
13.14.5.3.3 Cinder cones (scoria cones) - monogenetic and polygenetic 5725
13.14.5.3.4 Tuyas 5725
13.14.5.3.5 Tindars, subglacial mounds, hyaloclastite mounds 5726
13.14.5.4 Other Volcanic Phenomena that may Result in Morphological Changes 5726
13.14.5.4.1 Pyroclastic fall deposits 5726
13.14.5.4.2 Lahars 5727
13.14.5.4.3 Tsunamis 5728
13.14.5.4.4 Volcanic gases 5728
13.14.5.4.5 Volcanic and tectonic earthquakes 5728
13.14.5.4.6 Lightning strikes 5729
13.14.6 Conclusion 5729
References 5729
Biographical Sketch 5731
13.15 Hazardous Processes: Flooding 5733
13.15.1 Introduction 5733
13.15.2 Flood Causes and Their Magnitude 5734
13.15.3 Flood Hazards in Fluvial Environments 5735
13.15.3.1 Mountain Streams 5736
13.15.3.2 Alluvial Fans 5738
13.15.3.3 Alluvial Rivers 5740
13.15.4 Natural and Anthropogenic Drivers of Flood Hazard Variability 5744
13.15.4.1 Flood Response to Climate Variability 5744
13.15.4.2 Environmental Changes and Flood Hazards 5745
13.15.4.3 River Engineering Structures and Flood Hazards 5746
13.15.5 Concluding Remarks 5747
References 5747
Biographical Sketch 5751
13.16 Wildfire and Landscape Change 5752
13.16.1 Introduction 5753
13.16.2 Physical Changes Brought About by Wildfire 5754
13.16.2.1 Physical Losses (Including Vegetation Canopy, Understory and Surface Litter, and Soil Organic Matter, Root... 5754
13.16.2.2 Physical Gains (Including Ash and Water Repellency) 5756
13.16.2.3 Changes in Hydrologic Properties (Including Infiltration and Runoff, and Critical Shear Stress for Particle... 5758
13.16.2.4 Changes in Soil Mineralogy and Physical Properties, and Rock Structure 5758
13.16.3 Process Changes Brought About by Wildfire 5761
13.16.3.1 Hillslope Runoff and Erosion 5761
13.16.3.2 Drainage Network Runoff and Erosion 5762
13.16.3.3 Debris and Mud Flows 5763
13.16.3.4 Landslides 5765
13.16.3.5 Talus and Dry-Ravel Generation 5766
13.16.3.6 Recovery and Return to Original Conditions 5767
13.16.4 Landform Changes Brought About by Wildfire 5767
13.16.4.1 Hillslope Lowering 5767
13.16.4.2 Channel Aggradation 5767
13.16.4.3 Channel Incision 5768
13.16.4.4 Alluvial and Debris Fans 5768
13.16.4.5 Talus Cones and Rock Movement 5769
13.16.5 Applications of Geomorphology in Burned Areas 5769
13.16.5.1 Burned Area Emergency Response Team Studies 5769
13.16.5.2 Debris-Flow Hazard Assessments 5770
13.16.6 Summary 5771
References 5772
Biographical Sketch 5776
13.17 Landslide Hazards and Climate Change in High Mountains 5778
13.17.1 Introduction 5778
13.17.2 Background 5779
13.17.3 Detecting Climate Change Impacts in Landslide Frequency-Magnitude Distributions 5779
13.17.4 Temperature and Stability in Bedrock Permafrost 5781
13.17.5 Catastrophic Rock and Ice Avalanches - Growing Evidence of Climate Change Effects? 5782
13.17.5.1 Case Study: Monte Rosa, Italy 5783
13.17.5.2 Case Study: Kolka-Karmadon, Caucasus 5784
13.17.6 Debris Flows and Other Landslides in Proglacial Environments 5784
13.17.6.1 Case Study: Salcantay, Peru 5785
13.17.7 Dynamic Interactions Among Landslide, Glacial, and River Processes 5785
13.17.7.1 Case Study: Lower Grindelwald Glacier 5785
13.17.8 Assessment and Modeling of Slope Stability in the Context of Climate Change 5786
13.17.9 Conclusions 5787
References 5788
Biographical Sketch 5791
e9780123747396v14 5792
Front Cover 5792
TREATISE ON GEOMORPHOLOGY 5795
CONTENTS 5797
EDITOR-IN-CHIEF 5799
VOLUME EDITORS 5801
CONTRIBUTORS TO VOLUME 14 5803
CONTENTS OF ALL VOLUMES 5805
PREFACE 5819
FOREWORD 5821
14.1 Methods and Techniques for the Modern Geomorphologist: An Introduction to the Volume 5823
References 5826
Biographical Sketch 5827
14.2 Fundamental Classic and Modern Field Techniques in Geomorphology: An Overview 5828
14.2.1 Introduction 5829
14.2.2 Classic Field Techniques in Geomorphology Revisited 5829
14.2.2.1 Geomorphological Mapping 5829
14.2.2.1.1 Remote sensing and geomorphological mapping 5829
14.2.2.2 Shallow Coring and Sampling 5830
14.2.2.2.1 Coring 5830
14.2.2.2.2 Sampling 5830
14.2.3 Modern Field Techniques in Geomorphology 5831
14.2.3.1 Principles of GPS and Applications in Geomorphology 5831
14.2.3.2 LiDAR in Geomorphology 5831
14.2.3.2.1 Principles of LiDAR 5832
14.2.3.2.2 Airborne or terrestrial laser scanning 5832
14.2.3.2.3 LiDAR - principles of data acquisition and processing 5833
14.2.3.3 Geophysical Applications in Geomorphology 5833
14.2.3.3.1 Ground-penetrating radar 5833
14.2.3.3.1.1 Principle and geomorphic context 5833
14.2.3.3.1.2 Advantages and disadvantages of GPR in geomorphological applications 5834
14.2.3.3.2 Geoelectrical resistivity 5835
14.2.3.3.2.1 Principle and geomorphic context 5835
14.2.3.3.2.2 Advantages and disadvantages in geomorphological applications 5837
14.2.3.3.3 Seismic refraction 5837
14.2.3.3.3.1 Principle and geomorphic context 5837
14.2.3.3.3.2 Advantages and disadvantages in geomorphological studies 5840
14.2.4 Conclusions 5840
14.2.5 Disclaimer 5840
References 5840
Biographical Sketch 5843
14.3 Geomorphometry: Quantitative Land-Surface Analysis 5844
14.3.1 Introduction 5845
14.3.2 Basics: Altitude and Slope Gradient 5847
14.3.3 Geomorphometric Field Variables: Local and Regional 5848
14.3.4 Linear Objects 5851
14.3.5 Areal Objects 5851
14.3.6 Scaling and Scale Specificity 5852
14.3.7 Conclusions: The Future 5853
References 5854
Relevant Websites 5855
Biographical Sketch 5855
14.4 The Modern Geomorphological Map 5857
14.4.1 Introduction 5858
14.4.1.1 Geomorphological Mapping - ’A World in Motion’ 5858
14.4.1.2 New Techniques in Geomorphological Mapping 5858
14.4.1.3 Chapter Overview 5859
14.4.2 Methods and Geomorphological Maps 5859
14.4.2.1 Concepts and Methods Used in Classical Mapping Systems 5859
14.4.2.2 Methods Used in Modern Mapping 5861
14.4.2.2.1 Digital environments and geomorphological information layers 5861
14.4.2.2.2 Digitalization and updating of geomorphological information layers 5862
14.4.2.2.3 Geomorphological mapping using digital elevation models 5863
14.4.2.2.4 Publishing digital geomorphological maps 5865
14.4.2.3 Applications of Geomorphological Maps 5865
14.4.3 Modern Geomorphological Mapping and Geoconservation 5866
14.4.3.1 Study Area, Classical and Digital Geomorphological Map 5866
14.4.3.2 General Steps for Semi-Automated Geomorphological Mapping 5867
14.4.3.2.1 Extraction of LSP and segmentation into objects 5867
14.4.3.2.2 Rule development, image classification, and accuracy assessment 5868
14.4.3.3 Application to Geoconservation of Landscapes 5869
14.4.4 Conclusions and Closing Remarks 5870
Acknowledgments 5872
References 5872
Relevant Websites 5873
Biographical Sketch 5874
14.5 Google Earthtrade in Geomorphology: Re-Enchanting, Revolutionizing, or Just another Resource? 5875
14.5.1 Introduction 5875
14.5.2 Recent Feature Developments to Google Earthtrade 5876
14.5.3 Use of Google Earthtrade in Geomorphology 5877
14.5.3.1 Reach-Scale Fluvial Geomorphology 5877
14.5.3.2 Basin-Scale Fluvial Geomorphology 5877
14.5.3.3 Planetary Geomorphology 5877
14.5.3.4 Geomorphological Education and Outreach 5878
14.5.4 Discussion 5878
14.5.4.1 Advantages of Google Earthtrade in Geomorphology 5878
14.5.4.2 Limitations of Google Earthtrade in Geomorphology 5881
14.5.5 Possible Future Developments in the Use of Google Earthtrade in Geomorphology 5882
14.5.6 Conclusions 5884
References 5885
Relevant Websites 5886
Biographical Sketch 5886
14.6 Methods in Geomorphology: Numerical Modeling of Drainage Basin Development 5887
14.6.1 Background 5888
14.6.2 Defining the Numerical Modeling Exercise 5889
14.6.3 Geomorphic Process Equations 5890
14.6.3.1 Introduction 5890
14.6.3.2 Hillslope Processes 5890
14.6.3.3 Channel Network Processes 5890
14.6.3.4 Other Processes 5891
14.6.3.5 Changes in Climate and Hydrology over Time 5891
14.6.4 Constructing and Running the Model 5891
14.6.5 Model Confirmation 5892
14.6.6 Final Comments 5892
References 5893
Biographical Sketch 5894
14.7 Methods in Geomorphology: Investigating River Channel Form 5895
14.7.1 Introduction 5896
14.7.1.1 Importance of Context 5896
14.7.2 History/Background 5898
14.7.3 Methods 5900
14.7.3.1 Planform 5900
14.7.3.2 Cross Section 5902
14.7.3.3 Long Profile 5904
14.7.3.4 3D Form 5905
14.7.4 Case Studies 5906
14.7.4.1 Case Study 1: River Styles 5906
14.7.4.2 Case Study 2: Waipaoa 5906
14.7.5 Future Work and Direction 5909
14.7.6 Conclusions 5910
References 5910
Relevant Websites 5913
Biographical Sketch 5913
14.8 Methods in Geomorphology: Mapping Glacial Features 5914
14.8.1 Introduction 5914
14.8.2 Types of Maps 5915
14.8.2.1 Process Inference Maps 5915
14.8.2.2 Age-Correlation Maps 5915
14.8.3 Identification of Features 5916
14.8.4 Production of a Base Map or Image 5916
14.8.4.1 What Constitutes a Good Base Map or Base Image? 5917
14.8.4.2 Images 5917
14.8.4.3 Stereoscope Use 5917
14.8.4.4 Scale of Mapping 5918
14.8.4.5 Map Extents 5918
14.8.5 Field Mapping 5918
14.8.5.1 Examining Outcrop in Association with Mapping 5919
14.8.6 Mapping in Different Glacial Settings - Case Studies 5920
14.8.6.1 Temperate Valley Glaciers - East Coast South Island, New Zealand (Rakaia and Rangitata Valleys) 5920
14.8.6.2 Former Ice-Cap Covered Regions 5920
14.8.6.3 Antarctica and Other Dry Polar/Alpine Environments 5920
14.8.6.4 Karst Areas 5920
14.8.7 Map Production/Cartography 5922
14.8.7.1 Map Compilation - Digitizing Data and Producing the Map 5922
14.8.7.2 Map Elements 5922
14.8.7.3 Publication 5922
Acknowledgments 5925
References 5925
Biographical Sketch 5925
14.9 Techniques and Methods for the Field: An Introduction and Commentary 5927
14.9.1 Introduction 5927
14.9.2 What’s on Top? - Studying the Surface 5927
14.9.2.1 Collecting Information Before You Leave for the Field 5927
14.9.2.2 Once You’re Out There 5928
14.9.3 What Lies Beneath? - Subsurface Investigations in the Field 5928
14.9.4 Back in the Laboratory 5929
14.9.5 Never Ignore Safety 5929
14.9.6 Value of Fieldwork in Educational Aspects of Geomorphology 5929
14.9.7 Conclusions 5930
References 5930
Biographical Sketch 5930
14.10 Topographic Field Surveying in Geomorphology 5932
14.10.1 Introduction 5932
14.10.2 Basic Survey Principles 5933
14.10.2.1 Pre-Field Planning 5933
14.10.2.1.1 What is the instrumental accuracy required? 5933
14.10.2.1.2 What are the field conditions? 5933
14.10.2.1.3 What is the availability/reliability of benchmarks/survey points? 5933
14.10.2.2 In the Field 5934
14.10.2.2.1 How accurate do surveys need to be? 5934
14.10.2.2.2 Weather conditions and instrumental ruggedness 5934
14.10.2.3 Post-Field Analysis 5934
14.10.3 Common Types of Instruments 5934
14.10.3.1 Auto/Engineer’s Level 5934
14.10.3.2 Electronic Distance Meter 5936
14.10.3.3 Total Station 5936
14.10.3.4 TerrestrialLaser Scanner 5936
14.10.4 Summary and Conclusions 5939
References 5939
Biographical Sketch 5940
14.11 Coring and Augering 5941
14.11.1 Introduction 5941
14.11.2 The Principles of Coring 5942
14.11.3 Corer Types: Designs and Operation 5944
14.11.3.1 Hand Operated Auger 5944
14.11.3.2 Chamber Corer: ’D-section’ or ’Russian’ Corer 5945
14.11.3.3 Gravity Corers 5946
14.11.3.4 Extruding Gravity Cores 5949
14.11.4 Corers for Taking Long Cores 5950
14.11.4.1 Livingstone-Type 5950
14.11.4.2 Percussion and Vibracorers 5950
14.11.4.3 Percussion Corers 5950
14.11.4.4 Vibracorers 5951
14.11.4.5 Mackereth Corer 5952
14.11.4.6 Permafrost Corers 5952
14.11.4.7 Freeze Corer 5953
14.11.4.8 The Geo-Slicer 5954
14.11.5 Core Handling and Contamination Control 5955
14.11.5.1 Core Handling and Identification 5955
14.11.5.2 Contamination Control 5957
14.11.6 Conclusion 5957
References 5957
Biographical Sketch 5959
14.12 Trenching and Exposed Faces 5960
14.12.1 The Purpose of Trenching and Mapping Exposed Faces 5961
14.12.2 Creating an Exposed Face (Trenching) 5961
14.12.2.1 Introduction 5961
14.12.2.2 Improving a Natural Exposure 5961
14.12.2.3 Digging a Trench 5961
14.12.2.3.1 Location, orientation, and pattern of trenches 5961
14.12.2.4 Shape and Depth of the Excavation 5961
14.12.2.5 Trench Safety 5961
14.12.2.5.1 Dewatering the trench 5963
14.12.3 Preparing the Exposed Face for Mapping (Logging) 5963
14.12.4 Logging the Exposed Face 5963
14.12.4.1 Identifying Mappable Units and Marking Their Contacts 5963
14.12.4.2 Mapping Soil Horizons in Trenches 5964
14.12.4.3 Subjective versus Objective Logging 5964
14.12.4.4 Techniques of Trench Logging 5965
14.12.4.4.1 Photomosaic logging (2-D) 5965
14.12.4.4.2 Photogrammetric logging (3-D) 5965
14.12.5 Applications of Trenching in Geomorphology 5966
14.12.5.1 Structural Targets 5966
14.12.5.1.1 Active fault studies (paleoseismology) 5966
14.12.5.1.2 Landslide studies 5969
14.12.5.1.3 Sackung (deep-seated gravitational spreading) studies 5969
14.12.5.1.4 Sinkhole studies 5970
14.12.5.2 Stratigraphic Targets 5970
14.12.6 Summary 5970
References 5971
Biographical Sketch 5971
14.13 Working with Gravel and Boulders 5972
14.13.1 Introduction 5972
14.13.2 Background 5973
14.13.3 Methodology 5974
14.13.3.1 The CAF Method 5976
14.13.4 Problems, Pitfalls, and Limitations 5978
14.13.5 Case Studies 5981
14.13.6 Future Work and Direction 5984
14.13.7 Conclusions 5984
References 5984
Biographical Sketch 5985
14.14 The Micro and Traversing Erosion Meter 5986
14.14.1 Introduction 5986
14.14.2 The Microerosion Meter 5986
14.14.3 The Traversing Microerosion Meter 5988
14.14.4 Rates of Erosion and Swelling 5989
14.14.5 Comparisons with other Methods 5990
14.14.6 Conclusions 5990
References 5990
Biographical Sketch 5991
14.15 Soil Description Procedures for Use in Geomorphological Studies 5992
14.15.1 Introduction 5992
14.15.2 A Brief History of Soil Survey and Descriptions 5993
14.15.3 Methodology 5993
14.15.3.1 Study Objectives 5993
14.15.3.2 Site Selection 5993
14.15.3.3 Noninvasive On-Ground Techniques 5994
14.15.3.4 Site Description 5994
14.15.3.5 Exposing the Soil Profile 5994
14.15.3.5.1 Manual techniques 5994
14.15.3.5.2 Mechanical soil excavation 5995
14.15.3.5.3 Special sites 5995
14.15.3.5.4 Natural and man-made exposures 5996
14.15.3.5.5 Recognizing soil disturbance 5996
14.15.3.6 Steps to Describe a Soil Profile 5997
14.15.3.6.1 Using a pit or relatively undisturbed core 5998
14.15.3.6.2 Other observations 6000
14.15.3.6.3 Level of detail required in descriptions 6000
14.15.3.7 Soil Field Tests 6000
14.15.3.8 Sampling Soils for Laboratory Analysis 6000
14.15.4 Problems, Pitfalls, and Limitations 6001
14.15.5 Case Study 6001
14.15.6 Future Work and Directions 6001
14.15.7 Conclusions 6002
References 6003
Relevant Websites 6003
Biographical Sketch 6003
14.16 Ground Penetrating Radar 6005
14.16.1 History of Ground Penetrating Radar (GPR) 6005
14.16.2 GPR Principles 6005
14.16.3 Equipment 6006
14.16.4 Processing 6008
14.16.5 Survey Design 6009
14.16.6 Radar Profiles as Cross-Sections and Ground Truth 6009
14.16.7 Radar Facies 6010
14.16.8 Radar Stratigraphy 6010
14.16.9 3-D Date and 2.5D Grids 6011
14.16.10 Problems, Pitfalls, and Limitations 6011
14.16.11 Side Swipes and Airwaves 6011
14.16.12 Examples: Fluvial Geomorphology 6012
14.16.13 Sand Dunes 6014
References 6015
Biographical Sketch 6016
14.17 Electronic Measurement Techniques for Field Experiments in Process Geomorphology 6017
14.17.1 Introduction 6018
14.17.2 Monitoring Geomorphic Systems Controlled by Hydrodynamic Processes 6019
14.17.2.1 Eularian Flow Measurement 6019
14.17.2.1.1 Impeller-type current meters 6019
14.17.2.1.2 Electromagnetic current meters 6020
14.17.2.1.3 Acoustic Doppler current meters and profilers 6021
14.17.2.1.4 Acoustic noise 6022
14.17.2.2 Water Level Measurement 6023
14.17.2.2.1 Wave staffs and wires 6023
14.17.2.2.2 Pressure transducers 6023
14.17.2.3 Bed Elevation Change and Bedform Monitoring 6023
14.17.2.3.1 Altimeters 6023
14.17.2.3.2 Ultrasonic distance sensors 6024
14.17.2.3.3 Photoelectronic erosion pins (PEEP) 6024
14.17.2.3.4 Side-scan sonars 6025
14.17.2.4 Sediment Detection 6025
14.17.2.4.1 Optical sensors 6025
14.17.2.4.2 Acoustic sensors 6027
14.17.2.4.3 Magnetic sensors 6027
14.17.2.4.4 Laser in situ scattering and transmissometry 6028
14.17.2.4.5 Conductivity concentration profiler 6028
14.17.2.4.6 Hydrophones 6028
14.17.2.5 Flow and Transport Tracking Approaches 6029
14.17.3 Monitoring Geomorphic Systems Controlled by Aeolian Processes 6029
14.17.3.1 Airflow Measurement 6029
14.17.3.1.1 Mechanical anemometers and vanes 6029
14.17.3.1.2 Sonic anemometers 6030
14.17.3.1.3 Thermal anemometers 6031
14.17.3.2 Transport Measurement 6032
14.17.3.2.1 Load cells 6032
14.17.3.2.2 Laser and optical sensors 6032
14.17.3.2.3 Impact sensors 6033
14.17.3.2.4 Soil moisture measurement 6033
14.17.3.3 Surface Shear Stress 6034
14.17.4 Interpreting the Signal 6035
14.17.5 Conclusions 6036
References 6036
Biographical Sketch 6042
14.18 Laboratory Techniques for Geomorphologists: An Introduction 6044
14.18.1 Investigating the Size and Shape of Particles 6044
14.18.2 Chemical Techniques for Geomorphological Investigations 6044
14.18.3 Micropaleontology: Sometimes it’s the Little Things that Count 6044
14.18.4 Dates and Rates: Dating Geomorphic Processes 6045
References 6045
Biographical Sketch 6045
14.19 Measuring and Analyzing Particle Size in a Geomorphic Context 6046
14.19.1 Introduction 6047
14.19.1.1 Measuring the Size of a Particle 6048
14.19.1.2 Particle Size, Grain Size, and Particle Sizing 6048
14.19.1.3 The Imperfect Sphere: A Universal Problem in Geomorphology 6048
14.19.1.4 Overcoming the Irregularity of Particle Shape 6048
14.19.1.5 Choosing the Right Particle-Sizing Technique or Instrument 6048
14.19.2 Sample Preparations: A General Note on Labeling and the Selection of Materials for Particle-Size Analysis 6049
14.19.3 Grain (Particle) Size Scales: The Udden-Wentworth Scale 6049
14.19.4 Analytical Techniques 6050
14.19.4.1 Grain-Size Analysis of Gravel, Cobble, and Boulder Material 6050
14.19.4.1.1 Two techniques for gravel and cobble analysis 6052
14.19.4.1.1.1 Cobble cam: An example of new gravel-size analysis technologies 6052
14.19.4.2 Analytical Techniques for Materials Composed Primarily of Sand, Silt, and Clay 6053
14.19.4.2.1 Sieving 6053
14.19.4.2.1.1 Dry sieving 6053
14.19.4.2.1.1.1 Potential errors in dry sieving 6053
14.19.4.2.1.2 Wet sieving 6054
14.19.4.2.2 Sedimentation methods for sand, silt, and clay 6054
14.19.4.2.2.1 The pipette method 6054
14.19.4.2.2.2 The sedimentation tube 6055
14.19.4.2.3 Laser diffraction analysis (LDA) 6055
14.19.4.2.3.1 General process for LDA analysis 6056
14.19.4.2.4 Other PSA techniques 6056
14.19.5 Interpretation of Particle-Size Data 6057
14.19.5.1 Use of Bivariate Plots (Scattergraphs) 6057
14.19.5.2 Scattergraphs and Ternary Diagrams 6058
14.19.5.3 Recent Advances in Data Presentation 6059
14.19.5.4 Using Modern PSD Datasets 6059
14.19.6 The Same but Different: A Concluding Note on Comparing Different Techniques 6060
References 6061
Biographical Sketch 6064
14.20 Examining Particle Shape 6065
14.20.1 Introduction 6065
14.20.2 Background 6069
14.20.3 Methodology 6069
14.20.4 Limitations 6076
14.20.5 Conclusions 6077
References 6077
Biographical Sketch 6078
14.21 The Scanning Electron Microscope in Geomorphology 6079
14.21.1 Introduction 6079
14.21.2 Methodology 6080
14.21.2.1 Sample Preparation 6080
14.21.2.2 Analytical Methodology 6080
14.21.3 Case Studies 6081
14.21.4 Conclusions 6082
References 6082
Biographical Sketch 6083
14.22 Determining Organic and Carbonate Content in Sediments 6084
14.22.1 Introduction 6084
14.22.2 Basic Analytical Principle 6085
14.22.3 Measurement Methodologies 6086
14.22.3.1 Total Carbon Analysis 6086
14.22.3.1.1 Loss on ignition 6086
14.22.3.1.2 High-frequency induction furnace 6086
14.22.3.1.3 Coulometry 6087
14.22.3.2 Inorganic Carbon Analysis 6088
14.22.3.2.1 Gravimetric analysis via acid digestion 6088
14.22.3.2.2 Pressure calcimeter (vacuum-gasometric technique or carbonate bomb) 6089
14.22.3.2.3 Titration 6089
14.22.3.2.4 Acid digestion in a laser particle sizer 6090
14.22.3.3 Organic Carbon Analysis 6090
14.22.3.4 Removing Inorganic Carbon 6090
14.22.3.4.1 Dichromate oxidation of organic carbon 6091
14.22.3.5 Organic Matter Analysis 6091
14.22.3.6 Lightness of Sediment 6091
14.22.4 Summary and Conclusions 6093
References 6093
Biographical Sketch 6095
14.23 Wet Chemical Methods (pH, Electrical Conductivity, Ion-Selective Electrodes, Colorimetric Analysis, Ion... 6096
14.23.1 Introduction 6096
14.23.2 Pretreatment of Samples 6097
14.23.3 Water for Analytical Methods 6097
14.23.4 pH 6097
14.23.5 Electrical Conductivity 6098
14.23.6 Ion-Selective Electrodes 6098
14.23.7 Colorimetric Analysis 6099
14.23.8 Ion Chromatography 6100
14.23.9 Flame Atomic Absorption Spectrometry 6100
14.23.10 Inductively Coupled Plasma Spectrometries 6100
14.23.10.1 Interferences 6101
14.23.11 Summary 6102
References 6102
Biographical Sketch 6103
14.24 Use of Sedimentary-Metal Indicators in Assessment of Estuarine System Health 6104
14.24.1 Introduction 6104
14.24.1.1 Use of Sediments 6105
14.24.2 Methodology 6106
14.24.2.1 Normalization Techniques 6106
14.24.3 Magnitude of Human-Induced Change 6107
14.24.3.1 Determination of Magnitude of Anthropogenic Change 6108
14.24.4 Benthic Risk 6108
14.24.5 Use of Sedimentary-Metal Indicators in Estuarine Health Assessment 6109
14.24.5.1 Magnitude of Human-Induced Change 6109
14.24.5.2 Risk of Possible Biological Stress 6109
14.24.6 Lake Macquarie - A Case Study 6110
14.24.6.1 Temporal Change 6110
14.24.6.2 Sediment Status and Quality by Predictive Modeling 6111
14.24.7 Conclusions 6111
References 6111
Biographical Sketch 6113
14.25 Microfossils in Tidal Settings as Indicators of Sea-Level Change, Paleoearthquakes, Tsunamis, and Tropical Cyclones 6114
14.25.1 Introduction 6115
14.25.2 Microfossils and Intertidal Environments 6115
14.25.3 Microfossil-Based Reconstructions of Sea-Level Change 6116
14.25.3.1 Sea-Level Index Points 6119
14.25.3.2 Isolation Basins 6119
14.25.3.3 Transfer Functions 6121
14.25.4 Microfossils and Land-Level Change 6123
14.25.5 Microfossils as Indicators of Paleotsunamis and Storms 6124
14.25.5.1 Paleotsunamis 6124
14.25.5.2 Paleotempestology 6128
14.25.6 Summary 6128
Acknowledgments 6132
References 6132
Biographical Sketch 6135
14.26 Palynology and Its Application to Geomorphology 6137
14.26.1 Introduction 6137
14.26.2 Palynological Analysis 6138
14.26.2.1 Palynological Laboratory Techniques 6138
14.26.2.2 Pollen and Charcoal Counting Methods 6139
14.26.2.3 Generation of Pollen Diagrams 6141
14.26.3 Palynology and Its Applications to Geomorphology 6142
14.26.3.1 Age Control 6142
14.26.3.2 Environmental Palynology 6143
14.26.3.3 Depositional Environments 6144
14.26.3.4 Human Impact 6145
14.26.4 Conclusion 6145
14.26.5 Use of Exotic Markers 6146
References 6146
Biographical Sketch 6147
14.27 Investigating the Strength of Materials: Introduction 6148
References 6148
Biographical Sketch 6149
14.28 Direct Shear Testing in Geomorphology 6150
14.28.1 Introduction 6150
14.28.2 The Importance of Shear Strength in Geomorphology 6150
14.28.3 Direct Shear Testing in Geomorphology 6151
14.28.4 Data Analysis 6152
14.28.5 Strengths and Weaknesses of Direct Shear Tests in Geomorphology 6153
14.28.6 The Principles of the Back-Pressured Shearbox 6154
14.28.7 Direct Shear Testing of Fine Sand 6155
14.28.8 Discussion 6157
14.28.9 Conclusions 6158
References 6159
Biographical Sketch 6159
14.29 The Schmidt Hammer and Related Devices in Geomorphological Research 6160
14.29.1 Introduction 6160
14.29.2 Operation of the SH 6161
14.29.3 The Equotip and Piccolo 6162
14.29.4 The Uses of the SH and Equotip 6163
14.29.5 Conclusions 6164
References 6165
Biographical Sketch 6167
14.30 An Introduction to Dating Techniques: A Guide for Geomorphologists 6168
14.30.1 Introduction 6169
14.30.2 Dating Issues 6169
14.30.2.1 Depositional Context 6170
14.30.2.2 Taphonomy of Fossil Material 6170
14.30.3 Dating Methods 6171
14.30.4 Sidereal or Incremental Dating 6171
14.30.5 Isotopic: Change in Isotopic Composition 6172
14.30.6 Radiocarbon Dating 6172
14.30.6.1 Principles of Radiocarbon Dating 6172
14.30.6.2 Sample Preparation and Radiocarbon Measurements 6173
14.30.6.3 Radiocarbon Calibration 6173
14.30.6.4 Reservoir Effects 6173
14.30.6.5 Bomb-pulse 14C Dating 6174
14.30.6.6 Applications of Radiocarbon Dating to Geomorphology 6175
14.30.7 Radiogenic: Luminescence Dating 6178
14.30.7.1 Resetting of the OSL Signal in Different Sedimentary Environments 6178
14.30.7.2 Technological Developments that have made Luminescence Techniques More Applicable to Geomorphological Research 6179
14.30.7.3 Advances in Methods of Analysis - Single Aliquot and Single Grain 6179
14.30.7.4 Emission Spectra - Use of Different Luminescence Wavelengths 6180
14.30.7.5 Application of OSL to Key Geomorphological Issues 6180
14.30.7.6 Practical Issues for Dating Strategies and Sample Collection 6181
14.30.8 Time Dependent Chemical Reactions 6183
14.30.9 Amino Acid Racemization 6183
14.30.9.1 Advantages of Amino Acid Racemization Dating 6183
14.30.9.2 Principles of Amino Acid Racemization Dating 6184
14.30.9.3 The Racemization Reaction 6184
14.30.9.4 Factors Influencing the Racemization Rate in Carbonate Fossils 6184
14.30.9.5 Diagenetic Temperature History 6185
14.30.9.6 Moisture Regime 6186
14.30.9.7 Taxonomic and Genus Effect 6186
14.30.9.8 Numerical Age Assessments 6186
14.30.10 Conclusion 6186
References 6187
Biographical Sketch 6190
14.31 Radiocarbon Dating of Plant Macrofossils from Tidal-Marsh Sediment 6192
14.31.1 Introduction 6192
14.31.2 Growth, Deposition, and Decay of Tidal-Marsh Plants 6193
14.31.3 Radiocarbon Dating of Plant Macrofossils 6194
14.31.4 Building Chronologies by Interpreting Ages 6196
14.31.5 Examples of Radiocarbon Dating of Plant Macrofossils in Coastal Sequences 6197
14.31.5.1 Recent Sea-Level History in the North Atlantic 6198
14.31.5.2 Great Earthquake Frequency and Size at the Cascadia Subduction Zone of Western North America 6198
14.31.5.3 Tsunami History beneath Tidal Marshes of Northern Japan 6202
14.31.5.4 Hurricane History in Eastern North America - a Record of Deposition and Erosion 6202
14.31.6 Recommendations for Selection of Plant Macrofossil Samples 6203
14.31.7 Recommendations for Sample Preparation 6205
Acknowledgments 6207
References 6207
Relevant Websites 6209
Biographical Sketch 6209