Menu Expand
Energy Optimization in Process Systems and Fuel Cells

Energy Optimization in Process Systems and Fuel Cells

Stanislaw Sieniutycz | Jacek Jezowski

(2013)

Abstract

Energy Optimization in Process Systems and Fuel Cells, Second Edition covers the optimization and integration of energy systems, with a particular focus on fuel cell technology. With rising energy prices, imminent energy shortages, and increasing environmental impacts of energy production, energy optimization and systems integration is critically important. The book applies thermodynamics, kinetics and economics to study the effect of equipment size, environmental parameters, and economic factors on optimal power production and heat integration. Author Stanislaw Sieniutycz, highly recognized for his expertise and teaching, shows how costs can be substantially reduced, particularly in utilities common in the chemical industry.

This second edition contains substantial revisions, with particular focus on the rapid progress in the field of fuel cells, related energy theory, and recent advances in the optimization and control of fuel cell systems.

  • New information on fuel cell theory, combined with the theory of flow energy systems, broadens the scope and usefulness of the book
  • Discusses engineering applications including power generation, resource upgrading, radiation conversion, and chemical transformation in static and dynamic systems
  • Contains practical applications of optimization methods that help solve the problems of power maximization and optimal use of energy and resources in chemical, mechanical, and environmental engineering

"Polish chemical and process engineers Seinuitycz and Jezowski explain how to simulate and optimize various energy processes by applying optimization approaches found in second law analysis, finite time thermodynamics, entropy generation minimization, exergo-economics, and system engineering…The book can be used as a core or supplemental textbook in a range of science and engineering courses on energy at the graduate or undergraduate level." --Reference & Research Book News, October 2013