Menu Expand
Polymer Science: A Comprehensive Reference

Polymer Science: A Comprehensive Reference

Martin Moeller | Krzysztof Matyjaszewski

(2012)

Abstract

The progress in polymer science is revealed in the chapters of Polymer Science: A Comprehensive Reference. In Volume 1, this is reflected in the improved understanding of the properties of polymers in solution, in bulk and in confined situations such as in thin films. Volume 2 addresses new characterization techniques, such as high resolution optical microscopy, scanning probe microscopy and other procedures for surface and interface characterization. Volume 3 presents the great progress achieved in precise synthetic polymerization techniques for vinyl monomers to control macromolecular architecture: the development of metallocene and post-metallocene catalysis for olefin polymerization, new ionic polymerization procedures, and atom transfer radical polymerization, nitroxide mediated polymerization, and reversible addition-fragmentation chain transfer systems as the most often used controlled/living radical polymerization methods. Volume 4 is devoted to kinetics, mechanisms and applications of ring opening polymerization of heterocyclic monomers and cycloolefins (ROMP), as well as to various less common polymerization techniques. Polycondensation and non-chain polymerizations, including dendrimer synthesis and various "click" procedures, are covered in Volume 5. Volume 6 focuses on several aspects of controlled macromolecular architectures and soft nano-objects including hybrids and bioconjugates. Many of the achievements would have not been possible without new characterization techniques like AFM that allowed direct imaging of single molecules and nano-objects with a precision available only recently. An entirely new aspect in polymer science is based on the combination of bottom-up methods such as polymer synthesis and molecularly programmed self-assembly with top-down structuring such as lithography and surface templating, as presented in Volume 7. It encompasses polymer and nanoparticle assembly in bulk and under confined conditions or influenced by an external field, including thin films, inorganic-organic hybrids, or nanofibers. Volume 8 expands these concepts focusing on applications in advanced technologies, e.g. in electronic industry and centers on combination with top down approach and functional properties like conductivity. Another type of functionality that is of rapidly increasing importance in polymer science is introduced in volume 9. It deals with various aspects of polymers in biology and medicine, including the response of living cells and tissue to the contact with biofunctional particles and surfaces. The last volume is devoted to the scope and potential provided by environmentally benign and green polymers, as well as energy-related polymers. They discuss new technologies needed for a sustainable economy in our world of limited resources.

  • Provides broad and in-depth coverage of all aspects of polymer science from synthesis/polymerization, properties, and characterization methods and techniques to nanostructures, sustainability and energy, and biomedical uses of polymers
  • Provides a definitive source for those entering or researching in this area by integrating the multidisciplinary aspects of the science into one unique, up-to-date reference work
  • Electronic version has complete cross-referencing and multi-media components
  • Volume editors are world experts in their field (including a Nobel Prize winner)

"Polymer Science: A Comprehensive Reference provides complete and up-to-date coverage of the most important contemporary aspects and fundamental concepts of polymer science. It will become the indispensable reference not only for polymer scientists but also for all researchers in disciplines related to macromolecular systems." --Excerpt from Foreword, Jean-Marie Lehn, ISIS-Universite de Strasbourg, Strasbourg, France, Nobel Prize Laureate in Chemistry


Table of Contents

Section Title Page Action Price
e9780444533494v1 1
Polymer Science: A Comprehensive Reference 2
Copyright 5
Contents_of_Volume 1 6
Volume Editors 8
Editor-in-Chief_Bio 10
Editors_Bio 12
Contributors_of_All_Volume 20
Contents_of_All_Volume 34
Preface 42
Foreword 46
Basic Concepts and Polymer Properties 48
Statistical Description of Chain Molecules 50
1.02.1 The Main Characteristics of Polymer Chain Structures 51
1.02.1.1 Polymer Chain Structures and Architectures 51
1.02.1.2 Copolymers 51
1.02.1.3 Molecular Mass and Polydispersity 52
1.02.1.4 Chain Conformation and Rotational (Conformational) Isomers 52
1.02.1.5 Configurational Isomerism 53
1.02.1.6 Stereoisomerism: Polymer Chain Tacticity 53
1.02.1.7 Cis/Trans Stereoisomerism 54
1.02.1.8 Stereoisomerism: Chiral Polymers 54
1.02.1.9 Living and Dynamic Polymers 55
1.02.2 Linear Homopolymers: Ideal Chain Models 55
1.02.2.1 Chain Conformations; the End-to-End Distance; the Freely Jointed Chain 55
1.02.2.2 Correlations of Bond Orientations of an Ideal Chain; the Persistence Length; the Kuhn Segment 55
1.02.2.3 K(n) and the Stiffness Parameters for Chains with Different Flexibility Mechanisms 56
1.02.2.4 Statistical Segment 57
1.02.2.5 The End-to-End Vector Distribution and the Gaussian Coil Model 57
1.02.2.6 The Radius of Gyration 58
1.02.2.7 Ideal Branched Tree-Like Polymer 58
1.02.2.8 The Scattering Function of an Ideal Polymer Chain 59
1.02.2.9 The Ideal Chain Elasticity 59
1.02.2.10 Partition Function of Ideal Linear and Cyclic Polymers 60
1.02.2.10.1 Linear Gaussian chain 60
1.02.2.10.2 Gaussian polymer ring 60
1.02.2.10.3 Generalized ideal linear chain 60
1.02.3 Living Polymers 60
1.02.3.1 Ideal Linear Living Polymers in Solution 60
1.02.3.2 The Generalized Model of Ideal Living Polymers 61
1.02.3.3 Two Examples with 1/σ*≫1 61
1.02.3.4 Scattering and Correlation Functions in Solutions of Ideal Living Chains 62
1.02.3.5 Ring-Like Living Chains 62
1.02.3.6 Randomly Branched Living Structures 63
1.02.3.6.1 Cluster mass distribution for ideal branched structures 63
1.02.3.6.2 Radius of gyration of a randomly branched polymer 64
1.02.3.6.3 The fraction of loops 65
1.02.4 Systems of Ideal Polymer Chains in Confined Conditions 65
1.02.4.1 The Conformational Free Energy 65
1.02.4.2 Solid Particles in Ideal Polymer Solution 66
1.02.4.3 Ideal Polymer Chain in the Presence of an External Potential Field 66
1.02.4.4 The Wall Effects 67
1.02.5 Real Polymer Chains with Excluded-Volume Interactions 68
1.02.5.1 Concentrated Polymer Solution 68
1.02.5.2 Concentration Fluctuations and the Structure Factor 69
1.02.5.3 Coil Expansion in Good Solvent: Flory Theory of Polymer Coil Size 69
1.02.5.4 Perturbation Approach 70
1.02.5.5 Polymer Coil Size in d Dimensions 70
1.02.5.6 Scaling and Renormalization Concepts 70
1.02.5.7 The Fractal Structure of a Swollen Coil 71
1.02.5.8 The End-To-End Vector Distribution for a Real Chain in Good Solvent: Scaling Laws 71
1.02.5.9 Real Chain in a Poor Solvent: Coil-to-Globule Transition 72
1.02.6 Long-Range Correlation Effects in Polymer Melts 73
1.02.6.1 The Classical Concepts 73
1.02.6.2 Refinements to the Classical Picture 73
1.02.7 Concluding Remark 75
References 75
Polymer Synthesis 78
1.03.1 Introduction 78
1.03.2 Anionic Chain Polymerization of Styrene 78
1.03.3 Radical Chain Polymerization 80
1.03.4 Cationic and Metal-Catalyzed Chain Polymerizations 83
1.03.5 Polymerization Thermodynamics 83
1.03.6 Chain Copolymerizations 85
1.03.7 Polymer Stereochemistry 86
1.03.8 Ring-Opening Polymerization 86
1.03.9 Step Polymerizations 87
1.03.10 Nonlinear Polymers 89
1.03.11 Postpolymerization Functionalization 90
1.03.12 Summary 91
References 91
Static and Dynamic Properties 94
1.04.1 Introduction 95
1.04.2 Diversity of Macromolecular Architectures 95
1.04.3 Dilute Solutions of Linear-Chain Macromolecules 97
1.04.3.1 Ideal Polymer Chain Models and Coarse-Graining Approach for Real Chains 97
1.04.3.2 Excluded-Volume Effects in Polymer Coil 99
1.04.3.3 Static and Hydrodynamic Properties of Dilute Polymer Solutions 101
1.04.4 Semidilute Solutions of Chain Macromolecules 102
1.04.4.1 Overlap Concentration and Scaling Laws 102
1.04.4.2 Diagram of States of Polymer Solution 103
1.04.4.3 Scattering from Semidilute Solutions 105
1.04.5 Polymer Globules and Phase Separation 105
1.04.5.1 Concentrated Phase 105
1.04.5.2 Dilute Phase (Polymer Globules) 106
1.04.6 Solutions of Star-Branched Macromolecules 106
1.04.6.1 Star Polymers in Dilute Solutions 106
1.04.6.2 Semidilute Solutions of Star Polymers 109
1.04.6.3 Collapse of Star Polymers in Poor Solvent and’Phase Separation 110
1.04.6.4 Radiation Scattering from Solutions of Star Polymers 110
1.04.7 Solutions of Comblike Polymers 112
1.04.7.1 Dilute Solutions 112
1.04.7.2 Semidilute Solutions 115
1.04.7.3 Comblike Copolymers in Selective Solvents 115
1.04.8 Dendritic Polymers in Solutions 117
1.04.9 Randomly Branched Polymers in Solutions 118
1.04.10 Solutions of Block Copolymers 119
1.04.10.4 The Block Copolymer Spherical Micelles 121
1.04.10.5 Polymorphism of the Block Copolymer Aggregates 122
1.04.11 Concluding Remarks 124
References 124
Solutions of Charged Polymers 128
1.05.1 What Are Charged Polymers and Why Are They Important? 128
1.05.2 A Model of Charged Chains 129
1.05.3 Dilute Salt-Free Polyelectrolyte Solutions 130
1.05.3.1 Flory and Scaling Models of a Polyelectrolyte Chain 130
1.05.3.2 Effect of the Solvent Quality on Chain Conformations 131
1.05.3.3 Polyelectrolyte Chains at Finite Polymer Concentrations and Counterion Condensation 135
1.05.4 Effect of Added Salt on Chain Conformations in Dilute Solutions 143
1.05.4.1 Electrostatic Persistence Length 143
1.05.4.2 Swelling of a Polyelectrolyte Chain in Salt Solutions 149
1.05.5 Semidilute Polyelectrolyte Solutions 153
1.05.5.1 Overlap Concentration 153
1.05.5.2 Scaling Model of Semidilute Polyelectrolyte Solutions 155
1.05.5.3 Semidilute Polyelectrolyte Solutions with Added Salt 157
1.05.5.4 Osmotic Pressure and Scattering Function 158
1.05.5.5 Dynamics of Polyelectrolyte Solutions 161
1.05.5.6 Semidilute Polyelectrolyte Solutions in a Poor Solvent for Polymer Backbone 163
1.05.6 Phase Separation in Polyelectrolyte Solutions 165
1.05.6.1 Mean-Field Approach 165
1.05.6.2 Microphase Separation 167
1.05.6.3 Necklace Model of Phase Separation 167
1.05.7 Polyampholyte Solutions 168
1.05.7.1 Models of Polyampholyte Solutions 168
1.05.7.2 Experimental Studies of Polyampholyte Solutions 173
1.05.8 Conclusions and Outlook 175
Acknowledgments 175
References 176
Viscoelasticity and Molecular Rheology 180
1.06.1 Introduction 181
1.06.2 Experimental Techniques and Physical Observables 181
1.06.2.1 Rheology and the Stress Tensor 181
1.06.2.2 Time–Temperature Superposition 182
1.06.2.3 Birefringence and the Orientation Tensor 183
1.06.2.4 Dielectric Spectroscopy and the End-to-End Vector 184
1.06.2.5 Neutron Scattering and the Structure Factor 184
1.06.2.6 Nuclear magnetic resonance and Diffusion 185
1.06.3 Unentangled Polymer Models 185
1.06.3.1 Rouse Model 185
1.06.3.2 Other Unentangled Models 192
1.06.3.3 Results 194
1.06.4 Entangled Polymer Models 199
1.06.4.1 Multichain Models 199
1.06.4.2 Tube Theory 202
1.06.4.3 Rouse Chain with Obstacles 212
1.06.4.4 Slip-Spring Model 214
1.06.4.5 Other Observables of Entangled Models 219
1.06.4.6 Other Models in Literature 220
1.06.5 Summary and Outlook 221
1.06.5.1 Model Classification and Future Challenges 221
1.06.5.2 Hierarchical Modeling 223
Appendix: Continuous Rouse Model 224
References 225
Rubberlike Elasticity 228
1.07.1 Introduction 228
1.07.2 Structure of Networks 229
1.07.3 Molecular Theories of Rubber Elasticity 230
1.07.3.1 Elasticity of the Single Chain 230
1.07.3.2 The Elastic Free Energy of the Network 231
1.07.3.3 The Stress, Reduced Stress, and the Elastic Modulus 231
1.07.3.4 The Affine Network Model 231
1.07.3.5 The Phantom Network Model 232
1.07.3.6 Deviations from Affine and Phantom Network Models 232
1.07.4 Phenomenological Theories 234
1.07.5 Computer Simulations 235
1.07.5.1 Single-Chain Simulations 235
1.07.5.2 Chains in Networks 235
1.07.6 Swelling of Networks and Responsive Gels 235
1.07.7 The Enthalpic Component of Rubber Elasticity 236
1.07.8 Multimodal Elastomers 237
1.07.8.1 Bimodal Networks 237
1.07.9 Liquid-Crystalline Elastomers 238
1.07.9.1 Main-Chain Liquid-Crystalline Elastomers 239
1.07.9.2 Side-Chain Liquid-Crystalline Elastomers 239
1.07.10 Reinforced Elastomers 240
1.07.10.1 Sol–Gel In Situ Precipitated Ceramic Particles 240
1.07.10.2 Nonspherical Particles 241
1.07.10.3 Magnetic Particles 241
1.07.10.4 Layered Fillers 241
1.07.10.5 Polyhedral Oligomeric Silsesquioxanes (POSS) 241
1.07.10.6 Nanotubes 241
1.07.10.7 Porous Fillers 241
1.07.10.8 Fillers with Controlled Interfaces 241
1.07.11 Characterization Techniques 241
1.07.11.1 Optical and Spectroscopic Techniques 241
1.07.11.2 Microscopies 242
1.07.11.3 NMR 242
1.07.11.4 Small-Angle Scattering 242
1.07.11.5 Brillouin Scattering 242
1.07.11.6 Pulse Propagation 242
Acknowledgement 243
References 243
Amorphous Polymers 248
1.08.1 Introduction 248
1.08.2 Structure of Amorphous Polymers 248
1.08.2.1 Short-Range Order 248
1.08.2.2 Long-Range Order 250
1.08.3 Dynamics of Amorphous Polymers 252
1.08.3.1 Phenomelogical Overview – The Glass Transition 252
1.08.3.2 Theories for the Glassy Dynamics in Amorphous Polymers 255
1.08.3.3 Experimental Results – Scaling of Glassy Dynamics 258
1.08.3.4 Comparison of Segmental and Chain Dynamics 261
1.08.3.5 Special Chain Structures 265
1.08.4 Amorphous Polymers in Nanometer Thin Layers 267
1.08.5 Conclusions 269
References 269
Semicrystalline Polymers 274
1.09.1 Introduction 274
1.09.2 Flexible-Chain Polymers 277
1.09.2.1 Lamellar Habit and Thermal Properties 277
1.09.2.2 Role of the Metastable States in the Polymer Crystallization 278
1.09.3 Semirigid Chain Polymers 282
1.09.3.1 Relaxation Dynamics of Amorphous Regions during Isothermal Crystallization from the Glassy State 282
1.09.3.2 Thermal Behavior of Semirigid Chain Polymers: Glass Transition Temperature versus Crystallinity 285
1.09.3.3 Thermal Behavior of Semirigid Chain Polymers: Multiple Melting Phenomenon 287
1.09.3.4 Semicrystalline Structure of Semirigid Chain Polymers and Its Evolution during Crystallization and Annealing 289
1.09.3.5 Addressing the Thermal Behavior of Semirigid Chain Polymers with a Combination of Real-Time SAXS/WAXS and AFM 295
1.09.4 Large-Scale Supramolecular Structure of Semicrystalline Polymers 298
References 302
Liquid Crystalline Polymers 306
1.10.1 Introduction 306
1.10.1.1 Historical Overview 306
1.10.2 Constitution and Structure of Low-Molecular-Mass Liquid Crystals 307
1.10.3 LC Polymers: General Consideration 311
1.10.4 Main-Chain LC Polymers 312
1.10.4.1 Thermotropic LC Polymers 312
1.10.4.2 Lyotropic LC Polymers 314
1.10.4.3 Properties and Application of LC Main-Chain Polymers 316
1.10.5 Side-Chain LC Polymers 318
1.10.5.1 Principles of Synthesis 318
1.10.5.2 Structural Features of Side-Chain LC Polymers 320
1.10.6 Properties and Application of Side-Chain LC Polymers 323
1.10.6.1 LC Polymers for Passive and Electrically Controllable Optical Elements 323
1.10.6.2 Photochromic LC Polymers 325
1.10.6.3 Chiral-Photochromic LC Polymer Systems 326
1.10.6.4 Ionogenic LC Polymers as Self-Assembled and’Phase-Microsegregated Liquid Crystals 327
1.10.6.5 LC Elastomers 327
1.10.7 LC Dendrimers with Mesogenic Groups 328
1.10.8 Liquid Crystals Dispersed in Polymers and LC Composites 329
1.10.9 Miscellaneous LC Polymers 329
1.10.10 Conclusion 329
References 330
Phase Segregation/Polymer Blends/Microphase Separation 334
1.11.1 Phase Segregation 334
1.11.1.1 Thermodynamics 334
1.11.1.2 Lattice Gas 335
1.11.1.3 Flory–Huggins Theory 336
1.11.1.4 Solubility Parameter Approach 337
1.11.1.5 Phase Stability 337
1.11.1.6 Phase Behavior According to Flory–Huggins Theory 338
1.11.1.7 Polymer Solutions 339
1.11.2 Polymer Blends 340
1.11.2.1 Interface Thickness 340
1.11.2.2 Miscible Polymer Blends 341
1.11.2.3 Experimental Determination of χ Parameter 342
1.11.3 Block Copolymers 344
1.11.3.1 Strong Segregation Regime 345
1.11.3.2 Weak Segregation Regime 347
1.11.3.3 Self-Consistent Field Theory 351
1.11.3.4 ABC Triblock Copolymers 352
1.11.3.5 ABC Star Terpolymers 353
1.11.3.6 Hierarchical Ordered Multiblock Copolymers 353
1.11.3.7 Polydispersity 354
1.11.3.8 Miscellaneous 356
1.11.3.8.1 Rod–coil diblock copolymers 356
1.11.3.8.2 Mixtures of block copolymers and homopolymers 356
1.11.3.8.3 Supramolecular block copolymers 356
1.11.3.8.4 Block copolymer solution 356
1.11.4 Conclusion 357
Acknowledgment 357
References 357
Polymer/Colloid Interactions and Soft Polymer Colloids 362
1.12.1 General Introduction 362
1.12.2 Depletion Interaction 362
1.12.2.1 Introduction 362
1.12.2.2 Depletion Interaction at the Pair Level 363
1.12.2.3 Direct Measurement of Depletion Interaction 366
1.12.2.4 Summary 369
1.12.3 Star Polymers as Model Soft Sphere Colloids 369
1.12.3.1 Stars as Tunable Soft Colloids 369
1.12.3.2 Structural Features in the Interaction Regime 371
1.12.3.3 Glassy Stars: Aging, Yielding, Shear Banding 372
1.12.3.4 Mixtures Involving Star Polymers 375
1.12.3.5 Conclusions 376
1.12.4 Responsive Microgels as Model Colloids 376
1.12.4.1 Introduction 376
1.12.4.2 Microgel Structure 376
1.12.4.3 Swelling of Responsive Microgels 378
1.12.4.4 Phase Behavior of Uncharged Microgels 378
1.12.4.5 Charged Microgels 382
1.12.4.6 Core–Shell Microgels 382
1.12.4.7 Summary 382
References 382
Polymer Gels 386
1.13.1 Introduction 386
1.13.2 Synthesis of Polymer Gels 386
1.13.3 Subchains and Their Conformations 388
1.13.4 Elasticity of Polymer Gels 389
1.13.4.1 Networks without Solvent 389
1.13.4.2 Networks with Solvent 391
1.13.4.3 Defects of Polymer Gel Structure and Their Impact on Elastic Properties 391
1.13.5 Peculiarities of Ion-Containing Gels 392
1.13.6 Polyelectrolyte Gels 394
1.13.6.1 Swelling 394
1.13.6.2 Collapse 396
1.13.6.3 Nanostructure Formation 399
1.13.7 Manifestation of Ionomer Behavior 402
1.13.8 Responsive Gels 405
1.13.9 Some Applications of Superabsorbent Gels 408
1.13.10 Some Applications of Responsive Gels 409
References 409
Chain Conformation and Manipulation 414
1.14.1 Introduction 414
1.14.2 Chain Conformation 415
1.14.3 PEs at Surfaces 417
1.14.4 Study of Helical Conformations by AFM 419
1.14.5 Conformation of Polymer Stars 421
1.14.6 Motion of Single Molecules 421
1.14.7 Manipulation of Polymer Conformation in’Shear Flow 424
1.14.8 Nanomanipulations with AFM Tip 427
1.14.9 Chemical Modification of Single Polymer Molecules 429
1.14.10 Nanodevices from Single Polymer Molecules 429
1.14.11 Conclusions and Outlook 431
References 431
Polymers at Interfaces and Surfaces and in Confined Geometries 434
1.15.1 Introduction 434
1.15.2 Polymers at Solid Substrates 435
1.15.2.1 Polymer Solutions 435
1.15.2.2 Adsorption of Polymers in a Good Solvent 436
1.15.2.3 Adsorption versus Wetting 438
1.15.2.4 Concentrated Polymer Solutions or Melts at Non-Interacting, Hard Substrates and Attractive Substrates 439
1.15.2.5 Polymer Conformations Confined into Thin and Ultra-Thin Films 441
1.15.2.6 Selected Aspects of the Dynamics of Polymers at’Solid Substrates 444
1.15.3 Surfaces of One-Component Polymer Liquids and Wetting 446
1.15.3.1 Liquid–Vapor Interfaces 446
1.15.3.2 Interface Potential and Wetting Behavior 446
1.15.4 Inhomogeneous Polymer Blends 448
1.15.4.1 Phase Behavior in the Bulk and in Thin Films 448
1.15.4.2 Polymer Interfaces 451
1.15.4.3 Wetting in Polymer Blends 453
1.15.4.4 Interplay between Wetting and Phase Separation in’Thin Films 455
1.15.5 Summary and Outlook 458
References 459
Molecular Dynamics Simulations in Polymer Science: Methods and Main Results 464
1.16.1 Introduction 464
1.16.2 What Can Molecular Dynamics Do? 466
1.16.3 Philosophy of Molecular Dynamics 467
1.16.3.1 Two Approaches or How Should We Classify Simulation? 467
1.16.3.2 Length and Timescales 467
1.16.3.3 Waves, Particles, and Fields 467
1.16.4 Concepts and Methodologies 472
1.16.4.1 Ab Initio Molecular Dynamics 472
1.16.4.2 Atomistic Molecular Dynamics 476
1.16.4.3 Coarse-Grained Particle-Based Simulations 481
1.16.4.4 Field-Based Simulations 489
1.16.5 Multiscale Simulations: Bridging Different Time and Length Scales 492
1.16.5.1 Hybrid Car–Parrinello/Molecular Mechanics 493
1.16.5.2 Coupling Atomistic and Coarse-Grained Simulations 494
1.16.5.3 Hybrid Particle-Field Simulations 495
1.16.5.4 Coupling Particle-Based and Continuum Dynamics: Atomistically Informed Continuum Models 496
1.16.6 Advanced Simulation Techniques 497
1.16.6.1 Hyperdynamics, Metadynamics, and Temperature-Accelerated Dynamics 498
1.16.6.2 Replica Molecular Dynamics and Parallel Tempering 500
1.16.6.3 Steered and Interactive Molecular Dynamics 500
1.16.7 Concluding Remarks 501
References 501
Monte Carlo Simulations in Polymer Science 508
1.17.1 Introduction: What Monte Carlo Simulations Want to Achieve 508
1.17.2 Models Used in MC Simulations of Polymers 509
1.17.3 General Aspects of Dynamic MC Methods 510
1.17.4 Exploiting the Freedom to Choose Suitable MC Moves 514
1.17.5 Other MC Methods to Simulate Models for’Polymers 516
1.17.6 Concluding Remarks 517
References 519
General Polymer Nomenclature and Terminology 522
1.18.1 Introduction 522
1.18.2 A Short History 523
1.18.3 Projects 525
1.18.4 Examples of Most Successful Projects 525
1.18.4.1 Nomenclature 525
1.18.4.2 Terminology 526
1.18.5 Final Remarks 527
References 530
e9780444533494v2 534
Polymer Science: A Comprehensive Reference\r 535
Copyright 538
Contents_of_Volume 2\r 539
Volume Editors\r 543
Editor-in-Chief_Bio\r 545
Editors_Bio\r 547
Contributors_of_Volume 2 555
Preface\r 559
Foreword\r 563
Introduction and Perspectives 565
2.01.1 Introduction 565
2.01.2 Perspectives 566
References 566
e9780444533494v3 1443
Polymer Science: A Comprehensive Reference\r 1444
Copyright 1447
Contents_of_Volume 3\r 1448
Volume Editors\r 1450
Editor-in-Chief_Bio 1452
Editors_Bio\r 1454
Contributors_of_Volume 3\r 1462
Preface\r 1464
Foreword\r 1468
Introduction and Overview: Chain Polymerization of Vinyl Monomers 1470
3.01.1 Introduction 1470
3.01.2 Overview 1470
Fundamental Aspects of Chain Polymerization 1472
3.02.1 Introduction 1473
3.02.2 The Nobel Prize Award Ceremony Speech of A. \rÖlander on Behalf of the Nobel Committee 1473
3.02.2.1 Presentations of the Laureates\r 1474
3.02.3 Bodenstein Observation of the First Chain Reactions 1475
3.02.4 Nernst’s Mechanism of the Cl2+H2 Reaction (Finally Accepted as the Correct One) 1475
3.02.5 Kinetic Scheme of the Fundamental Chain Reaction: Cl2+H2 1475
3.02.6 Stationary State, Bodenstein Approximation, and Final Solution 1476
3.02.7 Definitions Pertinent to Chain Reactions 1476
3.02.7.1 Chain Reaction 1476
3.02.7.2 Chain Carrier 1476
3.02.7.3 Chain Propagating Reaction 1476
3.02.7.4 Chain Branching 1476
3.02.7.5 Steady State (Stationary State) 1476
3.02.8 Definitions Pertinent to Chain Polymerizations 1477
3.02.8.1 Chain Carrier 1477
3.02.8.2 Chain Polymerization 1477
3.02.8.3 Chain Propagation (in Chain Polymerization) 1477
3.02.9 Two Kinds of Steady States in Chain Polymerizations 1477
3.02.10 Discovery of Living Polymerization by Michael Szwarc 1478
3.02.11 Living Polymerization 1478
3.02.11.1 Definition of Living Polymerization 1478
3.02.11.2 Reversibility in Chain Polymerizations 1478
3.02.11.3 Kinetics of Fast Initiation–Propagation Systems 1479
3.02.11.4 Living Polymerization: Two or More Interconversions of Active Species 1480
3.02.11.5 Living Olefin Polymerization 1481
3.02.11.6 Living Polymerization of Cyclic Compounds 1482
3.02.11.7 Steady-State-Living Chain Polymerization of Cyclic Compounds: Identical Reactivities of Ions and Ion Pairs 1482
3.02.11.8 Steady-State Living Polymerization with − kp >or < kp\x01 : Inversion of Reactivities 1483
3.02.11.9 Steady-State Living Polymerization with Dormant Species 1484
3.02.12 Nearly Steady-State Polymerizations: Controlled Polymerizations Involving Quasi-Equilibria between Active’and’Dormant Species 1487
3.02.12.1 Living versus Controlled Polymerizations 1488
3.02.12.2 Persistent Radical Effect: Self-Regulation (Internal Suppression of Fast Reactions) 1489
3.02.12.3 Simple Description of the CRP 1490
3.02.12.4 Rate Constants in CRP Based on the PRE: Principle 1492
3.02.12.5 NMP and ATRP: Chemistry 1492
3.02.12.6 Controlled Cationic Polymerization of Vinyl Monomers 1493
3.02.13 Second Kind of the Steady State: The Rate of Formation of Active Centers Balanced by the Rate of Their Disappearance. Classical Radical Polymerization 1494
3.02.13.1 Hot Radicals Theory in Radical Polymerization 1495
3.02.13.2 The Dependence of Rate Constants on the Chain Length 1496
3.02.13.3 Limits of the Steady-State (Bodenstein) Approximation 1496
3.02.13.4 Rate Constants in Radical Polymerization 1496
3.02.13.5 Pulse Laser Polymerization–Size Exclusion Chromatography: Method of kp Determination 1497
3.02.14 Non-Steady-State Polymerizations 1498
3.02.14.1 Radical polymerization 1498
3.02.14.2 Dead-End Polymerization 1499
3.02.14.3 Double Nonstationary Polymerization 1499
3.02.15 Chain Polymerizations and Structure of’Macromolecules 1501
3.02.15.1 Stereochemistry of Propagation 1501
3.02.16 Condensative Chain Polymerizations: Biopolymers 1502
3.02.16.1 Definition 1502
3.02.17 Polymerize Chain Reaction. DNA Syntheses 1503
3.02.18 Conclusions 1503
Appendix: Lifetime and Half-Life: Definitions and Their Relationship 1504
References 1505
Radical Reactivity by Computation and Experiment 1508
3.03.1 Introduction 1508
3.03.2 Radical Stability 1509
3.03.2.1 Definitions of Radical Stability 1509
3.03.2.2 Experimental and Theoretical Procedures 1510
3.03.2.3 Structure–Reactivity Trends 1512
3.03.3 Other Important Properties 1516
3.03.3.1 Polar Effects 1516
3.03.3.2 Steric Effects 1517
3.03.3.3 Bond Strength 1519
3.03.4 Tools for Linking Structure to Reactivity 1521
3.03.4.1 Overview 1521
3.03.4.2 Curve-Crossing Model 1521
3.03.4.3 Linear Free-Energy Relationships 1523
References 1525
Radical Polymerization 1528
3.04.1 Introduction 1529
3.04.2 Initiation 1532
3.04.2.1 The Initiation Process 1533
3.04.2.2 The Initiators 1540
3.04.3 Propagation 1540
3.04.3.1 Stereosequence Isomerism – Tacticity 1540
3.04.3.2 Regiosequence Isomerism – Head versus Tail Addition 1545
3.04.3.3 Structural Isomerism – Rearrangement 1548
3.04.3.4 Propagation Kinetics and Thermodynamics 1550
3.04.4 Termination 1554
3.04.4.1 Radical–Radical Termination 1555
3.04.4.2 Inhibition and Retardation 1565
3.04.5 Chain Transfer 1566
3.04.5.1 The Chain Transfer Process 1566
3.04.6 Reversible Deactivation Radical Polymerization 1573
3.04.6.1 Living? Controlled? Mediated? 1573
3.04.6.2 Tests for Living (Radical) Polymerization 1574
3.04.6.3 Agents Providing Reversible Deactivation 1575
3.04.6.4 Deactivation by Reversible Coupling and’Unimolecular Activation 1576
3.04.6.5 Atom Transfer Radical Polymerization 1578
3.04.6.6 Reversible Chain Transfer 1579
References 1582
Controlled and Living Radical Polymerization – Principles and Fundamentals 1588
3.05.1 Introduction 1589
3.05.2 Principles and Classification of LRP Techniques 1589
3.05.2.1 General Polymerization Behavior 1589
3.05.2.2 Activation–Deactivation Quasi-Equilibrium 1590
3.05.2.3 Examples of Capping Agent X 1590
3.05.2.4 Mechanistic Classification of Reversible Activation Processes 1590
3.05.3 Kinetic Theory of LRP: Polymerization Rates 1592
3.05.3.1 Systems of DC Type 1592
3.05.3.2 Systems of AT Type 1595
3.05.3.3 Systems of DT Type 1595
3.05.3.4 Systems of RT Type 1595
3.05.4 Kinetic Theory of LRP: Polydispersities 1595
3.05.4.1 Steady-State Systems 1595
3.05.4.2 Power-Law Systems 1596
3.05.4.3 Deviations from Ideality 1596
3.05.4.4 Correction for Initiator Mass (Block Copolymerization) 1596
3.05.5 Nitroxide-Mediated Polymerization 1597
3.05.5.1 TEMPO-Mediated Polymerization of Styrene 1597
3.05.5.2 DEPN-Mediated Polymerization of Styrene 1605
3.05.5.3 NMP of Acrylates 1607
3.05.5.4 NMP of Methacrylates 1608
3.05.6 Atom Transfer Radical Polymerization 1608
3.05.6.1 Copper-Mediated ATRP of Styrene 1608
3.05.6.2 ATRP of Methacrylates and Acrylates 1610
3.05.6.3 Some Other Notes on ATRP 1610
3.05.7 Degenerative Chain Transfer-Mediated Polymerization 1610
3.05.7.1 Iodide-Mediated Polymerization of Styrene 1610
3.05.7.2 RAFT Polymerization 1611
3.05.8 Experiments on Some Newer Systems 1614
3.05.8.1 Organotellurium-Mediated LRP and Others 1614
3.05.8.2 Reversible Chain Transfer-Catalyzed Polymerization 1615
3.05.9 Summary on Activation and Deactivation Rate Constants 1616
3.05.9.1 Low-Mass Model Adducts 1616
3.05.9.2 Polymer Adducts 1617
3.05.10 Conclusions 1623
Acknowledgments 1623
References 1623
Degenerative Transfer with Alkyl Iodide 1628
3.06.1 Introduction 1628
3.06.2 Alkyl Iodide Transfer Agents Used in Degenerative Transfer Polymerization with Alkyl Iodides 1629
3.06.2.1 Structures and Synthesis of Alkyl Iodides 1629
3.06.3 Mechanism and Kinetics of Degenerative Transfer Polymerization with Alkyl Iodide 1630
3.06.3.1 Mechanism 1630
3.06.3.2 Kinetics 1631
3.06.4 Other Related Methods 1633
3.06.4.1 Reverse Iodine Transfer Polymerization 1633
3.06.4.2 Reversible Chain Transfer Catalyzed Polymerization with Iodo-Compounds 1634
3.06.4.3 Single Electron Transfer – Degenerative Transfer Living Radical Polymerization with Iodo-Compounds 1634
3.06.4.4 Atom Transfer Radical Polymerization with’Iodo-Initiators 1635
3.06.5 Monomers Used in Degenerative Transfer Polymerization with Iodo-Compounds 1635
3.06.5.1 Halogenated Monomers 1635
3.06.5.2 (Meth)Acrylates 1637
3.06.5.3 Styrenics 1639
3.06.5.4 Vinyl Esters 1640
3.06.5.5 Other Monomers 1641
3.06.6 Processes 1641
3.06.6.1 Bulk and/or Solution Polymerization 1641
3.06.6.2 Dispersion Polymerization 1641
3.06.6.3 Microemulsion Polymerization 1642
3.06.6.4 Miniemulsion Polymerization 1642
3.06.6.5 Emulsion Polymerization 1642
3.06.6.6 Suspension Polymerization 1643
3.06.7 Macromolecular Architectures Prepared by Degenerative Transfer with Iodo-Compounds 1643
3.06.7.1 Telechelics 1643
3.06.7.2 Alternated Copolymers 1643
3.06.7.3 Gradient Copolymers 1643
3.06.7.4 Block Copolymers 1644
3.06.7.5 Graft Copolymers 1644
3.06.7.6 Brushes 1645
3.06.7.7 Hyperbranched and Star (Co)Polymers 1645
3.06.7.8 Stereospecific Reversible-Deactivation Radical Polymerization 1645
3.06.8 Applications of Polymers Prepared by Degenerative Transfer with Iodo-Compounds 1646
3.06.9 Prospects 1646
3.06.10 Conclusions 1646
References 1646
Radical Addition–\rFragmentation Chemistry and RAFT Polymerization 1650
3.07.1 Introduction 1650
3.07.1.1 Addition–Fragmentation Chain Transfer 1651
3.07.1.2 Reversible Addition–Fragmentation Chain Transfer 1653
3.07.2 Compounds Providing Irreversible Addition–Fragmentation Chain Transfer 1656
3.07.2.1 Vinyl Ethers 1656
3.07.2.2 Allyl Sulfides, Sulfones, Halides, Phosphonates, and Silanes 1658
3.07.2.3 Allyl Peroxides 1659
3.07.2.4 Thionoester and Related Transfer Agents 1661
3.07.3 Compounds Providing Reversible Addition–Fragmentation Chain Transfer 1662
3.07.3.1 Macromonomers 1663
3.07.3.2 Thiocarbonylthio Compounds 1665
3.07.3.3 Reaction Conditions 1681
3.07.3.4 Polymer Architectures 1683
Acknowledgments 1688
References 1688
Other Degenerative Transfer Systems 1696
3.08.1 Introduction 1696
3.08.2 Background 1697
3.08.3 Organoheteroatom-Mediated LRP 1698
3.08.3.1 Initiators and CTAs 1698
3.08.3.2 Polymerization Conditions 1699
3.08.3.3 Homopolymerization 1700
3.08.3.4 Random and Alternating Copolymerization 1702
3.08.3.5 Emulsion Polymerization 1703
3.08.4 Mechanism 1703
3.08.4.1 Activation/Deactivation Mechanism of Dormant Species 1703
3.08.4.2 Role of Diheteroatom Compounds 1705
3.08.5 Macromolecular Engineering 1706
3.08.5.1 End Group Transformations 1706
3.08.5.2 Block Copolymer Syntheses 1709
3.08.5.3 Synthesis of Functional Polymers 1711
3.08.6 Conclusions 1714
References 1714
Cobalt-Catalyzed Chain Transfer Polymerization: A Review 1718
3.09.1 Introduction and Overview 1719
3.09.1.1 Broad Overview of Patent Literature 1720
3.09.1.2 General Polymerization Considerations 1720
3.09.2 Polymerization Mechanism 1721
3.09.2.1 Evidence of Catalytic Process 1721
3.09.2.2 Points to Consider with the Proposed Mechanism 1721
3.09.2.3 Analytical Methods Employed to Investigate Mechanism 1722
3.09.2.4 Model Compound Studies 1724
3.09.3 Catalysts 1724
3.09.3.1 Catalyst Screening 1724
3.09.3.2 Measuring Catalytic Activity 1725
3.09.3.3 Factors Affecting Cs Values 1726
3.09.4 Monomers for CCT 1728
3.09.4.1 CCT Active Monomers 1728
3.09.4.2 CCT of Less Active Monomers 1731
3.09.4.3 Further Polymerization Processes 1732
3.09.5 Applications 1734
3.09.5.1 CCTP Emulsion Polymerization 1734
3.09.5.2 Direct Industrial Applications of CCTP 1734
3.09.5.3 Semiconductor Nanocrystal Polymer Hybrids 1735
3.09.5.4 CCTP Polymers as Additives for Road Pavement Manufacture 1735
3.09.5.5 Glycopolymers 1736
3.09.5.6 Polymers for Use in the Hair Care Industry 1736
3.09.5.7 Branched Polymers 1736
3.09.5.8 Macromonomers for Industrial Applications 1737
3.09.5.9 Macromonomers for Photonic Crystals 1738
3.09.5.10 Macromonomers for Graft/Comb Copolymers 1738
3.09.5.11 Macromonomers for Star Polymers 1740
3.09.5.12 Macromonomers for Hydrogels 1740
3.09.6 Summary 1741
References 1741
Nitroxide-Mediated Polymerization 1746
3.10.1 Introduction 1746
3.10.1.1 Historical Background 1746
3.10.1.2 General Considerations 1747
3.10.2 Synthesis of Nitroxides and Alkoxyamines 1748
3.10.2.1 Synthetic Strategies 1748
3.10.2.2 Nitroxides and Alkoxyamines for NMP 1756
3.10.3 Features of Nitroxide-Mediated Polymerization\r 1763
3.10.3.1 Kinetics of Homogeneous NMP\r 1763
3.10.3.2 Range of Monomers for NMP 1767
3.10.3.3 Polymerizations in Aqueous Dispersed Media 1771
3.10.4 Advanced Architectures and Materials by NMP 1774
3.10.4.1 Chain-End Functionalized Polymers from NMP 1774
3.10.4.2 Diblock and Triblock Copolymers by NMP 1776
3.10.4.3 Complex Macromolecular Architectures 1803
3.10.4.4 Biomaterials 1806
3.10.5 Conclusions and Perspectives 1810
References 1811
Organometallic-Mediated Radical Polymerization 1820
3.11.1 Introduction: Discovery of OMRP 1820
3.11.2 Mechanistic Interplays 1821
3.11.3 Tuning the Metal–Carbon Bond Strength 1822
3.11.4 Interplay of Dissociative and Associative Processes 1823
3.11.5 ‘Clean’ OMRP-RT Processes 1827
3.11.5.1 Titanium Systems 1827
3.11.5.2 Vanadium Systems 1828
3.11.5.3 Chromium Systems 1828
3.11.5.4 Molybdenum Systems 1829
3.11.5.5 Iron Systems 1830
3.11.5.6 Cobalt Systems 1830
3.11.6 OMRP-RT versus CCT 1834
3.11.7 Interplay of OMRP-RT and ATRP 1836
3.11.8 Metal Elimination and Recycling 1841
3.11.9 Conclusions and Perspectives 1842
References 1842
Copper-Mediated Atom Transfer Radical Polymerization 1846
3.12.1 Introduction 1847
3.12.2 ATRP Equilibrium 1848
3.12.3 Initiating an ATRP 1849
3.12.3.1 Reverse ATRP 1849
3.12.3.2 Simultaneous Reverse and Normal Initiation 1850
3.12.3.3 Activators Generated by Electron Transfer ATRP 1850
3.12.3.4 Activator Regenerated by Electron Transfer ATRP 1850
3.12.3.5 Initiators for Continuous Activator Regeneration 1851
3.12.3.6 ATRP with Alkyl Pseudohalides 1851
3.12.3.7 Electrochemical Control Over an ATRP 1853
3.12.4 Removal of Copper 1854
3.12.5 ATRP Thermodynamics and Kinetics 1854
3.12.5.1 Equilibrium Constants in ATRP 1854
3.12.5.2 Activation Rate Constants in ATRP 1856
3.12.5.3 Radical Nature of the Propagating Species 1858
3.12.5.4 Inner Sphere Electron Transfer versus Outer Sphere Electron Transfer 1859
3.12.6 Components/Phenomenology/Process 1860
3.12.6.1 Monomers 1860
3.12.6.2 Initiators 1860
3.12.6.3 Ligands 1862
3.12.6.4 Additives 1862
3.12.6.5 Solvent Effects and Selection of a Catalyst for Polymerization in Homogeneous Aqueous Media 1862
3.12.6.6 ATRP in Biphasic Aqueous Systems 1864
3.12.7 Control over Polymer Composition 1866
3.12.7.1 Well-Defined Copolymers 1866
3.12.7.2 Homopolymers 1867
3.12.7.3 (Co)polymers with Controlled MW 1867
3.12.7.4 Tacticity Control 1869
3.12.7.5 Linear Segmented Copolymers 1869
3.12.8 Polymer Topology 1870
3.12.8.1 Graft- and Comb-Shaped (Co)polymers 1870
3.12.8.2 Brush Macromolecules 1873
3.12.8.3 (Hyper)branched Copolymers 1875
3.12.8.4 Star Copolymers 1875
3.12.8.5 Networks/Gels 1877
3.12.9 Site-Specific Functionality 1879
3.12.9.1 Polymerization of Functional Monomers 1879
3.12.9.2 Postpolymerization Modification of Incorporated Monomer Units 1879
3.12.9.3 Use of Functional ATRP Initiators 1880
3.12.9.4 End-Group Transformation 1880
3.12.10 Hybrid Materials 1881
3.12.10.1 Segmented Copolymers by Mechanistic Transformation 1881
3.12.10.2 Brushes Attached to Surfaces 1882
3.12.10.3 Carbon Nanostructures 1884
3.12.10.4 Bioconjugates 1885
3.12.11 Applications 1885
3.12.11.1 Thermoplastic Elastomers 1886
3.12.11.2 Supersoft Elastomers 1886
3.12.11.3 Surfactants and Dispersants 1886
3.12.11.4 Functional Flat Surfaces 1887
3.12.11.5 Conducting Polymers 1888
3.12.11.6 Biorelated Applications 1888
3.12.11.7 Other Industrial Applications 1889
3.12.12 Conclusions 1890
Acknowledgments 1890
References 1890
Transition Metal Complexes for Metal-Catalyzed Atom Transfer Controlled/Living Radical Polymerization 1898
3.13.1 Introduction 1898
3.13.2 Scope of Transition Metal-Catalyzed Living Radical Polymerization 1898
3.13.3 Late Transition Metal Complexes for Living Radical Polymerization 1901
3.13.3.1 Group 8 Metals 1901
3.13.3.2 Group 9 Metals 1915
3.13.3.3 Group 10 Metals 1917
3.13.3.4 Group 11 Metal (Copper) 1919
3.13.4 Early Transition Metal Complexes for Living Radical Polymerization 1921
3.13.4.1 Group 7 Metal 1921
3.13.4.1.1 Manganese 1921
3.13.4.1.2 Rhenium 1921
3.13.4.2 Other Early Transition Metals 1922
3.13.4.2.1 Group 6 metals: molybdenum and tungsten 1922
3.13.4.2.2 Group 5 metals: niobium and vanadium 1923
3.13.4.2.3 Group 4 metals: titanium 1924
3.13.4.2.4 Group 3 metals: lanthanide 1924
3.13.5 Prospective View of Catalysts for Living Radical Polymerization 1924
References 1925
Vinyl Polymerization in Heterogeneous Systems 1932
3.14.1 Introduction 1932
3.14.2 Vinyl Polymerization in Aqueous Dispersed Systems 1932
3.14.2.1 Conventional Radical Polymerization 1932
3.14.2.2 Controlled Radical Polymerization 1949
3.14.2.3 Other Vinyl Polymerization Methods 722
3.14.3 Vinyl Polymerization in Nonaqueous Dispersed’Systems 729
3.14.3.1 Conventional Radical Polymerization 729
3.14.3.2 Controlled Radical Polymerization 745
3.14.3.3 Ionic Polymerization of Vinyl Monomers 745
3.14.4 Conclusion 1963
References 1963
Cationic Polymerization of Nonpolar Vinyl Monomers 1970
3.15.1 Introduction 1970
3.15.2 Fundamentals of Cationic Polymerization 1971
3.15.3 Monomers 1971
3.15.4 Initiating Systems 1971
3.15.5 Solvent Polarity and Temperature 1972
3.15.6 Controlled Initiation 1973
3.15.6.1 The Inifer Method 1973
3.15.6.2 Direct Initiation 1973
3.15.6.3 Photoinitiation 1973
3.15.7 Living Cationic Polymerization 1974
3.15.7.1 Mechanistic and Kinetic Details 1974
3.15.7.2 Structure – Reactivity Scales in Cationic Polymerization 1975
3.15.8 Functional Polymers by Living Cationic Polymerization 1979
3.15.8.1 Functional Initiator Method 1979
3.15.8.2 Functional Terminator Method 1980
3.15.8.3 Telechelic Polymers 1981
3.15.9 Block Copolymers 1984
3.15.9.1 Linear Diblock Copolymers 1984
3.15.9.2 Linear Triblock Copolymers 1986
3.15.9.3 Block Copolymers with Nonlinear Architecture 1986
3.15.9.4 Block Copolymers Prepared by the Combination of’Different Polymerization Mechanisms 1987
3.15.10 Branched and Hyperbranched Polymers 1991
3.15.10.1 Surface-Initiated Polymerization – Polymer Brushes 1991
3.15.11 Conclusions 1991
References 1992
Cationic Polymerization of Polar Monomers 1996
3.16.1 Introduction 1996
3.16.2 General Aspects 1997
3.16.2.1 Monomer Structure and Reactivity 1997
3.16.2.2 Initiators 1997
3.16.2.3 Iodine-Mediated Polymerization 1998
3.16.2.4 Stereospecific Polymerization 1998
3.16.3 Living Cationic Polymerization 1998
3.16.3.1 Long-Lived Species 1998
3.16.3.2 Living Cationic Polymerization of Alkyl Vinyl Ether: The Breakthrough 1999
3.16.4 Design of Initiating Systems for Living Polymerization 1999
3.16.4.1 Methods of Living Cationic Polymerization 1999
3.16.4.2 Early Development of Vinyl Ethers 2000
3.16.5 Recent Developments in Living Polymerization 2001
3.16.5.1 New Initiating Systems for Vinyl Ethers 2002
3.16.5.2 New Initiating Systems for Styrene Derivatives 2005
3.16.6 New Monomers 2007
3.16.6.1 Naturally Occurring Monomers and Their Derivatives 2007
3.16.6.2 Vinyl Ether Derivatives 2009
3.16.6.3 Diene Monomers 2010
3.16.7 Sequence or Shape-Regulated Functional Polymers 2011
3.16.7.1 Block Copolymers 2011
3.16.7.1.1 Di- and triblock copolymer synthesis via sequential living polymerization 2011
3.16.7.1.2 Control of molecular weight distribution and’sequence in block copolymer synthesis 2013
3.16.7.1.2(i) Control of molecular weight distribution in block copolymer synthesis 2013
3.16.7.1.2(ii) Control of sequence in block copolymer synthesis: gradient copolymers 2014
3.16.7.2 Star-Shaped Polymers 2014
3.16.7.2.1 Well-defined functional star polymers 2014
3.16.7.2.2 Selective synthesis of star-shaped polymers with narrow molecular weight distributions 2016
3.16.7.2.3 Metal nanoparticles stabilized by star-shaped polymers 2017
3.16.8 Stimuli-Responsive Polymers 2017
3.16.8.1 Thermoresponsive Poly(VE)s with Oxyethylene Pendants and Related Poly(VE)s 2017
3.16.8.2 Other Stimuli-Responsive Poly(VE)s 2020
3.16.8.3 Stimuli-Responsive Block Copolymers 2021
References 2023
Anionic Polymerization of Nonpolar Monomers 2028
3.17.1 Introduction to Carbanions, Living Polymerization, and Anionic Polymerization 2028
3.17.1.1 Living Polymerization 2029
3.17.1.2 General Aspects of Anionic Polymerization 2029
3.17.2 Initiators, Initiation Mechanisms, and Kinetics 2031
3.17.2.1 Initiation 2031
3.17.2.2 Initiation by Electron Transfer 2031
3.17.2.3 Initiation by Nucleophilic Addition 2032
3.17.2.4 Initiation Kinetics 2035
3.17.3 Propagation Kinetics and Mechanisms 2037
3.17.3.1 Hydrocarbon Solution 2037
3.17.3.2 Polar Solvents 2041
3.17.4 Chain Termination Reactions 2042
3.17.5 Chain Transfer Reactions 2044
3.17.6 Stereochemistry 2045
3.17.6.1 Polydienes 2045
3.17.6.2 Polystyrene 2051
3.17.7 Copolymerization 2052
3.17.7.1 Hydrocarbon Solution 2052
3.17.7.2 Polar Solvents 2055
3.17.7.3 Random Styrene–Diene Copolymers 2055
References 2056
Anionic Polymerization of Protected Functional Monomers 2060
3.18.1 Introduction 2060
3.18.2 Functional Styrene Derivatives 2061
3.18.2.1 Styrene Derivatives with Hydroxyl Groups 2061
3.18.2.2 Styrene Derivatives with Other Functional Groups 1114
3.18.2.3 New Protective Strategy for Functional Styrene Derivatives: Use of Protected Functionalities Showing Electron-Withdrawing Characters 2069
3.18.2.4 Anionic Polymerization Behavior of Styrene Derivatives Possessing Benzyl Ether Skeletons 2072
3.18.2.5 Styrene Derivatives Possessing Silanol Functions 2075
3.18.3 Functional 1,3-Butadiene Derivatives 2077
3.18.4 Functional (Meth)acrylate Derivatives 2080
3.18.4.1 (Meth)acrylic Acids 2081
3.18.4.2 Functional Methacrylate Derivatives 2082
3.18.5 N-Isopropylacrylamide 2086
3.18.6 Concluding Remarks 2087
References 2088
Anionic Polymerization of Polar Vinyl Monomers 2092
3.19.1 Introduction 2092
3.19.1.1 Types of Polar Vinyl Monomers 2093
3.19.1.2 Side Reactions in Alkyl (Meth)acrylate Polymerization 2093
3.19.1.3 Initiators for (Meth)acrylate Polymerization 2094
3.19.2 Mechanism of the Anionic Polymerization of’Alkyl (Meth)acrylates 2096
3.19.2.1 Polymerization in Polar Solvents 2096
3.19.2.2 Modification of Enolate Ion Pairs with Ligands: Ligated Anionic Polymerization 2101
3.19.2.3 Metal-Free Anionic Polymerization 2105
3.19.2.4 Polymerization in Nonpolar Solvents 2109
3.19.2.5 Coordinative Anionic Initiating Systems 2111
3.19.3 Anionic Polymerization of Other Acrylic Monomers 2113
3.19.3.1 N,N-Dialkylacrylamides 2113
3.19.3.2 (Meth)acrylonitrile 2114
3.19.3.3 Vinyl Ketones and Acrolein 2115
3.19.4 Anionic Polymerization of Other Polar Vinyl Monomers 2116
3.19.4.1 Polymerization of Vinylpyridines 2116
3.19.4.2 Polymerization of Cyanostyrenes 2119
3.19.5 Conclusions 2120
References 2120
Industrial Catalysts for Alkene Polymerization 2126
3.20.1 Catalysts for Polyolefin Production 2126
3.20.1.1 Introduction 2126
3.20.1.2 Mechanism of Metal-Catalyzed Polymerization 2127
3.20.1.3 Processes to Produce Polyolefins 2128
3.20.1.4 Polyolefin Product Market Overview 2130
3.20.2 Historical Development of Commercially Practiced Alkene Polymerization Catalysts 2130
3.20.2.1 Standard of Indiana Catalyst 2130
3.20.2.2 Phillips Chromox Catalyst 2130
3.20.2.3 Titanium Ziegler–Natta Catalysts for Polyethylene 2130
3.20.2.4 Titanium Ziegler–Natta Catalysts for Polypropylene 2131
3.20.2.5 Vanadium Catalysts for Making EPDM Rubber 2131
3.20.2.6 Organochrome Catalysts 2132
3.20.2.7 Metallocene Catalysts: Harbingers of the Future 2132
3.20.2.8 MAO: The Kaminsky Activator and Single-Site Catalysis 2132
3.20.2.9 Metallocene Catalysts: The Significance of’Substitution 2133
3.20.2.10 ‘Noncoordinating’ Anions: Alternative, Discrete Activators 903
3.20.2.11 The CpSiNR Ligand for Constrained Geometry Catalysts 2133
3.20.2.12 Commercialization of Metallocene Catalysts 153
3.20.2.13 Other Single-Site Catalysts 2135
3.20.3 Global Polyolefin Catalyst and Product Markets 2136
3.20.3.1 Polyolefin Market Overview 2136
3.20.3.2 Polypropylene Applications 2136
3.20.3.3 Polyethylene Applications by Catalyst 2137
3.20.3.4 Catalyst Demand by Product Type 2139
3.20.4 Conclusion 2140
References 2140
Metallocene Alkene Polymerization Catalysts 2142
3.21.1 Introduction 2142
3.21.2 Definition of a Metallocene Polymerization Catalyst 2143
3.21.3 General Mechanism 1290
3.21.3.1 Activation and Cocatalysts 2145
3.21.3.2 Propagation Steps 438
3.21.3.3 Termination Events 2149
3.21.4 Ethylene Polymerization 2150
3.21.4.1 Types and General Properties of PE 2150
3.21.4.2 PE s Produced by Different Catalysts 2151
3.21.4.3 Factors Affecting Catalyst Activity and Molecular Weight 826
3.21.5 1-Alkene Polymerization 871
3.21.5.1 Stereoselectivity 2154
3.21.5.2 Aselective 2154
3.21.5.3 Isoselective 2154
3.21.5.4 Syndioselective 2154
3.21.5.5 Hemiisoselective 2154
3.21.5.6 Stereoblock 2155
3.21.6 Diene Polymerization 2156
3.21.6.1 Conjugated Dienes 2156
3.21.6.2 Nonconjugated Dienes 2156
3.21.7 Copolymerization 2156
3.21.7.1 Ethylene/Propylene 2156
3.21.7.2 Ethylene/Higher 1-Alkenes 2158
3.21.8 Conclusions 2159
3.21.9 Outlook 2162
References 2163
Chain Shuttling Catalysis and Olefin Block Copolymers 2168
3.22.1 Introduction 2168
3.22.2 Block Copolymers from Living Polymerization 2169
3.22.3 Olefin Block Copolymers from Reversible Chain Transfer 1211
3.22.3.1 Chain Transfer to Metal in Olefin Polymerization 2170
3.22.3.2 Reversible Chain Transfer in Olefin Polymerization 2171
3.22.4 Identifying Reversibility in Chain Transfer 2171
3.22.4.1 Approaches to Identify CCTP Characteristics 2171
3.22.4.2 Mathematical Simulation of Single Catalyst Batch Reactions 2172
3.22.4.3 A High-Throughput Method for the Discovery of’Chain Shuttling Catalyst Systems 2175
3.22.4.4 Kinetic Studies via Deuterium Labeling 2178
3.22.5 CCTP Characteristics in Single Catalyst Systems 2178
3.22.5.1 CCTP in Ethylene Polymerization 2178
3.22.5.2 CCTP/CCG in α-Olefin and Styrene Polymerization 2181
3.22.6 Reactor Choice for OBC Synthesis 2183
3.22.7 Diblock OBCs via Sequential Monomer Addition 2185
3.22.7.1 Synthesis of Diblock OBCs in a Continuous Process 2185
3.22.7.2 Properties of Diblock OBCs from CCTP 2187
3.22.8 Synthesis of OBCs with Dual-Catalyst Systems 2190
3.22.8.1 Ethylene-Based Block Copolymers 581
3.22.8.2 Propylene-Based Block Copolymers and Blends 2193
3.22.9 Characterization of Olefin Block Copolymers 2195
3.22.9.1 Melting Temperature 2195
3.22.9.2 Crystallinity and Solid-State Morphology 2196
3.22.9.3 Unique Solution Crystallization Behavior 2197
3.22.9.4 Performance Characteristics of OBCs 2199
3.22.9.5 Comparison of Living, CCTP, and Chain Shuttling Block Polymer Architectures 2200
3.22.10 Olefin Block Copolymer Design and’Applications 2201
3.22.11 Functional Polyolefins from CCTP Systems 2203
3.22.12 Conclusion and Outlook 2203
References 2204
Living Transition Metal-Catalyzed Alkene Polymerization: Polyolefin Synthesis and New Polymer Architectures 2208
3.23.1 Introduction 2209
3.23.2 Living Olefin Polymerization 2210
3.23.2.1 Poly(1-hexene) 2210
3.23.2.2 Polypropylene 2210
3.23.2.3 Polyethylene 2210
3.23.2.4 Polyolefins from Conjugated Dienes, Cyclic Olefins, and Polar Monomers 2211
3.23.2.5 Criteria for Living Polymerization 2211
3.23.3 Early Metal Olefin Polymerization Catalysts 2212
3.23.3.1 Vanadium Acetylacetonoate Catalysts 2212
3.23.3.2 Metallocene and Unbridged Half-Metallocene Catalysts 2212
3.23.3.3 Catalysts Bearing Monocyclopentadienyl-amido Ligands 2214
3.23.3.4 Monocyclopentadienylzirconium Amidinate Catalysts 2216
3.23.3.5 Catalysts Bearing Diamido Ligands 2219
3.23.3.6 Catalysts Bearing Diamido Ligands with Neutral Donors 2220
3.23.3.7 Amine-Phenolate Titanium and Zirconium Catalysts 2220
3.23.3.8 Titanium Catalysts Bearing Tridentate Aminodiol Ligands 2222
3.23.3.9 Titanium Catalysts for Styrene Homo-’and’Copolymerization 2222
3.23.3.10 Bis(phenoxyimine)titanium Catalysts 2223
3.23.3.11 Bis(phenoxyketimine)titanium Catalysts 2226
3.23.3.12 Bis(pyrrolide-imine)titanium Catalysts 2228
3.23.3.13 Bis(indolide-imine)titanium Catalysts 2228
3.23.3.14 Bis(enaminoketonato)titanium Catalysts 2228
3.23.3.15 Bis(phosphanylphenoxide)titanium Catalysts 2230
3.23.3.16 Catalysts Supported by sp2 and sp3 Carbon Donors 2230
3.23.3.17 Aminopyridinatozirconium Catalysts 2231
3.23.3.18 Tris(pyrazolyl)borate Catalysts 2231
3.23.3.19 Bis(dimethylamidopyridine)zirconium Catalysts 2231
3.23.4 Non-group 4 Early Metal Polymerization Catalysts 2232
3.23.5 Rare-Earth Metal Catalysts 2233
3.23.6 Late Metal Olefin Polymerization Catalysts 2233
3.23.6.1 Nickel and Palladium α-Diimine Catalysts 2233
3.23.6.1.1 Polymerization of α-olefins 2233
3.23.6.1.2 Propylene polymerization 2236
3.23.6.1.3 Ethylene polymerization 2237
3.23.6.1.4 Other monomers 2239
3.23.6.2 Nickel α-Keto-β-diimine Catalysts 2241
3.23.6.3 Other Nickel Catalysts 2241
3.23.6.4 Other Palladium Catalysts 2243
3.23.6.5 Monocyclopentadienyl Cobalt Catalysts 2243
3.23.7 Outlook and Summary 2243
References 2244
Copolymerization of Alkenes and Polar Monomers by Early and Late Transition Metal Catalysts 2248
3.24.1 Introduction 2248
3.24.2 Coordination of Polar Groups to Transition Metals: Challenges for the Copolymerization of Olefins with’Polar’Comonomers 2250
3.24.2.1 Early Transition Metals: Inhibition by’σ-Coordination 2250
3.24.2.2 Late Transition Metals: Coordination and Insertion of Olefins 2250
3.24.3 Methods for the Synthesis of Polar Copolymers with Early Transition Metals 2253
3.24.3.1 Direct Copolymerization of Polar Momoners and’α-Olefins 2253
3.24.3.2 Copolymerization of Sterical Demanding Polar Olefins and α-Olefins 2261
3.24.3.3 Copolymerization of Polar Olefins and α-Olefins with Protecting Groups 2263
3.24.4 Late Transition Metals in the Copolymerization of Functional and Nonpolar Olefins 2277
3.24.4.1 The Strictly Alternating Copolymerization of Carbon Monoxide and α-Olefin Comonomers 2277
3.24.4.2 α-Diimine Catalysts for the Synthesis of Branched Functional Copolymers 2282
3.24.4.3 Phosphine Sulfonate-Based Catalysts: Synthesis of Linear Copolymers of Ethene and Functionalized Olefins 2285
3.24.5 Conclusion 2289
References 2289
Alkene/CO Copolymerization 2294
3.25.1 Introduction 2294
3.25.2 Alternating Copolymer of Ethylene and CO 2294
3.25.2.1 Reaction Mechanism 2294
3.25.2.2 Ligands Employed for the Alternating Copolymerization of Ethylene and CO 2296
3.25.3 Nonalternating Copolymer of Ethylene and CO 2297
3.25.4 Alternating Copolymerization of’Mono-substituted Ethylene and CO 2300
3.25.4.1 Stereochemical Aspects 2300
3.25.4.2 Alternating Copolymer of Propylene and CO 2301
3.25.4.3 Alternating Copolymer of Styrene and CO 2302
3.25.4.4 Other Olefin/CO Copolymers Consisting of’Propylene, Styrene, or 1,ω-Dienes 2304
3.25.4.5 Copolymerization of Functionalized Olefins with’Carbon Monoxide 2304
3.25.5 Copolymerization of Imines with Carbon Monoxide 2307
3.25.6 Chemical Transformation of Polyketones 1271
3.25.7 Physical Properties and Industrial Application of the Olefin/CO Copolymers 2309
Cycloolefin Polymerization 2312
3.26.1 Introduction 2312
3.26.2 Polycycloolefins: Homopolymerization 2312
3.26.2.1 Poly(cyclopentene) 2312
3.26.2.2 Polynorbornene by Early Transition Metal Catalysts 2315
3.26.2.3 Polynorbornene by Late Transition Metal Catalysts 2317
3.26.2.4 Properties and Applications 2319
3.26.3 Cycloolefin Copolymers 2320
3.26.3.1 Cyclopentene Copolymers 2320
3.26.3.2 Norbornene Copolymers 2322
3.26.3.3 Other Cycloolefin Copolymers 2338
3.26.3.4 Properties and Applications 2338
3.26.4 Conclusions 2339
References 2339
Alkyne Polymerization 2344
3.27.1 Introduction 51
3.27.2 Polymerization Catalysts 51
3.27.2.1 Mo and W Catalysts 51
3.27.2.2 Nb and Ta Catalysts 53
3.27.2.3 Rh Catalysts 54
3.27.2.4 Group 10 Metal Catalysts 54
3.27.2.5 Group 8 Metal Catalysts 55
3.27.2.6 Living Polymerization 55
3.27.3 Monosubstituted Acetylene Polymers 57
3.27.3.1 Aliphatic Monosubstituted Acetylene Polymers 57
3.27.3.2 Aromatic Monosubstituted Acetylene Polymers 58
3.27.3.3 Helical Polymers of Monosubstituted Acetylenes 58
3.27.3.4 Photoelectronically Functional Polyacetylenes 59
3.27.4 Disubstituted Acetylene Polymers 59
3.27.4.1 Polymerization of Disubstituted Acetylenes 60
3.27.4.2 Reactions of Disubstituted Acetylene Polymers 60
3.27.4.3 Functions of Disubstituted Acetylene Polymers 60
e9780444533494v4 2424
Polymer Science: A Comprehensive Reference\r 2425
Copyright 2428
Contents_of_Volume 4\r 2429
Volume Editors\r 2433
Editor-in-Chief_Bio\r 2435
Editors_Bio\r 2437
Contributors_of_Volume 4\r 2445
Preface\r 2447
Foreword\r 2451
Introduction 2453
Thermodynamic and Kinetic Polymerizability 2457
4.02.1 Introduction 2457
4.02.2 Major Definitions 2457
4.02.2.1 (Molar) Enthalpy of Polymerization (∆Hm or ∆abHm, SI Unit: Jmol−1) 2457
4.02.2.2 (Molar) Entropy of Polymerization (∆Sm or ∆abSm, SI’Unit: Jmol−1K−1) 2458
4.02.3 Equilibrium and Ceiling (Floor) Temperatures (Te and Tc/Tf) 2458
4.02.3.1 The IUPAC Definitions for Ceiling and Floor Temperatures 2459
4.02.4 Methods for Determination of Tc (or [M]e) 2460
4.02.5 Factors Affecting Polymerizability: Enthalpy of Polymerization 2460
4.02.5.1 Ring Strain 2461
4.02.5.2 Side Groups’ Interaction 2462
4.02.5.3 Independent Determination of ∆H and ∆S 2462
4.02.6 Entropy-Driven Polymerization 2463
4.02.6.1 Polymerization of Cyclic Oligocarbonates 2463
4.02.6.2 Ring-Opening Metathesis Polymerization 2463
4.02.7 Nonideal (Real) Systems 2464
4.02.7.1 Influence of Initial Monomer Concentration 2464
4.02.8 Influence of Degree of Polymerization 2465
4.02.9 Influence of Phase Separation 2465
4.02.10 Final Remarks on the Thermodynamic Polymerizability 2466
4.02.11 Kinetic Polymerizability 2466
4.02.12 Kinetic Polymerizability versus Macroions and Macroion Pairs in Propagation 2468
4.02.13 Outlook 2471
References 2471
Living Ring-Opening Olefin Metathesis Polymerization 2473
References 2479
Ring-Chain Equilibria in Ring-Opening Polymerization 2483
4.04.1 Phenomenon of the Ring–Chain Equilibria in’Ring-Opening Polymerization 2483
4.04.2 Thermodynamics of the Ring–Chain Equilibria in ROP 2485
4.04.3 Thermodynamics of Ring–Chain Equilibria in’Copolymerization 2488
4.04.4 Effects of Pressure and Solvents on the Ring–Chain Equilibria 2489
4.04.5 Kinetics of the Ring–Chain Equilibria in ROP 2489
4.04.6 Ring–Chain Equilibria in Selected ROP Systems 2491
4.04.6.1 Ring–Chain Equilibria in Polysiloxane Systems 2491
4.04.6.2 Ring–Chain Equilibria in Cyclic Acetals and Ethers Polymerizations 2492
4.04.6.3 Ring–Chain Equilibria in Cyclic Ester Polymerizations 2495
4.04.6.4 Ring–Chain Equilibria in Other ROP Systems 2497
4.04.7 Conclusions and Outlook 2499
References 2499
Equilibrium Copolymerization in Ring-Opening Polymerization 2503
4.05.1 Phenomenon of the Equilibrium Copolymerization in Ring-Opening Polymerization 2503
4.05.2 The Concept of the Equilibrium Copolymerization 2503
4.05.3 Copolymerization Equilibrium 2505
4.05.3.1 Comonomer Equilibrium Concentrations 2506
4.05.3.2 General Treatment of Copolymerization Equilibrium 2507
4.05.4 Thermodynamics of Copolymerization 2508
4.05.4.1 Thermodynamics of Copolymerization in Systems with Intercomponent Interactions 2509
4.05.5 Determination of the Equilibrium Constants on the Basis of the Analysis of the Copolymerization Equilibrium 2511
4.05.6 Selected Examples of the Equilibrium Copolymerization 2511
4.05.6.1 Copolymerization of Cyclic Acetals 2511
4.05.6.2 Copolymerization of Sulfur with Norbornene Trisulfide 2514
4.05.6.3 Equilibrium Copolymerization of γ-Butyrolactone with ε-Caprolactone 2515
4.05.6.4 Equilibrium Copolymerization of Tetrahydropyran with Oxetane 2515
4.05.6.5 Equilibrium Copolymerization of Tetrahydrofuran Above Its Ceiling Temperature with Oxetanes 2517
4.05.7 Conclusions and Outlook 2517
References 2517
Organocatalyzed Ring-Opening Polymerizations 2519
4.06.1 Introduction 2519
4.06.2 Metal-Free Initiated versus Metal-Free Organocatalyzed Polymerizations 2520
4.06.3 Organocatalytic Platforms, Monomer Candidates, and Related Mechanisms 2520
4.06.3.1 The Different Organic Catalysts 2520
4.06.3.2 Monomer Candidates 2523
4.06.3.3 General Polymerization Mechanisms 2524
4.06.4 Polymerizations Catalyzed by 4-(Dialkylamino)pyridines 2526
4.06.5 Polymerizations Catalyzed by Amidines 2529
4.06.6 Polymerizations Catalyzed by TUs and TU-Amino Derivatives 2533
4.06.7 Polymerizations using Phosphorus-Based Catalysts: Phosphines and Phosphazenes 2538
4.06.8 Polymerizations Catalyzed by NHCs 2542
4.06.9 Polymerization Catalyzed by Weak, Strong, and ‘Super Strong’ Bronsted Acids 2556
4.06.9.1 Sulfonic Acid-Mediated ROP 2557
4.06.9.2 Sulfonimide-Based Catalysts for ROP 2561
4.06.9.3 Carboxylic Acid-Mediated Polymerizations 2562
4.06.10 Conclusion 2563
References 2564
Anionic Ring-Opening Polymerization of Epoxides and Related Nucleophilic Polymerization Processes 2569
4.07.1 Introduction 2569
4.07.2 Anionic Epoxide Polymerization Initiated by’Alkali Metal Derivatives 2569
4.07.2.1 Ethylene Oxide 2570
4.07.2.2 Monosubstituted Epoxides 2573
4.07.3 Initiation by Organic Bases as Initiators 2575
4.07.3.1 Organic Bases as Counterions 2575
4.07.3.2 Organic Bases as Nucleophilic Initiators 2576
4.07.4 Coordination Anionic Polymerization 2578
4.07.4.1 Monometallic Coordinating Catalytic Systems 2578
4.07.4.2 Porphyrin Salts 2581
4.07.4.3 Bi- and Plurimetallic Coordination Catalytic Systems 2584
4.07.4.4 Double Metal Cyanide Complexes 2584
4.07.5 Polymerization Involving Monomer Activation by a Lewis Acid Additive 2585
4.07.5.1 Aluminum Porphyrins Associated with Lewis Acids 2585
4.07.5.2 Other Aluminum Derivatives 2586
4.07.5.3 Alkali Metal Derivatives and Quaternary Onium Salts 2586
4.07.6 Summary 2590
References 2590
Cationic Ring-Opening Polymerization of Cyclic Ethers 2593
4.08.1 General Considerations 2593
4.08.1.1 Thermodynamic Polymerizability of Cyclic Ethers 2593
4.08.1.2 Nucleophilicity and Basicity of Cyclic Ethers 2595
4.08.1.3 Mechanism of Cationic Polymerization of’Cyclic’Ethers 2595
4.08.1.4 Elementary Reactions in Cationic Polymerization of’Cyclic Ethers 2596
4.08.1.5 Macrocyclization in the CROP of Cyclic Ethers 2598
4.08.2 CROP of Oxiranes 2599
4.08.2.1 Mechanism of Polymerization 2599
4.08.2.2 Cationic Photopolymerization of Oxiranes 2603
4.08.3 CROP of Oxetanes 2603
4.08.3.1 Mechanism of Polymerization 2603
4.08.3.2 Cationic Photopolymerization of Oxetanes 2605
4.08.3.3 CROP of Oxetanes Leading to Hyperbranched Polyethers 2605
4.08.4 CROP of THFs (Oxolanes) 2607
4.08.4.1 Mechanism of Cationic Polymerization of THF 2608
4.08.4.2 Synthetic Applications of Cationic Polymerization’of’THF 2610
4.08.4.3 CROP of Substituted THFs 2612
4.08.5 Outlook 2613
Acknowledgment 2613
References 2613
Stereoselective Ring-Opening Polymerization of Epoxides 2617
4.09.1 Introduction 2617
4.09.1.1 Background 2617
4.09.1.2 Scope 2617
4.09.2 Basic Concepts in Stereoselective Epoxide Polymerization 2617
4.09.2.1 Regiochemistry 2617
4.09.2.2 Analysis of Polymer Stereochemistry 2618
4.09.2.3 Chain-End Control and Enantiomorphic Site Control of Stereochemistry 2618
4.09.3 Stereoselective Epoxide Polymerization 2619
4.09.3.1 Aluminum-Based Catalysts 2619
4.09.3.2 Zinc-Based Catalysts 2622
4.09.3.3 Cobalt-Based Catalysts 2625
4.09.3.4 Tin-Based Catalysts 2629
4.09.3.5 Chromium-Based Catalysts 2629
4.09.4 Conclusion/Outlook 2630
References 2630
Ring-Opening Polymerization of Cyclic Acetals 2635
4.10.1 Introduction 2635
4.10.1.1 Monomers 2636
4.10.1.2 Polymerizability of Cyclic Acetals 2637
4.10.1.3 Thermodynamics of Polymerization 2637
4.10.2 Mechanism of Homogeneous Polymerization of’Cyclic Acetals 2638
4.10.2.1 General Considerations 2638
4.10.2.2 Initiation 2639
4.10.2.3 Propagation 2641
4.10.2.3.1 Structure of active species 2641
4.10.2.3.2 Reactivity of active species 2642
4.10.2.4 Transfer and Termination 2642
4.10.2.5 Formation of Cyclic Oligomers 2643
4.10.2.6 Bicyclic Acetals 2644
4.10.2.7 Microstructure of Polymer Chain 2646
4.10.2.8 Functional Polyacetals 2646
4.10.3 Heterogeneous Polymerization of 1,3,5-Trioxane 2647
4.10.3.1 General Features of Heterogeneous Polymerization of 1,3,5-Trioxane 2647
4.10.3.2 The ‘Induction’ Period in the Homo- and’Copolymerization of 1,3,5-Trioxane 2648
4.10.3.3 The Polymerization–Crystallization Stage in’the’(Co)polymerizations of 1,3,5-Trioxane 2657
4.10.3.4 Radiation-Initiated Solid-State Polymerization of’1,3,5-Trioxane 2660
4.10.3.5 Properties of Poly(oxymethylene) 2660
Outlook 2660
Acknowledgments 2660
References 2661
ROP of Cyclic Esters. Mechanisms of Ionic and Coordination Processes 2665
4.11.1 Introduction 2665
4.11.2 Thermodynamics of ROP of Cyclic Esters 2667
4.11.2.1 Thermodynamics of ROP of Cyclic Esters: Some Particular Cases 2670
4.11.3 Kinetics of the ROP of Cyclic Esters 2672
4.11.3.1 Kinetic Polymerizability 2672
4.11.3.2 Initiators and Active Centers: Structures and Reactivities 2673
4.11.3.3 Initiation with Covalent Carboxylates 2676
4.11.3.4 Propagation in Anionic ROP of Lactones 2676
4.11.3.5 Propagation in Coordinated ROP of Cyclic Esters 2678
4.11.4 Livingness of Polymerization in Processes Initiated with Multivalent Metal Alkoxides 2681
4.11.5 Extent of Molar Mass Control in Processes Initiated with Multivalent Metal Alkoxides 2682
4.11.6 Controlled Polymerization of Cyclic Esters Initiated with Single-Site Metal Alkoxides 2683
4.11.7 Transfer Processes in the Anionic and Coordination Polymerizations of Cyclic Esters 2683
4.11.8 Stereochemically Asymmetric ROP of Cyclic Esters 2687
4.11.8.1 Stereocontrolled ROP of LA 2689
4.11.8.2 Stereocontrolled ROP of β-BL 2692
4.11.8.3 Stereocontrolled Copolymerization of l,l-LA with CL 2693
4.11.9 Conclusions 2694
References 2694
ROP of Cyclic Carbonates and ROP of Macrocycles 2699
4.12.1 Introduction 2699
4.12.2 Synthesis of Cyclic Carbonates 2700
4.12.2.1 Synthesis of Aliphatic Cyclic Carbonates 2700
4.12.2.2 Synthesis of Aromatic Cyclic Carbonates 2704
4.12.3 Polymerization of Aliphatic Cyclic Carbonates 2706
4.12.3.1 Polymerization of Five-Membered Cyclic Carbonates 2706
4.12.3.2 Polymerization of Six-Membered Cyclic Carbonates 2712
4.12.3.3 Polymerization of Seven-Membered Cyclic and’Larger Ring Size Cyclic Carbonates 2737
4.12.4 Copolymerization of Cyclic Carbonates with’Other Heterocyclic Monomers 2740
4.12.4.1 Copolymerization of Five-Membered Cyclic Carbonates 2740
4.12.4.2 Copolymerization of Six-Membered Cyclic Carbonates 2742
4.12.5 Polymerization of Cyclic Thiocarbonates 2750
4.12.6 Polymerization of Macrocycles 2751
4.12.6.1 Polymerization of Macrocyclic Aromatic Carbonates 2751
4.12.7 Conclusions 2755
References 2755
ROP of Cyclic Amines and Sulfides 2761
4.13.1 Introduction 2761
4.13.2 Cyclic Amines 2761
4.13.2.1 Aziridines 2761
4.13.2.2 Azetidines 2765
4.13.3 Cyclic Sulfides 2770
4.13.3.1 Thiiranes 2770
4.13.3.2 Thietanes 2776
4.13.3.3 Cyclic Disulfides 2779
4.13.4 Conclusions and Outlook 2780
References 2780
Ring-Opening Polymerization of Cyclic Amides (Lactams) 2783
4.14.1 Introduction 2784
4.14.2 Lactams and Their Polymerizability 2785
4.14.2.1 Lactam Family 2785
4.14.2.2 Polymerizability 2790
4.14.3 Outline of Lactam Polymerization Routes 2797
4.14.4 Hydrolytic Polymerization 2798
4.14.4.1 Reaction Mechanism 2799
4.14.5 Cationic Polymerization 2800
4.14.5.1 Reaction Mechanism 2800
4.14.6 Acidolytic and Aminolytic Polymerizations 2805
4.14.7 Anionic Polymerization 2807
4.14.7.1 Reaction Mechanism 2807
4.14.7.2 Side Reactions 2811
4.14.7.3 Initiators 2814
4.14.7.4 Activated Anionic Polymerization 2817
4.14.7.5 Activators 2820
4.14.8 Enzymatic Polymerization 2827
4.14.9 Spontaneous Polymerization 2827
4.14.10 Anionic Polymerization of CL 2828
4.14.10.1 Overview 2828
4.14.10.2 Kinetic Approaches in the Bulk Polymerization 2829
4.14.10.3 Role of Activator and Initiator Concentrations 2830
4.14.10.4 Cyclic Oligomers and Cyclic Species 2832
4.14.11 Anionic Polymerization of Other Lactams 2836
4.14.11.1 2-Pyrrolidone 2836
4.14.11.2 2-Piperidone 2837
4.14.11.3 ω-Laurolactam 2837
4.14.11.4 Substituted β-Lactams and Their Living Polymerization 2838
4.14.12 Anionic Copolymers 2839
4.14.12.1 Introduction 2839
4.14.12.2 Copolymerization of CL and ω-Laurolactam 2839
4.14.12.3 Copolymerization of Lactams and Lactones 2840
4.14.12.4 Block Copolymers and Other Copolymers 2841
4.14.13 Industrial Applications 2842
4.14.13.1 Introduction 2842
4.14.13.2 Powdered Polyamides 2842
4.14.13.3 RIM, RTM, Rotational Molding, and Reactive Extrusion 2843
4.14.13.4 Composites and Nanocomposites of Anionically Synthesized Polyamides 2844
References 2844
Polymerization of Oxazolines 2849
4.15.1 Introduction 2849
4.15.2 Cationic Ring-Opening Polymerization 2850
4.15.2.1 Monomers, Catalysts (Initiators), Reaction Mechanism, and Monomer Reactivity 2850
4.15.2.2 CROP: Various Reaction Modes 2854
4.15.2.3 Microwave-Assisted CROP Reaction 2856
4.15.2.4 Copolymerization via CROP-Mode Reaction 2856
4.15.3 Ring-Opening Polyaddition 2861
4.15.3.1 ROPA Reaction between A-A-Type Monomer and’B-B-Type Monomer 2862
4.15.3.2 ROPA Reaction of AB-Type Monomers 2863
4.15.4 ROPA for Polysaccharide Synthesis 2864
4.15.4.1 Enzymatic ROPA of Sugar Oxazolines 2864
4.15.4.2 Cationic ROPA of Sugar Oxazolines 2867
4.15.5 Ring-Opening Polymerizations of Other Oxazoline Derivative Monomers 2868
4.15.5.1 Polymerization of 5-Oxazolone 2868
4.15.5.2 Polymerization of 1,3-Oxazine 2868
4.15.5.3 Polymerization of 1,3-Oxazepine 2868
4.15.6 Sythesis of Functional Polymers via CROP Process and Their Applications 2869
4.15.6.1 Synthesis of End-Functionalized Polymers 2869
4.15.6.2 Synthesis of Amphiphilic Copolymers 2870
4.15.6.3 Synthesis of Stimuli-Responsible Polymers 2871
4.15.6.4 Archtecture of New Polymeric Systems 2872
4.15.6.5 Sythesis of Bio-Related Polymers 2874
References 2875
Ring-Opening Polymerization of Amino Acid N-Carboxyanhydrides 2879
4.16.1 Introduction 2879
4.16.2 Polypeptide Synthesis using NCAs 2880
4.16.2.1 Conventional Methods 2880
4.16.2.2 Transition Metal Initiators 2881
4.16.2.3 Controlled Polymerization using Amine Initiators 2883
4.16.2.4 Amine Hydrochloride-Initiated Polymerizations 2884
4.16.2.5 N-Trimethylsilyl Amine Initiators 2885
4.16.3 Copolypeptide Synthesis via ROP 2886
4.16.3.1 Block Copolypeptides 2886
4.16.3.2 Star Copolypeptides 2887
4.16.3.3 Brush and Branched Copolypeptides 2888
4.16.4 Side-Chain Functionalized Polypeptides 2891
4.16.4.1 Nonionic Water-Soluble Polypeptides 2893
4.16.4.2 Mesogen-Functionalized Polypeptides 2895
4.16.4.3 Polypeptides Functionalized for ‘Click’ Reactivity 2895
4.16.4.4 Sugar-Functionalized Polypeptides 2897
4.16.5 Poly(β-Peptides) 2897
4.16.6 Polypeptide Deprotection and Purification 2898
4.16.7 Conclusions 2899
References 2899
Polymerization of Cyclic Siloxanes, Silanes, and Related Monomers 2903
4.17.1 Monomers Polymerizable by Breaking the’Siloxane Bonds 2903
4.17.1.1 Cyclosiloxanes 2903
4.17.1.2 Cyclooxysilylenes (Cyclosilaethers) 2918
4.17.2 Ring-Opening Polymerization of Cyclic Organosilicon Monomers Not Involving Si–O Bond Cleavage 2919
4.17.2.1 Cyclosilanes 2919
4.17.2.2 Cyclocarbosilanes 2921
4.17.2.3 Cyclosilazanes 2922
4.17.2.4 Cyclostannasiloxanes 2923
4.17.2.5 Ferrocenylsilanes 2923
4.17.3 Final Remarks 2923
References 2924
Ring-Opening Polymerization of Cyclic Phosphorus Monomers 2929
4.18.1 Scope of the Chapter 2929
4.18.2 Polymerization of Cyclic Organophosphorus Compounds 2929
4.18.2.1 Introduction 2930
4.18.2.2 Anionic Polymerization 2930
4.18.2.3 Cationic Polymerization 2933
4.18.2.4 Polymerization of Other Cyclic P-Containing Monomers 2935
4.18.2.5 Thermodynamics, Kinetics, and Mechanism of’Polymerization 2935
4.18.2.6 Copolymerization 2940
4.18.3 Polyaddition 2944
4.18.4 Transformation of Poly(alkylene phosphate)s 2945
4.18.5 Some Properties and Applications of Poly(alkylene phosphate)s 2945
4.18.6 Polymerization of Cyclic Inorganic P-Containing Compounds 2945
4.18.6.1 Polyphosphazenes 2945
4.18.6.2 Poly(phosphazenylphosphazene)s 2950
4.18.6.3 Poly(carbophosphazene)s 2950
4.18.6.4 Poly(thiophosphazene)s 2950
4.18.6.5 Poly(thionylphosphazene)s 2951
4.18.6.6 Linear Polymers Containing Phosphorus and Transition Elements 2951
4.18.6.7 Poly(organophosphazene)s and Related Polymers 2951
4.18.7 Some Properties and Applications of Linear Poly(organophosphazene)s 2952
4.18.8 Outlook 2952
Acknowledgments 2953
References 2953
Radical Ring-Opening Polymerization 2959
4.19.1 General 2959
4.19.2 Cycloalkanes 2959
4.19.3 Cyclic Ethers and Cyclic Sulfides 2963
4.19.4 Cyclic Acetals 2966
4.19.5 Spiroorthocarbonates and Spiroorthoesters 2968
4.19.6 α-exo-Methylene Lactones 2969
4.19.7 Cyclic Sulfones with Vinyl Group 2970
4.19.8 Controlled Radical Ring-Opening Polymerization 2970
4.19.9 Summary 2971
References 2973
Architectures of Polymers Synthesized using ROMP 2975
4.20.1 Introduction 2975
4.20.2 Catalysts (Grubbs and Schrock Type) 2975
4.20.3 Basic Categories 2975
4.20.4 Monomers 2977
4.20.5 Linear Architectures 2977
4.20.6 Polyacetylene 2979
4.20.7 Diblocks/Triblocks 2981
4.20.8 Random 2983
4.20.9 Alternating 2984
4.20.10 Cyclic 2986
4.20.11 Grafted 2986
4.20.12 Polyalkynes 2988
4.20.13 Nano 2989
4.20.14 Micelles 2990
4.20.15 Polyrotaxanes and Polycatenane 2991
4.20.16 Dendrimers 2992
4.20.17 Star Polymers 2994
4.20.18 Other 2994
4.20.19 Conclusion 2999
References 2999
High-Molecular-Weight Poly(ethylene oxide) 3003
4.21.1 Introduction 3003
4.21.2 Oxirane Polymerization 3003
4.21.2.1 Investigations of an Early Date 3003
4.21.2.2 Anionic Polymerization in Solution 3004
4.21.2.3 Role of Additives: Anionic Polymerization of Substituted Oxirane in Solution and Polymerization of PO 3004
4.21.2.4 Synthesis of Polyglycidol 3005
4.21.3 Anionic Coordination Polymerization 3008
4.21.3.1 Calcium-Based Catalyst Systems: Polymerization in Suspensions and Synthesis of High-MW PEO 3008
4.21.3.2 Ca-Based Initiators in Copolymerization 3010
4.21.3.3 Aluminum-Based Catalysts 3011
4.21.3.4 Double-Metal and Multimetal Cyanide Compounds as Initiators 3014
4.21.4 Applications of High-MW Polyoxiranes 3015
4.21.4.1 High-MW PEO Polyelectrolytes and Lithium Batteries 3015
4.21.4.2 High-MW PEO in Drug Delivery Systems and Tissue Engineering 3017
4.21.4.3 PEO Cross-linking: Hydrogels and Cryogels 3018
References 3019
Nonlinear Macromolecules by Ring-Opening Polymerization 3023
4.22.1 Introduction 3023
4.22.2 Background and History 3023
4.22.2.1 General Concepts in Synthesis of Nonlinear Polymers by Ring-Opening Polymerization 3023
4.22.2.2 Degree of Branching 3025
4.22.3 Specific Concepts in the Synthesis of Nonlinear Polymers by Ring-Opening Polymerization 3025
4.22.3.1 Cationic Ring-Opening 3025
4.22.3.2 Anionic Ring-Opening Multibranching Polymerization 3029
4.22.3.3 Catalytic Ring-Opening Multibranching Polymerization 3034
4.22.4 Complex Polymer Architectures Containing Nonlinear Macromolecules Generated by ROP 3040
4.22.4.1 Core Variation 3040
4.22.4.2 Terminal Functionalization and Bioconjugation 3041
4.22.4.3 Multiarm Star Polymers or ‘Hyperstars’ 3043
4.22.4.4 Linear-Hyperbranched Block Copolymers 3044
4.22.5 Conclusion and Perspectives 3045
References 3045
Current and Forthcoming Applications of ROMP-Derived Polymers: Functional Surfaces and Supports 3049
4.23.1 Introduction to Ring-Opening Metathesis Polymerization 3049
4.23.2 Initiators for ROMP 3049
4.23.2.1 ROMP with Schrock Initiators 3050
4.23.2.2 ROMP with Grubbs-Type Initiators 3052
4.23.3 1-Alkyne Polymerization 3052
4.23.4 Supports 3053
4.23.4.1 Inorganic Surfaces 3053
4.23.4.2 Organic Surfaces 3060
4.23.5 Summary 3081
References 3081
Chain Extension by Ring Opening 3085
4.24.1 General 3085
4.24.2 Chain Extension 3085
4.24.3 Diepoxides 3086
4.24.4 Cyclic Imino Ethers 3087
4.24.5 Cyclic Anhydrides 3088
4.24.6 Bisoxazolinones 3090
4.24.7 Coupling with Release of Blocking Groups 3092
4.24.8 Mixed Systems 3093
4.24.9 Conclusions 3094
References 3095
Ring-Opening Dispersion Polymerization 3097
4.25.1 Introduction 3097
4.25.2 Cationic Ring-Opening Dispersion Polymerization 3098
4.25.3 Anionic and Pseudoanionic Ring-Opening Dispersion Polymerization 3099
4.25.3.1 Continuous Media for the Anionic and’Pseudoanionic Dispersion Polymerizations of ε-Caprolactone and’Lactides 3100
4.25.3.2 Initiators 3101
4.25.3.3 Suspension Stabilizers 3101
4.25.3.4 Typical Recipes for Dispersion Polymerizations of’ε-Caprolactone and Lactide 3101
4.25.3.5 Distribution of Diameters of Polyester Microspheres Synthesized in Dispersion Polymerization of Lactides 3103
4.25.3.6 Control of Diameters of Polylactide Microspheres Formed in Ring-Opening Dispersion Polymerizations 3104
4.25.3.7 Mechanism of Particle Formation During Ring-Opening Dispersion Polymerization 3105
4.25.3.8 Kinetics of Dispersion Polymerization of’ε-Caprolactone 3106
4.25.3.9 Control of Molecular Weight in Dispersion Polymerization of ε-Caprolactone 3108
4.25.3.10 Mechanism of Dispersion Polymerization of’ε-Caprolactone and Lactides 3109
4.25.4 Practical Importance of Ring-Opening Dispersion Polymerization 3109
References 3111
Ring-Opening Metathesis Polymerization in the Synthesis of Conjugated Polymers 3113
4.26.1 Introduction 3113
4.26.1.1 Preamble 3113
4.26.1.2 Origins of Interest in Conjugated Polymers 3113
4.26.2 Ring-Opening Polymerization of Monocyclic Polyenes 3115
4.26.2.1 General Considerations 3115
4.26.2.2 Unsaturated Three-Membered Rings as Starting Materials 3116
4.26.2.3 Unsaturated Four-Membered Rings as Starting Materials 3116
4.26.2.4 Unsaturated Five-Membered Rings as Starting Materials 3120
4.26.2.5 Routes Involving ROMP of Six-Membered Ring Systems 3124
4.26.2.6 Unsaturated Eight-Membered Rings as Starting Materials 3125
4.26.2.7 Monomers with Larger than Eight-Membered Rings as Starting Materials 3127
Summary 3128
References 3128
Oligomeric Poly(ethylene oxide)s. Functionalized Poly(ethylene glycol)s. PEGylation 3131
4.27.1 Introduction 3131
4.27.2 Properties of PEGs 3131
4.27.3 Chemistry of PEGylation 3132
4.27.3.1 Activated PEG Derivatives for Conjugation with Amines 3132
4.27.3.2 Activated PEG Derivatives for Thiol Conjugation 3133
4.27.3.3 Activated PEG Derivatives for ‘Click’ Conjugation 3135
4.27.4 PEG Conjugation to Peptides and Proteins 3135
4.27.4.1 Importance of Peptide/Protein–Polymer Conjugation 3135
4.27.4.2 PEGylated Protein Drugs 3137
4.27.4.3 PEGylated Enzymes 3139
4.27.5 PEG Conjugation with Small Drugs 3140
4.27.6 PEGylated Dendrimers as Drug Delivery Systems 3141
4.27.7 PEGylated Inorganic–Organic Core-Shell Nanoparticles 3141
References 3144
Current and Forthcoming Applications of ROMP Polymers - Biorelated Polymers 3147
4.28.1 Bioactive Polymers from the Ring-Opening Metathesis Polymerization 3147
4.28.1.1 Introduction 3147
4.28.1.2 Attributes of ROMP for Controlling Bioactive Ligand Incorporation 3148
4.28.1.3 Synthetic Strategies for Bioactive Ligand Incorporation 3149
4.28.1.4 Applications of Biologically Active Polymeric Displays 3153
4.28.1.5 Conclusions 3166
References 3167
Polyphosphoesters: Controlled Ring-Opening Polymerization and’Biological Applications 3171
4.29.1 Introduction and Historical Background 3171
4.29.2 Controlled Syntheses of PPEs by Ring-Opening Polymerization 3172
4.29.2.1 Controlled Polymerization with Al(OiPr)3 3172
4.29.2.2 Controlled Polymerization with Sn(Oct)2 3173
4.29.2.3 Controlled Polymerization with Organocatalysts 3175
4.29.3 Topological Structure of PPE 3176
4.29.3.1 Random Copolymers of PPE 3176
4.29.3.2 Block Copolymers of PPE 3176
4.29.3.3 Star/Miktoarm Block Polymers of PPE 3177
4.29.3.4 Graft/Comb Polymers of PPE 3177
4.29.3.5 Hyperbranched Polymers of PPE 3178
4.29.4 Thermoresponsive PPEs 3179
4.29.5 Functional PPEs 3180
4.29.6 Biomedical Applications of PPEs 3183
4.29.6.1 Delivery of Therapeutic Small Molecules with PPE 3183
4.29.6.2 Delivery of Plasmid DNA with PPE 3187
4.29.6.3 Delivery of siRNA with PPE 3191
4.29.6.4 PPE for Tissue Engineering Applications 3193
4.29.7 Conclusions and Outlook 3196
References 3197
Industrial Applications of ROMP 3201
4.30.1 Introduction 3201
4.30.2 Olefin Metathesis in the Petrochemical Industry 3202
4.30.2.1 Phillips Triolefin Process and OCT® 3202
4.30.2.2 SHOP 3202
4.30.3 Polymer Modification 3202
4.30.3.1 Hydrogenated Acrylonitrile-Butadiene Copolymers (Therban® AT) 3202
4.30.3.2 Hydrogenated Metathesized Soy Wax (NatureWax®) 3203
4.30.4 ROMP Polymers Based on Dicyclopentadiene 3203
4.30.4.1 Raw Material Considerations 3203
4.30.4.2 Polydicyclopentadiene Based on Traditional Catalysts (Telene®, Metton®, Pentam®) 3204
4.30.4.3 Early Applications of Grubbs Ruthenium Catalysts in pDCPD (Cyonyx®, Prometa®) 3204
4.30.4.4 Polynorbornene (Norsorex®) 3206
4.30.4.5 Cylic Olefin Copolymers (Zeonex®, Zeonor®, Arton®) 3206
4.30.5 Linear Polyalkenamers 3207
4.30.5.1 Polybutenamer 3207
4.30.5.2 Polypentenamer 3208
4.30.5.3 Polyoctenamer (Vestenamer®) 3208
4.30.5.4 Polydodecenamer 3208
4.30.5.5 End-Functional Polymers (Difol®) 3208
4.30.6 Conclusion 3209
References 3209
Ring-Opening Polymerization of Cyclic Esters: Industrial Synthesis, Properties, Applications, and Perspectives 3213
4.31.1 Introduction 3213
4.31.2 ROP of Cyclic Esters: Generalities 3214
4.31.3 Industrial Aliphatic Polyesters Implemented by ROP 3216
4.31.3.1 Poly(lactide) 3216
4.31.3.2 Polyglycolide 3222
4.31.3.3 Poly(ε-caprolactone) 3223
4.31.3.4 Poly(1,4-dioxan-2-one) 3225
4.31.4 Conclusions and Outlook 3227
References 3227
Polymerization Kinetic Modeling and Macromolecular Reaction Engineering 3231
4.32.1 Introduction 3234
4.32.2 Stepwise Polymerization 3235
4.32.2.1 Rate of Polymerization 3235
4.32.2.2 Molecular Weight of Polymers 3236
4.32.2.3 MWD of Polymers 3236
4.32.2.4 Nonlinear Condensation Polymerization 3237
4.32.3 Free-Radical Polymerization 3238
4.32.3.1 Initiation, Propagation, and Termination 3238
4.32.3.2 Rate of Polymerization 3240
4.32.3.3 Diffusion-Controlled Reactions 3240
4.32.3.4 Molecular Weight and Distribution of Polymers 3242
4.32.3.5 Branching and Cross-linking 3243
4.32.3.6 Method of Moments 3244
4.32.4 Ionic Polymerization 3244
4.32.4.1 Cationic Polymerization 3244
4.32.4.2 Anionic Polymerization 3245
4.32.4.3 Living Anionic Polymerization 3246
4.32.5 Controlled Radical Polymerization 3246
4.32.5.1 Stable Free-Radical Polymerization 3247
4.32.5.2 Atom Transfer Radical Polymerization 3248
4.32.5.3 Reversible Addition–Fragmentation Chain Transfer Radical Polymerization 3249
4.32.5.4 Comparison of NMP, ATRP, and RAFT Polymerization 3250
4.32.6 Ziegler–Natta Polymerization 3250
4.32.6.1 Rate of Polymerization 3252
4.32.6.2 Molecular Weight and Distribution of Polymer 3252
4.32.6.3 Multiple-Active-Site-Type Model 3253
4.32.7 Metallocene Polymerization 3253
4.32.7.1 Long-Chain Branching with Constrained Geometry Catalysts 3254
4.32.7.2 Binary Catalyst System for Long-Chain Branching 3255
4.32.7.3 Post-Metallocene Development 3256
4.32.8 Emulsion Polymerization 3257
4.32.8.1 Particle Nucleation 3258
4.32.8.2 Rate of Polymerization 3259
4.32.8.3 Molecular Weight Development of Polymers 3260
4.32.9 Dispersion and Suspension Polymerization 3260
4.32.9.1 Dispersion Polymerization 3260
4.32.9.2 Suspension Polymerization 3262
4.32.10 Copolymerization 3263
4.32.10.1 Terminal Model for Copolymer Compositions 3263
4.32.10.2 Pseudokinetic Rate Constant Method 3265
4.32.10.3 Vinyl/Divinyl Copolymerization 3266
4.32.10.4 Cross-link Density Distribution 3267
4.32.10.5 Kinetic Modeling of Gelation 3268
4.32.11 Semibatch Control of Copolymer Composition 3269
4.32.11.1 Monomer Feeding Policies for Uniform Copolymers 3269
4.32.11.2 Stability in Semibatch Operation 3270
4.32.11.3 Semibatch Design of Gradient Copolymers 3271
4.32.12 Continuous Polymerization Processes 3272
4.32.12.1 Steady-State Operation 3273
4.32.12.2 Reactor RTD 3273
4.32.12.3 Effect of RTD on Polymer Chain Properties 3274
4.32.13 Industrial Examples of Polymer Production 3275
4.32.13.1 Low-Density Polyethylene 3276
4.32.13.2 High-Impact PP 3276
4.32.13.3 Linear Low-Density and High-Density Polyethylene 3277
4.32.13.4 Polystyrene 3278
4.32.13.5 Polyvinyl Chloride 3279
4.32.13.6 Nylon 66 3279
4.32.14 Conclusion and Outlook 3280
Acknowledgment 3280
References 3280
Template Polymerization 3285
4.33.1 Introduction 3285
4.33.2 Mechanism of Template Polymerization 3286
4.33.3 Radical Template Polymerization and’Copolymerization 3287
4.33.3.1 Models and Examples 3287
4.33.3.2 Multimonomers as Templates 3289
4.33.3.3 Kinetics of the Radical Template Polymerization 3292
4.33.3.4 Radical Template Copolymerization 3294
4.33.4 Template Polycondensation 3297
4.33.5 Ring-Opening Template Polymerization 3299
4.33.6 Special Kinds of Template Polymerization 3300
4.33.6.1 Spontaneous Template Polymerization 3300
4.33.6.2 Oxidative Template Polymerization 3301
4.33.7 Products of Template Polymerization and Potential Applications 3302
4.33.8 Polymerization in Confined Space 3303
4.33.8.1 Introduction 3303
4.33.8.2 Polymerization in Clathrates 3303
4.33.8.3 Compartmentalization 3304
4.33.9 Conclusion 3305
References 3306
Mechanistic Aspects of Solid-State Polycondensation 3309
4.34.1 Introduction 3309
4.34.2 Direct Solid-State Polycondensation 3310
4.34.2.1 The Role of Hexane-1,6-Diamine Volatilization 3311
4.34.2.2 The Role of Polycondensation Water 3313
4.34.2.3 The Role of Catalysts 3314
4.34.2.4 Low-Temperature Prepolymerization Process 3315
4.34.3 Post-Solid-State Polycondensation 3315
4.34.3.1 Polyamide 66 3315
4.34.3.2 Poly(ethylene terephthalate) 3320
4.34.3.3 Poly(lactic acid) 3323
4.34.4 Conclusions 3324
References 3324
Radical Polymerization at High Pressure 3327
4.35.1 Introduction 3327
4.35.2 Experiments and Data Treatment 3328
4.35.2.1 Single Pulse-Pulsed Laser Polymerization 3330
4.35.2.2 Pulsed Laser Polymerization-Size Exclusion Chromatography 3331
4.35.3 Initiation, Propagation, and Termination Rate Coefficients of Radical Polymerization up to High Pressure 3331
4.35.3.1 Decomposition of Peroxide Initiators at High Pressure 3331
4.35.3.2 Pressure Dependence of Homopropagation Rate Coefficients 3335
4.35.3.3 Pressure Dependence of Homotermination Rate Coefficients 3336
4.35.4 High-Pressure Ethene Polymerization 3339
4.35.4.1 Propagation and Termination 3339
4.35.4.2 CT to Monomer 3340
4.35.4.3 CT to Polymer and β-Scission 3341
4.35.5 High-Pressure Ethene Copolymerization 3341
4.35.6 Reversible Deactivated Radical Polymerization 3342
4.35.7 Homogeneous-Phase Polymerization in scCO2 3344
4.35.7.1 Styrene–Methacrylate Copolymers 3344
4.35.7.2 Fluorinated Olefins 3345
4.35.8 Kinetics of Radical Polymerization in Homogeneous Mixture with scCO2 3347
References 3350
Electroinitiated Polymerization 3355
4.36.1 Introduction 3355
4.36.2 Electroinitiated Polymerization of Vinyl Monomers for Promoting Coatings Adhesive to Metals 3355
4.36.2.1 Implementation of the Electrografting of AN 3356
4.36.2.2 Investigation of the Electrografting Process 3357
4.36.2.3 Investigation of the Electrografting Mechanism 3358
4.36.2.4 Effect of Solvent on the Electrografting of AN 3358
4.36.2.5 Extension of the Electrografting Process to Monomers Other than AN 3360
4.36.2.6 Microstructure of the Electrografted Chains 3362
4.36.2.7 Variety of Substrates Suitable for Electrografting 3363
4.36.2.8 Implementation of Electrografting in Aqueous Media 3365
4.36.3 Electropolymerization of Conjugated Polymers as Active Layers in Advanced Devices 3366
4.36.4 Electrografting of Conjugated Polymers 3367
4.36.5 Conclusion 3368
References 3369
Photopolymerization 3371
4.37.1 Introduction 3371
4.37.2 Photochemical Condensation Reactions 3371
4.37.2.1 Direct Photochemical Condensation Reactions 3371
4.37.2.2 Photocatalyzed Condensation Polymerization Reactions 3373
4.37.3 Photoinduced Active Center Polymerizations 3375
4.37.3.1 Photoinitiated Radical Polymerizations 3376
4.37.3.2 Photoinitiated Cationic Polymerizations 3380
4.37.3.3 Photoinitiated Anionic Polymerizations 3402
4.37.4 Conclusions 3403
References 3403
Frontal Polymerization 3409
4.38.1 What Is Frontal Polymerization? 3409
4.38.2 Photofrontal Polymerization 3410
4.38.3 Isothermal Frontal Polymerization 3410
4.38.4 Cryogenic Fronts 3411
4.38.5 Thermal Frontal Polymerization 3412
4.38.5.1 Origins 3412
4.38.5.2 Attempts at Frontal Polymerization Reactors 3412
4.38.5.3 Requirements for Frontal Polymerizations 3412
4.38.5.4 Starting Fronts 3413
4.38.5.5 Free-Radical Frontal Polymerization 3413
4.38.5.6 Properties of Monomers 3413
4.38.5.7 Frontal Polymerization in Solution 3414
4.38.5.8 Temperature Profiles 3414
4.38.5.9 Velocity Dependence on Initiator Concentration 3415
4.38.5.10 Front Velocity as a Function of Temperature 3415
4.38.5.11 The Effect of Type of Monomer and Functionality on Front Velocity 3415
4.38.5.12 Solid Monomers 3415
4.38.5.13 Effect of Pressure 3417
4.38.5.14 Molecular Weight Distribution 3418
4.38.5.15 Conversion 3419
4.38.5.16 Interferences with Frontal Polymerization 3420
4.38.5.17 The Effect of Fillers 3425
4.38.5.18 Encapsulation of Initiators 3425
4.38.5.19 Copolymerizations 3425
4.38.5.20 Atom Transfer Radical Polymerization 3425
4.38.5.21 Ring-Opening Metathesis Polymerization 3425
4.38.5.22 Polyurethanes 3426
4.38.5.23 Epoxy Curing 3426
4.38.5.24 Binary Systems 3426
4.38.5.25 Patents 3427
4.38.5.26 Applications of Thermal Frontal Polymerization 3427
4.38.6 Conclusions 3428
References 3429
Microwave-Assisted Polymerization 3433
4.39.1 Interaction of Microwaves with Materials 3433
4.39.2 Chain-Growth Polymerization Reactions 3437
4.39.2.1 Free-Radical Polymerization 3437
4.39.2.2 Controlled Radical Polymerization 3439
4.39.2.3 Ring-Opening polymerization 3444
4.39.2.4 Metathesis Polymerization 3447
4.39.3 Step-Growth Polymerization Reactions 3448
4.39.3.1 Thermoplastic Polymers 3448
4.39.3.2 Thermosetting Resins 3452
4.39.4 Polymer Composites and Nanocomposites 3463
4.39.4.1 Polymer Composites 3463
4.39.4.2 Nanocomposites 3468
4.39.5 Scaling-Up Reactions under Microwave Irradiation 3474
References 3477
e9780444533494v5 3481
Polymer Science: A Comprehensive Reference 3482
Copyright 3485
Contents_of_Volume 5 3486
Volume Editors 3488
Editor-in-Chief_Bio 3490
Editors_Bio 3492
Contributors_of_Volume 5 3500
Preface 3502
Foreword 3506
Introduction and Overview 3508
5.01.1 Introduction 51
5.01.2 Overview 51
Principles of Step-Growth Polymerization (Polycondensation and’Polyaddition) 3514
5.02.1 Introduction and Historical Perspective 3514
5.02.2 Structure–Property Relationships in’Step-Growth Polymers 3515
5.02.2.1 Synthetic Principles 51
5.02.2.2 Molecular Weight Control 52
5.02.2.3 Aliphatic versus Aromatic Polymers 52
5.02.2.4 Influences of Intermolecular Interactions 53
5.02.2.5 Polymer Architecture 53
5.02.3 Synthesis of Step-Growth Polymers 56
5.02.3.1 Polycondensation Polymers 57
5.02.3.2 Polyaddition 59
5.02.4 Future Direction for Step-Growth Polymers 60
5.02.4.1 New Strategies for Step-Growth Polymers 60
5.02.4.2 New Synthetic Approaches 63
5.02.5 Concluding Remarks 65
References 65
Opportunities in Bio-Based Building Blocks for Polycondensates and’Vinyl Polymers 3556
5.03.1 Introduction 3556
5.03.1.1 Definition and Scope of Biopolymers 3557
5.03.1.2 Value Chain of Biopolymers 3558
5.03.2 Monomers 3558
5.03.2.1 Monomers via Carbohydrate Fermentation 3558
5.03.2.2 Monomers via Chemical Processing of Plant Oils 3562
5.03.2.3 Aromatic Monomers via Biochemical Pathways 3564
5.03.3 Approaches in Commodity Polymers 3566
5.03.3.1 Polyolefins from Renewable Resources 3566
5.03.3.2 Biodegradable Polymers from Renewable Resources 3567
5.03.4 Approaches in Engineering Polymers 65
5.03.4.1 Polyesters 66
5.03.4.2 Polyamides 66
5.03.5 Approaches for High Performance Polymers 68
5.03.6 Conclusions 69
References 69
Sequence Control in One-Step Polycondensation 3578
5.04.1 Introduction 3578
5.04.2 Analysis of Constitutional Regularity 3579
5.04.3 Sequential Polymers from Symmetric and Nonsymmetric Monomers 3580
5.04.3.1 Head-to-Head or Tail-to-Tail Polymers 3580
5.04.3.2 Head-to-Tail Polymers 3585
5.04.4 Sequential Polymers from Two Nonsymmetric Monomers 3588
5.04.4.1 One-Stage Synthesis 3589
5.04.4.2 Direct Method 3589
5.04.5 Sequential Polymer from Three Nonsymmetric Monomers 3596
5.04.5.1 Direct Method 3596
5.04.6 Conclusions 3598
References 3598
Nonstoichiometric Polycondensation 3602
5.05.1 Introduction 3602
5.05.2 Nonstoichiometric Polycondensation Caused by the Change in Reactivity 3603
5.05.2.1 Polycondensation of α,α-Dihalomonomers 3603
5.05.2.2 Palladium-Catalyzed Polycondensation 3606
5.05.2.3 Phase Transfer Catalyzed Polycondensation 3610
5.05.3 Nonstoichiometric Polycondensation Caused by the Change in the Higher Structure of Polymers 3612
5.05.3.1 Nucleation–Elongation Polycondensation 3612
5.05.3.2 Polycondensation Using Reaction-Induced Crystallization 3614
5.05.4 Conclusion 3619
References 3619
Chain-Growth Condensation Polymerization 3622
5.06.1 Introduction 3622
5.06.2 p-Substituted Aromatic Polymers 3622
5.06.2.1 Polyamides 3622
5.06.2.2 Polyesters 3626
5.06.2.3 Polyethers 3627
5.06.3 m-Substituted Aromatic Polymers 3629
5.06.3.1 Polyamides 3629
5.06.3.2 Hyperbranched Polymers 3631
5.06.4 Nonaromatic Polymers 3632
5.06.4.1 Polysulfides and Polyesters 3632
5.06.4.2 Polysilanes 3634
5.06.4.3 Polyphosphazenes 3634
5.06.4.3.1 Polymerization of ylides 3635
5.06.5 π-Conjugated Polymers 3637
5.06.5.1 Polythiophenes 3637
5.06.5.2 Polyphenylenes 3640
5.06.5.3 Polypyrroles 3641
5.06.5.4 Polyfluorenes 3642
5.06.6 Future Remarks 3642
References 3643
Oxidative Coupling Polymerization 3648
5.07.1 Introduction 3648
5.07.2 Oxidative Polymerization of Phenols and’Naphthols 3649
5.07.2.1 2,6-Dimethylphenol 3649
5.07.2.2 Other 2,6-Disubstituted Phenols 3654
5.07.2.3 2- and/or 6-Unsubstituted Phenols 3654
5.07.2.4 Naphthols 3662
5.07.3 Thiophenols and Their Derivatives 3662
5.07.4 Anilines 3664
5.07.4.1 Aniline 3664
5.07.4.2 Other Aniline Derivatives 3667
5.07.5 Pyrroles 3668
5.07.5.1 Pyrrole 3668
5.07.5.2 Other Pyrrole Derivatives 3671
5.07.6 Thiophenes 3671
5.07.6.1 Thiophene 3671
5.07.6.2 2-Substituted Thiophenes 3671
5.07.6.3 3-Substituted Thiophenes 3671
5.07.6.4 3,4-Ethylenedioxythiophenes 3672
5.07.6.5 Other Thiophene Derivatives 3675
5.07.7 Other Aromatic Heterocycles 3675
5.07.8 Aromatic Hydrocarbons 3675
5.07.9 Other Monomers 3676
5.07.10 Conclusion 3676
References 3677
Condensation Polymers via Metal-Catalyzed Coupling Reactions 3682
5.08.1 Introduction 3682
5.08.2 An Overview of Conjugated Polymers 3682
5.08.3 Metal-Catalyzed Carbon–Carbon Bond Forming Reactions 3683
5.08.3.1 Kumada and Negishi Coupling Reactions 3683
5.08.3.2 Nickel Homocoupling Reaction 3685
5.08.3.3 The Stille Reaction 3685
5.08.3.4 The Suzuki Reaction 3686
5.08.3.5 The Heck Reaction 3687
5.08.3.6 The Sonogashira Reaction 3688
5.08.3.7 Buchwald–Hartwig Amination 3688
5.08.4 Metathesis Reactions – Acyclic Diene and Acyclic Diyne Metathesis 3688
5.08.4.1 Acyclic Diene Metathesis 3689
5.08.4.2 Acyclic Diyne Metathesis Polymerization 3691
5.08.5 An Overview of Various Polymers Prepared Using Metal-Mediated Coupling Reactions 3692
5.08.5.1 Poly(p-arylene) 3692
5.08.5.2 Polythiophene 3693
5.08.5.3 Poly(p-arylenevinylene) 3694
5.08.5.4 Poly(aryleneethynylene)s 3696
5.08.5.5 Polyaniline 3696
5.08.6 Conclusion 3698
References 3698
Advances in Acyclic Diene Metathesis Polymerization 3702
5.09.1 Introduction 3702
5.09.1.1 Acyclic Diene Metathesis: Metathesis Polycondensation Chemistry 3702
5.09.1.2 The Evolution of ADMET 3702
5.09.2 Functional Polymers and Materials via ADMET 3703
5.09.2.1 ‘Latent Reactive’ Polycarbosilane and Polycarbosiloxane Elastomers 3703
5.09.2.2 Conjugated Polymers via ADMET 3704
5.09.3 Exotic Polymer Structures 3704
5.09.3.1 Hyperbranched Architectures via ADMET 3704
5.09.3.2 Supramolecular Graft Copolymers 3705
5.09.3.3 ‘Daisy Chain’ Polymers 3705
5.09.4 Precision Polyolefins 3706
5.09.5 Meeting the Benchmark: Linear Acyclic Diene Metathesis Polyethylene 3707
5.09.6 Precision Halogenated Polyolefins 3708
5.09.6.1 Synthesis of Precision Halogenated Polyolefins 3708
5.09.6.2 Behavior of Precision Halogenated Polyolefins 3709
5.09.7 Precision Polyolefins with Alkyl Branches 3710
5.09.7.1 Synthesis of Precision Polyolefins with Alkyl Branches 3710
5.09.7.2 Behavior of Precision Polyolefins with Alkyl Branches 3711
5.09.7.3 Increasing the Spacing Between Alkyl Branches in’Precision Polyolefins 3714
5.09.8 Precision Polyolefins with Ether Branches 3715
5.09.8.1 Synthesis of Precision Polyolefins with Ether Branches 3715
5.09.8.2 Behavior of Precision Polyolefins with Ether Branches 3716
5.09.9 Precision Polyolefins with Pendant Acid Groups 3716
5.09.9.1 Precise Carboxylic Acid Placement 3716
5.09.9.2 Precise Phosphonic Acid and Sulfonic Acid Ester Placement 3717
5.09.10 Precision Amphiphilic Copolymers 3718
5.09.10.1 Synthesis of Precision Amphiphilic Copolymers 3718
5.09.10.2 Behavior of Precision Amphiphilic Copolymers 3719
5.09.11 Summary and Outlook 3721
References 3722
Enzymatic Polymerization 3724
5.10.1 Introduction 3724
5.10.2 Enzymatic Polycondensation 3725
5.10.2.1 Polysaccharide Synthesis 3725
5.10.2.2 Polyester Synthesis 3729
5.10.2.3 Polyaromatics Synthesis 3733
5.10.3 Enzymatic Polyaddition 3738
5.10.3.1 Enzymatic Ring-Opening Polyaddition 3738
5.10.4 Summary 3741
References 3742
Nonlinear Polycondensates 3746
5.11.1 Introduction 3746
5.11.2 Insoluble Cross-Linked Polymers 3746
5.11.2.1 Polymerization of Multifunctional Monomers 3746
5.11.2.2 Cross-Linking Reaction of Polymer Chains 3747
5.11.2.3 Molecular Weight Distribution 3748
5.11.3 Soluble Branched Polymers 3749
5.11.3.1 Polymerization of ABx-Type Monomers 3749
5.11.3.2 Polymerization of A2 and B3 Monomers 3750
References 3752
Post-Polymerization Modification 3754
5.12.1 Historical Background and Definitions 3754
5.12.2 General Considerations 3755
5.12.2.1 Classifications 3755
5.12.3 Functional Groups Employed in Chemical Modifications 3757
5.12.3.1 Activated Esters 3757
5.12.3.2 Anhydrides, Isocyanates, and Ketenes 3758
5.12.3.3 Oxazolones and Epoxides 3759
5.12.3.4 Aldehydes and Ketones 3759
5.12.3.5 Azides with Alkynes 3761
5.12.3.6 Dienes and Dienophiles 3764
5.12.3.7 Halides 3765
5.12.3.8 Thiols 3766
5.12.4 Conclusions and Outlook 3769
Acknowledgments 3769
References 3770
Supramolecular Polymers 3776
5.13.1 Introduction 3776
5.13.1.1 Definition of Supramolecular Polymers 3776
5.13.1.2 Noncovalent Interactions 3776
5.13.1.3 Supramolecular Polymerization 3777
5.13.2 Metallo-supramolecular Polymers 3780
5.13.2.1 General Aspects 3780
5.13.2.2 Metal-binding Motifs in Metallo-supramolecular Polymers 3780
5.13.2.3 Supramolecular Polymers via Coordinative Bonding 3781
5.13.2.4 Supramolecular Polymers Based on Metal–arene Complexation 3793
5.13.3 Supramolecular Polymers Based on Ionic Interactions 3795
5.13.4 Supramolecular Polymers Based on Hydrogen Bonding 3798
5.13.4.1 General Aspects 3798
5.13.4.2 From Hydrogen Bonding to Supramolecular Polymers 3801
5.13.5 Supramolecular Polymers Based on Multiple Supramolecular Motifs 3807
5.13.6 Conclusion and Outlook 3810
References 3813
Chemistry and Technology of Step-Growth Polyesters 3818
5.14.1 Introduction 3818
5.14.1.1 Historical 3818
5.14.1.2 General Polyester Characteristics 3818
5.14.2 Synthetic Processes for Polyesters 3819
5.14.2.1 Polyester Catalysts 3819
5.14.2.2 Solution Polymerization 3820
5.14.2.3 Interfacial Polymerization 3821
5.14.2.4 Melt Polymerization 3821
5.14.2.5 Solid-State Polymerization 3824
5.14.3 Aliphatic Polyesters 3824
5.14.3.1 Aliphatic Polyesters from Noncyclic Monomers 3824
5.14.3.2 Alkyl Polyesters with Cycloaliphatic Units 3825
5.14.4 Aryl–Alkyl Polyesters 3827
5.14.4.1 Semicrystalline Polyesters 3827
5.14.4.2 Amorphous Copolyesters 3831
5.14.5 All-aromatic Polyesters 3833
5.14.6 Summary 3834
References 3835
Relevant Website 3837
Biodegradable Polyesters 3840
5.15.1 Introduction 3840
5.15.2 Synthetic Routes to Polyesters 3840
5.15.2.1 Ring-Opening Polymerization of Cyclic Esters and’Polycondensation 3841
5.15.2.2 Radical Ring-Opening Polymerization of Cyclic Ketene Acetals 3841
5.15.3 Classification, Biodegradability, and’Applications of Polyesters 3842
5.15.3.1 Polyhydroxyalkanoates 3842
5.15.3.2 Poly(alkylene dicarboxylates): Homo- and’Copolymers 3843
5.15.3.3 Poly(aliphatic–aromatic) Copolyesters 3846
5.15.4 Different Macromolecular Architectures and’Speciality Biodegradable Polyesters 3847
5.15.4.1 Star Polyesters 3847
5.15.4.2 Dendrimers and Hyperbranched Polyesters 3848
5.15.4.3 Physically and Chemically Cross-Linked Biodegradable Polyesters: Shape-Memory Polymers and’Elastic Films 3852
5.15.4.4 Liquid Crystalline Degradable Polyesters 3856
5.15.4.5 Polyester-Based Degradable Ionomers 3860
5.15.5 Biodegradable Polyester Nanoparticles 3862
5.15.6 Conclusions 3865
References 3866
Polycarbonates 3870
5.16.1 Introduction 3870
5.16.2 Historical Development of PCs 3870
5.16.3 Properties and Uses of PCs 3871
5.16.3.1 Aromatic PCs 3871
5.16.3.2 Aliphatic PCs 3873
5.16.4 Synthesis of PCs 3873
5.16.5 Interfacial Synthesis Process (Phosgene Process) 3873
5.16.6 Transesterification Synthesis Process (Melt or’Solventless Process) 3874
5.16.6.1 Phosgene Process for DPC Synthesis 3875
5.16.6.2 DMC Transesterification Process for DPC Synthesis 3875
5.16.6.3 DPO Decarbonylation Process for DPC Synthesis 3876
5.16.6.4 Oxidative Carbonylation Process (One-Step Process) for DPC Synthesis 3876
5.16.7 ROP of Cyclic Oligomers 3876
5.16.8 Oxidative Carbonylation Process (One-Step Process) 3877
5.16.9 CO2 Process (Synthesis Process Using Carbon Dioxide or Carbonates) 3878
5.16.9.1 PC Synthesis Via Cyclic Carbonate Transesterification 3879
5.16.9.2 Copolymerization of CO2 and Cyclic Ethers 3879
5.16.9.3 Polycondensation of CO2 or Alkaline Carbonates with Aliphatic Dihalides 3881
5.16.9.4 ROP of Cyclic Carbonates 3881
5.16.10 Conclusion 3881
References 3882
Aromatic Polyethers, Polyetherketones, Polysulfides, and’Polysulfones 3884
5.17.1 Introduction 3884
5.17.2 Poly(arylene ether)s 3885
5.17.2.1 General Synthesis Approaches 3885
5.17.2.2 Other Functionalized Poly(arylene ether)s 3891
5.17.2.3 Properties and Applications 3894
5.17.3 Poly(arylene ether ketone)s 3895
5.17.3.1 General Synthesis Approaches 3895
5.17.3.2 Other Functionalized Poly(arylene ether ketone)s 3902
5.17.3.3 Properties and Applications 3906
5.17.4 Poly(arylene sulfone)s 3907
5.17.4.1 General Synthesis Approaches 70
5.17.4.2 Other Functionalized Poly(arylene ether sulfone)s 124
5.17.4.3 Properties and Applications 726
5.17.5 Poly(arylene sulfide)s 728
5.17.5.1 General Synthesis Approaches 728
5.17.5.2 Other Functionalized Poly(arylene sulfide)s 1963
5.17.5.3 Properties and Applications 3931
References 3932
Chemistry and Technology of Polyamides 3938
5.18.1 Introduction 3939
5.18.1.1 Nomenclature and Types of Polyamides 3939
5.18.1.2 Natural Polyamides (Polypeptides) and Brief History of Man-Made Polyamides 3940
5.18.1.3 Chemistry of Amide Bond Formation and Control of’Chain Structure and Chain Ends 3940
5.18.1.4 Catalysis, Equilibria, and Kinetics of Hydrolytic Polycondensation 3940
5.18.1.5 Side Reactions in Polyamide Synthesis 3943
5.18.1.6 Molecular Mass, Molecular Mass Distribution, and’Molecular Characterization of Polyamides 3945
5.18.2 Hydrolytically Synthesized Fully Aliphatic Polyamides 3946
5.18.2.1 Polyamide 6 3946
5.18.2.2 Polyamides 11 and 12 3949
5.18.2.3 Polyamide 66 3951
5.18.2.4 Polyamide 46 3953
5.18.2.5 Polyamides 69, 410, 610, and 612 3954
5.18.2.6 Other Aliphatic Polyamides and Copolyamides 3956
5.18.2.7 Thermal Properties of Fully Aliphatic Homopolyamides 3957
5.18.2.8 Other Properties of Fully Aliphatic Polyamides 3960
5.18.3 Semiaromatic Polyamides 3961
5.18.3.1 Preparation and Processing of Semiaromatic Polyamides 3961
5.18.3.2 Semiaromatic Semicrystalline Polyamides 3961
5.18.3.3 Amorphous Partially Aromatic Polyamides 3964
5.18.3.4 Fully Aromatic Polyamides or Polyaramids 3964
5.18.4 Segmented Block Copolymers of Polyamides and Elastomeric Polyethers 3964
5.18.4.1 Chemistry and Chemical Structure of PEBAs 3965
5.18.4.2 Morphology of PEBAs 3965
5.18.4.3 Physical Properties and Processing of PEBAs 3965
5.18.4.4 Applications and Trade Names of PEBAs 3966
5.18.5 Polyamide Blends 3966
5.18.5.1 Introduction 3966
5.18.5.2 Polyamide/Elastomer Blends 3967
5.18.5.3 Polyamide/Polypropylene Blends 3968
5.18.5.4 Polyamide/ABS Blends 3968
5.18.5.5 Polyamide/Polyphenylene Ether or Polyphenylene Oxide Blends 3968
5.18.5.6 Polyamide/Brominated Polystyrene Blends 3969
5.18.5.7 PA 6/PA 66 Blends 3969
5.18.6 Applications of Polyamides 3969
5.18.6.1 General Remarks on Properties 3969
5.18.6.2 Automotive Applications 3969
5.18.6.3 Electrical and Electronics Applications 3970
5.18.6.4 General Industry Applications 3970
5.18.6.5 Packaging and Film, Fiber, and Sheet Extrusion Applications 3970
5.18.7 Summary, Main Conclusions, and Future Perspectives 3970
References 3971
Lyotropic Polycondensation including Fibers 3976
5.19.1 Introduction 51
5.19.1.1 Invention of Lyotropic Liquid Crystals 51
5.19.1.2 Ladder Polymers 51
5.19.1.3 Achieved Properties of Super Fibers from Lyotropic Polycondensates 52
5.19.2 Aramids 52
5.19.2.1 AB-Aramids 53
5.19.2.2 AABB-Aramids 53
5.19.2.3 Other Preparation Methods of PPTA 54
5.19.2.4 Fiber Spinning 54
5.19.2.5 Fiber Structure 55
5.19.2.6 Copolymers 55
5.19.3 Polybenzazole 58
5.19.3.1 Polybenzimidazole 59
5.19.3.2 PBO and Poly(p-phenylene benzobisthiazole) 59
5.19.3.3 PBZ Fiber with Enhanced Lateral Interaction 60
5.19.3.4 Poly(diimidazopyridinylene dihydroxyphenylene) 60
5.19.3.5 Other Synthesis Methods of PBZ 61
5.19.3.6 Other Structures 61
5.19.4 Beyond PBZ 62
5.19.4.1 3D Polymers 62
5.19.4.2 Carbon Nanotube–PBO Nanocomposite 63
5.19.4.3 Polyindigo 63
References 64
Polyimides 4004
5.20.1 Introduction 4004
5.20.1.1 Polymerization of Tetracarboxylic Dianhydrides and’Diamines 4005
5.20.1.2 Polymerization of Tetracarboxylic Dianhydrides with Diisocyanates 4007
5.20.1.3 Polymerization of Tetracarboxylic Dianhydrides with Silylated Diamines 4008
5.20.1.4 Polymerization of Diester Diacids with Diamines 4009
5.20.1.5 Formation of PIs via Nucleophilic Nitro Group Displacement Reactions 4009
5.20.1.6 Linear Polymerization of Bismaleimides by Michael Addition 4010
5.20.1.7 Palladium-Catalyzed Carbonylation Polymerization for the Formation of PIs 4010
5.20.2 Conventional PI 4010
5.20.2.1 Poly(ether imide)s 4010
5.20.2.2 Poly(amine imide)s 4013
5.20.2.3 Poly(sulfide imide)s 4014
5.20.2.4 Phosphorus-Containing PIs 4015
5.20.2.5 Hyperbranched PIs 4018
5.20.2.6 Bismaleimide-Type PIs 4019
5.20.2.7 PI Copolymers 4021
5.20.3 Functional PI 4029
5.20.3.1 Electrochromic PI 4029
5.20.3.2 Photoluminescent PI 4032
5.20.3.3 PI for Memory Device 4033
5.20.3.4 High Refractive Index PI 4033
5.20.3.5 PIs for Fuel-cell Application 4035
5.20.4 Conclusions 4039
References 4039
High-Performance Heterocyclic Polymers 4044
5.21.1 Introduction 4044
5.21.2 Polyazoles 4044
5.21.2.1 Polyoxadiazoles 4045
5.21.2.2 Polythiadiazoles 4053
5.21.2.3 Polytriazoles 4054
5.21.3 Polybenzazoles 4056
5.21.3.1 Polybenzimidazoles 4057
5.21.3.2 Polybenzoxazoles 4065
5.21.3.3 Molecular Composites Based on Rigid-Rod Polybenzazoles 4073
5.21.5 Aromatic Polyimides 4078
5.21.5.1 Flexible-Chain Aromatic Polyimides 4078
5.21.5.2 Rigid-Chain Aromatic Polyimides 4082
5.21.6 Ladder and Semi-ladder Polymers 4086
5.21.6.1 Polynaphthoylenebenzimidazoles Containing the•Flexibilizing Groups in Their Macromolecules 4090
References 4098
Polyphenylenes, Polyfluorenes, and Poly(phenylene vinylene)s by’Suzuki Polycondensation and Related Methods 4104
5.22.1 Introduction 4104
5.22.2 Synthesis Background and Strategy 4105
5.22.2.1 Polyphenylenes 4105
5.22.2.2 Polyfluorenes 4107
5.22.3 Fundamental Synthetic Aspects 4107
5.22.3.1 General Remarks 4107
5.22.3.2 Monomer Purity and Stoichiometry 4108
5.22.3.3 Polymerization and End-Capping 4108
5.22.3.4 Purification and Side Reactions 4111
5.22.3.5 Molar Mass Determination 4112
5.22.4 Recent Progress 4114
5.22.4.1 Monomers 4114
5.22.4.2 Catalysts 4115
5.22.4.3 Microwave and Technical Scale Microreactor Applications 4115
5.22.4.4 Catalyst-Transfer Polycondensation 4116
5.22.5 Selected Examples 4117
5.22.5.1 Liquid Crystalline and Amphiphilic Polyphenylenes and Polyelectrolytes 4117
5.22.5.2 Shielded Polyphenylenes 4117
5.22.5.3 Bridged and Ladder-Type Polyphenylenes 4118
5.22.5.4 Kinked Polyphenylenes and Foldamers 4118
5.22.5.5 Hyperbranched and Cross-Linked Polyphenylenes 4120
5.22.5.6 Unsubstituted Polyphenylenes 4120
5.22.6 Poly(phenylene vinylene)s 4120
5.22.6.1 Suzuki polycondensation 4120
5.22.6.2 Heck Polycondensation 4123
5.22.6.3 Stille Polycondensation 4129
5.22.6.4 Hiyama Polycondensation 4130
5.22.6.5 Cascade Polycondensation 4131
5.22.6.6 Multicomponent Polycondensation 4132
5.22.6.7 McMurry Polycondensation 4134
5.22.6.8 Acyclic Diene Metathesis Polymerization 4134
5.22.7 Conclusions and Outlook 4136
Acknowledgments 4139
References 4139
Metal-Containing Macromolecules 4144
5.23.1 Introduction 4144
5.23.2 Coordination Polymers 4144
5.23.2.1 Porphyrins 4147
5.23.2.2 Schiff Base Polymers 4154
5.23.2.3 Phthalocyanine Systems 4158
5.23.2.4 Pyridine and Related Systems 4158
5.23.3 Polymers Containing Sandwich Complexes 4163
5.23.3.1 Metallocene-Based Polymers 4163
5.23.3.2 Transition Metal Arene Cyclopentadienyl Complexes 4169
5.23.4 Macromolecules Containing Metal Carbonyl’Complexes 4182
5.23.5 Transition Metal Polyynes 4187
5.23.6 Metal–Metal Bonded Systems 4189
5.23.7 Conclusion 4189
Acknowledgments 4191
References 4191
Phosphorus-Containing Dendritic Architectures 4196
5.24.1 Introduction 4196
5.24.2 Syntheses of Phosphorus-Containing Dendrimers 4198
5.24.2.1 Syntheses of Dendrimers by Simple Repetitive Multistep Processes 4198
5.24.2.2 Accelerated Syntheses of Dendrimers 4204
5.24.3 Syntheses of Phosphorus-Containing Dendrons 4208
5.24.3.1 Synthesis of Dendrons from Phosphines 4208
5.24.3.2 Synthesis of Dendrons from Other Cores 4211
5.24.3.3 Reactivity of Dendrons 4212
5.24.4 Syntheses of Special Phosphorus-Containing Dendritic Architectures 4215
5.24.4.1 Special Dendritic Architectures Elaborated by Coupling Dendrons 4215
5.24.4.2 Special Dendritic Architectures Elaborated from Dendrons 4220
5.24.4.3 Special Dendritic Architectures Elaborated from Dendrimers 4221
5.24.5 Conclusions 4225
References 4227
Epoxy Resins and Phenol-Formaldehyde Resins 4230
5.25.1 Introduction of Epoxy Resins 4230
5.25.2 Basic Characteristics of Epoxy Resins 4231
5.25.3 Synthesis of Epoxy Resins 4231
5.25.3.1 Synthesis of Glycidyl-Type Epoxy Resins 4231
5.25.3.2 Syntheis of Glycidyl Ethers of Novolac Resins 4232
5.25.4 Curing of Epoxy Resin 4232
5.25.4.1 Curing by Primary Amines 4233
5.25.4.2 Curing by Anhydrides 4233
5.25.4.3 Other Curing Agents 4234
5.25.4.4 Catalytic Curing Agents 4234
5.25.5 General Properties of Epoxy Resins 4235
5.25.5.1 Glass Transition Temperature of Cured Epoxy Resins 4235
5.25.5.2 Thermal Degradation of Epoxy Resins 4236
5.25.5.3 Toughening of Epoxy Resin 4236
5.25.5.4 Liquid Crystalline Epoxy Resins 4236
5.25.6 Introduction of Phenolic resins 4237
5.25.7 Novolac 4239
5.25.7.1 Bisphenol F 4239
5.25.7.2 Random Novolac 4239
5.25.7.3 High-Molecular-Weight Novolac 4240
5.25.7.4 High Ortho Novolac 4240
5.25.7.5 Heterogeneous Two-Phase Process 4241
5.25.7.6 Curing of Novolac 4242
5.25.7.7 Non-Hexa Cure 4243
5.25.8 Resol 4243
5.25.8.1 Methylol Phenols 4243
5.25.8.2 Oligomers 4244
5.25.8.3 Curing of Resol 4245
5.25.9 Transformation of Phenolics 4245
5.25.9.1 Epoxy 4246
5.25.9.2 Cyanate Esters 4246
5.25.9.3 Benzoxazines 4247
5.25.10 Natural Products as Phenolics 4251
5.25.11 Modification by Alloys and Co-curing 4252
5.25.11.1 Modification of Phenolics by Alloying 4252
5.25.11.2 Modification of Benzoxazine by Alloying 4253
5.25.11.3 Alloying of Benzoxazine with Polyimide 4254
5.25.11.4 Alloying of Benzoxazine with Bismaleimide 4255
5.25.12 Hybrids and Composites 4255
5.25.12.1 Preparation of Hybrids by Layered Clay 4255
5.25.12.2 Preparation of Hybrid by Sol–Gel Process 4255
5.25.13 Conclusion 4256
References 4256
High-Temperature Thermosets 4260
5.26.1 Introduction 51
5.26.1.1 High-Temperature Polymers 51
5.26.1.2 High-Temperature Thermosets 51
5.26.2 Thermosetting Monomers and Oligomers 52
5.26.2.1 Bismaleimide- and Bisnadimide-Based Systems 52
5.26.2.2 Ethynyl- and Phenylethynyl-Based Systems 53
5.26.2.3 Cyanate Ester- and Phthalonitrile-Based Systems 54
5.26.2.4 Benzocyclobutene- and Biphenylene-Based Systems 54
5.26.2.5 Benzoxazine-Based Systems 55
5.26.3 Thermosetting Liquid Crystals 55
5.26.3.1 Reactive Thermotropic LC Monomers 55
5.26.3.2 Reactive Thermotropic LC Oligomers 55
5.26.3.3 Reactive Lyotropic Oligomers and Polymers 56
5.26.4 Concluding Remarks 57
References 57
e9780444533494v6 4278
Polymer Science: A Comprehensive Reference 4279
Copyright 4282
Contents_of_Volume 6 4283
Volume Editors 4285
Editor-in-Chief_Bio 4287
Editors_Bio 4289
Contributors_of_Volume6 4297
Preface 4299
Foreword 4303
Introduction: Aspects of Macromolecular Architecture and Discrete Nano-Objects 4305
6.01.1 Introduction 4305
6.01.2 Topology 4305
6.01.3 Composition and Functionality 4307
6.01.4 Shape-Controlled Polymers and Nanoobjects 4307
Synthesis and Properties of Macrocyclic Polymers 4309
6.02.1 Introduction 4309
6.02.2 Synthesis of Cyclic Macromolecules 4309
6.02.2.1 Macrocycles Resulting from Linear Ring-Chain Equilibrates 4310
6.02.2.2 Cyclics Formed by REP 4311
6.02.2.3 Size-Controlled Cyclic Polymers by End-to-End Ring Closure 4313
6.02.3 Physical Properties of Cyclic Polymers 4324
6.02.3.1 Characteristic Solution Behavior of Cyclic Polymers 4324
6.02.3.2 Bulk Properties 4327
References 4330
Polymers with Star-Related Structures: Synthesis, Properties, and\rApplications 4333
6.03.1 Synthesis of Star Polymers 4333
6.03.1.1 Introduction 4333
6.03.1.2 General Methods for the Synthesis of Star Polymers 4334
6.03.1.3 Star Architectures 4335
6.03.1.4 Synthesis of Star Polymers 4336
6.03.2 Properties of Star Polymers 4378
6.03.2.1 Introduction 4378
6.03.2.2 Solution Properties 4379
6.03.2.3 Bulk Properties 4393
6.03.2.4 Star Polymer Dynamics and Rheological Properties 4403
6.03.3 Applications of Star Polymers 4407
6.03.3.1 Introduction 4407
6.03.3.2 Commercialized Applications 4407
6.03.3.3 Potential Applications 4408
6.03.4 Conclusions 4410
References 4410
Dendrimers: Properties and Applications 4417
6.04.1 Introduction 4418
6.04.2 Synthesis of Dendrimers 4418
6.04.2.1 Dendrimer Composition 4418
6.04.2.2 Dendritic Growth Approaches 4419
6.04.2.3 Growth Strategies Reviewed 4422
6.04.2.4 Synthetic Overview of the Preparation of Common Dendrimer Types 4425
6.04.2.5 Outlook 4432
6.04.3 Properties and Characterization of Dendrimers 4432
6.04.3.1 Standard Characterization Techniques 4433
6.04.3.2 Gel Permeation Chromatography 4438
6.04.3.3 Mass Spectrometry as a Characterization Tool of/for’Dendrimers 4439
6.04.3.4 X-ray Scattering Techniques 4442
6.04.3.5 Small-Angle Neutron Scattering 4442
6.04.3.6 Characterization of Material Properties in Bulk and \rSolution 4445
6.04.3.7 Microscopy Techniques 4447
6.04.4 Biomedical Applications of Dendrimers 4450
6.04.4.1 Dendrimers as Drug Carriers 4450
6.04.4.2 Dendrimers for Imaging Applications 4459
6.04.4.3 Dendrimers in Transfection Applications 4467
6.04.4.4 BioD and Toxicological Aspects of Dendrimers 4469
6.04.5 Commercial Applications and Sources 4474
6.04.5.1 Dendritech 4474
6.04.5.2 Dendritic Nanotechnologies 4474
6.04.5.3 Starpharma Holdings Limited 4474
6.04.5.4 Frontier Scientific 4474
6.04.5.5 COLCOM 4474
6.04.5.6 Hyperbranch Medical Technology 4474
6.04.5.7 Sigma-Aldrich 4474
6.04.5.8 Polymer Factory 4474
6.04.6 Conclusions and Outlook in the Research Area 4475
Acknowledgments 4475
References 4475
Hyperbranched Polymers: Synthetic Methodology, Properties, and \rComplex Polymer Architectures 4481
6.05.1 Introduction: Definitions and Synthetic Strategies 4481
6.05.2 Theoretical Aspects: Degree of Branching 4483
6.05.3 Polycondensation and Polyaddition 4484
6.05.3.1 AB2 and ABn-Monomers 4484
6.05.3.2 An+Bm Methodology 4486
6.05.3.3 Self-Condensing Vinyl Polymerization 4488
6.05.3.4 Ring-Opening Multibranching Polymerization 4491
6.05.3.5 Other Concepts 4493
6.05.4 Complex Architectures Containing Hyperbranched Blocks 4494
6.05.4.1 Multiarm Star Polymers 4494
6.05.4.2 Linear Hyperbranched (Block) Copolymers and ‘Hypergrafts’ 4496
6.05.4.3 Hyperbranched Polymers on Surfaces 4497
6.05.4.4 Core–Shell Structures and Nanoparticles 4498
6.05.5 Conclusion and Outlook 4498
References 4498
Molecular Brushes 4503
6.06.1 Introduction 4504
6.06.2 Synthesis 4504
6.06.2.1 General Remarks 4504
6.06.2.2 Grafting Through 4504
6.06.2.3 Grafting Onto 4512
6.06.2.4 Grafting From 4516
6.06.2.5 Combined Grafting Approach 4522
6.06.2.6 Block Copolymer Self-Assembly 4526
6.06.2.7 Summary of Synthetic Approaches 4528
6.06.3 Properties 4529
6.06.3.1 Molecular Brushes in Solution 4530
6.06.3.2 Molecular Brushes on Surfaces 4533
6.06.4 Applications 4540
6.06.4.1 Molecular Brushes as Templates for 1D Nanostructures 4540
6.06.4.2 Stimuli-Responsive Molecular Brushes 4549
6.06.4.3 Advanced Materials 4559
6.06.5 Closing Remarks and Perspectives 4561
References 4563
Spherical Polymer Brushes 4569
6.07.1 Introduction 4569
6.07.2 Preparation of Brushes Anchored to Spherical Supports 4570
6.07.3 Characterization 4574
6.07.3.1 Morphology 4575
6.07.3.2 Rheology 4577
6.07.3.3 Computer Simulation 4577
6.07.4 Physical Properties 4578
6.07.4.1 Poly(ethylene oxide) Brushes 4578
6.07.4.2 Responsive Neutral Brushes 4578
6.07.4.3 Polyelectrolyte Brushes 4579
6.07.4.4 Mixed Polymer Brushes at Liquid Interfaces 4581
6.07.5 Applications 4582
6.07.5.1 Carriers for Metal Nanoparticles 4582
6.07.5.2 Spherical Polyelectrolyte Brushes as Carriers for Proteins and Enzymes 4590
6.07.5.3 Retention Aids 4593
6.07.6 Summary 4593
References 4593
Model Networks and Functional Conetworks 4597
6.08.1 Introduction 4597
6.08.2 Definitions 4597
6.08.2.1 Model Networks 4597
6.08.2.2 Quasi-Model Networks 4597
6.08.2.3 Amphiphilic Conetworks 4597
6.08.3 Model Networks 4597
6.08.4 Quasi-Model Networks 4603
6.08.5 Amphiphilic Conetworks 4603
6.08.6 Conclusions 4609
Acknowledgments 4609
References 4609
Polymer Nanogels and Microgels 4613
6.09.1 Aqueous Microgels 4613
6.09.1.1 Introduction 4613
6.09.2 Synthetic Routes 4614
6.09.2.1 Microgels by Cross-Linking of Macromolecules 4614
6.09.2.2 Microgels by Polymerization Reactions 4618
6.09.2.3 Post-modification of Microgels 4625
6.09.3 Characterization by Scattering Methods 4633
6.09.3.1 Size, Size Distribution, and Internal Structure: Light and Neutron Scattering Techniques 4633
6.09.4 Applications of Microgels 4639
6.09.4.1 Catalyst Carriers 4639
6.09.4.2 Delivery Vehicles 4642
6.09.4.3 Protein Separation 4644
6.09.4.4 Tissue Engineering 4645
6.09.4.5 Responsive Materials and Devices 4645
References 4649
Controlled End-Group Functionalization (Including Telechelics) 4655
6.10.1 Introduction 4656
6.10.2 Characterization Methods for’Chain-End-Functionalized Polymers 4656
6.10.2.1 Chemical Methods 4656
6.10.2.2 Chromatographic Methods 4657
6.10.2.3 Spectroscopic Methods 4658
6.10.2.4 MALDI-TOF Mass Spectrometry 4658
6.10.3 Anionic Synthesis of Chain-End-Functionalized Polymers 4658
6.10.3.1 Introduction 4658
6.10.3.2 Specific Functionalization Reactions 4659
6.10.3.3 General Functionalization Methods (GFM) 4676
6.10.4 Radical Synthesis of Chain-End-Functionalized Polymers 4687
6.10.4.1 Atom-Transfer Radical Polymerization 4687
6.10.4.2 Radical Addition–Fragmentation Chain-Transfer (RAFT) Polymerization 4699
6.10.4.3 Nitroxide-Mediated Polymerization 4704
6.10.5 Cationic Synthesis of Chain-End-Functionalized Polymers 4707
6.10.5.1 Functionalized Initiators 4707
6.10.5.2 Postpolymerization Functionalization 4708
6.10.5.3 End-Quenching and Subsequent Postpolymerization Functionalization 4708
6.10.6 Conclusion 4710
References 4711
Robust, Efficient, and Orthogonal Chemistries for the Synthesis of Functionalized Macromolecules 4717
6.11.1 Introduction 4717
6.11.2 Functional Polymers and Architectures 4718
6.11.3 Step Growth Polymerization via CuAAC or TEC 4723
6.11.4 Polymer Backbone and Pendant Group Functionalization 4724
6.11.5 Star and Miktoarm Architectures 4725
6.11.6 Dendrimers 4726
6.11.7 Cross-linked Network Architectures 4727
6.11.8 Three-Dimensional (3D) Objects 4731
6.11.9 Conclusions and Outlook 4732
References 4733
Controlled Composition: Statistical, Gradient, and Alternating Copolymers 4737
6.12.1 Introduction 4737
6.12.2 Copolymerization Models 4737
6.12.2.1 Terminal Model 4738
6.12.2.2 Penultimate Unit Model 4739
6.12.2.3 Other Copolymerization Models 4741
6.12.2.4 Model Discrimination 4741
6.12.3 Statistical Copolymers 4742
6.12.3.1 Homogeneous versus Heterogeneous Copolymers 4743
6.12.3.2 Reactivity Ratios 4747
6.12.4 Alternating Copolymers 4748
6.12.5 Solvent Effects 4749
6.12.6 Copolymers versus Homopolymers 4750
6.12.7 Gradient Copolymers 4750
6.12.7.1 Controlled/Living Radical Copolymerization versus Conventional Radical Copolymerization 4750
6.12.7.2 The Early Stages of Gradient Copolymerization 4752
6.12.7.3 Forced Composition Gradient Copolymers 4752
6.12.7.4 Analysis of Gradient Copolymers 4752
6.12.8 Properties of Copolymers 4753
6.12.9 Epilogue 4754
References 4755
Well-Defined Block Copolymers 4759
6.13.1 Introduction 4759
6.13.2 Principles of Block Copolymerization 4760
6.13.3 Linear Topologies 4761
6.13.3.1 ABA Triblock Copolymers – Synthetic Strategies 4761
6.13.3.2 ABC Triblock Terpolymers – Synthetic Strategies 4762
6.13.4 Synthetic Methods Involving a Single Polymerization Mechanism 4763
6.13.4.1 Anionic Polymerization 4763
6.13.4.2 Group Transfer Polymerization 4768
6.13.4.3 Cationic Polymerization 4769
6.13.4.4 Controlled Radical Polymerization 4770
6.13.4.5 AB by Coupling Reactions 4772
6.13.5 Synthetic Methods through Mechanistic Transformations 4774
6.13.5.1 Transformations Involving Anionic and Cationic Polymerizations 4776
6.13.5.2 Transformations Involving Anionic and Controlled Free Radical Polymerization 4782
6.13.5.3 Transformations Involving Cationic and Controlled Free Radical Polymerization 4788
6.13.5.4 Transformations Involving Activated Monomer Polymerization 4795
6.13.5.5 Transformations Involving Metathesis Polymerization 4797
6.13.5.6 Coupling Reactions 4803
6.13.6 Summary 4806
References 4808
Graft Copolymers and Comb-Shaped Homopolymers 4815
6.14.1 Introduction 4816
6.14.2 Some General Remarks on Graft Copolymers 4817
6.14.3 Polymerization Processes Aimed to Be Used in\rGraft Copolymer Synthesis 4818
6.14.4 Principles of Graft Copolymer Synthesis 4818
6.14.4.1 ‘Grafting Onto’ Processes 4819
6.14.4.2 ‘Grafting From’ Processes 4819
6.14.4.3 ‘Grafting Through’ Processes 4819
6.14.4.4 Other Grafting Processes 4819
6.14.5 ‘Grafting Onto’ Methods 4819
6.14.5.1 ‘Grafting Onto’ via Anionic Polymerization 4820
6.14.5.2 ‘Grafting Onto’ via Cationic Polymerization 4824
6.14.5.3 ‘Grafting Onto’ Based on Coordination Polymerization 4825
6.14.5.4 ‘Grafting Onto’ via Other Processes 4825
6.14.5.5 Noncovalent ‘Grafting Onto’ 4826
6.14.6 ‘Grafting From’ Methods 4827
6.14.6.1 ‘Grafting From’ via Anionic Vinyl and Ring-Opening Polymerization 4827
6.14.6.2 ‘Grafting From’ via Cationic Ring-Opening Polymerization 4829
6.14.6.3 ‘Grafting From’ via Free-Radical Polymerization 4829
6.14.6.4 ‘Grafting From’ via Controlled Radical Polymerization 4830
6.14.7 ‘Grafting Through’ Processes: The Macromonomer Method 4833
6.14.7.1 Preliminary Remarks on the ‘Grafting Through’ Processes 4833
6.14.7.2 Synthesis of Macromonomers 4834
6.14.7.3 Radical Copolymerization of Macromonomers: From Classical to Controlled Polymerization 4835
6.14.7.4 ‘Grafting Through’ via Ionic Polymerization 4838
6.14.7.5 ‘Grafting Through’ via Ring-Opening Metathesis Polymerization 4839
6.14.7.6 ‘Grafting Through’ via Coordination Polymerization 4841
6.14.8 Other Grafting Processes 4842
6.14.9 Conclusions 4842
References 4843
Synthetic-\rBiological Hybrid Polymers: Synthetic Designs, Properties, and Applications 4847
6.15.1 Introduction and Potential Scope of Biohybrid Polymers 4847
6.15.1.1 Peptide Bioconjugation: From Amino Acids to\rProteins 4847
6.15.1.2 Bioconjugation with Nucleobases, Oligonucleotides, or Double-Stranded Nucleic Acids 4850
6.15.1.3 Bioconjugation with Carbohydrates 4851
6.15.2 Strategies to Synthesize Biohybrid Polymers 4851
6.15.2.1 Synthesis of Biomolecules 4851
6.15.2.2 Bioconjugation Strategies 4854
6.15.3 Implementing Biopolymer Properties into \rSynthetic Polymer Systems 4864
6.15.3.1 Programming Secondary Interactions along Polymer Chains 4865
6.15.3.2 Programming Structure Formation in Synthetic Polymer Systems 4868
6.15.3.3 Positioning of Chemical Functionalities to Generate Functions 4881
6.15.3.4 Generating Materials That Actively Interact with\rBiological Systems 4883
6.15.4 Conclusion and Outlook 4884
References 4885
Dynamic Supramolecular Polymers 4891
6.16.1 Introduction 4891
6.16.1.1 Historical Perspectives 4891
6.16.1.2 Discrete, Directional Noncovalent Interactions 4892
6.16.1.3 Classifications 4894
6.16.2 Linear SPs 4895
6.16.2.1 Isodesmic Growth 4896
6.16.2.2 Ring-Chain Equilibrium Growth 4902
6.16.3 Multivalent Supramolecular Assemblies 4907
6.16.3.1 Grafts (Side-Chain Functionalization) 4907
6.16.3.2 3D Cross-Linked Materials 4911
6.16.3.3 Supramacromolecular Assemblies 4916
6.16.4 Hierarchical Assemblies 4925
6.16.4.1 Supramolecular Block Copolymers 4925
6.16.4.2 Supramolecular Complexation in Covalent Block Copolymer Systems 4926
6.16.4.3 Hierarchical Self-Assembly from Small Molecules 4926
6.16.4.4 Bioinspired Hierarchical Assemblies 4927
6.16.5 Conclusions and Outlook 4928
References 4928
Stereocontrolled Chiral Polymers 4933
6.17.1 Introduction 4933
6.17.2 Helical Polymers 4935
6.17.2.1 Polyolefins 4935
6.17.2.2 Polymethacrylates and Related Polymers 4937
6.17.2.3 Poly(meth)acrylamides 4948
6.17.2.4 Polystyrene-Related Polymers 4950
6.17.2.5 Miscellaneous Vinyl Polymers 4952
6.17.2.6 Polyaldehydes 4952
6.17.2.7 Polyisocyanides 4953
6.17.2.7.2 Polymers of diisocyanides (poly(quinoxaline-2,3-diyl)s) 4957
6.17.2.8 Polyisocyanates and Related Polymers 4958
6.17.2.9 Polyacetylene Derivatives and Related Polymers 4962
6.17.2.10 Poly(aryleneethynylene)s 4965
6.17.2.11 Polyarylenes and Related π-Conjugated Polymers 4967
6.17.2.12 Si-Containing Polymers: Polysilanes and Other Polymers 4971
6.17.2.13 Other Types of Polymers 4972
6.17.3 Optically Active Polymers with Main-Chain Configurational Chirality 4976
6.17.3.1 Vinyl Polymers 4976
6.17.3.2 Diene Polymers 4978
6.17.3.3 Other polymers 4979
6.17.4 Enantiomer-Selective Polymerization 4981
6.17.4.1 α-Olefins and Related Monomers 4981
6.17.4.2 Methacrylates 4982
6.17.4.3 Propylene Oxide, Propylene Sulfide, and Lactones 4983
6.17.4.4 α-Amino Acid N-Carboxy Anhydride 4983
6.17.4.5 Isocyanides 4984
6.17.5 Summary 4984
References 4984
Conformation-Dependent Design of Synthetic Functional Copolymers 4993
6.18.1 Introduction 4993
6.18.2 Theoretical Approaches 4994
6.18.2.1 Two Paradigms in Sequence Design 4994
6.18.2.2 How Can We Characterize Copolymer Sequence? 4994
6.18.2.3 Conformation-Dependent Sequence Design: Structure Dictates Sequence 4996
6.18.3 Synthesis of Designed Copolymers 5018
6.18.3.1 ‘Grafting through’ Approach 5018
6.18.3.2 Conformation-Dependent Synthesis: Direct Copolymerization 5018
6.18.3.3 Polymer-Analogous Reactions 5019
6.18.4 Concluding Remarks 5021
References 5024
Rigid& 5029
6.19.1 Introduction 5029
6.19.2 Synthetic Aspects 5030
6.19.2.1 Poly(p-phenylene) Rods 5030
6.19.2.2 Poly(p-phenylene-vinylene) Rods 5032
6.19.2.3 Poly(fluorene) Rods 5034
6.19.2.4 Poly(phenyleneethynylene) Rods 5037
6.19.2.5 Poly(thiophene) Rods 5039
6.19.2.6 Poly(peptide) Rods 5042
6.19.2.7 Poly(alkyl isocyanate) Rods 5044
6.19.2.8 Other Rod Blocks 5045
6.19.3 Organizational Features 5047
6.19.3.1 Self-Assembly of Rod–Coil Copolymers 5047
6.19.3.2 Self-Assembly and Supramolecular Architectures in Peptide- or Protein-Based Systems 5058
6.19.4 Applications 5060
6.19.4.1 Organic Electronics 5061
6.19.4.2 Biofunctional Rod–Coil Block Copolymers 5064
6.19.4.3 Sensoring Properties of Rod–Coil Block Copolymers 5065
6.19.4.4 Rod–Coil Composite Resins 5067
6.19.5 Alternating Rigid–Flexible Polymers 5068
6.19.6 Conclusions 5072
References 5072
Individual Nano-Objects Obtained via Hierarchical Assembly of\rPolymer Building Blocks 5079
6.20.1 Introduction to Nano-Objects 5079
6.20.2 Synthetic Methodologies for the Preparation of\rNano-Objects 5080
6.20.2.1 Solution-State Supramolecular Assembly Processes 5081
6.20.2.2 Solid-State Supramolecular Assembly Processes 5100
6.20.2.3 Templated Techniques 5106
6.20.2.4 LbL Assembly Processes 5113
6.20.3 Assembly of Nano-Objects into Complex Hierarchical Structures 5117
6.20.4 Manipulation of Nano-Objects 5118
6.20.4.1 Physical Manipulation 5119
6.20.4.2 Chemical Manipulation 5119
6.20.5 Conclusions and Outlook 5121
References 5121
e9780444533494v7 5125
Polymer Science: A Comprehensive Reference 5126
Copyright 5129
Contents_of_Volume 7 5130
VolumeEditors 5132
Editor-in-Chief_Bio 5134
Editors_Bio 5136
Contributors_of_Volume 7 5144
Preface 5146
Foreword 5150
Introduction 5152
Block Copolymers in the Condensed State 5154
7.02.1 Introduction 5154
7.02.2 Amorphous Block Copolymers 5156
7.02.2.1 Linear Block Copolymers 5156
7.02.2.2 Block Copolymers with Branched Topologies 5166
7.02.2.3 Block Copolymer Blends 5168
7.02.3 Semicrystalline Block Copolymers 5175
7.02.3.1 Template, Break-Out, and Confined Crystallization 5175
7.02.3.2 Linear Copolymers 5176
7.02.3.3 Star Copolymers 5178
7.02.4 Mechanical Properties of Block Copolymers 5179
7.02.5 Alignment of Block Copolymer Morphologies under External Fields 5181
7.02.5.1 Deformation under Stress 5182
7.02.5.2 Electric Field 5182
7.02.5.3 Magnetic Field 5182
7.02.6 Block Copolymer Thin Films 5183
7.02.6.1 Morphological Engineering via Thin Film Fabrication 5184
7.02.6.2 Morphological Engineering via Block Copolymer Design 5189
7.02.6.3 Morphological Engineering via External Fields 5189
7.02.7 Summary 5191
References 5191
Block Copolymer Thin Films 5196
7.03.1 Introduction 5196
7.03.2 Symmetric BCP Thin Films: Lamellar Morphologies 5197
7.03.3 Symmetric BCP Thin Films: Phase-Mixed Morphology 5200
7.03.4 Asymmetric BCP Thin Films: Cylindrical Morphologies 5200
7.03.5 Asymmetric BCP Thin Films: Spherical Morphologies 5203
7.03.6 BCP Thin Films: Controlled Interfacial Interactions 5204
7.03.7 BCP Thin Films: Electric Fields 5205
7.03.8 BCP Thin Films: Magnetic Fields 5206
7.03.9 BCP Thin Films: Solvent Evaporation 5206
7.03.10 BCP Thin Films: Gradient Fields 5207
7.03.11 BCP Thin Films: Surface Topography 5209
7.03.12 BCP Thin Films: Faceted Surfaces 5211
7.03.13 BCP Thin Films: Chemical Patterning 5212
7.03.14 Nanopatterning from BCP Thin Films 5212
7.03.15 Applications: Nanoporous Membrane for Filtration of Viruses 5213
7.03.16 Applications: Nanoreactors 5214
7.03.17 Applications: Nanoscaffolding 5215
7.03.18 Applications: Templates from Nanodots to Nanorods 5215
7.03.19 BCP Thin Films: Summary 5216
References 5216
Block Copolymers under Confinement 5222
7.04.1 Introduction 5222
7.04.2 Block Copolymers under Confinement 5223
7.04.3 Principles of Complex Structure Formation from Block Copolymers under Confinement 5226
7.04.3.1 Effects of Surface Interactions 5226
7.04.3.2 Commensurability between the Confining Geometry and the Bulk Phase 5228
7.04.3.3 Deformability of Block Copolymer Structures 5229
7.04.4 Conclusion 5230
Acknowledgments 5230
References 5231
Assemblies of Polymer-Based Nanoscopic Objects 5234
7.05.1 Introduction 5234
7.05.2 Polymer-Mediated Self-Assembly 5234
7.05.3 Polymer-Templated Self-Assembly 5236
7.05.4 TNP Self-Assembly 5237
7.05.4.1 Shape Anisotropy 5238
7.05.4.2 Experimental Studies of Tethered Nanoparticles 5239
7.05.4.3 Simulation Studies of Tethered Nanoparticles: Generic Models 5241
7.05.4.4 Conclusions: Comparison to Experiment and’Detailed Models 5251
References 5253
Self-Assembly of Inorganic Nanoparticles in Polymer-Like Structures 5258
7.06.1 Introduction 5258
7.06.2 Experimental Methods Utilized for•the Self-Assembly of NPs in Nanopolymers 5259
7.06.2.1 Template-Free Methods of NP Assembly 5259
7.06.2.2 Template-Driven Assembly in 1D Nanostructures 5270
7.06.2.3 Field-Assisted NP Assembly in Polymer-Like Structures 5271
7.06.3 Properties of 1D Nanostructures 5273
7.06.4 Applications of 1D Assemblies of NPs 5274
7.06.5 Outlook 5276
References 5276
Hybrid Polymer-Inorganic Nanostructures 5280
7.07.1 Introduction 5280
7.07.2 Block Copolymer Self-Assembly 5280
7.07.3 Nanostructured Diblock Copolymer–Aluminosilicate Nanoparticle Composites: A Model System 5281
7.07.4 Moving from Amorphous to Crystalline Inorganic Materials 5284
7.07.4.1 Transition Metal Oxides 5284
7.07.4.2 Nanostructured Metals 5285
7.07.5 Potential Applications of Nanostructured Block Copolymer-Derived Hybrids 5286
7.07.6 Conclusions and Outlook 5288
Acknowledgments 5290
References 5290
Peptide-Polymer Conjugates Toward Functional Hybrid Biomaterials 5292
7.08.1 Introduction 5292
7.08.2 Peptides/Proteins 5293
7.08.2.1 Primary Structures 5293
7.08.2.2 Secondary Structures 5294
7.08.2.3 Tertiary Structures 5294
7.08.2.4 Stability of Protein Folds 5296
7.08.2.5 Peptides as Building Blocks for Hybrid Materials 5297
7.08.2.6 The Promise of Coiled-Coils 5297
7.08.3 Advantages of Peptide–Polymer Conjugates 5299
7.08.4 Synthesis 5300
7.08.4.1 Polypeptides 5300
7.08.4.2 Peptides 5301
7.08.4.3 Conjugates 5301
7.08.5 Self-Assembly of Peptide–Polymer Conjugates 5303
7.08.5.1 Linear Peptide–Polymer Conjugates Based on Simple Peptide Sequences 5303
7.08.5.2 Peptide–Polymer Conjugates Based on Helix Bundle-Forming Peptides 5303
7.08.5.3 Side Conjugates 5304
7.08.5.4 Amphiphilic Peptide–Polymer Conjugates 5304
7.08.6 Perspectives and Outlook 5306
7.08.7 Conclusion 5307
References 5307
Layer-by-Layer Assembly of Multifunctional Hybrid Materials and’Nanoscale Devices 5310
7.09.1 Introduction 5310
7.09.2 Types of Interactions and Corresponding Materials Used for LbL 5311
7.09.2.1 Electrostatic Interactions 5312
7.09.2.2 Hydrogen Bonding 5312
7.09.2.3 Base-Pair Interactions 5312
7.09.2.4 Charge Transfer Interactions 5312
7.09.2.5 Stereocomplexation 5312
7.09.2.6 Host–Guest Interactions 5312
7.09.2.7 Covalent Bonding 5314
7.09.2.8 Metal Coordination Complexation 5314
7.09.3 Substrates 5314
7.09.3.1 Flat Surfaces 5314
7.09.3.2 Colloidal Particles 5315
7.09.3.3 Cylindrical Systems 5317
7.09.3.3.1 Inside 5317
7.09.3.3.2 Outside 5317
7.09.4 LbL Deposition Techniques 5318
7.09.4.1 Dipping LbL 5318
7.09.4.2 Hydrodynamic LbL 5319
7.09.4.3 Spin LbL 5319
7.09.4.4 Spray LbL 5319
7.09.4.5 Inkjet-Assisted LbL 5320
7.09.4.6 LbL Deposition on Particles 5320
7.09.4.6.1 Centrifugation 5320
7.09.4.6.2 Sequential adsorption 5320
7.09.4.6.3 Filtration/ultrafiltration 5321
7.09.5 Characterization Methods 5321
7.09.5.1 Monitoring Layer Buildup 5321
7.09.5.1.1 By changes in optical absorbance 5321
7.09.5.1.2 By changes in film thickness 5323
7.09.5.2 Film Structure 5323
7.09.5.3 Adsorption Kinetics 5325
7.09.5.4 Chemical Composition 5326
7.09.5.5 Imaging of LbL Films 5327
7.09.6 Applications 5328
7.09.6.1 Optical Devices 5328
7.09.6.2 Nanoreactors 5329
7.09.6.3 Functional Membranes for Separation Science 5329
7.09.6.4 Electrochemical Devices 5330
7.09.6.5 Multilayer Emulsions for Food Industry 5330
7.09.6.6 Superhydrophobic/Superhydrophilic Coatings 5330
7.09.6.7 Biomedical Applications 5331
7.09.7 Conclusion and Perspective 5331
References 5332
Nanostructured Electrospun Fibers 5338
7.10.1 Introduction 5338
7.10.2 Formation of Fibers 5340
7.10.3 Beaded Fibers 5343
7.10.4 Core–shell and Hollow Fibers 5345
7.10.5 Porous and Wrinkled Fibers 5348
7.10.6 Block Copolymer Fibers 5352
7.10.7 Applications of Electrospun Fibers 5356
7.10.8 Conclusions and Perspectives 5358
References 5359
Soft Lithographic Approaches to Nanofabrication 5362
7.11.1 Introduction 5362
7.11.1.1 Nanofabrication 5362
7.11.1.2 Soft Lithography and Unconventional Nanofabrication 5363
7.11.1.3 Methods of Soft Lithography for Nanofabrication 5363
7.11.1.4 Objective of the Chapter 5364
7.11.1.5 Scope 5364
7.11.2 Materials and Methods 5364
7.11.2.1 Introduction 5364
7.11.2.2 Preparation of Masters 5364
7.11.2.3 Materials for Stamps 5365
7.11.3 Printing 5365
7.11.3.1 Introduction 5365
7.11.3.2 Microcontact Printing 5366
7.11.3.3 Decal Transfer Printing 5367
7.11.3.4 Biological Applications of μCP 5369
7.11.4 Molding 5369
7.11.4.1 Introduction 5369
7.11.4.2 Pushing the Limits of Molding 5369
7.11.4.3 Step-and-Flash Imprint Lithography 5369
7.11.4.4 Particle Replication in Nonwetting Templates 5371
7.11.4.5 Three-Dimensional Molding 5373
7.11.4.6 Micromolding in Capillaries 5373
7.11.4.7 Solvent-Assisted Micromolding 5374
7.11.5 2D and 3D Fabrication using Optical Soft Lithography 5374
7.11.5.1 Introduction 5374
7.11.5.2 3D Fabrication by Phase-Shifting Edge Lithography 5374
7.11.5.3 3D Fabrication by Proximity-Field Nanopatterning 5375
7.11.6 Nanoskiving 5375
7.11.6.1 Introduction 5375
7.11.6.2 Sectioning Planar Thin Films 5375
7.11.6.3 Sectioning Parallel to Arrays of Nanoposts 5377
7.11.6.4 Placement of Arrays on Arbitrary Substrates 5377
7.11.7 Conclusions 5379
Acknowledgments 5379
References 5380
Block Copolymer Thin Films on Patterned Substrates 5384
7.12.1 Introduction 5384
7.12.2 Block Copolymer Thin films on Topographical Prepatterns 5385
7.12.2.1 Self-Assembly of Block Copolymers on the Homogeneous Topographical Surface 5385
7.12.2.2 Self-Assembly of Block Copolymers on a Heterogeneous Topographical Surface 5388
7.12.3 Block Copolymer Thin Films on Chemical Prepatterns 5389
7.12.3.1 Self-Assembly of Block Copolymers on Dense Chemical Patterns 5390
7.12.3.2 Self-Assembly of Block Copolymers on Sparse Chemical Patterns 5392
7.12.4 Theory and Simulation of Block Copolymer Thin Films on Patterned Substrates 5393
7.12.4.1 Overview of Methods 5394
7.12.4.2 Representation of Surface and Surface Model 5394
7.12.4.3 Simulation of Block Copolymer Thin Films on Topographical Patterns 5396
7.12.4.4 Simulation of Block Copolymer Thin Films on Chemical Patterns 5397
7.12.5 Future Issues for Block Copolymer Thin Films on Pattern Substrates 5398
7.12.5.1 Issues in Materials and DSA Processes 5398
7.12.5.2 Issues in Simulations 5398
References 5399
Nanoimprint Lithography of Polymers 5402
7.13.1 Introduction 5402
7.13.2 Major Accomplishments of Nanoimprint Lithography 5402
7.13.3 Technical Issues of Nanoimprint Lithography 5404
7.13.3.1 Nanoimprint Lithography Process 5404
7.13.3.2 Nanoimprint Lithography Molds 5407
7.13.3.3 Nanoimprint Lithography Resists 5410
7.13.4 Applications 5414
7.13.4.1 Microfluidics and Nanofluidics 5414
7.13.4.2 Microelectronics 5416
7.13.4.3 Patterned Magnetic Storage 5418
7.13.4.4 Other Applications 5420
7.13.5 Conclusions and Outlook 5421
Acknowledgments 5421
References 5421
Modeling Mixtures of Nanorods and Polymers: Determining Structure-Property Relationship for Polymeric Nanocomposites 5426
7.14.1 Introduction 5426
7.14.1.1 The Polymeric Components 5426
7.14.1.2 Inorganic Constituents 5427
7.14.1.3 Ordering Nanoparticles in Diblock Copolymers 5427
7.14.1.4 Macroscopic Properties 5428
7.14.2 Nanorod Polymer Composites 5429
7.14.2.1 Modeling Nanorod Polymer Composites 5429
7.14.2.2 Cahn–Hilliard Brownian Dynamics Model of Nanorod Polymer Composites 5429
7.14.2.3 Preferential Ordering in Nanorod Polymer Composites 5430
7.14.3 Mechanical Properties 5431
7.14.3.1 Lattice Spring Model of Micromechanics 5431
7.14.4 Electrical Properties 5432
7.14.4.1 Continuum Model of Electrical Conduction 5433
7.14.5 Photovoltaic Properties 5433
7.14.5.1 Drift–Diffusion Model of Photovoltaics 5434
7.14.6 Conclusions 5435
References 5436
Sterically Stabilized Nanoparticles in Solutions and at Interfaces 5438
7.15.1 Introduction – Sterically Stabilized Nanoparticles: Synthesis and the Role of Surface-Bound Ligands 5438
7.15.1.1 Outline 5438
7.15.2 Synthesis of Ligand-Stabilized Nanoparticles 5438
7.15.2.1 ‘Janus Particles’ – Ideal Interfacial Mediators 5441
7.15.3 Nanoparticles at the Air–Liquid Interface 5442
7.15.4 Sterically Stabilized Nanoparticles at Liquid–Liquid Interfaces: From Particle-Stabilized Emulsions’to’Robust’Materials 5446
7.15.5 Controlling Miscibility with Bijels: From Simulation to Experiments 5451
7.15.6 Sterically Stabilized Nanoparticles in Polymer Matrices – From Dispersion to Interfacial Pinning 5454
7.15.6.1 Sterically Stabilized Nanoparticles as Fillers 5455
7.15.6.2 Sterically Stabilized Nanoparticles in Electronically Active Materials 5456
7.15.6.3 Optoelectronic Effects of Ligand-Stabilized QDs 5457
7.15.6.4 Sterically Stabilized Nanoparticles Tailored for Block Copolymer Templates 5459
References 5460
Quasi-One-Component Polymer Nanocomposites Based on Particle Brush Assembly 5464
7.16.1 Introduction 5464
7.16.2 Structure of Particle Brush Systems 5465
7.16.2.1 Theoretical Studies on the Effect of Polymer Graft Architecture on the Structure of Particle Brush Systems 5465
7.16.2.2 Experimental Studies on the Effect of Polymer Graft Architecture on the Structure of Particle Brush Systems 5467
7.16.3 Particle Brush-Based Quasi-One-Component Nanocomposites 5470
7.16.3.1 Synthesis of Particle Brush Systems 5470
7.16.3.2 Quasi-One-Component Nanocomposites Based on Densely Grafted Particle Brush Systems 5471
7.16.3.3 Quasi-One-Component Nanocomposites Based on Sparse Particle Brush Systems 5473
7.16.4 Conclusion 5474
Acknowledgments 5475
References 5475
Electrical Conductivity of Polymer Nanocomposites 5478
7.17.1 Introduction 5478
7.17.2 Applications of Electrically Conductive Polymer Nanocomposites 5478
7.17.3 Percolation Theory and Simulation 5479
7.17.3.1 The Basics 5479
7.17.3.2 Overview of the Theoretical and Simulation Approaches to Percolation of Anisotropic Particles 5480
7.17.3.3 Excluded Volume Theory of Percolation 5480
7.17.3.4 Simulations of Percolation 5481
7.17.3.5 Percolation Model for Core–Shell Rods 5482
7.17.3.6 Effective-Medium Approximations – An Alternative to Percolation 5483
7.17.4 Mechanisms of Electrical Transport 5483
7.17.4.1 Transport Mechanisms 5483
7.17.4.2 Tunneling Percolation 5483
7.17.4.3 Prediction of Network Conductivity 5484
7.17.5 Filler Effects 5485
7.17.5.1 Aspect Ratio 5485
7.17.5.2 Polydispersity in Nanoparticle Size and Electrical Properties 5485
7.17.5.3 Nanoparticle Orientation 5486
7.17.5.4 Nanoparticle Flexibility and Waviness 5488
7.17.6 Effects of Matrix Properties 5488
7.17.7 Dispersion/Microstructure 5489
7.17.7.1 Methods to Disperse Elongated Fillers in a Polymer Matrix 5489
7.17.7.2 Methods to Quantify Dispersion 5490
7.17.7.3 Effects of Dispersion on Electrical Properties 5490
7.17.8 Concluding Remarks and Future Directions 5492
Acknowledgments 5493
References 5493
Polymer Dynamics in Constrained Geometries 5496
7.18.1 Introduction 5496
7.18.2 The Nature of Confinement 5497
7.18.3 Techniques to Quantify Dynamics 5498
7.18.3.1 Calorimetry 5498
7.18.3.2 Dielectric Spectroscopy 5499
7.18.3.3 Dynamic Mechanical Spectroscopy and Related Mechanical Approaches 5502
7.18.3.4 Mechanical Surface Probes 5504
7.18.3.5 Diffusion Experiments 5505
7.18.3.6 Flow Experiments 5507
7.18.3.7 X-ray Techniques 5508
7.18.3.8 Inelastic Neutron Scattering 5509
7.18.3.9 Fluorescence Measurements 5512
7.18.3.10 Nuclear Magnetic Resonance 5515
7.18.3.11 Brillouin Light Scattering 5516
7.18.3.12 Modeling and Simulation 5517
7.18.4 Physical Mechanisms of Confinement 5519
7.18.4.1 Finite Size versus Surface Interactions 5520
7.18.4.2 Chain Conformation and Molecular Mass 5520
7.18.4.3 Entanglement Density 5521
7.18.4.4 Cooperative and Collective Motions 5521
7.18.4.5 Nonequilibrium Effects 5522
References 5523
Polymer Nanomechanics 5528
7.19.1 Introduction 5529
7.19.2 Preliminary Mechanics Concepts 5529
7.19.2.1 Hooke’s Law for 1D Linearly Elastic Materials 5529
7.19.2.2 Extension to Higher Dimensions: Shear and Poisson’s Ratio 5529
7.19.3 Contact Mechanics 5530
7.19.3.1 The Hertz Model for Nonadhesive Contact 5530
7.19.3.2 Mechanics of Microgels with Interpenetrating Polymer Network as Cell Mimic 5531
7.19.3.3 Mechanical Properties of Thin Gels: Multicomponent Phospholipid Bilayer Membranes 5533
7.19.4 Alternatives to Hertzian Mechanics 5537
7.19.4.1 Effects of Finite Sample Thickness 5537
7.19.4.2 Adhesive Contact: The Johnson-Kendall-Roberts (JKR) Model 5537
7.19.4.3 Using Adhesive Interaction to Measure the Elastic Modulus of Polymer Surfaces 5537
7.19.4.4 Viscoelastic Response of PDMS in the Adhesive Interaction with AFM Tips 5539
7.19.4.5 Connection of Mechanical Properties and Polymer Conduction Behavior 5544
7.19.5 Single-Molecule Extension Mechanics 5548
7.19.5.1 Contribution of Hydrophobic Hydration to PS Extension Mechanics 5548
7.19.6 Summary 5552
References 5552
e9780444533494v8 5556
Polymer Science: A Comprehensive Reference 5557
Copyright 5560
Contents_of_Volume 8 5561
Volume Editors 5563
Editor-in-Chief_Bio 5565
Editors_Bio 5567
Contributors_of_Volume 8 5575
Preface 5577
Foreword 5581
Introduction - Applications of Polymers 5583
8.01.1 Synopsis of Chapters 5584
8.01.1.1 Top-Down versus Bottom-Up Patterning of Polymers 5584
8.01.1.2 Photoresists and Advanced Patterning 5585
8.01.1.3 Rapid Prototyping 5585
8.01.1.4 Polymer-Based Sensors 5585
8.01.1.5 Electroactive Liquid Crystal Polymers 5585
8.01.1.6 Ink-Jet Printing of Functional Polymers for’Advanced Applications 5586
8.01.1.7 Nanocomposites and Hybrid Materials 5586
8.01.1.8 Polymer Photonics 5586
8.01.1.9 Polymer-Based LED and Solar Cells 5586
8.01.1.10 Optical Fibers (and Waveguides) 5587
8.01.1.11 Adhesives and Sealants 5587
8.01.1.12 Polymer Membranes 5587
8.01.1.13 Polymer Additives 5587
8.01.1.14 Stimuli-Responsive Polymer Systems 5588
8.01.1.15 High-Performance Heterocyclic Polymers 5588
8.01.1.16 Graphenes 5588
8.01.1.17 Functionalized Carbon Nanotubes 5588
8.01.2 Closing Remarks 5589
Top-Down versus Bottom-Up Patterning of Polymers 5591
8.02.1 Block Copolymer Self-Assembly for Patterning Applications 5591
8.02.2 Block Copolymer Phase Behavior 5592
8.02.2.1 Self-Assembly in the Bulk 5592
8.02.2.2 Self-Assembly in Thin Films: Confinement Effects 5594
8.02.2.3 Phase Behavior of Block Copolymer Blends 5598
8.02.2.4 Solvent Annealing 5603
8.02.2.5 The Bag of Tricks: Controlling Self-Assembly in Thin Films 5606
8.02.3 Block Copolymer Templates 5609
8.02.3.1 Block Copolymer Lithography: Patterning After Selective Removal of a Block 5610
8.02.3.2 Patterning by Infiltration into a Self-Assembled Block Copolymer 5611
8.02.4 The Intersection of Block Copolymer Self-Assembly with Photolithography 5611
8.02.5 Outlook and Summary 5612
References 5613
Photoresists and Advanced Patterning 5619
8.03.1 Introduction 5619
8.03.2 Basic Properties and Requirements of’Photoresists 5622
8.03.3 Classification of Resists 5624
8.03.4 Introduction to Early Optical Photoresists: Cyclized Rubber and DNQ–Novolac Resists 5625
8.03.4.1 Cyclized Rubber Resists 5625
8.03.4.2 DNQ–Novolac Resists 5627
8.03.4.3 The Transition from DNQ–Novolac Resists to’DUV’Resists 5630
8.03.5 Introduction to Chemically Amplified Photoresists 5631
8.03.6 Photochemical Acid Generators 5633
8.03.7 Polymeric Materials and Mechanisms for CARs 5634
8.03.7.1 CAR Materials Based on Polarity Change Mechanisms 5634
8.03.7.2 CAR Materials Based on Rearrangements 5641
8.03.7.3 CARs Based on Condensation and Esterification 5641
8.03.7.4 CAR Materials Based on Cross-linking and’Polymerization 5642
8.03.7.5 CAR Materials Based on Depolymerization 5643
8.03.7.6 Challenges Moving Forward for High-Resolution Patterning with CARs 5646
8.03.8 e-Beam Resists 5650
8.03.8.1 Acrylate e-Beam Resists 5650
8.03.8.2 Poly(Olefin Sulfone) e-Beam Resists 5652
8.03.8.3 Epoxy-Based e-Beam Resists 5653
8.03.8.4 Styrene-Based e-Beam Resists 5654
8.03.8.5 Styrene–Acrylate Copolymer Resists 5654
8.03.8.6 Use of Optical Photoresists for e-Beam Patterning 5655
8.03.9 Conclusions 5655
References 5655
Rapid Prototyping 5659
8.04.1 Basic Principles of Rapid Prototyping 5659
8.04.1.1 Introduction 5659
8.04.1.2 Classification of RP Processes 5660
8.04.2 Photopolymerization-Based RP Technologies 5660
8.04.2.1 Basic Principles, Advantages, and Disadvantages 5660
8.04.2.2 Commercial Photopolymerization-Based RP Processes 5663
8.04.2.3 Materials for Photopolymerization-Based RP Processes 5665
8.04.3 Extrusion-Based RP Processes 5667
8.04.3.1 Basic Principles, Advantages, and Disadvantages 5667
8.04.3.2 Commercial Extrusion-Based RP Processes 5668
8.04.3.3 Materials Development for Extrusion-Based RP Processes 5669
8.04.4 Powder-Based RP Processes 5672
8.04.4.1 Basic Principles, Advantages, and Disadvantages 5672
8.04.4.2 Powder-Based Commercial RP Processes 5673
8.04.4.3 Materials Development for Powder-Based RP Processes 5674
8.04.5 Laminated Object Manufacturing 5677
8.04.5.1 Principles, Advantages, and Disadvantages 5677
8.04.5.2 Commercial LOM Processes (Cubic Technologies) 5678
8.04.5.3 Materials Development for Laminated Object Manufacturing 5678
8.04.6 Conclusions 5679
References 5679
Polymer-Based Sensors 5683
8.05.1 Polymers in Organic Electronics 5683
8.05.1.1 A Brief Introduction to Polymer Electronics 5683
8.05.1.2 Types of Sensors 5684
8.05.2 Gas-Phase Sensing 5687
8.05.2.1 Electrical Sensors in Gas Sensing 5688
8.05.2.2 Optical Sensors in Gas Sensing 5694
8.05.2.3 Mechanical Sensors in Gas Sensing 5695
8.05.3 Liquid-Phase Sensing 5696
8.05.3.1 Electrical Sensors in Liquid Sensing 5697
8.05.3.2 Optical Sensors in Liquid Sensing 5704
8.05.4 Conclusions 5707
References 5708
Electroactive Liquid Crystalline Polymers 5711
8.06.1 Introduction 5711
8.06.2 Semiconductive Polymers 5711
8.06.2.1 Crosslinkable Liquid Crystals 5713
8.06.2.2 Semiconducting Polymers of the Hairy Rod Type and Polymers with a Board-Like Shape 5716
8.06.2.3 Molecularly Inhomogenous Systems 5718
8.06.3 Electrooptical Switching of LC Polymers 5718
8.06.4 Actuators 5719
8.06.4.1 Ferroelectric LC Elastomers as Actuators and’Sensors 5721
8.06.4.2 Thermally Triggered Actuators 5722
8.06.5 Conclusion 5724
References 5724
Ink-Jet Printing of Functional Polymers for Advanced Applications 5729
8.07.1 Ink-Jet Printing and Its Fundamental Properties 5729
8.07.1.1 Introduction 5729
8.07.1.2 Origin of Ink-Jet Printing 5729
8.07.1.3 Working Principle of Piezoelectric Printheads 5733
8.07.1.4 Fluid Dynamic Considerations 5735
8.07.1.5 Printing of Droplets, Lines, and Films 5736
8.07.1.6 Methods to Improve Print Resolution 5736
8.07.2 Ink-Jet Printing Functional Materials 5738
8.07.2.1 Introduction 5738
8.07.2.2 Influence of Printing Height 5739
8.07.2.3 Ink Behavior at the Substrate and the Coffee Drop Effect 5742
8.07.2.4 Impact and Spreading of Droplets onto a Surface 5745
8.07.3 Applications of Ink-Jet Printing 5749
8.07.3.1 Introduction 5749
8.07.3.2 Printed Electronics 5749
8.07.3.3 Printed Libraries for Combinatorial Investigations of’Structure–Property Relationships 5751
8.07.3.4 Reactive Ink-Jet Printing 5753
8.07.4 Conclusions and Outlook 5754
References 5755
Nanocomposites and Hybrid Materials 5759
8.08.1 Introduction 5759
8.08.2 Nanoscaled Fillers 5760
8.08.3 Nanocomposite Preparation 5763
8.08.3.1 Particle Surface Modification 5763
8.08.3.2 Melt Mixing 5765
8.08.3.3 Solution Casting 5768
8.08.3.4 In Situ Polymerization 5770
8.08.3.5 In Situ Particle Generation 5772
8.08.4 Applications 5776
8.08.4.1 UV-Absorption in Inorganic/Polymer Nanocomposites 5776
8.08.4.2 Translucent Nanocomposites With Tunable Color 5777
8.08.4.3 Dichroic Nanocomposites 5778
8.08.4.4 Low-Emissivity Systems 5779
8.08.4.5 NIR Absorbing Additives for Laser Engraving 5779
8.08.4.6 Luminescent Nanocomposite Materials 5780
8.08.4.7 High and Low Refractive Index in Polymer Nanocomposites 5782
8.08.4.8 Thermal Properties 5783
8.08.5 Summary 5788
References 5788
Polymer Photonics 5793
8.09.1 Introduction 5793
8.09.1.1 Molecular Origins of Optical Nonlinearity 5793
8.09.2 Second-Order NLO Polymers 5794
8.09.2.1 Dipolar NLO Chromophores 5794
8.09.2.2 Polymeric NLO Materials 5799
8.09.2.3 Device Applications 5814
8.09.3 Third-Order NLO Polymers 5816
8.09.3.1 Characterization of Third-Order NLO Effects 5816
8.09.3.2 Materials Showing Nonlinear Refractive Index (Optical Kerr Effect) 5819
8.09.3.3 Two-Photon Absorbing (TPA) Materials 5823
8.09.3.4 Applications of TPA Materials 5833
8.09.4 Summary and Outlook 5837
References 5839
Polymer-Based LEDs and Solar Cells 5843
8.10.1 Introduction 5843
8.10.1.1 LEDs and Solar Cells: An Overview 5843
8.10.2 Device Issues in Electroluminescent Materials and Full-Color Displays 5843
8.10.2.1 Device Issues in Organic Solar Cells 5846
8.10.3 Material Classes 5849
8.10.3.1 Poly(arylene vinylene)s 5849
8.10.3.2 Polyphenylenes 5854
8.10.3.3 Polycarbazoles 5857
8.10.3.4 Polythiophenes 5858
8.10.4 Hybrid Solar Cells 5861
8.10.5 Conclusions and Outlook 5861
References 5862
Optical Fibers 5865
8.11.1 Introduction 5865
8.11.2 Fundamentals of Fiber Optics 5865
8.11.2.1 History of Fiber-Optic Communications 5866
8.11.2.2 Basic Concepts of Optical Fibers 5866
8.11.2.3 Classification 5867
8.11.3 Plastic Optical Fibers 5868
8.11.3.1 The Advent of Plastic Optical Fibers 5869
8.11.3.2 Development of Graded-Index Plastic Optical Fibers 5869
8.11.4 Transmission Properties 5874
8.11.4.1 Bandwidth 5874
8.11.4.2 Attenuation 5875
8.11.5 Materials 5879
8.11.5.1 Poly(methyl methacrylate) 5879
8.11.5.2 Poly(styrene) 5880
8.11.5.3 Poly(carbonate) 5880
8.11.5.4 Perfluorinated Polymer 5881
8.11.6 Conclusions 5884
References 5884
Adhesives and Sealants 5887
8.12.1 Adhesives 5888
8.12.2 Adhesive Testing 5888
8.12.3 Pressure-Sensitive Adhesives 5888
8.12.3.1 Tackifiers for PSAs 5889
8.12.3.2 PSAs based upon natural rubber 5890
8.12.3.3 PSAs based upon acrylic elastomers 5890
8.12.3.4 PSAs based upon block copolymers 5891
8.12.3.5 Silicones as PSAs 5891
8.12.4 Rubber-Based Adhesives 5891
8.12.4.1 Natural Rubber Solvent-Based Adhesives 5891
8.12.4.2 Neoprene (Chloroprene) Solvent-Based Adhesives 5891
8.12.4.3 Styrene–Butadiene Rubber-Based Adhesives 5892
8.12.5 Hot Melt Adhesives 5892
8.12.6 Natural Product-Based Adhesives 5893
8.12.7 Structural Adhesives 5893
8.12.7.1 Epoxy-Based Structural Adhesives 5893
8.12.7.2 Phenolic Structural Adhesives 5895
8.12.7.3 Polyurethanes as Structural Adhesives 5895
8.12.7.4 Acrylics as Structural Adhesives 5896
8.12.7.5 Cyanoacrylate Adhesives 5897
8.12.7.6 Urea–Formaldehyde Adhesives 5898
8.12.7.7 Higher Performance Structural Adhesives 5898
8.12.8 Sealants 5900
8.12.8.1 Performance Tests of Sealants 5900
8.12.9 Future of Adhesives and Sealants 5903
8.12.9.1 Better 5903
8.12.9.2 Faster 5903
8.12.9.3 Cheaper 5903
8.12.9.4 Other Factors 5903
8.12.9.5 Smaller 5904
8.12.9.6 Smarter 5904
References 5904
Polymer Membranes 5907
8.13.1 Introduction and Historical Background 5907
8.13.2 Membrane Variants and Their Utility 5908
8.13.3 Membrane Formation 5909
8.13.3.1 Fundamentals of Membrane Formation 5909
8.13.3.2 Membrane Formation Processes 5911
8.13.4 Membranes in Gas and Liquid Separations 5914
8.13.4.1 Fundamentals of Gas Permeability and’Permselectivity 5914
8.13.4.2 Upper Bound Concept 5916
8.13.4.3 Group Contribution Methods 5918
8.13.4.4 Gas and Liquid Membrane Separation Applications 5918
8.13.5 Barrier Polymers 5918
8.13.6 Membranes in Water Purification Processes 5919
8.13.6.1 Reverse Osmosis and Desalination 5919
8.13.6.2 Nano-, Ultra-, and Microfiltration Membranes for Water Purification 5921
8.13.6.3 Electrodialysis 5922
8.13.6.4 Dialysis and Hemodialysis 5923
8.13.7 Membranes in Emerging Technologies 5923
8.13.7.1 Fuel Cell Membranes 5923
8.13.7.2 Membranes in Lithium Batteries 5925
8.13.7.3 Electrically Conductive Polymer Membranes 5925
8.13.7.4 Thin Films (Membranes) in Optoelectronic Applications 5926
References 5927
Polymer Additives 5931
8.14.1 Introduction 5931
8.14.1.1 Principles of Polymer Degradation 5931
8.14.2 Thermo-Oxidative Degradation 5932
8.14.3 Requirements for Polymer Stabilizers 5934
8.14.4 Stabilization against Thermo-Oxidative Degradation 5935
8.14.5 Stabilization of Polymers against Degradation under the Impact of Light 5942
8.14.5.1 Introduction 5942
8.14.5.2 Quenching of Photo-Oxidation with HA(L)S 5944
8.14.5.3 HA(L)S-Based Free Radical Scavengers 5944
8.14.5.4 UV Absorbers 5947
8.14.5.5 Quenchers 5948
8.14.5.6 Practical Considerations for the Use of HA(L)S 5948
8.14.6 Multifunctional Additive for Engineering Polymers 5949
8.14.7 Metal Ion Deactivators 5949
8.14.8 Acid Scavengers 5950
8.14.9 Analysis of Stabilizers in the Polymer Matrix 5951
8.14.9.1 Introduction 5951
8.14.9.2 Testing the Polymer Melt Stability during Processing 5952
8.14.9.3 Examination of Long-Term Heat Aging 5952
8.14.9.4 Other Methods Analyzing Long-Term Aging of Polymers 5953
8.14.9.5 Testing of Polymer Stability against Light-Induced Degradation – Natural versus Artificial Weathering 5954
8.14.9.6 Analytical Methods for Structural Characterization and Quantification of Polymer Additives 5955
References 5955
Stimuli-Responsive Polymer Systems 5959
8.15.1 What Are ‘Responsive Polymers’? 5959
8.15.2 Stimuli-Responsive Polymers 5960
8.15.2.1 Temperature-Responsive Polymers 5961
8.15.2.2 pH-Responsive Polymers 5964
8.15.2.3 Other Stimuli-Responsive Polymers 5966
8.15.3 Special Structures of Responsive Polymers 5967
8.15.3.1 Controlled Synthesis and Block Copolymers 5967
8.15.3.2 Cross-Linked Responsive Polymers 5969
8.15.3.3 Various Geometries, Different Dimensions, and’Surface Patterning 5971
8.15.3.4 Bioconjugates 5978
8.15.4 Properties of Responsive Polymers 5979
8.15.4.1 Predictions and First Observation of Volume Phase Transition in Swollen Networks 5979
8.15.4.2 Thermodynamic of Phase Separation 5979
8.15.4.3 Processes at Volume Phase Transition 5982
8.15.4.4 Monitoring of Volume Phase Transition 5982
8.15.5 Responsive Polymers and Their Applications 5985
8.15.5.1 General Remarks on Application 5985
8.15.5.2 Application of Responsive Polymers 5986
8.15.5.3 Examples 5987
References 5990
Graphene and Its Synthesis 5997
8.16.1 Introduction and Physical Properties of’Graphene 5997
8.16.2 Graphene Synthesis and Characterization 6000
8.16.2.1 Micromechanical Exfoliation of Graphene 6000
8.16.2.2 Graphene Oxide and Reduced Graphene Oxide 6000
8.16.2.3 Liquid-Phase Exfoliation of Graphite 6007
8.16.2.4 Graphene Growth by CVD 6008
8.16.2.5 Epitaxial Growth of Graphene 6009
8.16.3 Graphene Nanoribbons 6009
8.16.4 Bottom-Up Organic Synthesis of Graphene Nanostructures 6010
8.16.4.1 Solution Synthesis of Nanographene 6010
8.16.4.2 Surface-Mediated Synthesis of Graphene Nanoribbons 6012
8.16.4.3 Surface-Mediated Synthesis of Porous Graphene 6015
8.16.5 Conclusions 6017
References 6017
Functionalized Carbon Nanotubes and Their Enhanced Polymers 6021
8.17.1 Introduction 6021
8.17.2 CNT Synthesis Techniques 6023
8.17.2.1 Arc Discharge 6023
8.17.2.2 Laser Ablation 6025
8.17.2.3 Chemical Vapor Deposition 6028
8.17.3 Functionalization of CNTs 6030
8.17.3.1 Noncovalent Functionalization 6031
8.17.3.2 Covalent Functionalization 6035
8.17.3.3 Applications 6039
8.17.4 CNT–Polymer Nanocomposites 6045
8.17.4.1 CNT–Polymer Interactions 6045
8.17.4.2 Fabrication of CNT–Polymer Nanocomposites 6045
8.17.4.3 Properties of CNT/Polymer Nanocomposites 6049
8.17.4.4 Applications 6055
References 6055
e9780444533494v9 6061
Polymer Science: A Comprehensive Reference 6062
Copyright 6065
Contents_of_Volume 9 6066
Volume Editors 6068
Editor-in-Chief_Bio 6070
Editors_Bio 6072
Contributors_of_Volume9 6080
Preface 6082
Foreword 6086
Introduction and Overview 6088
9.01.1 Introduction 6088
9.01.2 Overview 6088
Lifelike but Not Living: Selection of Synthetically Modified Bioinspired Nucleic Acids for Binding and Catalysis 6090
9.02.1 Introduction 6090
9.02.2 Basic Aspects of DNA and RNA Polymers 6090
9.02.3 Three Discoveries That Transformed Nucleic Acid Chemistry 6093
9.02.3.1 Catalytic RNA 6093
9.02.3.2 PCR and Other Polymerases 6094
9.02.3.3 Degenerate Oligonucleotide Synthesis and In Vitro Selection (SELEX) 6094
9.02.4 Upper Limits of a Degenerate DNA Synthesis–\rA Cap on Outcome 6095
9.02.5 Catalytic RNA Cleavage by Ribozymes and\rDNAzymes 6097
9.02.6 DNAzymes – Deoxyribozymes 6097
9.02.7 M2+-Independent RNA-Cleaving DNAs 6099
9.02.8 RNase A-Catalyzed RNA Cleavage – M2+-Independent Catalytic Perfection 6099
9.02.9 Early Attempts at Expanding the Catalytic Repertoire of Nucleic Acids 6100
9.02.10 Simultaneous Incorporation of Imidazoles and Amines – Selection of M2+-Independent RNase A’Mimics 6102
9.02.11 A Comparison of Two Selected M2+-Independent DNAzyme RNase A Mimics 6104
9.02.12 M2+-Independent RNA-Cleaving DNAzymes with Three Modified Nucleosides 6106
9.02.13 Nucleic Acid Diels–Alderases – Modified and\rUnmodified 6108
9.02.14 Nanoparticle Templation by Modified RNAs 6108
9.02.15 Other Reports of Modified rNTPs and dNTPs for Potential Selection 6109
9.02.16 Non-Nucleobase Modifications – Altered Phosphodiester and Sugar Portions 6111
9.02.17 Nucleobase-Modified Aptamers 6112
9.02.18 Evolving Polymerases 6113
9.02.19 Conclusions 6116
Acknowledgments 6117
References 6117
Collagen 6122
9.03.1 Introduction 6122
9.03.2 The Collagen Fibril – A Building Block of’Extracellular Tissues 6123
9.03.2.1 Synthesis of Procollagen and Fibril Self-Assembly 6123
9.03.2.2 Structure of the Collagen Fibril 6123
9.03.2.3 Mineralized Collagen Fibrils 6125
9.03.3 Examples of Collagen-Based Natural Tissues 6126
9.03.3.1 Tendons – Transmitting and Storing Mechanical Energy 6126
9.03.3.2 Bone: Hierarchical Structure and Adaptation 6128
9.03.3.3 A Tissue Made to Last a Life Time: Dentin 6130
9.03.3.4 How to Make Collagen Transparent: The Cornea 6132
9.03.3.5 Collagen Organization in Cylindrical Structures 6132
9.03.3.6 Skin and Cartilage 6134
9.03.4 Collagen as Biomaterial 6135
9.03.4.1 Collagenous Materials for Biomaterial Use 6135
9.03.4.2 Processing of Collagen 6137
9.03.4.3 Applications of Collagen as Biomaterial 6138
References 6139
Silks 6144
9.04.1 Introduction 6144
9.04.2 Types of Silk Fibers 6144
9.04.2.1 Silkworm Silk 6144
9.04.2.2 Spiders 6145
9.04.2.3 Other Insect Silks 6145
9.04.3 Material Properties 6146
9.04.3.1 Mechanical Properties 6146
9.04.3.2 Thermal Properties 6146
9.04.3.3 Ultraviolet Exposure 6146
9.04.3.4 Aging 6146
9.04.3.5 In Vivo Compatibility 6146
9.04.4 Composition 6146
9.04.5 Structure 6147
9.04.6 Silk Processing 6148
9.04.6.1 In Vivo Spinning 6148
9.04.6.2 Artificial Processing 6150
9.04.7 The Future 6153
References 6153
Elastins 6158
9.05.1 Introduction 6158
9.05.2 Native Elastin Derivatives: Sequence, Structure, and Function 6159
9.05.2.1 Sequence Analysis of Native Elastin 6159
9.05.2.2 Structural Analysis of Native Elastin 6162
9.05.2.3 Coacervation of Elastin 6165
9.05.2.4 Mechanism of Elasticity 6167
9.05.2.5 Functional Significance of Elastin Polypeptide Conformations 6168
9.05.3 Elastin-Mimetic Polypeptides: Synthesis and’Applications 6172
9.05.3.1 Introduction 6172
9.05.3.2 Rational Design Approaches to Functional Elastin Polymers 6173
9.05.3.3 Synthesis of Elastin-Mimetic Protein Polymers 6174
9.05.3.3.1 Chemical synthesis of elastin-mimetic polypeptides 6174
9.05.3.3.2 Genetically directed synthesis of elastin-mimetic polypeptides 6176
9.05.3.3.3 Functionally expanded elastin-mimetic polypeptides 6179
9.05.3.4 Elastin-Mimetic Polymer Architectures 6180
9.05.3.4.1 Elastin-mimetic homopolymers 6180
9.05.3.4.2 Elastin-mimetic block copolymers 6181
9.05.3.4.3 Translational fusions to nonelastin sequences 6183
9.05.3.5 Elastin-Mimetic Protein Polymers: Applications 6184
9.05.3.5.1 Tissue engineering 6184
9.05.3.5.2 Controlled delivery and release 6185
9.05.3.5.3 Protein purification 6185
9.05.3.5.4 Functionally responsive surfaces 6186
9.05.3.5.5 Environmental remediation 6186
9.05.4 Comparison between Native and Synthetic Elastins 6186
References 6187
Resilin in the Engineering of Elastomeric Biomaterials 6191
9.06.1 Introduction 6191
9.06.2 Native Resilin 6191
9.06.2.1 Amino Acid Composition 6191
9.06.2.2 Mechanical Properties 6193
9.06.2.3 Conformational Origins of Elasticity 6194
9.06.3 Recombinant Resilin-Like Polypeptides 6194
9.06.3.1 Resilin Gene Identification 6194
9.06.3.2 Expression and Purification of RLPs 6195
9.06.3.3 Secondary Structure of RLPs 6196
9.06.3.4 Mechanical Properties of Recombinant RLPs 6197
9.06.3.5 RLP-Based Hydrophilic Elastomeric Biomaterials 6197
9.06.4 Conclusions and Perspectives 6200
Acknowledgments 6200
References 6200
Artificial Proteins 6203
9.07.1 Introduction 6203
9.07.2 Protein Biosynthesis and Genetic Engineering of’Protein Polymers 6204
9.07.2.1 Protein Biosynthesis 6204
9.07.2.2 Protein Engineering 6204
9.07.3 Bioinspired Artificial Protein Polymers 6205
9.07.3.1 Elastin-Like Polypeptides 6205
9.07.3.2 Silk Analogs 6207
9.07.3.3 Silk–Elastin Copolymers 6207
9.07.3.4 Collagen-Inspired Protein Polymers 6208
9.07.4 Biosynthesis of De Novo-Designed Protein Polymers 6209
9.07.4.1 Periodic Polypeptides 6209
9.07.4.2 Helical Polypeptides 6212
9.07.4.3 Recent De Novo Protein Polymer Designs 6217
9.07.5 Expanding the Scope of Protein Chemistry: Noncanonical Amino Acids 6217
References 6219
Polysaccharides 6224
9.08.1 Introduction 6224
9.08.2 The Chemistry of Carbohydrates 6224
9.08.2.1 Accessing Carbohydrates and Their Polymers through Isolation and Synthesis 6227
9.08.3 Glycopolymers 6232
9.08.3.1 Glucans 6232
9.08.3.2 N-Acetylglucosamine Polymers – Chitin/Chitosan 6236
9.08.3.3 Glycosaminoglycans 6237
9.08.3.4 Other Polysaccharides 6238
9.08.4 Conclusions 6239
References 6240
Poly(hydroxyalkanoate)s 6244
9.09.1 General Introduction 6244
9.09.2 Biosynthesis of PHAs 6244
9.09.2.1 Metabolic Pathways and Monomer-Supplying Enzymes for PHA Synthesis 6247
9.09.2.2 Strategies for the Metabolic Engineering of Efficient PHA Production 6248
9.09.2.3 Pathway Engineering for Recombinant Production of Conventional Polymers and Novel Polymers 6251
9.09.2.4 Prospects 6252
9.09.3 Structure and Properties of PHAs 6253
9.09.3.1 Structure and Properties of P(3HB) and Its Copolymers 6253
9.09.3.2 Improvement of Mechanical Properties of PHA Films by Cold-Drawing 6254
9.09.3.3 PHA Fibers 6254
9.09.3.4 PHA Nanofibers 6257
9.09.3.5 Prospects 6258
9.09.4 Biodegradability of PHAs 6258
9.09.4.1 Environmental Degradation of PHAs 6259
9.09.4.2 Structure and Function of PHA-Degrading Enzymes 6259
9.09.4.3 Enzymatic Degradation of P(3HB) 6260
9.09.4.4 Effect of Chemical Structures on Enzymatic Degradability 6262
9.09.4.5 Recent Progress in the Investigation of Enzymatic Degradation of PHAs 6263
9.09.4.6 Prospects 6263
9.09.5 Industrial Production of P(3HB) and’Its’Copolymers 6264
References 6265
Polymers of the Cytoskeleton 6270
9.10.1 Introduction 6270
9.10.2 Cytoskeletal Filament Subunits 6271
9.10.2.1 Subunit Structure: Actin, Tubulin, and Intermediate Filament Proteins 6271
9.10.2.2 Biochemistry of Cytoskeletal Proteins 6271
9.10.3 Cytoskeletal Assembly 6272
9.10.3.1 Assembly Mechanisms: Nucleation/Elongation versus Polycondensation 6272
9.10.3.2 Stage 1: Filament Nucleation 6273
9.10.3.3 Stage 2: Filament Growth 6274
9.10.3.4 Stage 3: Filament Maturation, Steady State, and Disassembly 6275
9.10.4 Cytoskeletal-Binding Proteins 6276
9.10.4.1 Monomer-Binding Proteins: Nucleation, Monomer Sequestration, and Nucleotide Exchange 6276
9.10.4.2 Filament Severing 6277
9.10.4.3 Polymerases 6277
9.10.4.4 Cross-Linkers 6277
9.10.5 Polyelectrolyte Properties: Counterion Cross-Linking 6277
9.10.6 Mechanical Properties of the Cytoskeleton 6278
9.10.6.2 Solutions of Semiflexible Polymers 6282
9.10.6.3 Network Elasticity 6283
9.10.7 Active, Nonequilibrium Gels 6284
9.10.7.1 In Vitro Model Systems 6284
9.10.8 Conclusions 6285
References 6285
Mechanical Interactions between Cells and Tissues 6288
9.11.1 Introduction 6288
9.11.2 Elasticity of Physiological Microenvironments 6289
9.11.3 Cell-Induced Matrix Deformations 6290
9.11.4 How Deeply Do Cells ‘Feel’? – Experiments 6291
9.11.5 How Deeply Do Cells ‘Feel’? – Computations 6292
9.11.6 Matrix-Mediated Cell–Cell Interactions 6292
9.11.7 Cell Morphology and Cytoskeletal Forces Are\rDirected by Extracellular Mechanical Cues 6293
9.11.8 Molecular Mechanics in Mechanism: From Forced Unfolding to ‘Heat Shock’ Proteins 6293
9.11.9 Putting It All Together: Microenvironment Elasticity, Cytoskeletal Stress, and Gene Organization 6294
9.11.10 Conclusion 6294
Acknowledgments 6295
References 6295
Biological Adhesion 6298
9.12.1 Introduction 6298
9.12.2 Bioinspired Fibrillar Adhesives 6298
9.12.2.1 Background 6302
9.12.3.1 Fibrin Glue and Transglutaminase-Inspired Adhesives 6302
9.12.3.2 Mussel Adhesives and Their Mimics 6303
9.12.3.3 Sandcastle Worm Cements and Their Mimics 6311
9.12.3.4 Brown Algae Adhesives and Their Mimics 6312
9.12.4 Other Biological Adhesives as Future Targets of Biomimetic Systems 6312
9.12.4.1 Barnacle Cements (Genus Balanus) 6312
9.12.4.2 Oyster Adhesives 6313
9.12.4.3 Frog Glues (Notaden bennetti) 6313
9.12.5 Conclusion 6313
Acknowledgments 6314
References 6314
Viral Packaging of Nucleic Acids 6318
9.13.1 Introduction 6318
9.13.2 Physical Models of dsDNA, ssDNA, and RNA 6319
9.13.3 Internal Organization of a Viral Genome 6320
9.13.4 Thermodynamic Forces in the Packaging in\rBacteriophages 6322
9.13.4.1 Chain Deformation 6322
9.13.4.2 Confinement Entropy 6324
9.13.4.3 Electrostatic, Hydration, and Steric Interactions 6325
9.13.4.4 Base-Pairing Interactions 6326
9.13.5 Electrostatic Dominance in the Assembly of\rssRNA Viruses 6326
9.13.6 Ejection Forces and Dynamics 6328
References 6329
Making New Materials from Viral Capsids 6334
9.14.1 Introduction 6334
9.14.2 Capsid-Based Templates for the Generation of\rInorganic Materials 6336
9.14.2.1 Cowpea Chlorotic Mottle Virus 6336
9.14.2.2 Chilo Iridescent Virus 6337
9.14.2.3 Cowpea Mosaic Virus 6337
9.14.2.4 Brome Mosaic Virus 6338
9.14.2.5 Red Clover Necrotic Mosaic Virus 6338
9.14.2.6 Bacteriophage M13 6338
9.14.2.7 Tobacco Mosaic Virus 6339
9.14.2.8 Summary 6339
9.14.3 Chemical Methods for the Covalent Modification of Viral Capsids 6340
9.14.3.1 Cowpea Mosaic Virus 6340
9.14.3.2 Cowpea Chlorotic Mottle Virus 6342
9.14.3.3 Bacteriophage MS2 6342
9.14.3.4 Summary 6343
9.14.4 Capsid-Based Materials for Drug Delivery, Diagnostics, and Tissue Engineering 6343
9.14.4.1 Virus Capsids for Use in Magnetic Resonance Imaging 6343
9.14.4.2 Chemically Modified Viral Capsids for Positron Emission Tomography Imaging 6345
9.14.4.3 Chemically Modified Viral Capsids for\rPhotodynamic Therapy 6345
9.14.4.4 Chemically Modified Viral Capsids for Anticancer Drug Delivery 6346
9.14.4.5 Canine Parvovirus for Targeting Tumors Via the Transferrin Receptor 6346
9.14.4.6 Engineered Filamentous Phage for Tissue Engineering 6346
9.14.4.7 Summary 6347
9.14.5 Capsid-Based Materials for Optical and\rCatalytic Applications 6347
9.14.5.1 Self-Assembling Light-Harvesting Systems Based on the Tobacco Mosaic Virus 6347
9.14.5.2 Photocatalytic Systems Based on Bacteriophage MS2 6348
9.14.5.3 Photocatalytic and Chemically Catalytic Systems Based on Bacteriophage M13 6349
9.14.5.4 Chemical Catalysis Using the Cowpea Mosaic Virus and Hepatitis B Virus 6349
9.14.5.5 Summary 6349
9.14.6 Summary and Future Challenges 6349
Acknowledgments 6350
References 6350
Peptoid Oligomers: Peptidomimetics for Diverse Biomedical Applications 6354
9.15.1 Background 6354
9.15.1.1 Motivation: Peptoids as Compounds that Bridge the Value of Industrial Polymers and the Specificity of Biological Polymers 6354
9.15.1.2 Other Peptidomimetics 6354
9.15.1.3 Peptoids 6356
9.15.2 Peptoid-Based Polymers 6356
9.15.2.1 Peptoid Synthetic Versatility 6356
9.15.2.2 Peptoid Polymers in the Solid State 6358
9.15.2.3 Peptoid Polymers in Solution 6358
9.15.3 Applications of Peptoid Polymers 6361
9.15.3.1 Transfection Agents 6361
9.15.3.2 Peptoid-Based ‘Drag-Tags’ for Bioanalytical DNA Separations 6362
9.15.4 Antimicrobial Peptoids 6363
9.15.4.1 Original Motivation: Mimicking AMPs 6363
9.15.4.2 Antimicrobial Peptoids 6363
9.15.4.3 Toward Therapeutic Applications of Antibacterial Peptoids 6366
9.15.4.4 Future Directions: From Antimicrobial to Anticancer Peptoids 6368
9.15.5 Concluding Remarks 6371
References 6371
Polymer-Membrane Interactions 6376
9.16.1 Polymer–Membrane Interactions 6376
9.16.2 Neutral Polymers 6377
9.16.2.1 Pluronics 6377
9.16.2.2 N-Isopropylacrylamide Polymers 6380
9.16.3 Zwitterionic Polymers 6381
9.16.4 Anionic Polymers 6382
9.16.4.1 Poly(ethyl acrylic acid) 6382
9.16.4.2 Poly(ethyl acrylic acid) Copolymers 6382
9.16.4.3 Poly(alkyl acrylic acids) and Related Copolymers 6383
9.16.4.4 Poly(methacrylic acid)s and Related Copolymers 6385
9.16.4.5 Poly(acrylic acids) and Related Copolymers 6386
9.16.4.6 Poly(styrene-alt-maleic anhydride) 6386
9.16.4.7 Poly(l-lysine-alt-isophthalamide) Polymers 6387
9.16.4.8 Delivery Using Poly(carboxylic acids) 6388
9.16.5 Cationic Polymers 6388
9.16.5.1 Cations in the Main Chain 6388
9.16.5.2 Styrene-Based Polycations 6389
9.16.5.3 Pyridinium-Based Polycations 6390
9.16.5.4 Acrylic Polymers 6391
9.16.5.5 Siloxane Polymers 6392
9.16.5.6 Peptide-Based Polymers 6393
9.16.5.7 Imide-Based ROMP Polymers 6395
9.16.5.8 Ester- and Amide-Based ROMP Polymers 6396
9.16.5.9 Conjugated Polymers 6397
9.16.5.10 Other Polymers 6398
9.16.5.11 Molecular Dynamics Simulations 6399
9.16.6 Conclusion 6400
References 6400
Protein-Polymer Conjugates 6404
9.17.1 Introduction 6404
9.17.1.1 Controlled Radical Polymerization 6404
9.17.1.2 Chemistries for Conjugation 6404
9.17.1.3 Approaches to Conjugate Formation 6405
9.17.2 Grafting To 6407
9.17.2.1 Functionalized ATRP Initiators 6408
9.17.2.2 Postpolymerization Modification of ATRP Polymers 6408
9.17.2.3 Functionalized RAFT CTAs 6411
9.17.2.4 Postpolymerization Modification of RAFT Polymers 6413
9.17.3 Grafting From 6415
9.17.3.1 Grafting From via ATRP and RAFT Polymerization 6415
9.17.3.2 Grafting From via RAFT Polymerization 6420
9.17.4 Conclusions and Outlook 6422
Acknowledgements 6422
References 6422
Biomimetic Polymers (for Biomedical Applications) 6426
9.18.1 Introduction 6426
9.18.2 Interaction of Cells with their Environment: Potential of Biomaterial Design 6427
9.18.2.1 Cell Adhesion 6428
9.18.2.2 Morphogenetic and Mitogenic Factor Signaling 6429
9.18.2.3 Mechanical Stimuli 6430
9.18.2.4 Endocytosis 6430
9.18.3 Biomimetic Strategies Applied for Polymeric Materials 6431
9.18.3.1 Chemical Interactions 6431
9.18.3.2 Functional Interactions 6433
9.18.3.3 Switchable Mechanical Interactions 6433
9.18.3.4 Textural Interactions 6433
9.18.4 Polymers Used for Biomedical Applications: Biomimetic Modification Techniques 6435
9.18.4.1 Natural Polymers 6435
9.18.4.2 Synthetic Polymers 6437
9.18.5 Examples of Biomedical Applications for’Biomimetic Polymers 6440
9.18.5.1 Tissue Engineering 6440
9.18.5.2 Biomimetic Polymers in Gene Delivery 6442
9.18.6 Characterization of Biomimetic Polymer Properties and of the Resulting Interactions with the Biological Environment 6443
9.18.6.1 Determination of Surface Structure and Chemistry 6443
9.18.6.2 Mechanical Testing 6444
9.18.6.3 Fluorescence Imaging of Live Cells 6444
9.18.7 Conclusion and Outlook 6445
References 6445
Biocompatibility 6450
9.19.1 Introduction 6450
9.19.2 Biocompatibility 6450
9.19.3 Materials for Medical Devices 6451
9.19.4 In Vitro Tests for Biocompatibility 6451
9.19.5 In Vivo Tests for Biocompatibility 6452
9.19.5.1 Sensitization, Irritation, and Intracutaneous (Intradermal) Reactivity 6453
9.19.5.2 Systemic Toxicity (Acute Toxicity) and Subacute and’Subchronic Toxicity 6454
9.19.5.3 Genotoxicity 6455
9.19.5.4 Implantation 6455
9.19.5.5 Chronic Toxicity 6455
9.19.5.6 Carcinogenicity 6455
9.19.5.7 Reproductive and Developmental Toxicity 6455
9.19.5.8 Biodegradation 6455
9.19.6 Inflammation, Wound Healing, and the Foreign Body Response 6456
9.19.6.1 Overview 6456
9.19.6.2 Acute Inflammation 6458
9.19.6.3 Chronic Inflammation 6458
9.19.6.4 Granulation Tissue 6459
9.19.6.5 Foreign Body Reaction 6460
9.19.6.6 Fibrosis/Fibrous Encapsulation 6461
9.19.7 Hemocompatibility 6462
9.19.8 Immune Responses 6463
9.19.9 Summary and Conclusion 6467
References 6468
Hydrogels 6472
9.20.1 Introduction 6472
9.20.1.1 Overview 6472
9.20.1.2 Hydrogel Structure 6473
9.20.2 Gel Swelling and Solute Transport 6474
9.20.2.1 Equilibrium Swelling Theory 6474
9.20.2.2 Rubber Elasticity Theory 6475
9.20.2.3 Calculation of the Mesh Size 6475
9.20.2.4 Diffusion in Hydrogels 6475
9.20.3 ‘Intelligent’ Hydrogels 6476
9.20.3.1 Temperature-Sensitive Hydrogels 6476
9.20.3.2 pH-Sensitive Hydrogels 6477
9.20.3.3 Glucose-Sensitive Hydrogels 6478
9.20.3.4 Protein Sensitivity 6479
9.20.3.5 DNA-Responsive Hydrogels 6480
9.20.4 Conclusions 6480
References 6480
Polymeric Implants 6484
9.21.1 Introduction 6484
9.21.2 Properties of Biomedical Polymers 6484
9.21.2.1 Biocompatibility Is a Fundamental Characteristic of’a Biomaterial 6484
9.21.2.2 Additional Characteristics of a Polymeric Biomaterial 6486
9.21.3 Key Polymers Used in Today’s Medical Devices 6488
9.21.3.1 Silicones and Silicone Elastomers 6488
9.21.3.2 Polyurethanes 6489
9.21.3.3 Polyethylene 6490
9.21.3.4 Poly(vinyl chloride) 6490
9.21.3.5 Fluoropolymers (PTFE and Other Polymers in the Teflon® Family) 6491
9.21.3.6 Poly(ethylene terephthalate) 6491
9.21.3.7 Methacrylic and Acrylic Polymers 6491
9.21.3.8 Poly(2-hydroxyethyl methacrylate) 6492
9.21.3.9 Poly(N-isopropyl acrylamide) 6492
9.21.3.10 Poly(ethylene glycol) 6493
9.21.3.11 Biodegradable Polyesters (PLA, PGA, PCL) 6493
9.21.3.12 Styrene-Isobutylene Block Copolymers 6494
9.21.3.13 Natural Polymers 6494
9.21.3.14 Porous Materials and Tissue Engineering Scaffolds 6495
9.21.4 Perspectives and Opportunities 6495
Acknowledgments 6496
References 6497
Photopolymerizable Systems 6500
9.22.1 Introduction 6500
9.22.2 Photopolymerization Reactions 6501
9.22.2.1 Photoinitiators and Mechanisms of Initiation 6502
9.22.2.2 Photopolymerizable Systems 6505
9.22.2.3 Characterization of Photopolymerization Reactions 6507
9.22.2.4 Parameters Influencing Photopolymerization Behavior 6509
9.22.3 Applications 6512
9.22.3.1 General Applications 6512
9.22.3.2 Dental Applications 6512
9.22.3.3 Tissue Engineering 6514
9.22.3.4 Drug Delivery 6519
9.22.4 Conclusion 6521
References 6521
Patterning of Polymeric Materials for Biological Applications 6526
9.23.1 Introduction 6526
9.23.2 Top-Down Polymer Patterning Techniques 6527
9.23.2.1 Mask-Based Patterning Techniques 6527
9.23.2.2 Printing and Writing Techniques 6527
9.23.2.3 Molding Techniques 6528
9.23.2.4 Contact Techniques 6528
9.23.3 Bottom-Up Patterning Techniques 6529
9.23.3.1 Macromolecular Assembly 6529
9.23.3.2 Polymeric Nano/Microparticle Assembly 6531
9.23.3.3 Layer-by-Layer Assembly 6532
9.23.4 Integration of ‘Top-Down’ and ‘Bottom-Up’ Techniques 6532
9.23.4.1 Chemically Patterned Surface as Template for Direct Assembly of Block Copolymers 6533
9.23.4.2 Topologically Patterned Surfaces as Template for Direct Assembly of Block Copolymers 6533
9.23.5 Biological Applications of Patterned Polymers 6534
9.23.5.1 Patterning of Nucleic Acids and DNA 6534
9.23.5.2 Protein Patterning 6535
9.23.5.3 Micro- and Nanopatterning for Cellular Investigation 6536
9.23.5.4 Chemical and Topographical Patterning to Enhance the Cellular Microenvironment 6539
9.23.5.5 Patterning for Tissue and Organ Generation 6539
9.23.6 Summary 6540
Acknowledgments 6541
References 6541
High-Throughput Approaches 6544
9.24.1 Introduction 6544
9.24.2 Polyarylates 6545
9.24.3 Cationic Polymers 6547
9.24.3.1 Poly(β-amino esters) 6547
9.24.3.2 PEI-Derived Polymers 6549
9.24.3.3 Lipidoids 6550
9.24.4 Organic Coatings 6553
9.24.5 Polyolefin Catalyst Discovery 6556
9.24.6 Polymers Generated through Radical Polymerization 6558
9.24.6.1 Atom-Transfer Radical Polymerization 6558
9.24.6.2 Reversible Addition-Fragmentation Chain Transfer 6559
9.24.6.3 Nitroxide-Mediated Polymerization 6561
9.24.7 Ring-Opening Polymerizations 6563
9.24.8 Microarray Approaches 6565
9.24.9 Other High-Throughput Screening Approaches 6566
References 6569
Programming Cells with Synthetic Polymers 6572
9.25.1 Introduction 6572
9.25.2 Extracellular Matrix as a Model for Materials to\rProgram Cells 6573
9.25.3 Recruiting Host Cells 6574
9.25.3.1 Chemotaxis as a Strategy 6574
9.25.3.2 Developing Design Criteria to Guide Chemotaxis 6574
9.25.3.3 Polymer Systems to Enable Cell Recruitment 6575
9.25.3.4 Vascular Cell Recruitment for Angiogenesis on Demand 6576
9.25.4 Programming Cells via Adhesive Interactions 6577
9.25.5 Regulating Cell Dispersal 6578
9.25.6 Bringing All Three Steps Together: Regulating Dendritic Cell Recruitment, Activation, and Dispersion 6579
9.25.6.1 Future Directions 6580
References 6580
Nucleic Acid Delivery via Polymer Vehicles 6584
9.26.1 Introduction 6584
9.26.2 Polymer Vehicles for Nucleic Acid Delivery 6585
9.26.2.1 Basics of Polyplex Formulation and Delivery 6585
9.26.2.2 Examples of Polymer and Dendrimer Vehicles 6586
9.26.3 Polyplex Characterization 6586
9.26.3.1 Physicochemical Characterization Methods of’Polyplexes 6586
9.26.3.2 Transfection and Toxicity Characterization of Polyplexes In Vitro 6589
9.26.4 Polymer Structure–Nucleic Acid Delivery Relationships from In Vitro Studies 6590
9.26.4.1 Polyethylenimine 6590
9.26.4.2 Poly-l-lysine 6593
9.26.4.3 Dendrimers 6593
9.26.4.4 Chitosan 6594
9.26.4.5 Poly(glycoamidoamine)s 6595
9.26.4.6 Cyclodextrin Polymers 6599
9.26.4.7 Poly(β-amino ester)s 6603
9.26.5 Introduction to In Vivo Nucleic Acid Delivery with Polymers 6604
9.26.5.1 Formulation Barriers 6604
9.26.5.2 Example of In Vivo Application 6607
9.26.6 Polymer–Nucleic Acid Therapeutics in Human Clinical Trials 6610
References 6611
Polymeric Imaging Agents 6616
9.27.1 Introduction 6616
9.27.1.1 Clinical Need for Contrast Agents 6616
9.27.1.2 Polymeric Contrast Agents 6616
9.27.2 X-Ray Imaging Contrast Agents 6617
9.27.2.1 Introduction to X-Ray Imaging and X-Ray Contrast Agents 6617
9.27.2.2 Liposomal X-Ray Agents 6617
9.27.2.3 Polymeric Particles 6618
9.27.2.4 Hydrogels 6618
9.27.2.5 Gold Particles 6618
9.27.3 Magnetic Resonance Imaging Contrast Agents 6618
9.27.3.1 Introduction to Magnetic Resonance Imaging and\rMagnetic Resonance Imaging Contrast Agents 6618
9.27.3.2 Liposomes 6619
9.27.3.3 Superparamagnetic Iron Oxide Particles and\rUltrasmall Superparamagnetic Iron Oxide Nanoparticles 6620
9.27.3.4 Dendrimers 6621
9.27.4 Ultrasound Contrast Agents 6621
9.27.4.1 Introduction to Ultrasound and Ultrasound Contrast Agents 6621
9.27.4.2 Surfactant Ultrasound Contrast Agents 6623
9.27.4.3 Liposomal Ultrasound Contrast Agents 6624
9.27.4.4 Biodegradable Polymer Ultrasound Contrast Agents 6624
9.27.5 Radionucleotide Imaging Agents 6625
9.27.5.1 Single-Photon Emission Computed Tomography 6625
9.27.5.2 Positron Emission Tomography 6626
9.27.6 Optical Imaging Agents 6626
9.27.7 Conclusions 6628
References 6629
Biodegradation of Polymers 6634
9.28.1 Introduction 6634
9.28.2 Polyesters 6634
9.28.2.1 Base-Catalyzed Polyester Hydrolysis 6634
9.28.2.2 Acid-Catalyzed Polyester Hydrolysis 6637
9.28.2.3 Effects of Crystallinity on Polyester Degradation 6637
9.28.2.4 Effects of Hydrophilicity on Polyester Degradation 6638
9.28.2.5 Enzymatic Degradation of Polyesters 6638
9.28.3 Polyanhydrides 6639
9.28.3.1 Base-Catalyzed Polyanhydride Hydrolysis 6639
9.28.3.2 Effects of Hydrophilicity on Polyanhydride Hydrolysis 6642
9.28.3.3 Polymer Crystallinity 6642
9.28.3.4 Effects of Drug Loading on Polyanhydride Hydrolysis 6642
9.28.3.5 In Vivo Degradation of Polyanhydride Matrices 6643
9.28.4 Polyorthoesters 6644
9.28.4.1 Acid-Catalyzed Hydrolysis of Polyorthoesters 6644
9.28.4.2 Factors Controlling the Degradation Rate of\rPolyorthoesters 6644
9.28.5 Polyketals 6645
9.28.5.1 Acid-Catalyzed Hydrolysis of Polyketals 6645
References 6645
e9780444533494v10 6648
Polymer Science: A Comprehensive Reference 6649
Copyright 6652
Contents_of_Volume 10 6653
VolumeEditors 6657
Editor-in-Chief_Bio 6659
Contributors_of_Volume 10 6669
Preface 6673
Foreword 6677
Introduction: Polymers for a Sustainable Environment and Green Energy 6679
10.01.1 Introduction 6679
References 6680
Green Chemistry and Green Polymer Chemistry 6683
10.02.1 Introduction 6683
10.02.2 Green Chemistry 6683
10.02.3 Green Polymer Chemistry 6687
10.02.4 Biopolymer Definitions 6688
10.02.4.1 Biopolymers Based on Biomass 6689
10.02.4.2 Composition and Structure 6689
10.02.4.3 Catalysis 6689
10.02.4.4 Degradability 6689
10.02.4.5 Compatibility 6689
10.02.4.6 Production Capacities 6690
References 6690
Lipid-Based Polymer Building Blocks and Polymers 6693
10.03.1 Introduction 6693
10.03.2 Natural Fats and Oils as Polymer Building Blocks 6694
10.03.2.1 Drying Oils 6695
10.03.2.2 Autoxidation 6703
10.03.2.3 Siccativation 6704
10.03.2.4 Modification 6705
10.03.2.5 Linoleum 6705
10.03.2.6 Alkyd Resins 6705
10.03.3 Oleochemical Polymer Building Blocks 6707
10.03.3.1 Castor Oil 6707
10.03.3.2 Ene Reactions 6708
10.03.3.3 Hydroformylation 6710
10.03.3.4 Carboxylation 6714
10.03.3.5 Ozonolysis 6717
10.03.3.6 Dimerization 6718
10.03.3.7 Metathesis 6720
10.03.3.8 Epoxidation 6723
10.03.4 Glycerol 6725
10.03.5 Summary 6728
References 6728
Mono-, Di-, and Oligosaccharides as Precursors for \rPolymer Synthesis 6737
10.04.1 Introduction 6738
10.04.1.1 Biomass 6738
10.04.1.2 Building Blocks, Chemicals, and Potential Screening 6739
10.04.1.3 Aim of This Chapter 6739
10.04.2 Mono-, Di-, and Oligosaccharide-Based Platforms and Building Blocks 6740
10.04.2.1 Carbohydrate-Based C2 Polymer Building Blocks 6740
10.04.2.2 Carbohydrate-Based C3 Polymer Building Blocks 6742
10.04.2.3 Carbohydrate-Based C4 Polymer Building Blocks 6743
10.04.2.4 Carbohydrate-Based C5 Polymer Building Blocks 6745
10.04.2.5 Carbohydrate-Based C6 Polymer Building Blocks 6746
10.04.3 Carbohydrate-Based Polymers 6748
10.04.3.1 Polyolefins 6748
10.04.3.2 Thermoplastics Polyesters 6749
10.04.3.3 Polyurethanes (PUs) and Polyureas 6752
10.04.3.4 Emerging Products 6753
10.04.4 Conclusions 6756
References 6757
Celluloses and Polyoses/Hemicelluloses 6761
10.05.1 Introduction 6762
10.05.2 Cellulose Sources and Isolation 6762
10.05.2.1 Cellulose from Wood 6762
10.05.2.2 Cellulose from 1-Year Plants 6764
10.05.2.3 Bacterial Cellulose 6764
10.05.3 Structure and Superstructure of Cellulose: Methods for Analysis 6766
10.05.3.1 Molecular Structure: Nuclear Magnetic Resonance Analysis 6766
10.05.3.2 Carbonyl and Carboxyl Groups in Cellulosics 6766
10.05.3.3 Hydrogen Bond System in Cellulose 6767
10.05.3.4 Crystalline Structure of Cellulose: X-Ray Diffraction 6768
10.05.3.5 Morphological Structure 6770
10.05.3.6 Molecular Weight: Viscometry and SEC 6772
10.05.4 Cellulose Solvents 6772
10.05.4.1 Derivatizing Solvents, Intermediates, and Transient Derivatives 6773
10.05.4.2 Aqueous (Protic) Solvents 6775
10.05.4.3 Nonaqueous, Nonderivatizing Systems 6777
10.05.5 Cellulose Regeneration 6780
10.05.5.1 Fiber Spinning 6780
10.05.5.2 Nonwoven Material 6786
10.05.6 Cellulose Esters 6792
10.05.6.1 Esters of Carboxylic Acids 6792
10.05.6.2 Inorganic Esters 6797
10.05.7 Cellulose Ethers 6802
10.05.7.1 Nonionic Ethers 6806
10.05.7.2 Anionic Ethers 6808
10.05.7.3 Cationic Ethers 6809
10.05.7.4 Di- and Triphenylmethyl Ether Moieties as Protective Groups 6810
10.05.7.5 Silyl Ethers of Cellulose 6811
10.05.8 Deoxy Celluloses 6814
10.05.9 Oxidation of Cellulose 6817
10.05.10 Grafting Reactions 6818
10.05.11 Hemicelluloses 6820
References 6823
Nanochitins and Nanochitosans, Paving the Way to Eco-Friendly and Energy-Saving Exploitation of Marine Resources 6831
10.06.1 Structural Characteristics of Chitins In Vivo 6831
10.06.2 β-Chitin: The Simplest 2D Hydrogen-Bonded Polymorph 6832
10.06.3 α-Chitin: The 3D Hydrogen-Bonded Polymorph 6834
10.06.4 Oxychitin 6836
10.06.5 Simplified Preparation of Chitin Nanofibrils 6837
10.06.6 Electrospinning 6838
10.06.7 Conclusion 6839
Acknowledgments 6839
References 6840
Starch-Based Biopolymers in Paper, Corrugating, and Other \rIndustrial Applications 6843
10.07.1 Starch Basics 6844
10.07.2 Markets 6845
10.07.3 Starch Modification 6847
10.07.3.1 Starch Substitution 6848
10.07.3.2 Starch Thinning 6849
10.07.3.3 Cold-Soluble Starches 6850
10.07.4 Starch Handling and Cooking 6851
10.07.4.1 Starch Supply and Handling 6851
10.07.4.2 Starch Cooking 6852
10.07.5 Industrial Applications 6852
10.07.5.1 Paper and Board Applications 6853
10.07.5.2 Corrugated Board 6857
10.07.5.3 Industrial Binder Applications 6860
10.07.6 Pharmaceutical and Chemical Applications 6862
10.07.6.1 Starch and Glucose 6862
10.07.6.2 Sorbitol 6866
10.07.7 Outlook 6869
References 6870
Guar and Guar Derivatives 6873
10.08.1 Introduction 6873
10.08.2 From the Green Beans to Guar Splits and Guar Powders 6873
10.08.3 Chemical Structure and Resulting Physicochemical Properties and Comparison with’Other’Polysaccharides 6873
10.08.4 Guar Derivatives 6875
10.08.5 Major Applications of Guars 6876
10.08.5.1 Food and Nutraceuticals 6876
10.08.5.2 Pharmacy and Eye Care 6877
10.08.5.3 Explosives 6877
10.08.5.4 Mining 6877
10.08.5.5 Textile 6877
10.08.5.6 Water Treatment 6878
10.08.5.7 Agrochemicals 6878
10.08.5.8 Cosmetics 6879
10.08.5.9 Oil Field 6879
10.08.6 Conclusions and Outlooks 6879
References 6880
Acacia Gum 6883
10.09.1 Origin 6883
10.09.2 Acacia Gum and Sustainable Environment 6883
10.09.3 Chemical Structure 6884
10.09.4 Applications 6884
10.09.4.1 Food Applications 6884
10.09.4.2 Nutritional Applications 6888
10.09.4.3 Nonfood Applications 6889
10.09.5 Conclusion 6889
References 6889
Alginates: Properties and Applications 6891
10.10.1 Introduction 6891
10.10.2 Sources and Production 6891
10.10.3 Chemical Composition and Conformation 6891
10.10.4 Properties 6892
10.10.4.1 Selective Ion Binding and Gel Formation 6892
10.10.4.2 Gel Properties 6892
10.10.4.3 Biological Properties of the Alginate Molecule 6893
10.10.5 Tailoring of Alginates by In Vitro Modification 6894
10.10.6 Technical Applications 6894
10.10.7 Applications of Alginates in Medicine and’Biotechnology 6895
10.10.7.1 Traditional Uses 6895
10.10.7.2 New and Potential Uses 6896
10.10.8 Conclusions 6896
References 6896
Xanthan 6899
10.11.1 Introduction 6899
10.11.1.1 Regulatory Status 6899
10.11.2 Chemical Structure and Biosynthesis 6899
10.11.2.1 Structure 6899
10.11.2.2 Biosynthesis 6900
10.11.3 Production Process and Xanthan Modifications 6901
10.11.3.1 Industrial Production of Xanthan 6901
10.11.3.2 Xanthan Modifications 6901
10.11.4 Physicochemical Properties 6902
10.11.5 Applications 6903
10.11.5.1 Food Applications 6903
10.11.5.2 Applications in Animal Feed 6904
10.11.5.3 Personal Care Applications 6904
10.11.5.4 Pharmaceutical Applications 6904
10.11.5.5 Industrial Applications 6904
10.11.6 Perspectives 6906
References 6906
Polylactic Acid 6909
10.12.1 Introduction 6909
10.12.2 Nondepleting Properties of PLA 6909
10.12.3 Market Potential of PLA 6909
10.12.4 Process Routes to PLA 6909
10.12.5 Processing of PLA 6910
10.12.6 Properties of PLA 6910
10.12.7 Perspective 6910
10.12.8 LA as Raw Material of PLA 6912
References 6913
Gelatin 6915
10.13.1 Gelatin 6915
10.13.2 Chemical Composition 6915
10.13.2.1 Stability 6916
10.13.2.2 Sustainability 6916
10.13.3 Physical and Chemical Properties 6916
10.13.3.1 Gelation 6916
10.13.3.2 Solubility 6918
10.13.3.3 Amphoteric Character 6918
10.13.3.4 Viscosity 6919
10.13.3.5 Colloid and Emulsifying Properties 6919
10.13.4 Manufacture and Processing 6919
10.13.5 Economic Aspects 6920
10.13.6 Analytical Test Methods and Quality Standards 6920
10.13.7 Uses 6921
10.13.7.1 Food Products 6921
10.13.7.2 Pharmaceutical Products 6921
10.13.7.3 Nutraceutical Properties 6922
10.13.7.4 Photographic Products 6922
10.13.7.5 Derivatized Gelatin 6923
References 6923
Processing Soy Protein Concentrate as Plastic in Polymer Blends 6927
10.14.1 Introduction 6927
10.14.2 Soy Protein Products and Fractionation 6927
10.14.3 Plastic Application of Soy Protein 6928
10.14.4 General Extrusion Compounding for’Processing SPC as a Plastic in Blending 6928
10.14.5 Properties of PBAT/SPC Blends 6929
10.14.5.1 Phase Structure 6929
10.14.5.2 Tensile Properties 6930
10.14.5.3 Water Absorption and Wet Strength 6930
10.14.6 Conclusions 6930
References 6931
Lignin as Building Unit for Polymers 6933
10.15.1 Constitution and Structure of Lignin from’Renewable Resources 6933
10.15.2 Important Isolation Methods and’Their’Influence on the Properties of Lignin 6934
10.15.3 Current Applications and Future Aspects of’the Utilization of Lignin 6937
10.15.3.1 Markets, Products, and Potentials 6937
10.15.3.2 Biorefinery Concepts 6940
10.15.3.3 Genetic Modification 6940
10.15.4 Outlook 6940
References 6941
Natural Fibers 6945
10.16.1 Generalities 6945
10.16.2 Fiber Structure 6947
10.16.2.1 Chemistry and Structure of Cellulose Fibers 6947
10.16.2.2 Chemistry and Structure of Protein Fibers 6948
10.16.3 Fiber Morphology 6951
10.16.3.1 Cellulose Fibers 6951
10.16.3.2 Animal Fiber 6952
10.16.3.3 Silk–Spider Silk 6952
10.16.4 Fiber Sourcing 6952
10.16.4.1 Cotton 6952
10.16.4.2 Bast Fibers (Flax, Hemp) 6953
10.16.4.3 Animal Fibers 6954
10.16.4.4 Silk 6955
10.16.5 Summary of the Proprieties of Natural Fibers 6955
10.16.6 Processing of Natural Fibers 6955
10.16.6.1 Operations That Transform Fibers into Fabric 6956
10.16.6.2 The Cleaning Operations 6956
10.16.6.3 Stabilizing the Dimensions 6956
10.16.6.4 Coating and Infiltrating 6956
10.16.6.5 Surface Treatments 6957
10.16.7 Conclusions 6957
References 6957
Natural Rubber 6959
10.17.1 Introduction and History 6959
10.17.2 Challenge Facing the Supply Chain 6959
10.17.3 The Biosynthesis of Poly(cis-1,4-isoprene) 6960
10.17.4 Nonisoprene Components of Natural Rubber\r(NR) 6962
10.17.4.1 Proteins 6962
10.17.4.2 Carbohydrates and Cyclitols 6963
10.17.4.3 Lipids 6964
10.17.4.4 Inorganic Compounds 6965
10.17.5 NR Structure 6965
10.17.5.1 Introduction 6965
10.17.5.2 Microstructure 6965
10.17.5.3 Mesostructure 6966
10.17.6 NR in the Manufacture of Antivibration Parts 6967
10.17.6.1 The Place of NR in Suspension Joints 6967
10.17.6.2 NR/Synthetic Elastomer Competition 6967
10.17.6.3 The Main Processes Used 6968
10.17.7 General Aspects of NR Applications in Tires 6968
10.17.8 Conclusion 6969
References 6969
Biocomposites: Long Natural Fiber-Reinforced Biopolymers 6973
10.18.1 Introduction 6973
10.18.2 Matrix Systems for NF-Reinforced Composites 6974
10.18.2.1 Typical Polymers for NF-Reinforced Composites 6974
10.18.2.2 Thermosetting Biopolymers for Biocomposites 6975
10.18.3 Natural Fibers for Composites 6977
10.18.3.1 Important Data of Natural Fibers 6978
10.18.3.2 Requirements for Semifinished Textile Products 6979
10.18.3.3 Fiber–Matrix Adhesion 6980
10.18.4 Natural Composites and Biocomposites 6980
10.18.4.1 Typical Processing for NF-Reinforced Composite Parts 6981
10.18.5 Manual of Typical Challenges for Selected Applications 6985
10.18.5.1 Light-Weight Paneling Elements: Door Panelings for Automobiles 6985
10.18.5.2 Continuous Processed Structural Parts 6985
10.18.5.3 Light-Weight Structural Parts: Safety Helmets 6986
10.18.5.4 Flame-Resistant Paneling Structures 6986
10.18.5.5 Demonstration Objects: RTM Parts for’the’Bioconcept-Car 6987
10.18.5.6 Future Applications 6990
10.18.6 Conclusions 6990
10.18.7 Outlook 6990
Acknowledgment 6991
References 6991
Performance Profile of Biopolymers Compared to Conventional Plastics 6995
10.19.1 Introduction 6995
10.19.2 Property Profiles of the Most Important Biopolymers 6996
10.19.2.1 Polyvinyl Alcohol 6996
10.19.2.2 Polycaprolactone 6998
10.19.2.3 Polyhydroxyalkanoates 6999
10.19.2.4 Polylactic Acid 7002
10.19.2.5 PLA Blends and Copolymers 7003
10.19.2.6 Bio-Copolyesters and Copolyester Blends 7005
10.19.2.7 Starch/Starch Blends/Thermoplastic Starch 7006
10.19.2.8 Cellulose Regenerates 7007
10.19.2.9 Cellulose Derivatives (Cellulose Acetate (CA), Cellulose Propionate (CP), Cellulose Butyrate (CB), Cellulose Nitrate (CN), Cellulose-Acetate-Butyrate (CAB), and Cellulose-Acetate-Propionate (CAP)) 7008
10.19.3 Properties in Comparison with Conventional Plastics 7010
10.19.3.1 Biopolymer Materials for Injection Molding Applications 7011
10.19.3.2 Biopolymer Film Materials 7022
10.19.3.3 Conclusions for Future Applications 7028
References 7030
Processing of Plastics into Structural Components 7033
10.20.1 Introduction 7033
10.20.1.1 Some terms and Definitions 7033
10.20.1.2 Flow characteristics of Polymer Melts 7033
10.20.1.3 Basics of Mechanics 7034
10.20.2 Procedures for Serial Production of Plastics Products 7036
10.20.2.1 Injection Molding 7037
10.20.2.2 Extrusion and Ancillary Processes 7039
10.20.2.3 Compression Molding 7041
10.20.2.4 Thermoforming 7042
10.20.2.5 Welding 7042
References 7045
Processing and Performance Additives for Plastics 7047
10.21.1 Introduction 7047
10.21.2 Radical Generation 7047
10.21.3 Surface Active Additives 7048
10.21.3.1 Emulsifiers for Emulsion Polymerization 7048
10.21.3.2 Antistatic Agents 7048
10.21.3.3 Antifogging Agents 7049
10.21.4 Additives for Polymer Processing 7050
10.21.4.1 Lubricants 7050
10.21.4.2 Mold Release Agents 7050
10.21.4.3 Heat Stabilizers 7050
10.21.4.4 Acid Scavengers 7051
10.21.4.5 Polymeric Processing Aids 7051
10.21.4.6 Curing Agents 7052
10.21.4.7 Blowing Agents 7052
10.21.5 Additives for Polymer Properties and’Performance 7052
10.21.5.1 Plasticizers 7052
10.21.5.2 Impact Modifiers 7054
10.21.5.3 Antiblocking Agents 7054
10.21.5.4 Slip Additives 7054
10.21.6 Stabilization against Polymer Degradation 7055
10.21.6.1 Antioxidants 7055
10.21.6.2 Light Stabilizers 7055
10.21.6.3 Flame Retardants 7056
References 7057
Processing and Performance Additives for Coatings 7061
10.22.1 Introduction 7061
10.22.2 Emulsification, Stabilization, and Dispersion 7061
10.22.2.1 Emulsifiers 7061
10.22.2.2 Dispersants 7062
10.22.3 Foam Control 7066
10.22.4 Rheology, Thickening, and Flow 7067
10.22.5 Coalescence and Film Formation 7070
10.22.6 Preservation 7071
10.22.7 Coating Performance 7072
Acknowledgment 7072
References 7072
Paper 7075
10.23.1 Introduction 7075
10.23.2 Paper History 7075
10.23.3 Paper Applications and Trends 7076
10.23.3.1 Writing and Printing 7076
10.23.3.2 Currency and Other Financial Vehicles 7077
10.23.3.3 Packaging 7077
10.23.3.4 Wiping Applications 7077
10.23.3.5 Personal Care Products 7078
10.23.3.6 Construction and Industrial Product 7079
10.23.4 Paper Manufacturing Basics 7079
10.23.4.1 Chipping 7079
10.23.4.2 Deinking 7080
10.23.4.3 Chemical Pulping 7081
10.23.4.4 Mechanical Pulping 7081
10.23.4.5 Hydrapulper 7081
10.23.4.6 Blend Chest 7081
10.23.4.7 Refining 7082
10.23.4.8 Wet End 7082
10.23.4.9 Dry End 7082
10.23.4.10 Converting and Printing 7083
10.23.5 Cell Structure of Wood 7083
10.23.6 Lignin and Cellulose Chemistry 7084
10.23.7 Sustainable Forestry 7086
References 7087
Polyurethanes 7089
10.24.1 General Description and Basic Reactions 7090
10.24.1.1 Raw Materials 7090
10.24.1.2 Macromolecular Structures 7092
10.24.2 Foams and Elastomers 7092
10.24.2.1 Production of Polyurethanes 7092
10.24.2.2 Sustainability 7092
10.24.2.3 Rigid Foam 7092
10.24.2.4 Flexible Foam 7094
10.24.2.5 Elastomers 7095
10.24.2.6 Other Applications 7095
10.24.2.7 Thermoplastic Polyurethanes 7096
10.24.2.8 Renewable Resources 7097
10.24.2.9 Recycling and Energy Recovery 7098
10.24.2.10 Safety 7098
10.24.3 Coatings and Adhesives 7098
10.24.3.1 Coatings Introduction 7098
10.24.3.2 High-Solids and Solvent-Free Polyurethane Coatings 7098
10.24.3.3 Waterborne Polyurethane Coatings – Chemistry of’Dispersions, Technology, and Applications 7103
10.24.3.4 Radiation-Curing Polyurethane Coatings 7111
10.24.3.5 Adhesives Introduction 7112
10.24.3.6 Solvent-Free Reactive One-Component Polyurethane Adhesives 7113
10.24.3.7 Two-Component Polyurethane Adhesives 7114
10.24.3.8 Solvent-Free Silane-Terminated Polyurethanes 7114
10.24.3.9 Waterborne Polyurethane Adhesives 7115
10.24.3.10 Outlook for Polyurethane Coatings and Adhesives 7117
References 7117
Polysiloxanes 7121
10.25.1 Introduction: Siloxanes and their Environmental Characteristics 7121
10.25.2 How Siloxanes Contribute to Sustainable Manufacturing and Resource Conservation 7122
10.25.3 New Applications with Polysiloxanes as Key Substances for Environmentally Important Processes 7123
10.25.3.1 Lotus Effect: From a Bionic Phenomenon to a Useful Technology for Self-Cleaning Using Key Siloxane Properties\r 7123
10.25.3.2 PUR Foams: How Siloxanes Allow More Ecologically-Friendly Foams for Insulation 7124
10.25.3.3 Radiation Curing Release Coatings on BOPP Films 7125
10.25.3.4 Silicone Derivatives as Ecologically-Friendly Enhancers for’Agrochemicals 7125
10.25.3.5 Polysiloxanes for Energy-Efficient Ceramics Production 7126
10.25.3.6 Siloxanes for the Production of Solar Cells 7126
10.25.3.7 Ecologic Water-Based Cleaning Polishes 7127
10.25.4 Conclusion and Outlook 7127
References 7128
Lubricant and Fuel Additives Based on Polyalkylmethacrylates 7131
10.26.1 Synthesis of Polyalkylmethacrylates 7131
10.26.1.2 Manufacturing 7132
10.26.2 The Chemistry of Polyalkylmethacrylates 7133
10.26.2.1 Standard PAMA 7133
10.26.2.2 PAMA/Olefin Copolymer Mixed Polymers and’eOCP 7133
10.26.2.3 Dispersant PAMA (d-PAMA) 7134
10.26.2.4 Copolymers with α-olefins 7134
10.26.2.5 Copolymers with Acrylates or Styrenes 7134
10.26.2.6 PAMA/Ethylene Vinyl Acetate Mixed Polymers and’eEVA 7135
10.26.2.7 Manufacturing 7135
10.26.2.8 Novel, PAMA-Derived XHVI Architectures 7136
10.26.3 Applications of PAMAs 7136
10.26.3.1 Viscosity Index Improvers 7136
10.26.3.1.1 Definition of viscosity and viscosity index 7136
10.26.3.1.2 Viscosity index improvers 7137
10.26.3.1.3 Viscosity in service 7138
10.26.3.1.4 Application of VIIs 7139
10.26.3.2 Pour Point Depressants 7145
10.26.3.2.1 PAMA pour point depressants 7146
10.26.3.2.2 Low-temperature performance requirements 7147
10.26.3.2.3 Selection of pour point depressants 7147
10.26.3.2.4 Base stock trends 7147
10.26.3.2.5 Development of low-temperature requirements for used engine oils 7148
10.26.3.3 Biofuel Additives 7148
10.26.3.4 Synthetic Oils Based on Methacrylates 7150
10.26.3.5 Film Formers: PAMA-Based Friction Modifiers 7151
References 7154
Aqueous Emulsion Polymers 7157
10.27.1 Introduction 7158
10.27.2 Emulsion Polymerization and Powder Production 7159
10.27.2.1 Emulsion Polymerization 7159
10.27.2.2 Dispersible Powders 7167
10.27.3 Introduction on Dry Mortars 7169
10.27.3.1 Composition of Dry Mortars 7169
10.27.3.2 Production 7169
10.27.3.3 Types of Mortars, Their Applications, and Markets 7170
10.27.4 Function of Dispersible Polymer Powders in Dry Mortars 7170
10.27.5 Environmental Aspects of Using Polymer-Modified Dry Mortars 7171
10.27.5.1 Technical and Environmental Aspects of Cement 7171
10.27.5.2 Technical and Environmental Aspects of Gypsum as Mineral Binder 7171
10.27.5.3 Technical and Environmental Aspects of Hydrated Lime 7171
10.27.5.4 Technical and Environmental Aspects of Dry Loam 7172
10.27.5.5 General Economic and Ecological Aspects of Dry Mortar Usage 7172
10.27.5.6 LCA Aspects in the Construction Industry, Including Dry Mortars 7172
10.27.6 Applications of Polymer-Modified Dry Mortars 7173
10.27.6.1 Ceramic Tile Adhesives – Thin-Bed Method 7173
10.27.6.2 Exterior Thermal Insulation Composite Systems 7174
10.27.6.3 Self-Leveling Mortars and Screeds 7176
10.27.6.4 Waterproofing Sealing Slurries 7177
10.27.6.5 Repair Mortars 7177
10.27.7 Summary on Polymers in Dry Mortars 7178
10.27.8 Polymer Dispersions in Paper Manufacturing 7178
10.27.8.1 Introduction 7178
10.27.8.2 Binder for Paper Manufacturing 7179
10.27.9 Polymer Dispersions in Adhesives 7179
10.27.9.1 Pressure-Sensitive Adhesives 7179
10.27.9.2 Paper and Packaging Adhesives 7180
10.27.9.3 Flooring Adhesives 7181
10.27.9.4 Wood Adhesives 7182
10.27.10 Polymer Dispersions in Architectural Coatings 7183
10.27.10.1 Global Coatings Demand 7183
10.27.10.2 Exterior Architectural Coatings 7183
10.27.10.3 Interior Architectural Coatings 7184
10.27.10.4 Reduction of Energy Costs by Lower Heat Conductivity of Special Interior and Exterior Paints 7185
10.27.10.5 Photocatalytic Oxidation to Destroy Bacteria and Neutralize Chemicals and Odor 7186
10.27.10.6 Indoor Air Climate Improvement 7186
10.27.11 Nonwoven Fabrics 7186
10.27.11.1 Web Formation 7186
10.27.11.2 Fibers 7187
10.27.11.3 Web-Consolidation by Chemical Bonding 7187
10.27.11.4 Web-Forming Processes with Chemical Bonding 7187
10.27.11.5 Dispersion Technologies for Chemically Bonded Nonwovens 7188
10.27.11.6 Carpet 7188
10.27.11.7 Flexo- and Gravure Printing Inks 7190
10.27.12 Summary and Outlook 7191
References 7192
Water-Based Epoxy Systems 7197
10.28.1 Introduction 7197
10.28.2 Definition 7197
10.28.3 Classification of Waterborne Epoxy Technologies 7199
10.28.4 Comparison of Waterborne and Solvent-Borne Epoxy Coatings 7199
10.28.5 Waterborne Amine Hardeners: General Structural Requirements 7199
10.28.6 Type I Waterborne Epoxy Technologies 7199
10.28.6.1 Polyamide Curing Agents 7199
10.28.6.2 Polyamine Epoxy Adducts 7200
10.28.6.3 Miscellaneous Curing Agents 7200
10.28.7 Type II Waterborne Epoxy Technologies 7201
10.28.7.1 Epoxy Resin Dispersions 7201
10.28.7.2 Polyamine Curing Agents 7201
10.28.7.3 Formulation Guidelines 7201
10.28.7.4 Resin Stoichiometry 7201
10.28.7.5 Effect of Cosolvents 7202
10.28.7.6 Recommended Pigments for Waterborne Coatings 7202
10.28.7.7 Pot Life 7202
10.28.7.8 Film Formation 7202
10.28.7.9 Curing Agents in Detail 7203
10.28.8 Deep Penetrating and Green Concrete Primer 7206
10.28.9 Water Vapor Permeable Floor Systems 7207
10.28.10 Concrete Coating Systems 7207
10.28.11 Waterborne Epoxy Curing Agent Systems 7207
10.28.12 Self-Leveling Floor Formulation 7208
10.28.13 Self-Leveler 7210
10.28.14 Low-Emission Industrial Floorings 7212
10.28.15 Path to Low-Emission Floorings 7213
10.28.16 Water-Based Low-Emission Formulation 7214
10.28.17 Time Is Money 7214
10.28.18 Conclusions 7215
References 7215
Powder Coatings 7219
10.29.1 Introduction 7220
10.29.2 General Concepts 7220
10.29.2.1 Energy Saving 7220
10.29.2.2 Energy Utilization in Polymer Manufacture 7221
10.29.2.3 Energy Utilization in Powder Coatings Manufacture 7221
10.29.2.4 Energy Saving in Powder Coatings Application 7221
10.29.3 Material Saving 7224
10.29.3.1 Efficient Conversion during Production of Powder Coatings 7224
10.29.3.2 Optimized Application of Thin-Film Powder Coatings 7224
10.29.4 Raw Materials 7227
10.29.4.1 Polymers from Recycled Materials 7227
10.29.4.2 Polymers from Renewable Bio-Based Sources 7227
10.29.4.3 Pigments and Fillers 7230
10.29.4.4 Toxicological Issues 7232
10.29.5 Production of Powder Coatings 7233
10.29.5.1 Weighing 7233
10.29.5.2 Premixing 7233
10.29.5.3 Extrusion 7234
10.29.5.4 Cooling 7234
10.29.5.5 Kibbling 7234
10.29.5.6 Grinding 7234
10.29.5.7 Classification 7235
10.29.5.8 Packaging 7235
10.29.5.9 Energy Consumption 7235
10.29.5.10 Waste Management 7235
10.29.5.11 Supply Chain Considerations 7235
10.29.6 Application of Powder Coatings 7236
10.29.6.1 Substrate Preparation 7236
10.29.6.2 Application of the Powder Coating 7236
10.29.6.2.1 Fluidization 7236
10.29.6.2.2 Application to the part 7237
10.29.6.2.3 Climate controlled application 7238
10.29.6.2.4 Reutilization of oversprayed powder coating 7240
10.29.6.2.5 Optimization of racking 7240
10.29.6.2.6 Reduced waste on color change 7241
10.29.6.2.7 Dense-phase pumps to reduce air consumption 7241
10.29.6.3 Curing of the Powder Coating 7241
10.29.6.3.1 Reduction in baking temperature 7241
10.29.6.3.2 Alternative cure mechanisms 7241
10.29.7 In-Use Considerations 7242
10.29.8 Future Trends 7242
10.29.8.1 The Status Quo 7242
10.29.8.2 Lower Baking Temperatures 7242
10.29.8.3 Raw Material Volatility 7242
10.29.8.4 The Developing Global Mid-Market 7242
10.29.8.5 Summary 7242
References 7243
Radiation-Curing Polymer Systems 7245
10.30.1 Introduction 7245
10.30.2 Technology 7245
10.30.3 Formulations and Raw Materials 7246
10.30.4 Network Formation and Characterization 7248
10.30.5 Structure–Property Relationship 7252
10.30.6 Applications 7254
10.30.7 Perspectives 7255
References 7256
Plastics after Use: Sustainable Management of Material and Energy Resources 7259
10.31.1 Introduction 7259
10.31.2 Waste Management 7259
10.31.2.1 Service of General Interest – Resource Efficiency – Climate Protection 7259
10.31.3 Regulatory Framework for Waste Management in Europe 7260
10.31.3.1 Specific Attention to Plastics after Use 7260
10.31.4 Plastics Waste in Europe 7262
10.31.4.1 Amounts, Distribution, and Characteristics 7262
10.31.5 Plastics Waste Recovery 7262
10.31.5.1 Part of an Integrated Waste Management 7262
10.31.6 Plastics Waste Recovery and Sustainability 7268
10.31.6.1 Environmental and Economic Aspects and Life Cycle Perspective 7268
10.31.7 Outlook 2020 7271
10.31.7.1 Drivers and Barriers 7271
10.31.7.2 The Sustainability Potential of Plastics After Use 7272
References 7272
Polymers in Energy Applications 7275
10.32.1 Introduction 7275
10.32.2 Chapter Summaries 7276
Poly(Perfluorosulfonic Acid) Membranes 7279
10.33.1 Introduction 7279
10.33.1.1 Markets 7279
10.33.1.2 Fuel Cell Background 7280
10.33.1.3 Perfluorosulfonic Acid 7281
10.33.1.4 Other Perfluorinated Ionomers 7282
10.33.2 Membrane Manufacturing 7283
10.33.2.1 Monomer and Polymer Synthesis 7283
10.33.2.2 Membrane Processing 7283
10.33.2.3 Dispersion Properties 7285
10.33.3 Morphology 7285
10.33.3.1 PFSA Phase-Separated Morphology 7285
10.33.3.2 Dynamic Mechanical Analysis 7286
10.33.3.3 Water Content and Morphology 7287
10.33.4 Durability and Lifetime 7287
10.33.4.1 General Mechanical Testing Discussion 7287
10.33.4.2 Chemical Stability 7288
10.33.4.3 Peroxide Degradation Mechanism 7290
10.33.4.4 Peroxide Scavenging Additives 7290
10.33.4.5 Reinforced Membranes 7290
10.33.5 New Chemistry 7292
10.33.5.1 Ultralow EW Ionomers 7292
10.33.5.2 Cross-linking 7293
10.33.6 Summary 7295
References 7295
Alternative Hydrocarbon Membranes by Step Growth 7299
10.34.1 Introduction 7299
10.34.2 Alternative Hydrocarbon Ionomer Membranes 7302
10.34.2.1 Poly(arylene ether)s 7302
10.34.2.2 Polyimides 7310
10.34.2.3 Poly(p-phenylene)s 7312
10.34.2.4 Poly(benzimidazole)s 7313
10.34.2.5 Other Polymers 7315
10.34.3 Recent Trends in Hydrocarbon Ionomer Membranes 7315
10.34.3.1 Development of High IEC Membranes 7316
10.34.3.2 Block Copolymers 7317
10.34.3.3 Copolymer with Highly Sulfonated Moiety 7322
10.34.3.4 Partially Fluorinated Hydrocarbon Ionomers 7323
10.34.4 Application to Fuel Cells 7324
10.34.5 Prospects 7324
References 7325
Alternative Proton Exchange Membranes by Chain-Growth Polymerization 7329
10.35.1 Introduction 7329
10.35.1.1 Proton Conduction in PEMs 7331
10.35.1.2 Microstructure of Copolymers 7333
10.35.1.3 Morphological Studies of Nafion PFSA Membranes 7334
10.35.2 Chain-Growth Polymerization 7336
10.35.2.1 Free-Radical Polymerization 7336
10.35.2.2 Anionic Polymerization 7337
10.35.2.3 Living Polymerization 7338
10.35.2.4 Living Anionic Polymerization 7338
10.35.2.5 Controlled/Living Radical Polymerization 7339
10.35.3 Chain-Growth Polymerization Applied to PEM Materials 7341
10.35.3.1 Alternative Membranes Synthesized by’Chain-Growth Polymerization 7342
10.35.4 Conclusions and Future Directions 7361
References 7363
Polymers in Membrane Electrode Assemblies 7369
10.36.1 Introduction 7369
10.36.2 Polymer Electrolyte Membranes 7369
10.36.2.1 Water Uptake 7370
10.36.2.2 Proton Conductivity 7374
10.36.2.3 Methanol Permeability 7377
10.36.2.4 Summary 7381
10.36.3 Polymer Electrolyte Ionomers in the Electrode 7381
10.36.3.1 Historical Background 7381
10.36.3.2 Structural Effect 7383
10.36.3.3 Membrane–Electrode Interface 7391
10.36.4 Summary 7394
Acknowledgment 7395
References 7395
Morphology of Proton Exchange Membranes 7399
10.37.1 Introduction 7399
10.37.2 Perfluorosulfonate Ionomers as the Benchmark Materials for Proton Exchange Membranes 7400
10.37.2.1 Types of PFSIs 7400
10.37.3 Alternative Membrane Materials 7401
10.37.3.1 Nonaliphatic Hydrocarbon-Based Alternative Membrane Materials 7401
10.37.3.2 Organic/Inorganic Nanocomposite Membranes 7409
10.37.3.3 Polymer Blends 7412
10.37.3.4 Supported Composite Membranes 7415
10.37.4 Evolution of Morphological Models for’Nafion® 7418
10.37.4.1 Cluster-Network Model 7419
10.37.4.2 Core–Shell Model 7420
10.37.4.3 Local-Order Model 7421
10.37.4.4 Lamellar Model 7421
10.37.4.5 Sandwich-Like Model 7422
10.37.4.6 Rod-Like Model 7422
10.37.4.7 Fringed Micelle Model 7422
10.37.4.8 Parallel Water Channel Model 7423
10.37.5 Morphology–Property Relationships in’Ion-Containing Polymers 7423
10.37.5.1 Effect of Morphology on Transport and Diffusion 7423
10.37.5.2 Effect of Morphology on Gas Permeability 7425
10.37.6 Development and Manipulation of’Morphological Features in Proton Exchange Membranes 7426
10.37.6.1 Effect of Hydration on the Development of’Morphology in Nafion® Membranes 7426
10.37.6.2 Manipulation of Morphology by Adjusting Casting Parameters 7428
10.37.6.3 Development of Morphology via Thermal Annealing 7430
10.37.6.4 Development of Morphology via Orientation 7433
10.37.7 Computational Modeling/Simulation of Proton Exchange Membrane Morphology 7436
10.37.7.1 Computational Modeling of Hydrated Nafion® 7437
10.37.7.2 Investigation of Nafion® Morphology Using the’MaxEnt Method 7439
10.37.7.3 Computational Modeling of Oriented Nafion® 7440
10.37.8 Conclusions 7441
Acknowledgments 7441
References 7441
Polymer Electrolyte Membrane Degradation 7445
10.38.1 Introduction 7445
10.38.2 Mechanical Degradation of Polymer Electrolyte Membranes 7446
10.38.3 Chemical Degradation of Polymer Electrolyte Membranes 7447
10.38.4 Summary 7451
References 7451
Molecular and Mesoscale Modeling of Proton Exchange Membranes 7455
10.39.1 Introduction 7455
10.39.2 Simulations of PEMs 7457
10.39.2.1 Ab Initio Dynamics 7457
10.39.2.2 Classical Molecular Dynamics 7466
10.39.2.3 Course-Grained Simulations 7477
10.39.2.4 Statistical Mechanics 7483
10.39.3 Future Directions 7485
References 7486
Polymers for Thin Film Capacitors: Energy Storage - Li Conducting Polymers 7489
10.40.1 Capacitor Fundamentals 7489
10.40.2 Dielectric Polymers 7491
10.40.3 Biaxially Oriented PP Film Capacitors 7492
10.40.4 Ferroelectric Poly(vinylidene fluoride)-Based Film Capacitors 7494
10.40.5 High-Temperature Polymer Capacitors 7498
10.40.6 Polymer Nanocomposite Capacitors 7503
10.40.7 Conclusions 7506
References 7506
Aromatic Poly(amides) for Reverse Osmosis 7509
10.41.1 Introduction 7509
10.41.2 RO Theory 7511
10.41.3 Real-World Design Considerations 7513
10.41.4 RO History 7515
10.41.5 Thin-Film Composites 7515
10.41.6 Polyamide Thin-Film Composites 7516
10.41.7 FT-30 Polymer Analogies 7521
10.41.8 Conclusions 7524
References 7525
Electrolyzer Membranes 7527
10.42.1 Introduction 7528
10.42.2 Development of Polymer Electrolyte Membranes for Electrolysis 7528
10.42.3 Polymer Membranes in the Chlor-Alkali Industry 7529
10.42.4 Polymer Membranes in Gas Generators 7529
10.42.5 Polymer Membranes in Early Regenerative Fuel Cells 7530
10.42.6 Polymer Membrane Performance and\rDegradation 7531
10.42.7 Performance Fundamentals 7532
10.42.7.1 Basics of PEMEC Operation 7532
10.42.8 Electrolysis and Thermochemical Cycles 7539
10.42.9 Status of Nuclear Power Technology 7540
10.42.10 Review of the Hybrid Sulfur Electrolyzer 7541
10.42.11 Hybrid Sulfur Electrolyzer Performance 7542
10.42.12 Conclusions 7547
References 7547
Index\r 7551
Permission Acknowledgments 7739