Additional Information
Book Details
Abstract
The progress in polymer science is revealed in the chapters of Polymer Science: A Comprehensive Reference. In Volume 1, this is reflected in the improved understanding of the properties of polymers in solution, in bulk and in confined situations such as in thin films. Volume 2 addresses new characterization techniques, such as high resolution optical microscopy, scanning probe microscopy and other procedures for surface and interface characterization. Volume 3 presents the great progress achieved in precise synthetic polymerization techniques for vinyl monomers to control macromolecular architecture: the development of metallocene and post-metallocene catalysis for olefin polymerization, new ionic polymerization procedures, and atom transfer radical polymerization, nitroxide mediated polymerization, and reversible addition-fragmentation chain transfer systems as the most often used controlled/living radical polymerization methods. Volume 4 is devoted to kinetics, mechanisms and applications of ring opening polymerization of heterocyclic monomers and cycloolefins (ROMP), as well as to various less common polymerization techniques. Polycondensation and non-chain polymerizations, including dendrimer synthesis and various "click" procedures, are covered in Volume 5. Volume 6 focuses on several aspects of controlled macromolecular architectures and soft nano-objects including hybrids and bioconjugates. Many of the achievements would have not been possible without new characterization techniques like AFM that allowed direct imaging of single molecules and nano-objects with a precision available only recently. An entirely new aspect in polymer science is based on the combination of bottom-up methods such as polymer synthesis and molecularly programmed self-assembly with top-down structuring such as lithography and surface templating, as presented in Volume 7. It encompasses polymer and nanoparticle assembly in bulk and under confined conditions or influenced by an external field, including thin films, inorganic-organic hybrids, or nanofibers. Volume 8 expands these concepts focusing on applications in advanced technologies, e.g. in electronic industry and centers on combination with top down approach and functional properties like conductivity. Another type of functionality that is of rapidly increasing importance in polymer science is introduced in volume 9. It deals with various aspects of polymers in biology and medicine, including the response of living cells and tissue to the contact with biofunctional particles and surfaces. The last volume is devoted to the scope and potential provided by environmentally benign and green polymers, as well as energy-related polymers. They discuss new technologies needed for a sustainable economy in our world of limited resources.
- Provides broad and in-depth coverage of all aspects of polymer science from synthesis/polymerization, properties, and characterization methods and techniques to nanostructures, sustainability and energy, and biomedical uses of polymers
- Provides a definitive source for those entering or researching in this area by integrating the multidisciplinary aspects of the science into one unique, up-to-date reference work
- Electronic version has complete cross-referencing and multi-media components
- Volume editors are world experts in their field (including a Nobel Prize winner)
"Polymer Science: A Comprehensive Reference provides complete and up-to-date coverage of the most important contemporary aspects and fundamental concepts of polymer science. It will become the indispensable reference not only for polymer scientists but also for all researchers in disciplines related to macromolecular systems." --Excerpt from Foreword, Jean-Marie Lehn, ISIS-Universite de Strasbourg, Strasbourg, France, Nobel Prize Laureate in Chemistry
Table of Contents
Section Title | Page | Action | Price |
---|---|---|---|
e9780444533494v1 | 1 | ||
Polymer Science: A Comprehensive Reference | 2 | ||
Copyright | 5 | ||
Contents_of_Volume 1 | 6 | ||
Volume Editors | 8 | ||
Editor-in-Chief_Bio | 10 | ||
Editors_Bio | 12 | ||
Contributors_of_All_Volume | 20 | ||
Contents_of_All_Volume | 34 | ||
Preface | 42 | ||
Foreword | 46 | ||
Basic Concepts and Polymer Properties | 48 | ||
Statistical Description of Chain Molecules | 50 | ||
1.02.1 The Main Characteristics of Polymer Chain Structures | 51 | ||
1.02.1.1 Polymer Chain Structures and Architectures | 51 | ||
1.02.1.2 Copolymers | 51 | ||
1.02.1.3 Molecular Mass and Polydispersity | 52 | ||
1.02.1.4 Chain Conformation and Rotational (Conformational) Isomers | 52 | ||
1.02.1.5 Configurational Isomerism | 53 | ||
1.02.1.6 Stereoisomerism: Polymer Chain Tacticity | 53 | ||
1.02.1.7 Cis/Trans Stereoisomerism | 54 | ||
1.02.1.8 Stereoisomerism: Chiral Polymers | 54 | ||
1.02.1.9 Living and Dynamic Polymers | 55 | ||
1.02.2 Linear Homopolymers: Ideal Chain Models | 55 | ||
1.02.2.1 Chain Conformations; the End-to-End Distance; the Freely Jointed Chain | 55 | ||
1.02.2.2 Correlations of Bond Orientations of an Ideal Chain; the Persistence Length; the Kuhn Segment | 55 | ||
1.02.2.3 K(n) and the Stiffness Parameters for Chains with Different Flexibility Mechanisms | 56 | ||
1.02.2.4 Statistical Segment | 57 | ||
1.02.2.5 The End-to-End Vector Distribution and the Gaussian Coil Model | 57 | ||
1.02.2.6 The Radius of Gyration | 58 | ||
1.02.2.7 Ideal Branched Tree-Like Polymer | 58 | ||
1.02.2.8 The Scattering Function of an Ideal Polymer Chain | 59 | ||
1.02.2.9 The Ideal Chain Elasticity | 59 | ||
1.02.2.10 Partition Function of Ideal Linear and Cyclic Polymers | 60 | ||
1.02.2.10.1 Linear Gaussian chain | 60 | ||
1.02.2.10.2 Gaussian polymer ring | 60 | ||
1.02.2.10.3 Generalized ideal linear chain | 60 | ||
1.02.3 Living Polymers | 60 | ||
1.02.3.1 Ideal Linear Living Polymers in Solution | 60 | ||
1.02.3.2 The Generalized Model of Ideal Living Polymers | 61 | ||
1.02.3.3 Two Examples with 1/σ*≫1 | 61 | ||
1.02.3.4 Scattering and Correlation Functions in Solutions of Ideal Living Chains | 62 | ||
1.02.3.5 Ring-Like Living Chains | 62 | ||
1.02.3.6 Randomly Branched Living Structures | 63 | ||
1.02.3.6.1 Cluster mass distribution for ideal branched structures | 63 | ||
1.02.3.6.2 Radius of gyration of a randomly branched polymer | 64 | ||
1.02.3.6.3 The fraction of loops | 65 | ||
1.02.4 Systems of Ideal Polymer Chains in Confined Conditions | 65 | ||
1.02.4.1 The Conformational Free Energy | 65 | ||
1.02.4.2 Solid Particles in Ideal Polymer Solution | 66 | ||
1.02.4.3 Ideal Polymer Chain in the Presence of an External Potential Field | 66 | ||
1.02.4.4 The Wall Effects | 67 | ||
1.02.5 Real Polymer Chains with Excluded-Volume Interactions | 68 | ||
1.02.5.1 Concentrated Polymer Solution | 68 | ||
1.02.5.2 Concentration Fluctuations and the Structure Factor | 69 | ||
1.02.5.3 Coil Expansion in Good Solvent: Flory Theory of Polymer Coil Size | 69 | ||
1.02.5.4 Perturbation Approach | 70 | ||
1.02.5.5 Polymer Coil Size in d Dimensions | 70 | ||
1.02.5.6 Scaling and Renormalization Concepts | 70 | ||
1.02.5.7 The Fractal Structure of a Swollen Coil | 71 | ||
1.02.5.8 The End-To-End Vector Distribution for a Real Chain in Good Solvent: Scaling Laws | 71 | ||
1.02.5.9 Real Chain in a Poor Solvent: Coil-to-Globule Transition | 72 | ||
1.02.6 Long-Range Correlation Effects in Polymer Melts | 73 | ||
1.02.6.1 The Classical Concepts | 73 | ||
1.02.6.2 Refinements to the Classical Picture | 73 | ||
1.02.7 Concluding Remark | 75 | ||
References | 75 | ||
Polymer Synthesis | 78 | ||
1.03.1 Introduction | 78 | ||
1.03.2 Anionic Chain Polymerization of Styrene | 78 | ||
1.03.3 Radical Chain Polymerization | 80 | ||
1.03.4 Cationic and Metal-Catalyzed Chain Polymerizations | 83 | ||
1.03.5 Polymerization Thermodynamics | 83 | ||
1.03.6 Chain Copolymerizations | 85 | ||
1.03.7 Polymer Stereochemistry | 86 | ||
1.03.8 Ring-Opening Polymerization | 86 | ||
1.03.9 Step Polymerizations | 87 | ||
1.03.10 Nonlinear Polymers | 89 | ||
1.03.11 Postpolymerization Functionalization | 90 | ||
1.03.12 Summary | 91 | ||
References | 91 | ||
Static and Dynamic Properties | 94 | ||
1.04.1 Introduction | 95 | ||
1.04.2 Diversity of Macromolecular Architectures | 95 | ||
1.04.3 Dilute Solutions of Linear-Chain Macromolecules | 97 | ||
1.04.3.1 Ideal Polymer Chain Models and Coarse-Graining Approach for Real Chains | 97 | ||
1.04.3.2 Excluded-Volume Effects in Polymer Coil | 99 | ||
1.04.3.3 Static and Hydrodynamic Properties of Dilute Polymer Solutions | 101 | ||
1.04.4 Semidilute Solutions of Chain Macromolecules | 102 | ||
1.04.4.1 Overlap Concentration and Scaling Laws | 102 | ||
1.04.4.2 Diagram of States of Polymer Solution | 103 | ||
1.04.4.3 Scattering from Semidilute Solutions | 105 | ||
1.04.5 Polymer Globules and Phase Separation | 105 | ||
1.04.5.1 Concentrated Phase | 105 | ||
1.04.5.2 Dilute Phase (Polymer Globules) | 106 | ||
1.04.6 Solutions of Star-Branched Macromolecules | 106 | ||
1.04.6.1 Star Polymers in Dilute Solutions | 106 | ||
1.04.6.2 Semidilute Solutions of Star Polymers | 109 | ||
1.04.6.3 Collapse of Star Polymers in Poor Solvent andPhase Separation | 110 | ||
1.04.6.4 Radiation Scattering from Solutions of Star Polymers | 110 | ||
1.04.7 Solutions of Comblike Polymers | 112 | ||
1.04.7.1 Dilute Solutions | 112 | ||
1.04.7.2 Semidilute Solutions | 115 | ||
1.04.7.3 Comblike Copolymers in Selective Solvents | 115 | ||
1.04.8 Dendritic Polymers in Solutions | 117 | ||
1.04.9 Randomly Branched Polymers in Solutions | 118 | ||
1.04.10 Solutions of Block Copolymers | 119 | ||
1.04.10.4 The Block Copolymer Spherical Micelles | 121 | ||
1.04.10.5 Polymorphism of the Block Copolymer Aggregates | 122 | ||
1.04.11 Concluding Remarks | 124 | ||
References | 124 | ||
Solutions of Charged Polymers | 128 | ||
1.05.1 What Are Charged Polymers and Why Are They Important? | 128 | ||
1.05.2 A Model of Charged Chains | 129 | ||
1.05.3 Dilute Salt-Free Polyelectrolyte Solutions | 130 | ||
1.05.3.1 Flory and Scaling Models of a Polyelectrolyte Chain | 130 | ||
1.05.3.2 Effect of the Solvent Quality on Chain Conformations | 131 | ||
1.05.3.3 Polyelectrolyte Chains at Finite Polymer Concentrations and Counterion Condensation | 135 | ||
1.05.4 Effect of Added Salt on Chain Conformations in Dilute Solutions | 143 | ||
1.05.4.1 Electrostatic Persistence Length | 143 | ||
1.05.4.2 Swelling of a Polyelectrolyte Chain in Salt Solutions | 149 | ||
1.05.5 Semidilute Polyelectrolyte Solutions | 153 | ||
1.05.5.1 Overlap Concentration | 153 | ||
1.05.5.2 Scaling Model of Semidilute Polyelectrolyte Solutions | 155 | ||
1.05.5.3 Semidilute Polyelectrolyte Solutions with Added Salt | 157 | ||
1.05.5.4 Osmotic Pressure and Scattering Function | 158 | ||
1.05.5.5 Dynamics of Polyelectrolyte Solutions | 161 | ||
1.05.5.6 Semidilute Polyelectrolyte Solutions in a Poor Solvent for Polymer Backbone | 163 | ||
1.05.6 Phase Separation in Polyelectrolyte Solutions | 165 | ||
1.05.6.1 Mean-Field Approach | 165 | ||
1.05.6.2 Microphase Separation | 167 | ||
1.05.6.3 Necklace Model of Phase Separation | 167 | ||
1.05.7 Polyampholyte Solutions | 168 | ||
1.05.7.1 Models of Polyampholyte Solutions | 168 | ||
1.05.7.2 Experimental Studies of Polyampholyte Solutions | 173 | ||
1.05.8 Conclusions and Outlook | 175 | ||
Acknowledgments | 175 | ||
References | 176 | ||
Viscoelasticity and Molecular Rheology | 180 | ||
1.06.1 Introduction | 181 | ||
1.06.2 Experimental Techniques and Physical Observables | 181 | ||
1.06.2.1 Rheology and the Stress Tensor | 181 | ||
1.06.2.2 Time–Temperature Superposition | 182 | ||
1.06.2.3 Birefringence and the Orientation Tensor | 183 | ||
1.06.2.4 Dielectric Spectroscopy and the End-to-End Vector | 184 | ||
1.06.2.5 Neutron Scattering and the Structure Factor | 184 | ||
1.06.2.6 Nuclear magnetic resonance and Diffusion | 185 | ||
1.06.3 Unentangled Polymer Models | 185 | ||
1.06.3.1 Rouse Model | 185 | ||
1.06.3.2 Other Unentangled Models | 192 | ||
1.06.3.3 Results | 194 | ||
1.06.4 Entangled Polymer Models | 199 | ||
1.06.4.1 Multichain Models | 199 | ||
1.06.4.2 Tube Theory | 202 | ||
1.06.4.3 Rouse Chain with Obstacles | 212 | ||
1.06.4.4 Slip-Spring Model | 214 | ||
1.06.4.5 Other Observables of Entangled Models | 219 | ||
1.06.4.6 Other Models in Literature | 220 | ||
1.06.5 Summary and Outlook | 221 | ||
1.06.5.1 Model Classification and Future Challenges | 221 | ||
1.06.5.2 Hierarchical Modeling | 223 | ||
Appendix: Continuous Rouse Model | 224 | ||
References | 225 | ||
Rubberlike Elasticity | 228 | ||
1.07.1 Introduction | 228 | ||
1.07.2 Structure of Networks | 229 | ||
1.07.3 Molecular Theories of Rubber Elasticity | 230 | ||
1.07.3.1 Elasticity of the Single Chain | 230 | ||
1.07.3.2 The Elastic Free Energy of the Network | 231 | ||
1.07.3.3 The Stress, Reduced Stress, and the Elastic Modulus | 231 | ||
1.07.3.4 The Affine Network Model | 231 | ||
1.07.3.5 The Phantom Network Model | 232 | ||
1.07.3.6 Deviations from Affine and Phantom Network Models | 232 | ||
1.07.4 Phenomenological Theories | 234 | ||
1.07.5 Computer Simulations | 235 | ||
1.07.5.1 Single-Chain Simulations | 235 | ||
1.07.5.2 Chains in Networks | 235 | ||
1.07.6 Swelling of Networks and Responsive Gels | 235 | ||
1.07.7 The Enthalpic Component of Rubber Elasticity | 236 | ||
1.07.8 Multimodal Elastomers | 237 | ||
1.07.8.1 Bimodal Networks | 237 | ||
1.07.9 Liquid-Crystalline Elastomers | 238 | ||
1.07.9.1 Main-Chain Liquid-Crystalline Elastomers | 239 | ||
1.07.9.2 Side-Chain Liquid-Crystalline Elastomers | 239 | ||
1.07.10 Reinforced Elastomers | 240 | ||
1.07.10.1 Sol–Gel In Situ Precipitated Ceramic Particles | 240 | ||
1.07.10.2 Nonspherical Particles | 241 | ||
1.07.10.3 Magnetic Particles | 241 | ||
1.07.10.4 Layered Fillers | 241 | ||
1.07.10.5 Polyhedral Oligomeric Silsesquioxanes (POSS) | 241 | ||
1.07.10.6 Nanotubes | 241 | ||
1.07.10.7 Porous Fillers | 241 | ||
1.07.10.8 Fillers with Controlled Interfaces | 241 | ||
1.07.11 Characterization Techniques | 241 | ||
1.07.11.1 Optical and Spectroscopic Techniques | 241 | ||
1.07.11.2 Microscopies | 242 | ||
1.07.11.3 NMR | 242 | ||
1.07.11.4 Small-Angle Scattering | 242 | ||
1.07.11.5 Brillouin Scattering | 242 | ||
1.07.11.6 Pulse Propagation | 242 | ||
Acknowledgement | 243 | ||
References | 243 | ||
Amorphous Polymers | 248 | ||
1.08.1 Introduction | 248 | ||
1.08.2 Structure of Amorphous Polymers | 248 | ||
1.08.2.1 Short-Range Order | 248 | ||
1.08.2.2 Long-Range Order | 250 | ||
1.08.3 Dynamics of Amorphous Polymers | 252 | ||
1.08.3.1 Phenomelogical Overview – The Glass Transition | 252 | ||
1.08.3.2 Theories for the Glassy Dynamics in Amorphous Polymers | 255 | ||
1.08.3.3 Experimental Results – Scaling of Glassy Dynamics | 258 | ||
1.08.3.4 Comparison of Segmental and Chain Dynamics | 261 | ||
1.08.3.5 Special Chain Structures | 265 | ||
1.08.4 Amorphous Polymers in Nanometer Thin Layers | 267 | ||
1.08.5 Conclusions | 269 | ||
References | 269 | ||
Semicrystalline Polymers | 274 | ||
1.09.1 Introduction | 274 | ||
1.09.2 Flexible-Chain Polymers | 277 | ||
1.09.2.1 Lamellar Habit and Thermal Properties | 277 | ||
1.09.2.2 Role of the Metastable States in the Polymer Crystallization | 278 | ||
1.09.3 Semirigid Chain Polymers | 282 | ||
1.09.3.1 Relaxation Dynamics of Amorphous Regions during Isothermal Crystallization from the Glassy State | 282 | ||
1.09.3.2 Thermal Behavior of Semirigid Chain Polymers: Glass Transition Temperature versus Crystallinity | 285 | ||
1.09.3.3 Thermal Behavior of Semirigid Chain Polymers: Multiple Melting Phenomenon | 287 | ||
1.09.3.4 Semicrystalline Structure of Semirigid Chain Polymers and Its Evolution during Crystallization and Annealing | 289 | ||
1.09.3.5 Addressing the Thermal Behavior of Semirigid Chain Polymers with a Combination of Real-Time SAXS/WAXS and AFM | 295 | ||
1.09.4 Large-Scale Supramolecular Structure of Semicrystalline Polymers | 298 | ||
References | 302 | ||
Liquid Crystalline Polymers | 306 | ||
1.10.1 Introduction | 306 | ||
1.10.1.1 Historical Overview | 306 | ||
1.10.2 Constitution and Structure of Low-Molecular-Mass Liquid Crystals | 307 | ||
1.10.3 LC Polymers: General Consideration | 311 | ||
1.10.4 Main-Chain LC Polymers | 312 | ||
1.10.4.1 Thermotropic LC Polymers | 312 | ||
1.10.4.2 Lyotropic LC Polymers | 314 | ||
1.10.4.3 Properties and Application of LC Main-Chain Polymers | 316 | ||
1.10.5 Side-Chain LC Polymers | 318 | ||
1.10.5.1 Principles of Synthesis | 318 | ||
1.10.5.2 Structural Features of Side-Chain LC Polymers | 320 | ||
1.10.6 Properties and Application of Side-Chain LC Polymers | 323 | ||
1.10.6.1 LC Polymers for Passive and Electrically Controllable Optical Elements | 323 | ||
1.10.6.2 Photochromic LC Polymers | 325 | ||
1.10.6.3 Chiral-Photochromic LC Polymer Systems | 326 | ||
1.10.6.4 Ionogenic LC Polymers as Self-Assembled andPhase-Microsegregated Liquid Crystals | 327 | ||
1.10.6.5 LC Elastomers | 327 | ||
1.10.7 LC Dendrimers with Mesogenic Groups | 328 | ||
1.10.8 Liquid Crystals Dispersed in Polymers and LC Composites | 329 | ||
1.10.9 Miscellaneous LC Polymers | 329 | ||
1.10.10 Conclusion | 329 | ||
References | 330 | ||
Phase Segregation/Polymer Blends/Microphase Separation | 334 | ||
1.11.1 Phase Segregation | 334 | ||
1.11.1.1 Thermodynamics | 334 | ||
1.11.1.2 Lattice Gas | 335 | ||
1.11.1.3 Flory–Huggins Theory | 336 | ||
1.11.1.4 Solubility Parameter Approach | 337 | ||
1.11.1.5 Phase Stability | 337 | ||
1.11.1.6 Phase Behavior According to Flory–Huggins Theory | 338 | ||
1.11.1.7 Polymer Solutions | 339 | ||
1.11.2 Polymer Blends | 340 | ||
1.11.2.1 Interface Thickness | 340 | ||
1.11.2.2 Miscible Polymer Blends | 341 | ||
1.11.2.3 Experimental Determination of χ Parameter | 342 | ||
1.11.3 Block Copolymers | 344 | ||
1.11.3.1 Strong Segregation Regime | 345 | ||
1.11.3.2 Weak Segregation Regime | 347 | ||
1.11.3.3 Self-Consistent Field Theory | 351 | ||
1.11.3.4 ABC Triblock Copolymers | 352 | ||
1.11.3.5 ABC Star Terpolymers | 353 | ||
1.11.3.6 Hierarchical Ordered Multiblock Copolymers | 353 | ||
1.11.3.7 Polydispersity | 354 | ||
1.11.3.8 Miscellaneous | 356 | ||
1.11.3.8.1 Rod–coil diblock copolymers | 356 | ||
1.11.3.8.2 Mixtures of block copolymers and homopolymers | 356 | ||
1.11.3.8.3 Supramolecular block copolymers | 356 | ||
1.11.3.8.4 Block copolymer solution | 356 | ||
1.11.4 Conclusion | 357 | ||
Acknowledgment | 357 | ||
References | 357 | ||
Polymer/Colloid Interactions and Soft Polymer Colloids | 362 | ||
1.12.1 General Introduction | 362 | ||
1.12.2 Depletion Interaction | 362 | ||
1.12.2.1 Introduction | 362 | ||
1.12.2.2 Depletion Interaction at the Pair Level | 363 | ||
1.12.2.3 Direct Measurement of Depletion Interaction | 366 | ||
1.12.2.4 Summary | 369 | ||
1.12.3 Star Polymers as Model Soft Sphere Colloids | 369 | ||
1.12.3.1 Stars as Tunable Soft Colloids | 369 | ||
1.12.3.2 Structural Features in the Interaction Regime | 371 | ||
1.12.3.3 Glassy Stars: Aging, Yielding, Shear Banding | 372 | ||
1.12.3.4 Mixtures Involving Star Polymers | 375 | ||
1.12.3.5 Conclusions | 376 | ||
1.12.4 Responsive Microgels as Model Colloids | 376 | ||
1.12.4.1 Introduction | 376 | ||
1.12.4.2 Microgel Structure | 376 | ||
1.12.4.3 Swelling of Responsive Microgels | 378 | ||
1.12.4.4 Phase Behavior of Uncharged Microgels | 378 | ||
1.12.4.5 Charged Microgels | 382 | ||
1.12.4.6 Core–Shell Microgels | 382 | ||
1.12.4.7 Summary | 382 | ||
References | 382 | ||
Polymer Gels | 386 | ||
1.13.1 Introduction | 386 | ||
1.13.2 Synthesis of Polymer Gels | 386 | ||
1.13.3 Subchains and Their Conformations | 388 | ||
1.13.4 Elasticity of Polymer Gels | 389 | ||
1.13.4.1 Networks without Solvent | 389 | ||
1.13.4.2 Networks with Solvent | 391 | ||
1.13.4.3 Defects of Polymer Gel Structure and Their Impact on Elastic Properties | 391 | ||
1.13.5 Peculiarities of Ion-Containing Gels | 392 | ||
1.13.6 Polyelectrolyte Gels | 394 | ||
1.13.6.1 Swelling | 394 | ||
1.13.6.2 Collapse | 396 | ||
1.13.6.3 Nanostructure Formation | 399 | ||
1.13.7 Manifestation of Ionomer Behavior | 402 | ||
1.13.8 Responsive Gels | 405 | ||
1.13.9 Some Applications of Superabsorbent Gels | 408 | ||
1.13.10 Some Applications of Responsive Gels | 409 | ||
References | 409 | ||
Chain Conformation and Manipulation | 414 | ||
1.14.1 Introduction | 414 | ||
1.14.2 Chain Conformation | 415 | ||
1.14.3 PEs at Surfaces | 417 | ||
1.14.4 Study of Helical Conformations by AFM | 419 | ||
1.14.5 Conformation of Polymer Stars | 421 | ||
1.14.6 Motion of Single Molecules | 421 | ||
1.14.7 Manipulation of Polymer Conformation inShear Flow | 424 | ||
1.14.8 Nanomanipulations with AFM Tip | 427 | ||
1.14.9 Chemical Modification of Single Polymer Molecules | 429 | ||
1.14.10 Nanodevices from Single Polymer Molecules | 429 | ||
1.14.11 Conclusions and Outlook | 431 | ||
References | 431 | ||
Polymers at Interfaces and Surfaces and in Confined Geometries | 434 | ||
1.15.1 Introduction | 434 | ||
1.15.2 Polymers at Solid Substrates | 435 | ||
1.15.2.1 Polymer Solutions | 435 | ||
1.15.2.2 Adsorption of Polymers in a Good Solvent | 436 | ||
1.15.2.3 Adsorption versus Wetting | 438 | ||
1.15.2.4 Concentrated Polymer Solutions or Melts at Non-Interacting, Hard Substrates and Attractive Substrates | 439 | ||
1.15.2.5 Polymer Conformations Confined into Thin and Ultra-Thin Films | 441 | ||
1.15.2.6 Selected Aspects of the Dynamics of Polymers atSolid Substrates | 444 | ||
1.15.3 Surfaces of One-Component Polymer Liquids and Wetting | 446 | ||
1.15.3.1 Liquid–Vapor Interfaces | 446 | ||
1.15.3.2 Interface Potential and Wetting Behavior | 446 | ||
1.15.4 Inhomogeneous Polymer Blends | 448 | ||
1.15.4.1 Phase Behavior in the Bulk and in Thin Films | 448 | ||
1.15.4.2 Polymer Interfaces | 451 | ||
1.15.4.3 Wetting in Polymer Blends | 453 | ||
1.15.4.4 Interplay between Wetting and Phase Separation inThin Films | 455 | ||
1.15.5 Summary and Outlook | 458 | ||
References | 459 | ||
Molecular Dynamics Simulations in Polymer Science: Methods and Main Results | 464 | ||
1.16.1 Introduction | 464 | ||
1.16.2 What Can Molecular Dynamics Do? | 466 | ||
1.16.3 Philosophy of Molecular Dynamics | 467 | ||
1.16.3.1 Two Approaches or How Should We Classify Simulation? | 467 | ||
1.16.3.2 Length and Timescales | 467 | ||
1.16.3.3 Waves, Particles, and Fields | 467 | ||
1.16.4 Concepts and Methodologies | 472 | ||
1.16.4.1 Ab Initio Molecular Dynamics | 472 | ||
1.16.4.2 Atomistic Molecular Dynamics | 476 | ||
1.16.4.3 Coarse-Grained Particle-Based Simulations | 481 | ||
1.16.4.4 Field-Based Simulations | 489 | ||
1.16.5 Multiscale Simulations: Bridging Different Time and Length Scales | 492 | ||
1.16.5.1 Hybrid Car–Parrinello/Molecular Mechanics | 493 | ||
1.16.5.2 Coupling Atomistic and Coarse-Grained Simulations | 494 | ||
1.16.5.3 Hybrid Particle-Field Simulations | 495 | ||
1.16.5.4 Coupling Particle-Based and Continuum Dynamics: Atomistically Informed Continuum Models | 496 | ||
1.16.6 Advanced Simulation Techniques | 497 | ||
1.16.6.1 Hyperdynamics, Metadynamics, and Temperature-Accelerated Dynamics | 498 | ||
1.16.6.2 Replica Molecular Dynamics and Parallel Tempering | 500 | ||
1.16.6.3 Steered and Interactive Molecular Dynamics | 500 | ||
1.16.7 Concluding Remarks | 501 | ||
References | 501 | ||
Monte Carlo Simulations in Polymer Science | 508 | ||
1.17.1 Introduction: What Monte Carlo Simulations Want to Achieve | 508 | ||
1.17.2 Models Used in MC Simulations of Polymers | 509 | ||
1.17.3 General Aspects of Dynamic MC Methods | 510 | ||
1.17.4 Exploiting the Freedom to Choose Suitable MC Moves | 514 | ||
1.17.5 Other MC Methods to Simulate Models forPolymers | 516 | ||
1.17.6 Concluding Remarks | 517 | ||
References | 519 | ||
General Polymer Nomenclature and Terminology | 522 | ||
1.18.1 Introduction | 522 | ||
1.18.2 A Short History | 523 | ||
1.18.3 Projects | 525 | ||
1.18.4 Examples of Most Successful Projects | 525 | ||
1.18.4.1 Nomenclature | 525 | ||
1.18.4.2 Terminology | 526 | ||
1.18.5 Final Remarks | 527 | ||
References | 530 | ||
e9780444533494v2 | 534 | ||
Polymer Science: A Comprehensive Reference\r | 535 | ||
Copyright | 538 | ||
Contents_of_Volume 2\r | 539 | ||
Volume Editors\r | 543 | ||
Editor-in-Chief_Bio\r | 545 | ||
Editors_Bio\r | 547 | ||
Contributors_of_Volume 2 | 555 | ||
Preface\r | 559 | ||
Foreword\r | 563 | ||
Introduction and Perspectives | 565 | ||
2.01.1 Introduction | 565 | ||
2.01.2 Perspectives | 566 | ||
References | 566 | ||
e9780444533494v3 | 1443 | ||
Polymer Science: A Comprehensive Reference\r | 1444 | ||
Copyright | 1447 | ||
Contents_of_Volume 3\r | 1448 | ||
Volume Editors\r | 1450 | ||
Editor-in-Chief_Bio | 1452 | ||
Editors_Bio\r | 1454 | ||
Contributors_of_Volume 3\r | 1462 | ||
Preface\r | 1464 | ||
Foreword\r | 1468 | ||
Introduction and Overview: Chain Polymerization of Vinyl Monomers | 1470 | ||
3.01.1 Introduction | 1470 | ||
3.01.2 Overview | 1470 | ||
Fundamental Aspects of Chain Polymerization | 1472 | ||
3.02.1 Introduction | 1473 | ||
3.02.2 The Nobel Prize Award Ceremony Speech of A. \rÖlander on Behalf of the Nobel Committee | 1473 | ||
3.02.2.1 Presentations of the Laureates\r | 1474 | ||
3.02.3 Bodenstein Observation of the First Chain Reactions | 1475 | ||
3.02.4 Nernst’s Mechanism of the Cl2+H2 Reaction (Finally Accepted as the Correct One) | 1475 | ||
3.02.5 Kinetic Scheme of the Fundamental Chain Reaction: Cl2+H2 | 1475 | ||
3.02.6 Stationary State, Bodenstein Approximation, and Final Solution | 1476 | ||
3.02.7 Definitions Pertinent to Chain Reactions | 1476 | ||
3.02.7.1 Chain Reaction | 1476 | ||
3.02.7.2 Chain Carrier | 1476 | ||
3.02.7.3 Chain Propagating Reaction | 1476 | ||
3.02.7.4 Chain Branching | 1476 | ||
3.02.7.5 Steady State (Stationary State) | 1476 | ||
3.02.8 Definitions Pertinent to Chain Polymerizations | 1477 | ||
3.02.8.1 Chain Carrier | 1477 | ||
3.02.8.2 Chain Polymerization | 1477 | ||
3.02.8.3 Chain Propagation (in Chain Polymerization) | 1477 | ||
3.02.9 Two Kinds of Steady States in Chain Polymerizations | 1477 | ||
3.02.10 Discovery of Living Polymerization by Michael Szwarc | 1478 | ||
3.02.11 Living Polymerization | 1478 | ||
3.02.11.1 Definition of Living Polymerization | 1478 | ||
3.02.11.2 Reversibility in Chain Polymerizations | 1478 | ||
3.02.11.3 Kinetics of Fast Initiation–Propagation Systems | 1479 | ||
3.02.11.4 Living Polymerization: Two or More Interconversions of Active Species | 1480 | ||
3.02.11.5 Living Olefin Polymerization | 1481 | ||
3.02.11.6 Living Polymerization of Cyclic Compounds | 1482 | ||
3.02.11.7 Steady-State-Living Chain Polymerization of Cyclic Compounds: Identical Reactivities of Ions and Ion Pairs | 1482 | ||
3.02.11.8 Steady-State Living Polymerization with − kp >or < kp\x01 : Inversion of Reactivities | 1483 | ||
3.02.11.9 Steady-State Living Polymerization with Dormant Species | 1484 | ||
3.02.12 Nearly Steady-State Polymerizations: Controlled Polymerizations Involving Quasi-Equilibria between ActiveandDormant Species | 1487 | ||
3.02.12.1 Living versus Controlled Polymerizations | 1488 | ||
3.02.12.2 Persistent Radical Effect: Self-Regulation (Internal Suppression of Fast Reactions) | 1489 | ||
3.02.12.3 Simple Description of the CRP | 1490 | ||
3.02.12.4 Rate Constants in CRP Based on the PRE: Principle | 1492 | ||
3.02.12.5 NMP and ATRP: Chemistry | 1492 | ||
3.02.12.6 Controlled Cationic Polymerization of Vinyl Monomers | 1493 | ||
3.02.13 Second Kind of the Steady State: The Rate of Formation of Active Centers Balanced by the Rate of Their Disappearance. Classical Radical Polymerization | 1494 | ||
3.02.13.1 Hot Radicals Theory in Radical Polymerization | 1495 | ||
3.02.13.2 The Dependence of Rate Constants on the Chain Length | 1496 | ||
3.02.13.3 Limits of the Steady-State (Bodenstein) Approximation | 1496 | ||
3.02.13.4 Rate Constants in Radical Polymerization | 1496 | ||
3.02.13.5 Pulse Laser Polymerization–Size Exclusion Chromatography: Method of kp Determination | 1497 | ||
3.02.14 Non-Steady-State Polymerizations | 1498 | ||
3.02.14.1 Radical polymerization | 1498 | ||
3.02.14.2 Dead-End Polymerization | 1499 | ||
3.02.14.3 Double Nonstationary Polymerization | 1499 | ||
3.02.15 Chain Polymerizations and Structure ofMacromolecules | 1501 | ||
3.02.15.1 Stereochemistry of Propagation | 1501 | ||
3.02.16 Condensative Chain Polymerizations: Biopolymers | 1502 | ||
3.02.16.1 Definition | 1502 | ||
3.02.17 Polymerize Chain Reaction. DNA Syntheses | 1503 | ||
3.02.18 Conclusions | 1503 | ||
Appendix: Lifetime and Half-Life: Definitions and Their Relationship | 1504 | ||
References | 1505 | ||
Radical Reactivity by Computation and Experiment | 1508 | ||
3.03.1 Introduction | 1508 | ||
3.03.2 Radical Stability | 1509 | ||
3.03.2.1 Definitions of Radical Stability | 1509 | ||
3.03.2.2 Experimental and Theoretical Procedures | 1510 | ||
3.03.2.3 Structure–Reactivity Trends | 1512 | ||
3.03.3 Other Important Properties | 1516 | ||
3.03.3.1 Polar Effects | 1516 | ||
3.03.3.2 Steric Effects | 1517 | ||
3.03.3.3 Bond Strength | 1519 | ||
3.03.4 Tools for Linking Structure to Reactivity | 1521 | ||
3.03.4.1 Overview | 1521 | ||
3.03.4.2 Curve-Crossing Model | 1521 | ||
3.03.4.3 Linear Free-Energy Relationships | 1523 | ||
References | 1525 | ||
Radical Polymerization | 1528 | ||
3.04.1 Introduction | 1529 | ||
3.04.2 Initiation | 1532 | ||
3.04.2.1 The Initiation Process | 1533 | ||
3.04.2.2 The Initiators | 1540 | ||
3.04.3 Propagation | 1540 | ||
3.04.3.1 Stereosequence Isomerism – Tacticity | 1540 | ||
3.04.3.2 Regiosequence Isomerism – Head versus Tail Addition | 1545 | ||
3.04.3.3 Structural Isomerism – Rearrangement | 1548 | ||
3.04.3.4 Propagation Kinetics and Thermodynamics | 1550 | ||
3.04.4 Termination | 1554 | ||
3.04.4.1 Radical–Radical Termination | 1555 | ||
3.04.4.2 Inhibition and Retardation | 1565 | ||
3.04.5 Chain Transfer | 1566 | ||
3.04.5.1 The Chain Transfer Process | 1566 | ||
3.04.6 Reversible Deactivation Radical Polymerization | 1573 | ||
3.04.6.1 Living? Controlled? Mediated? | 1573 | ||
3.04.6.2 Tests for Living (Radical) Polymerization | 1574 | ||
3.04.6.3 Agents Providing Reversible Deactivation | 1575 | ||
3.04.6.4 Deactivation by Reversible Coupling andUnimolecular Activation | 1576 | ||
3.04.6.5 Atom Transfer Radical Polymerization | 1578 | ||
3.04.6.6 Reversible Chain Transfer | 1579 | ||
References | 1582 | ||
Controlled and Living Radical Polymerization – Principles and Fundamentals | 1588 | ||
3.05.1 Introduction | 1589 | ||
3.05.2 Principles and Classification of LRP Techniques | 1589 | ||
3.05.2.1 General Polymerization Behavior | 1589 | ||
3.05.2.2 Activation–Deactivation Quasi-Equilibrium | 1590 | ||
3.05.2.3 Examples of Capping Agent X | 1590 | ||
3.05.2.4 Mechanistic Classification of Reversible Activation Processes | 1590 | ||
3.05.3 Kinetic Theory of LRP: Polymerization Rates | 1592 | ||
3.05.3.1 Systems of DC Type | 1592 | ||
3.05.3.2 Systems of AT Type | 1595 | ||
3.05.3.3 Systems of DT Type | 1595 | ||
3.05.3.4 Systems of RT Type | 1595 | ||
3.05.4 Kinetic Theory of LRP: Polydispersities | 1595 | ||
3.05.4.1 Steady-State Systems | 1595 | ||
3.05.4.2 Power-Law Systems | 1596 | ||
3.05.4.3 Deviations from Ideality | 1596 | ||
3.05.4.4 Correction for Initiator Mass (Block Copolymerization) | 1596 | ||
3.05.5 Nitroxide-Mediated Polymerization | 1597 | ||
3.05.5.1 TEMPO-Mediated Polymerization of Styrene | 1597 | ||
3.05.5.2 DEPN-Mediated Polymerization of Styrene | 1605 | ||
3.05.5.3 NMP of Acrylates | 1607 | ||
3.05.5.4 NMP of Methacrylates | 1608 | ||
3.05.6 Atom Transfer Radical Polymerization | 1608 | ||
3.05.6.1 Copper-Mediated ATRP of Styrene | 1608 | ||
3.05.6.2 ATRP of Methacrylates and Acrylates | 1610 | ||
3.05.6.3 Some Other Notes on ATRP | 1610 | ||
3.05.7 Degenerative Chain Transfer-Mediated Polymerization | 1610 | ||
3.05.7.1 Iodide-Mediated Polymerization of Styrene | 1610 | ||
3.05.7.2 RAFT Polymerization | 1611 | ||
3.05.8 Experiments on Some Newer Systems | 1614 | ||
3.05.8.1 Organotellurium-Mediated LRP and Others | 1614 | ||
3.05.8.2 Reversible Chain Transfer-Catalyzed Polymerization | 1615 | ||
3.05.9 Summary on Activation and Deactivation Rate Constants | 1616 | ||
3.05.9.1 Low-Mass Model Adducts | 1616 | ||
3.05.9.2 Polymer Adducts | 1617 | ||
3.05.10 Conclusions | 1623 | ||
Acknowledgments | 1623 | ||
References | 1623 | ||
Degenerative Transfer with Alkyl Iodide | 1628 | ||
3.06.1 Introduction | 1628 | ||
3.06.2 Alkyl Iodide Transfer Agents Used in Degenerative Transfer Polymerization with Alkyl Iodides | 1629 | ||
3.06.2.1 Structures and Synthesis of Alkyl Iodides | 1629 | ||
3.06.3 Mechanism and Kinetics of Degenerative Transfer Polymerization with Alkyl Iodide | 1630 | ||
3.06.3.1 Mechanism | 1630 | ||
3.06.3.2 Kinetics | 1631 | ||
3.06.4 Other Related Methods | 1633 | ||
3.06.4.1 Reverse Iodine Transfer Polymerization | 1633 | ||
3.06.4.2 Reversible Chain Transfer Catalyzed Polymerization with Iodo-Compounds | 1634 | ||
3.06.4.3 Single Electron Transfer – Degenerative Transfer Living Radical Polymerization with Iodo-Compounds | 1634 | ||
3.06.4.4 Atom Transfer Radical Polymerization withIodo-Initiators | 1635 | ||
3.06.5 Monomers Used in Degenerative Transfer Polymerization with Iodo-Compounds | 1635 | ||
3.06.5.1 Halogenated Monomers | 1635 | ||
3.06.5.2 (Meth)Acrylates | 1637 | ||
3.06.5.3 Styrenics | 1639 | ||
3.06.5.4 Vinyl Esters | 1640 | ||
3.06.5.5 Other Monomers | 1641 | ||
3.06.6 Processes | 1641 | ||
3.06.6.1 Bulk and/or Solution Polymerization | 1641 | ||
3.06.6.2 Dispersion Polymerization | 1641 | ||
3.06.6.3 Microemulsion Polymerization | 1642 | ||
3.06.6.4 Miniemulsion Polymerization | 1642 | ||
3.06.6.5 Emulsion Polymerization | 1642 | ||
3.06.6.6 Suspension Polymerization | 1643 | ||
3.06.7 Macromolecular Architectures Prepared by Degenerative Transfer with Iodo-Compounds | 1643 | ||
3.06.7.1 Telechelics | 1643 | ||
3.06.7.2 Alternated Copolymers | 1643 | ||
3.06.7.3 Gradient Copolymers | 1643 | ||
3.06.7.4 Block Copolymers | 1644 | ||
3.06.7.5 Graft Copolymers | 1644 | ||
3.06.7.6 Brushes | 1645 | ||
3.06.7.7 Hyperbranched and Star (Co)Polymers | 1645 | ||
3.06.7.8 Stereospecific Reversible-Deactivation Radical Polymerization | 1645 | ||
3.06.8 Applications of Polymers Prepared by Degenerative Transfer with Iodo-Compounds | 1646 | ||
3.06.9 Prospects | 1646 | ||
3.06.10 Conclusions | 1646 | ||
References | 1646 | ||
Radical Addition–\rFragmentation Chemistry and RAFT Polymerization | 1650 | ||
3.07.1 Introduction | 1650 | ||
3.07.1.1 Addition–Fragmentation Chain Transfer | 1651 | ||
3.07.1.2 Reversible Addition–Fragmentation Chain Transfer | 1653 | ||
3.07.2 Compounds Providing Irreversible Addition–Fragmentation Chain Transfer | 1656 | ||
3.07.2.1 Vinyl Ethers | 1656 | ||
3.07.2.2 Allyl Sulfides, Sulfones, Halides, Phosphonates, and Silanes | 1658 | ||
3.07.2.3 Allyl Peroxides | 1659 | ||
3.07.2.4 Thionoester and Related Transfer Agents | 1661 | ||
3.07.3 Compounds Providing Reversible Addition–Fragmentation Chain Transfer | 1662 | ||
3.07.3.1 Macromonomers | 1663 | ||
3.07.3.2 Thiocarbonylthio Compounds | 1665 | ||
3.07.3.3 Reaction Conditions | 1681 | ||
3.07.3.4 Polymer Architectures | 1683 | ||
Acknowledgments | 1688 | ||
References | 1688 | ||
Other Degenerative Transfer Systems | 1696 | ||
3.08.1 Introduction | 1696 | ||
3.08.2 Background | 1697 | ||
3.08.3 Organoheteroatom-Mediated LRP | 1698 | ||
3.08.3.1 Initiators and CTAs | 1698 | ||
3.08.3.2 Polymerization Conditions | 1699 | ||
3.08.3.3 Homopolymerization | 1700 | ||
3.08.3.4 Random and Alternating Copolymerization | 1702 | ||
3.08.3.5 Emulsion Polymerization | 1703 | ||
3.08.4 Mechanism | 1703 | ||
3.08.4.1 Activation/Deactivation Mechanism of Dormant Species | 1703 | ||
3.08.4.2 Role of Diheteroatom Compounds | 1705 | ||
3.08.5 Macromolecular Engineering | 1706 | ||
3.08.5.1 End Group Transformations | 1706 | ||
3.08.5.2 Block Copolymer Syntheses | 1709 | ||
3.08.5.3 Synthesis of Functional Polymers | 1711 | ||
3.08.6 Conclusions | 1714 | ||
References | 1714 | ||
Cobalt-Catalyzed Chain Transfer Polymerization: A Review | 1718 | ||
3.09.1 Introduction and Overview | 1719 | ||
3.09.1.1 Broad Overview of Patent Literature | 1720 | ||
3.09.1.2 General Polymerization Considerations | 1720 | ||
3.09.2 Polymerization Mechanism | 1721 | ||
3.09.2.1 Evidence of Catalytic Process | 1721 | ||
3.09.2.2 Points to Consider with the Proposed Mechanism | 1721 | ||
3.09.2.3 Analytical Methods Employed to Investigate Mechanism | 1722 | ||
3.09.2.4 Model Compound Studies | 1724 | ||
3.09.3 Catalysts | 1724 | ||
3.09.3.1 Catalyst Screening | 1724 | ||
3.09.3.2 Measuring Catalytic Activity | 1725 | ||
3.09.3.3 Factors Affecting Cs Values | 1726 | ||
3.09.4 Monomers for CCT | 1728 | ||
3.09.4.1 CCT Active Monomers | 1728 | ||
3.09.4.2 CCT of Less Active Monomers | 1731 | ||
3.09.4.3 Further Polymerization Processes | 1732 | ||
3.09.5 Applications | 1734 | ||
3.09.5.1 CCTP Emulsion Polymerization | 1734 | ||
3.09.5.2 Direct Industrial Applications of CCTP | 1734 | ||
3.09.5.3 Semiconductor Nanocrystal Polymer Hybrids | 1735 | ||
3.09.5.4 CCTP Polymers as Additives for Road Pavement Manufacture | 1735 | ||
3.09.5.5 Glycopolymers | 1736 | ||
3.09.5.6 Polymers for Use in the Hair Care Industry | 1736 | ||
3.09.5.7 Branched Polymers | 1736 | ||
3.09.5.8 Macromonomers for Industrial Applications | 1737 | ||
3.09.5.9 Macromonomers for Photonic Crystals | 1738 | ||
3.09.5.10 Macromonomers for Graft/Comb Copolymers | 1738 | ||
3.09.5.11 Macromonomers for Star Polymers | 1740 | ||
3.09.5.12 Macromonomers for Hydrogels | 1740 | ||
3.09.6 Summary | 1741 | ||
References | 1741 | ||
Nitroxide-Mediated Polymerization | 1746 | ||
3.10.1 Introduction | 1746 | ||
3.10.1.1 Historical Background | 1746 | ||
3.10.1.2 General Considerations | 1747 | ||
3.10.2 Synthesis of Nitroxides and Alkoxyamines | 1748 | ||
3.10.2.1 Synthetic Strategies | 1748 | ||
3.10.2.2 Nitroxides and Alkoxyamines for NMP | 1756 | ||
3.10.3 Features of Nitroxide-Mediated Polymerization\r | 1763 | ||
3.10.3.1 Kinetics of Homogeneous NMP\r | 1763 | ||
3.10.3.2 Range of Monomers for NMP | 1767 | ||
3.10.3.3 Polymerizations in Aqueous Dispersed Media | 1771 | ||
3.10.4 Advanced Architectures and Materials by NMP | 1774 | ||
3.10.4.1 Chain-End Functionalized Polymers from NMP | 1774 | ||
3.10.4.2 Diblock and Triblock Copolymers by NMP | 1776 | ||
3.10.4.3 Complex Macromolecular Architectures | 1803 | ||
3.10.4.4 Biomaterials | 1806 | ||
3.10.5 Conclusions and Perspectives | 1810 | ||
References | 1811 | ||
Organometallic-Mediated Radical Polymerization | 1820 | ||
3.11.1 Introduction: Discovery of OMRP | 1820 | ||
3.11.2 Mechanistic Interplays | 1821 | ||
3.11.3 Tuning the Metal–Carbon Bond Strength | 1822 | ||
3.11.4 Interplay of Dissociative and Associative Processes | 1823 | ||
3.11.5 ‘Clean’ OMRP-RT Processes | 1827 | ||
3.11.5.1 Titanium Systems | 1827 | ||
3.11.5.2 Vanadium Systems | 1828 | ||
3.11.5.3 Chromium Systems | 1828 | ||
3.11.5.4 Molybdenum Systems | 1829 | ||
3.11.5.5 Iron Systems | 1830 | ||
3.11.5.6 Cobalt Systems | 1830 | ||
3.11.6 OMRP-RT versus CCT | 1834 | ||
3.11.7 Interplay of OMRP-RT and ATRP | 1836 | ||
3.11.8 Metal Elimination and Recycling | 1841 | ||
3.11.9 Conclusions and Perspectives | 1842 | ||
References | 1842 | ||
Copper-Mediated Atom Transfer Radical Polymerization | 1846 | ||
3.12.1 Introduction | 1847 | ||
3.12.2 ATRP Equilibrium | 1848 | ||
3.12.3 Initiating an ATRP | 1849 | ||
3.12.3.1 Reverse ATRP | 1849 | ||
3.12.3.2 Simultaneous Reverse and Normal Initiation | 1850 | ||
3.12.3.3 Activators Generated by Electron Transfer ATRP | 1850 | ||
3.12.3.4 Activator Regenerated by Electron Transfer ATRP | 1850 | ||
3.12.3.5 Initiators for Continuous Activator Regeneration | 1851 | ||
3.12.3.6 ATRP with Alkyl Pseudohalides | 1851 | ||
3.12.3.7 Electrochemical Control Over an ATRP | 1853 | ||
3.12.4 Removal of Copper | 1854 | ||
3.12.5 ATRP Thermodynamics and Kinetics | 1854 | ||
3.12.5.1 Equilibrium Constants in ATRP | 1854 | ||
3.12.5.2 Activation Rate Constants in ATRP | 1856 | ||
3.12.5.3 Radical Nature of the Propagating Species | 1858 | ||
3.12.5.4 Inner Sphere Electron Transfer versus Outer Sphere Electron Transfer | 1859 | ||
3.12.6 Components/Phenomenology/Process | 1860 | ||
3.12.6.1 Monomers | 1860 | ||
3.12.6.2 Initiators | 1860 | ||
3.12.6.3 Ligands | 1862 | ||
3.12.6.4 Additives | 1862 | ||
3.12.6.5 Solvent Effects and Selection of a Catalyst for Polymerization in Homogeneous Aqueous Media | 1862 | ||
3.12.6.6 ATRP in Biphasic Aqueous Systems | 1864 | ||
3.12.7 Control over Polymer Composition | 1866 | ||
3.12.7.1 Well-Defined Copolymers | 1866 | ||
3.12.7.2 Homopolymers | 1867 | ||
3.12.7.3 (Co)polymers with Controlled MW | 1867 | ||
3.12.7.4 Tacticity Control | 1869 | ||
3.12.7.5 Linear Segmented Copolymers | 1869 | ||
3.12.8 Polymer Topology | 1870 | ||
3.12.8.1 Graft- and Comb-Shaped (Co)polymers | 1870 | ||
3.12.8.2 Brush Macromolecules | 1873 | ||
3.12.8.3 (Hyper)branched Copolymers | 1875 | ||
3.12.8.4 Star Copolymers | 1875 | ||
3.12.8.5 Networks/Gels | 1877 | ||
3.12.9 Site-Specific Functionality | 1879 | ||
3.12.9.1 Polymerization of Functional Monomers | 1879 | ||
3.12.9.2 Postpolymerization Modification of Incorporated Monomer Units | 1879 | ||
3.12.9.3 Use of Functional ATRP Initiators | 1880 | ||
3.12.9.4 End-Group Transformation | 1880 | ||
3.12.10 Hybrid Materials | 1881 | ||
3.12.10.1 Segmented Copolymers by Mechanistic Transformation | 1881 | ||
3.12.10.2 Brushes Attached to Surfaces | 1882 | ||
3.12.10.3 Carbon Nanostructures | 1884 | ||
3.12.10.4 Bioconjugates | 1885 | ||
3.12.11 Applications | 1885 | ||
3.12.11.1 Thermoplastic Elastomers | 1886 | ||
3.12.11.2 Supersoft Elastomers | 1886 | ||
3.12.11.3 Surfactants and Dispersants | 1886 | ||
3.12.11.4 Functional Flat Surfaces | 1887 | ||
3.12.11.5 Conducting Polymers | 1888 | ||
3.12.11.6 Biorelated Applications | 1888 | ||
3.12.11.7 Other Industrial Applications | 1889 | ||
3.12.12 Conclusions | 1890 | ||
Acknowledgments | 1890 | ||
References | 1890 | ||
Transition Metal Complexes for Metal-Catalyzed Atom Transfer Controlled/Living Radical Polymerization | 1898 | ||
3.13.1 Introduction | 1898 | ||
3.13.2 Scope of Transition Metal-Catalyzed Living Radical Polymerization | 1898 | ||
3.13.3 Late Transition Metal Complexes for Living Radical Polymerization | 1901 | ||
3.13.3.1 Group 8 Metals | 1901 | ||
3.13.3.2 Group 9 Metals | 1915 | ||
3.13.3.3 Group 10 Metals | 1917 | ||
3.13.3.4 Group 11 Metal (Copper) | 1919 | ||
3.13.4 Early Transition Metal Complexes for Living Radical Polymerization | 1921 | ||
3.13.4.1 Group 7 Metal | 1921 | ||
3.13.4.1.1 Manganese | 1921 | ||
3.13.4.1.2 Rhenium | 1921 | ||
3.13.4.2 Other Early Transition Metals | 1922 | ||
3.13.4.2.1 Group 6 metals: molybdenum and tungsten | 1922 | ||
3.13.4.2.2 Group 5 metals: niobium and vanadium | 1923 | ||
3.13.4.2.3 Group 4 metals: titanium | 1924 | ||
3.13.4.2.4 Group 3 metals: lanthanide | 1924 | ||
3.13.5 Prospective View of Catalysts for Living Radical Polymerization | 1924 | ||
References | 1925 | ||
Vinyl Polymerization in Heterogeneous Systems | 1932 | ||
3.14.1 Introduction | 1932 | ||
3.14.2 Vinyl Polymerization in Aqueous Dispersed Systems | 1932 | ||
3.14.2.1 Conventional Radical Polymerization | 1932 | ||
3.14.2.2 Controlled Radical Polymerization | 1949 | ||
3.14.2.3 Other Vinyl Polymerization Methods | 722 | ||
3.14.3 Vinyl Polymerization in Nonaqueous DispersedSystems | 729 | ||
3.14.3.1 Conventional Radical Polymerization | 729 | ||
3.14.3.2 Controlled Radical Polymerization | 745 | ||
3.14.3.3 Ionic Polymerization of Vinyl Monomers | 745 | ||
3.14.4 Conclusion | 1963 | ||
References | 1963 | ||
Cationic Polymerization of Nonpolar Vinyl Monomers | 1970 | ||
3.15.1 Introduction | 1970 | ||
3.15.2 Fundamentals of Cationic Polymerization | 1971 | ||
3.15.3 Monomers | 1971 | ||
3.15.4 Initiating Systems | 1971 | ||
3.15.5 Solvent Polarity and Temperature | 1972 | ||
3.15.6 Controlled Initiation | 1973 | ||
3.15.6.1 The Inifer Method | 1973 | ||
3.15.6.2 Direct Initiation | 1973 | ||
3.15.6.3 Photoinitiation | 1973 | ||
3.15.7 Living Cationic Polymerization | 1974 | ||
3.15.7.1 Mechanistic and Kinetic Details | 1974 | ||
3.15.7.2 Structure – Reactivity Scales in Cationic Polymerization | 1975 | ||
3.15.8 Functional Polymers by Living Cationic Polymerization | 1979 | ||
3.15.8.1 Functional Initiator Method | 1979 | ||
3.15.8.2 Functional Terminator Method | 1980 | ||
3.15.8.3 Telechelic Polymers | 1981 | ||
3.15.9 Block Copolymers | 1984 | ||
3.15.9.1 Linear Diblock Copolymers | 1984 | ||
3.15.9.2 Linear Triblock Copolymers | 1986 | ||
3.15.9.3 Block Copolymers with Nonlinear Architecture | 1986 | ||
3.15.9.4 Block Copolymers Prepared by the Combination ofDifferent Polymerization Mechanisms | 1987 | ||
3.15.10 Branched and Hyperbranched Polymers | 1991 | ||
3.15.10.1 Surface-Initiated Polymerization – Polymer Brushes | 1991 | ||
3.15.11 Conclusions | 1991 | ||
References | 1992 | ||
Cationic Polymerization of Polar Monomers | 1996 | ||
3.16.1 Introduction | 1996 | ||
3.16.2 General Aspects | 1997 | ||
3.16.2.1 Monomer Structure and Reactivity | 1997 | ||
3.16.2.2 Initiators | 1997 | ||
3.16.2.3 Iodine-Mediated Polymerization | 1998 | ||
3.16.2.4 Stereospecific Polymerization | 1998 | ||
3.16.3 Living Cationic Polymerization | 1998 | ||
3.16.3.1 Long-Lived Species | 1998 | ||
3.16.3.2 Living Cationic Polymerization of Alkyl Vinyl Ether: The Breakthrough | 1999 | ||
3.16.4 Design of Initiating Systems for Living Polymerization | 1999 | ||
3.16.4.1 Methods of Living Cationic Polymerization | 1999 | ||
3.16.4.2 Early Development of Vinyl Ethers | 2000 | ||
3.16.5 Recent Developments in Living Polymerization | 2001 | ||
3.16.5.1 New Initiating Systems for Vinyl Ethers | 2002 | ||
3.16.5.2 New Initiating Systems for Styrene Derivatives | 2005 | ||
3.16.6 New Monomers | 2007 | ||
3.16.6.1 Naturally Occurring Monomers and Their Derivatives | 2007 | ||
3.16.6.2 Vinyl Ether Derivatives | 2009 | ||
3.16.6.3 Diene Monomers | 2010 | ||
3.16.7 Sequence or Shape-Regulated Functional Polymers | 2011 | ||
3.16.7.1 Block Copolymers | 2011 | ||
3.16.7.1.1 Di- and triblock copolymer synthesis via sequential living polymerization | 2011 | ||
3.16.7.1.2 Control of molecular weight distribution andsequence in block copolymer synthesis | 2013 | ||
3.16.7.1.2(i) Control of molecular weight distribution in block copolymer synthesis | 2013 | ||
3.16.7.1.2(ii) Control of sequence in block copolymer synthesis: gradient copolymers | 2014 | ||
3.16.7.2 Star-Shaped Polymers | 2014 | ||
3.16.7.2.1 Well-defined functional star polymers | 2014 | ||
3.16.7.2.2 Selective synthesis of star-shaped polymers with narrow molecular weight distributions | 2016 | ||
3.16.7.2.3 Metal nanoparticles stabilized by star-shaped polymers | 2017 | ||
3.16.8 Stimuli-Responsive Polymers | 2017 | ||
3.16.8.1 Thermoresponsive Poly(VE)s with Oxyethylene Pendants and Related Poly(VE)s | 2017 | ||
3.16.8.2 Other Stimuli-Responsive Poly(VE)s | 2020 | ||
3.16.8.3 Stimuli-Responsive Block Copolymers | 2021 | ||
References | 2023 | ||
Anionic Polymerization of Nonpolar Monomers | 2028 | ||
3.17.1 Introduction to Carbanions, Living Polymerization, and Anionic Polymerization | 2028 | ||
3.17.1.1 Living Polymerization | 2029 | ||
3.17.1.2 General Aspects of Anionic Polymerization | 2029 | ||
3.17.2 Initiators, Initiation Mechanisms, and Kinetics | 2031 | ||
3.17.2.1 Initiation | 2031 | ||
3.17.2.2 Initiation by Electron Transfer | 2031 | ||
3.17.2.3 Initiation by Nucleophilic Addition | 2032 | ||
3.17.2.4 Initiation Kinetics | 2035 | ||
3.17.3 Propagation Kinetics and Mechanisms | 2037 | ||
3.17.3.1 Hydrocarbon Solution | 2037 | ||
3.17.3.2 Polar Solvents | 2041 | ||
3.17.4 Chain Termination Reactions | 2042 | ||
3.17.5 Chain Transfer Reactions | 2044 | ||
3.17.6 Stereochemistry | 2045 | ||
3.17.6.1 Polydienes | 2045 | ||
3.17.6.2 Polystyrene | 2051 | ||
3.17.7 Copolymerization | 2052 | ||
3.17.7.1 Hydrocarbon Solution | 2052 | ||
3.17.7.2 Polar Solvents | 2055 | ||
3.17.7.3 Random Styrene–Diene Copolymers | 2055 | ||
References | 2056 | ||
Anionic Polymerization of Protected Functional Monomers | 2060 | ||
3.18.1 Introduction | 2060 | ||
3.18.2 Functional Styrene Derivatives | 2061 | ||
3.18.2.1 Styrene Derivatives with Hydroxyl Groups | 2061 | ||
3.18.2.2 Styrene Derivatives with Other Functional Groups | 1114 | ||
3.18.2.3 New Protective Strategy for Functional Styrene Derivatives: Use of Protected Functionalities Showing Electron-Withdrawing Characters | 2069 | ||
3.18.2.4 Anionic Polymerization Behavior of Styrene Derivatives Possessing Benzyl Ether Skeletons | 2072 | ||
3.18.2.5 Styrene Derivatives Possessing Silanol Functions | 2075 | ||
3.18.3 Functional 1,3-Butadiene Derivatives | 2077 | ||
3.18.4 Functional (Meth)acrylate Derivatives | 2080 | ||
3.18.4.1 (Meth)acrylic Acids | 2081 | ||
3.18.4.2 Functional Methacrylate Derivatives | 2082 | ||
3.18.5 N-Isopropylacrylamide | 2086 | ||
3.18.6 Concluding Remarks | 2087 | ||
References | 2088 | ||
Anionic Polymerization of Polar Vinyl Monomers | 2092 | ||
3.19.1 Introduction | 2092 | ||
3.19.1.1 Types of Polar Vinyl Monomers | 2093 | ||
3.19.1.2 Side Reactions in Alkyl (Meth)acrylate Polymerization | 2093 | ||
3.19.1.3 Initiators for (Meth)acrylate Polymerization | 2094 | ||
3.19.2 Mechanism of the Anionic Polymerization ofAlkyl (Meth)acrylates | 2096 | ||
3.19.2.1 Polymerization in Polar Solvents | 2096 | ||
3.19.2.2 Modification of Enolate Ion Pairs with Ligands: Ligated Anionic Polymerization | 2101 | ||
3.19.2.3 Metal-Free Anionic Polymerization | 2105 | ||
3.19.2.4 Polymerization in Nonpolar Solvents | 2109 | ||
3.19.2.5 Coordinative Anionic Initiating Systems | 2111 | ||
3.19.3 Anionic Polymerization of Other Acrylic Monomers | 2113 | ||
3.19.3.1 N,N-Dialkylacrylamides | 2113 | ||
3.19.3.2 (Meth)acrylonitrile | 2114 | ||
3.19.3.3 Vinyl Ketones and Acrolein | 2115 | ||
3.19.4 Anionic Polymerization of Other Polar Vinyl Monomers | 2116 | ||
3.19.4.1 Polymerization of Vinylpyridines | 2116 | ||
3.19.4.2 Polymerization of Cyanostyrenes | 2119 | ||
3.19.5 Conclusions | 2120 | ||
References | 2120 | ||
Industrial Catalysts for Alkene Polymerization | 2126 | ||
3.20.1 Catalysts for Polyolefin Production | 2126 | ||
3.20.1.1 Introduction | 2126 | ||
3.20.1.2 Mechanism of Metal-Catalyzed Polymerization | 2127 | ||
3.20.1.3 Processes to Produce Polyolefins | 2128 | ||
3.20.1.4 Polyolefin Product Market Overview | 2130 | ||
3.20.2 Historical Development of Commercially Practiced Alkene Polymerization Catalysts | 2130 | ||
3.20.2.1 Standard of Indiana Catalyst | 2130 | ||
3.20.2.2 Phillips Chromox Catalyst | 2130 | ||
3.20.2.3 Titanium Ziegler–Natta Catalysts for Polyethylene | 2130 | ||
3.20.2.4 Titanium Ziegler–Natta Catalysts for Polypropylene | 2131 | ||
3.20.2.5 Vanadium Catalysts for Making EPDM Rubber | 2131 | ||
3.20.2.6 Organochrome Catalysts | 2132 | ||
3.20.2.7 Metallocene Catalysts: Harbingers of the Future | 2132 | ||
3.20.2.8 MAO: The Kaminsky Activator and Single-Site Catalysis | 2132 | ||
3.20.2.9 Metallocene Catalysts: The Significance ofSubstitution | 2133 | ||
3.20.2.10 ‘Noncoordinating’ Anions: Alternative, Discrete Activators | 903 | ||
3.20.2.11 The CpSiNR Ligand for Constrained Geometry Catalysts | 2133 | ||
3.20.2.12 Commercialization of Metallocene Catalysts | 153 | ||
3.20.2.13 Other Single-Site Catalysts | 2135 | ||
3.20.3 Global Polyolefin Catalyst and Product Markets | 2136 | ||
3.20.3.1 Polyolefin Market Overview | 2136 | ||
3.20.3.2 Polypropylene Applications | 2136 | ||
3.20.3.3 Polyethylene Applications by Catalyst | 2137 | ||
3.20.3.4 Catalyst Demand by Product Type | 2139 | ||
3.20.4 Conclusion | 2140 | ||
References | 2140 | ||
Metallocene Alkene Polymerization Catalysts | 2142 | ||
3.21.1 Introduction | 2142 | ||
3.21.2 Definition of a Metallocene Polymerization Catalyst | 2143 | ||
3.21.3 General Mechanism | 1290 | ||
3.21.3.1 Activation and Cocatalysts | 2145 | ||
3.21.3.2 Propagation Steps | 438 | ||
3.21.3.3 Termination Events | 2149 | ||
3.21.4 Ethylene Polymerization | 2150 | ||
3.21.4.1 Types and General Properties of PE | 2150 | ||
3.21.4.2 PE s Produced by Different Catalysts | 2151 | ||
3.21.4.3 Factors Affecting Catalyst Activity and Molecular Weight | 826 | ||
3.21.5 1-Alkene Polymerization | 871 | ||
3.21.5.1 Stereoselectivity | 2154 | ||
3.21.5.2 Aselective | 2154 | ||
3.21.5.3 Isoselective | 2154 | ||
3.21.5.4 Syndioselective | 2154 | ||
3.21.5.5 Hemiisoselective | 2154 | ||
3.21.5.6 Stereoblock | 2155 | ||
3.21.6 Diene Polymerization | 2156 | ||
3.21.6.1 Conjugated Dienes | 2156 | ||
3.21.6.2 Nonconjugated Dienes | 2156 | ||
3.21.7 Copolymerization | 2156 | ||
3.21.7.1 Ethylene/Propylene | 2156 | ||
3.21.7.2 Ethylene/Higher 1-Alkenes | 2158 | ||
3.21.8 Conclusions | 2159 | ||
3.21.9 Outlook | 2162 | ||
References | 2163 | ||
Chain Shuttling Catalysis and Olefin Block Copolymers | 2168 | ||
3.22.1 Introduction | 2168 | ||
3.22.2 Block Copolymers from Living Polymerization | 2169 | ||
3.22.3 Olefin Block Copolymers from Reversible Chain Transfer | 1211 | ||
3.22.3.1 Chain Transfer to Metal in Olefin Polymerization | 2170 | ||
3.22.3.2 Reversible Chain Transfer in Olefin Polymerization | 2171 | ||
3.22.4 Identifying Reversibility in Chain Transfer | 2171 | ||
3.22.4.1 Approaches to Identify CCTP Characteristics | 2171 | ||
3.22.4.2 Mathematical Simulation of Single Catalyst Batch Reactions | 2172 | ||
3.22.4.3 A High-Throughput Method for the Discovery ofChain Shuttling Catalyst Systems | 2175 | ||
3.22.4.4 Kinetic Studies via Deuterium Labeling | 2178 | ||
3.22.5 CCTP Characteristics in Single Catalyst Systems | 2178 | ||
3.22.5.1 CCTP in Ethylene Polymerization | 2178 | ||
3.22.5.2 CCTP/CCG in α-Olefin and Styrene Polymerization | 2181 | ||
3.22.6 Reactor Choice for OBC Synthesis | 2183 | ||
3.22.7 Diblock OBCs via Sequential Monomer Addition | 2185 | ||
3.22.7.1 Synthesis of Diblock OBCs in a Continuous Process | 2185 | ||
3.22.7.2 Properties of Diblock OBCs from CCTP | 2187 | ||
3.22.8 Synthesis of OBCs with Dual-Catalyst Systems | 2190 | ||
3.22.8.1 Ethylene-Based Block Copolymers | 581 | ||
3.22.8.2 Propylene-Based Block Copolymers and Blends | 2193 | ||
3.22.9 Characterization of Olefin Block Copolymers | 2195 | ||
3.22.9.1 Melting Temperature | 2195 | ||
3.22.9.2 Crystallinity and Solid-State Morphology | 2196 | ||
3.22.9.3 Unique Solution Crystallization Behavior | 2197 | ||
3.22.9.4 Performance Characteristics of OBCs | 2199 | ||
3.22.9.5 Comparison of Living, CCTP, and Chain Shuttling Block Polymer Architectures | 2200 | ||
3.22.10 Olefin Block Copolymer Design andApplications | 2201 | ||
3.22.11 Functional Polyolefins from CCTP Systems | 2203 | ||
3.22.12 Conclusion and Outlook | 2203 | ||
References | 2204 | ||
Living Transition Metal-Catalyzed Alkene Polymerization: Polyolefin Synthesis and New Polymer Architectures | 2208 | ||
3.23.1 Introduction | 2209 | ||
3.23.2 Living Olefin Polymerization | 2210 | ||
3.23.2.1 Poly(1-hexene) | 2210 | ||
3.23.2.2 Polypropylene | 2210 | ||
3.23.2.3 Polyethylene | 2210 | ||
3.23.2.4 Polyolefins from Conjugated Dienes, Cyclic Olefins, and Polar Monomers | 2211 | ||
3.23.2.5 Criteria for Living Polymerization | 2211 | ||
3.23.3 Early Metal Olefin Polymerization Catalysts | 2212 | ||
3.23.3.1 Vanadium Acetylacetonoate Catalysts | 2212 | ||
3.23.3.2 Metallocene and Unbridged Half-Metallocene Catalysts | 2212 | ||
3.23.3.3 Catalysts Bearing Monocyclopentadienyl-amido Ligands | 2214 | ||
3.23.3.4 Monocyclopentadienylzirconium Amidinate Catalysts | 2216 | ||
3.23.3.5 Catalysts Bearing Diamido Ligands | 2219 | ||
3.23.3.6 Catalysts Bearing Diamido Ligands with Neutral Donors | 2220 | ||
3.23.3.7 Amine-Phenolate Titanium and Zirconium Catalysts | 2220 | ||
3.23.3.8 Titanium Catalysts Bearing Tridentate Aminodiol Ligands | 2222 | ||
3.23.3.9 Titanium Catalysts for Styrene Homo-andCopolymerization | 2222 | ||
3.23.3.10 Bis(phenoxyimine)titanium Catalysts | 2223 | ||
3.23.3.11 Bis(phenoxyketimine)titanium Catalysts | 2226 | ||
3.23.3.12 Bis(pyrrolide-imine)titanium Catalysts | 2228 | ||
3.23.3.13 Bis(indolide-imine)titanium Catalysts | 2228 | ||
3.23.3.14 Bis(enaminoketonato)titanium Catalysts | 2228 | ||
3.23.3.15 Bis(phosphanylphenoxide)titanium Catalysts | 2230 | ||
3.23.3.16 Catalysts Supported by sp2 and sp3 Carbon Donors | 2230 | ||
3.23.3.17 Aminopyridinatozirconium Catalysts | 2231 | ||
3.23.3.18 Tris(pyrazolyl)borate Catalysts | 2231 | ||
3.23.3.19 Bis(dimethylamidopyridine)zirconium Catalysts | 2231 | ||
3.23.4 Non-group 4 Early Metal Polymerization Catalysts | 2232 | ||
3.23.5 Rare-Earth Metal Catalysts | 2233 | ||
3.23.6 Late Metal Olefin Polymerization Catalysts | 2233 | ||
3.23.6.1 Nickel and Palladium α-Diimine Catalysts | 2233 | ||
3.23.6.1.1 Polymerization of α-olefins | 2233 | ||
3.23.6.1.2 Propylene polymerization | 2236 | ||
3.23.6.1.3 Ethylene polymerization | 2237 | ||
3.23.6.1.4 Other monomers | 2239 | ||
3.23.6.2 Nickel α-Keto-β-diimine Catalysts | 2241 | ||
3.23.6.3 Other Nickel Catalysts | 2241 | ||
3.23.6.4 Other Palladium Catalysts | 2243 | ||
3.23.6.5 Monocyclopentadienyl Cobalt Catalysts | 2243 | ||
3.23.7 Outlook and Summary | 2243 | ||
References | 2244 | ||
Copolymerization of Alkenes and Polar Monomers by Early and Late Transition Metal Catalysts | 2248 | ||
3.24.1 Introduction | 2248 | ||
3.24.2 Coordination of Polar Groups to Transition Metals: Challenges for the Copolymerization of Olefins withPolarComonomers | 2250 | ||
3.24.2.1 Early Transition Metals: Inhibition byσ-Coordination | 2250 | ||
3.24.2.2 Late Transition Metals: Coordination and Insertion of Olefins | 2250 | ||
3.24.3 Methods for the Synthesis of Polar Copolymers with Early Transition Metals | 2253 | ||
3.24.3.1 Direct Copolymerization of Polar Momoners andα-Olefins | 2253 | ||
3.24.3.2 Copolymerization of Sterical Demanding Polar Olefins and α-Olefins | 2261 | ||
3.24.3.3 Copolymerization of Polar Olefins and α-Olefins with Protecting Groups | 2263 | ||
3.24.4 Late Transition Metals in the Copolymerization of Functional and Nonpolar Olefins | 2277 | ||
3.24.4.1 The Strictly Alternating Copolymerization of Carbon Monoxide and α-Olefin Comonomers | 2277 | ||
3.24.4.2 α-Diimine Catalysts for the Synthesis of Branched Functional Copolymers | 2282 | ||
3.24.4.3 Phosphine Sulfonate-Based Catalysts: Synthesis of Linear Copolymers of Ethene and Functionalized Olefins | 2285 | ||
3.24.5 Conclusion | 2289 | ||
References | 2289 | ||
Alkene/CO Copolymerization | 2294 | ||
3.25.1 Introduction | 2294 | ||
3.25.2 Alternating Copolymer of Ethylene and CO | 2294 | ||
3.25.2.1 Reaction Mechanism | 2294 | ||
3.25.2.2 Ligands Employed for the Alternating Copolymerization of Ethylene and CO | 2296 | ||
3.25.3 Nonalternating Copolymer of Ethylene and CO | 2297 | ||
3.25.4 Alternating Copolymerization ofMono-substituted Ethylene and CO | 2300 | ||
3.25.4.1 Stereochemical Aspects | 2300 | ||
3.25.4.2 Alternating Copolymer of Propylene and CO | 2301 | ||
3.25.4.3 Alternating Copolymer of Styrene and CO | 2302 | ||
3.25.4.4 Other Olefin/CO Copolymers Consisting ofPropylene, Styrene, or 1,ω-Dienes | 2304 | ||
3.25.4.5 Copolymerization of Functionalized Olefins withCarbon Monoxide | 2304 | ||
3.25.5 Copolymerization of Imines with Carbon Monoxide | 2307 | ||
3.25.6 Chemical Transformation of Polyketones | 1271 | ||
3.25.7 Physical Properties and Industrial Application of the Olefin/CO Copolymers | 2309 | ||
Cycloolefin Polymerization | 2312 | ||
3.26.1 Introduction | 2312 | ||
3.26.2 Polycycloolefins: Homopolymerization | 2312 | ||
3.26.2.1 Poly(cyclopentene) | 2312 | ||
3.26.2.2 Polynorbornene by Early Transition Metal Catalysts | 2315 | ||
3.26.2.3 Polynorbornene by Late Transition Metal Catalysts | 2317 | ||
3.26.2.4 Properties and Applications | 2319 | ||
3.26.3 Cycloolefin Copolymers | 2320 | ||
3.26.3.1 Cyclopentene Copolymers | 2320 | ||
3.26.3.2 Norbornene Copolymers | 2322 | ||
3.26.3.3 Other Cycloolefin Copolymers | 2338 | ||
3.26.3.4 Properties and Applications | 2338 | ||
3.26.4 Conclusions | 2339 | ||
References | 2339 | ||
Alkyne Polymerization | 2344 | ||
3.27.1 Introduction | 51 | ||
3.27.2 Polymerization Catalysts | 51 | ||
3.27.2.1 Mo and W Catalysts | 51 | ||
3.27.2.2 Nb and Ta Catalysts | 53 | ||
3.27.2.3 Rh Catalysts | 54 | ||
3.27.2.4 Group 10 Metal Catalysts | 54 | ||
3.27.2.5 Group 8 Metal Catalysts | 55 | ||
3.27.2.6 Living Polymerization | 55 | ||
3.27.3 Monosubstituted Acetylene Polymers | 57 | ||
3.27.3.1 Aliphatic Monosubstituted Acetylene Polymers | 57 | ||
3.27.3.2 Aromatic Monosubstituted Acetylene Polymers | 58 | ||
3.27.3.3 Helical Polymers of Monosubstituted Acetylenes | 58 | ||
3.27.3.4 Photoelectronically Functional Polyacetylenes | 59 | ||
3.27.4 Disubstituted Acetylene Polymers | 59 | ||
3.27.4.1 Polymerization of Disubstituted Acetylenes | 60 | ||
3.27.4.2 Reactions of Disubstituted Acetylene Polymers | 60 | ||
3.27.4.3 Functions of Disubstituted Acetylene Polymers | 60 | ||
e9780444533494v4 | 2424 | ||
Polymer Science: A Comprehensive Reference\r | 2425 | ||
Copyright | 2428 | ||
Contents_of_Volume 4\r | 2429 | ||
Volume Editors\r | 2433 | ||
Editor-in-Chief_Bio\r | 2435 | ||
Editors_Bio\r | 2437 | ||
Contributors_of_Volume 4\r | 2445 | ||
Preface\r | 2447 | ||
Foreword\r | 2451 | ||
Introduction | 2453 | ||
Thermodynamic and Kinetic Polymerizability | 2457 | ||
4.02.1 Introduction | 2457 | ||
4.02.2 Major Definitions | 2457 | ||
4.02.2.1 (Molar) Enthalpy of Polymerization (∆Hm or ∆abHm, SI Unit: Jmol−1) | 2457 | ||
4.02.2.2 (Molar) Entropy of Polymerization (∆Sm or ∆abSm, SIUnit: Jmol−1K−1) | 2458 | ||
4.02.3 Equilibrium and Ceiling (Floor) Temperatures (Te and Tc/Tf) | 2458 | ||
4.02.3.1 The IUPAC Definitions for Ceiling and Floor Temperatures | 2459 | ||
4.02.4 Methods for Determination of Tc (or [M]e) | 2460 | ||
4.02.5 Factors Affecting Polymerizability: Enthalpy of Polymerization | 2460 | ||
4.02.5.1 Ring Strain | 2461 | ||
4.02.5.2 Side Groups’ Interaction | 2462 | ||
4.02.5.3 Independent Determination of ∆H and ∆S | 2462 | ||
4.02.6 Entropy-Driven Polymerization | 2463 | ||
4.02.6.1 Polymerization of Cyclic Oligocarbonates | 2463 | ||
4.02.6.2 Ring-Opening Metathesis Polymerization | 2463 | ||
4.02.7 Nonideal (Real) Systems | 2464 | ||
4.02.7.1 Influence of Initial Monomer Concentration | 2464 | ||
4.02.8 Influence of Degree of Polymerization | 2465 | ||
4.02.9 Influence of Phase Separation | 2465 | ||
4.02.10 Final Remarks on the Thermodynamic Polymerizability | 2466 | ||
4.02.11 Kinetic Polymerizability | 2466 | ||
4.02.12 Kinetic Polymerizability versus Macroions and Macroion Pairs in Propagation | 2468 | ||
4.02.13 Outlook | 2471 | ||
References | 2471 | ||
Living Ring-Opening Olefin Metathesis Polymerization | 2473 | ||
References | 2479 | ||
Ring-Chain Equilibria in Ring-Opening Polymerization | 2483 | ||
4.04.1 Phenomenon of the Ring–Chain Equilibria inRing-Opening Polymerization | 2483 | ||
4.04.2 Thermodynamics of the Ring–Chain Equilibria in ROP | 2485 | ||
4.04.3 Thermodynamics of Ring–Chain Equilibria inCopolymerization | 2488 | ||
4.04.4 Effects of Pressure and Solvents on the Ring–Chain Equilibria | 2489 | ||
4.04.5 Kinetics of the Ring–Chain Equilibria in ROP | 2489 | ||
4.04.6 Ring–Chain Equilibria in Selected ROP Systems | 2491 | ||
4.04.6.1 Ring–Chain Equilibria in Polysiloxane Systems | 2491 | ||
4.04.6.2 Ring–Chain Equilibria in Cyclic Acetals and Ethers Polymerizations | 2492 | ||
4.04.6.3 Ring–Chain Equilibria in Cyclic Ester Polymerizations | 2495 | ||
4.04.6.4 Ring–Chain Equilibria in Other ROP Systems | 2497 | ||
4.04.7 Conclusions and Outlook | 2499 | ||
References | 2499 | ||
Equilibrium Copolymerization in Ring-Opening Polymerization | 2503 | ||
4.05.1 Phenomenon of the Equilibrium Copolymerization in Ring-Opening Polymerization | 2503 | ||
4.05.2 The Concept of the Equilibrium Copolymerization | 2503 | ||
4.05.3 Copolymerization Equilibrium | 2505 | ||
4.05.3.1 Comonomer Equilibrium Concentrations | 2506 | ||
4.05.3.2 General Treatment of Copolymerization Equilibrium | 2507 | ||
4.05.4 Thermodynamics of Copolymerization | 2508 | ||
4.05.4.1 Thermodynamics of Copolymerization in Systems with Intercomponent Interactions | 2509 | ||
4.05.5 Determination of the Equilibrium Constants on the Basis of the Analysis of the Copolymerization Equilibrium | 2511 | ||
4.05.6 Selected Examples of the Equilibrium Copolymerization | 2511 | ||
4.05.6.1 Copolymerization of Cyclic Acetals | 2511 | ||
4.05.6.2 Copolymerization of Sulfur with Norbornene Trisulfide | 2514 | ||
4.05.6.3 Equilibrium Copolymerization of γ-Butyrolactone with ε-Caprolactone | 2515 | ||
4.05.6.4 Equilibrium Copolymerization of Tetrahydropyran with Oxetane | 2515 | ||
4.05.6.5 Equilibrium Copolymerization of Tetrahydrofuran Above Its Ceiling Temperature with Oxetanes | 2517 | ||
4.05.7 Conclusions and Outlook | 2517 | ||
References | 2517 | ||
Organocatalyzed Ring-Opening Polymerizations | 2519 | ||
4.06.1 Introduction | 2519 | ||
4.06.2 Metal-Free Initiated versus Metal-Free Organocatalyzed Polymerizations | 2520 | ||
4.06.3 Organocatalytic Platforms, Monomer Candidates, and Related Mechanisms | 2520 | ||
4.06.3.1 The Different Organic Catalysts | 2520 | ||
4.06.3.2 Monomer Candidates | 2523 | ||
4.06.3.3 General Polymerization Mechanisms | 2524 | ||
4.06.4 Polymerizations Catalyzed by 4-(Dialkylamino)pyridines | 2526 | ||
4.06.5 Polymerizations Catalyzed by Amidines | 2529 | ||
4.06.6 Polymerizations Catalyzed by TUs and TU-Amino Derivatives | 2533 | ||
4.06.7 Polymerizations using Phosphorus-Based Catalysts: Phosphines and Phosphazenes | 2538 | ||
4.06.8 Polymerizations Catalyzed by NHCs | 2542 | ||
4.06.9 Polymerization Catalyzed by Weak, Strong, and ‘Super Strong’ Bronsted Acids | 2556 | ||
4.06.9.1 Sulfonic Acid-Mediated ROP | 2557 | ||
4.06.9.2 Sulfonimide-Based Catalysts for ROP | 2561 | ||
4.06.9.3 Carboxylic Acid-Mediated Polymerizations | 2562 | ||
4.06.10 Conclusion | 2563 | ||
References | 2564 | ||
Anionic Ring-Opening Polymerization of Epoxides and Related Nucleophilic Polymerization Processes | 2569 | ||
4.07.1 Introduction | 2569 | ||
4.07.2 Anionic Epoxide Polymerization Initiated byAlkali Metal Derivatives | 2569 | ||
4.07.2.1 Ethylene Oxide | 2570 | ||
4.07.2.2 Monosubstituted Epoxides | 2573 | ||
4.07.3 Initiation by Organic Bases as Initiators | 2575 | ||
4.07.3.1 Organic Bases as Counterions | 2575 | ||
4.07.3.2 Organic Bases as Nucleophilic Initiators | 2576 | ||
4.07.4 Coordination Anionic Polymerization | 2578 | ||
4.07.4.1 Monometallic Coordinating Catalytic Systems | 2578 | ||
4.07.4.2 Porphyrin Salts | 2581 | ||
4.07.4.3 Bi- and Plurimetallic Coordination Catalytic Systems | 2584 | ||
4.07.4.4 Double Metal Cyanide Complexes | 2584 | ||
4.07.5 Polymerization Involving Monomer Activation by a Lewis Acid Additive | 2585 | ||
4.07.5.1 Aluminum Porphyrins Associated with Lewis Acids | 2585 | ||
4.07.5.2 Other Aluminum Derivatives | 2586 | ||
4.07.5.3 Alkali Metal Derivatives and Quaternary Onium Salts | 2586 | ||
4.07.6 Summary | 2590 | ||
References | 2590 | ||
Cationic Ring-Opening Polymerization of Cyclic Ethers | 2593 | ||
4.08.1 General Considerations | 2593 | ||
4.08.1.1 Thermodynamic Polymerizability of Cyclic Ethers | 2593 | ||
4.08.1.2 Nucleophilicity and Basicity of Cyclic Ethers | 2595 | ||
4.08.1.3 Mechanism of Cationic Polymerization ofCyclicEthers | 2595 | ||
4.08.1.4 Elementary Reactions in Cationic Polymerization ofCyclic Ethers | 2596 | ||
4.08.1.5 Macrocyclization in the CROP of Cyclic Ethers | 2598 | ||
4.08.2 CROP of Oxiranes | 2599 | ||
4.08.2.1 Mechanism of Polymerization | 2599 | ||
4.08.2.2 Cationic Photopolymerization of Oxiranes | 2603 | ||
4.08.3 CROP of Oxetanes | 2603 | ||
4.08.3.1 Mechanism of Polymerization | 2603 | ||
4.08.3.2 Cationic Photopolymerization of Oxetanes | 2605 | ||
4.08.3.3 CROP of Oxetanes Leading to Hyperbranched Polyethers | 2605 | ||
4.08.4 CROP of THFs (Oxolanes) | 2607 | ||
4.08.4.1 Mechanism of Cationic Polymerization of THF | 2608 | ||
4.08.4.2 Synthetic Applications of Cationic PolymerizationofTHF | 2610 | ||
4.08.4.3 CROP of Substituted THFs | 2612 | ||
4.08.5 Outlook | 2613 | ||
Acknowledgment | 2613 | ||
References | 2613 | ||
Stereoselective Ring-Opening Polymerization of Epoxides | 2617 | ||
4.09.1 Introduction | 2617 | ||
4.09.1.1 Background | 2617 | ||
4.09.1.2 Scope | 2617 | ||
4.09.2 Basic Concepts in Stereoselective Epoxide Polymerization | 2617 | ||
4.09.2.1 Regiochemistry | 2617 | ||
4.09.2.2 Analysis of Polymer Stereochemistry | 2618 | ||
4.09.2.3 Chain-End Control and Enantiomorphic Site Control of Stereochemistry | 2618 | ||
4.09.3 Stereoselective Epoxide Polymerization | 2619 | ||
4.09.3.1 Aluminum-Based Catalysts | 2619 | ||
4.09.3.2 Zinc-Based Catalysts | 2622 | ||
4.09.3.3 Cobalt-Based Catalysts | 2625 | ||
4.09.3.4 Tin-Based Catalysts | 2629 | ||
4.09.3.5 Chromium-Based Catalysts | 2629 | ||
4.09.4 Conclusion/Outlook | 2630 | ||
References | 2630 | ||
Ring-Opening Polymerization of Cyclic Acetals | 2635 | ||
4.10.1 Introduction | 2635 | ||
4.10.1.1 Monomers | 2636 | ||
4.10.1.2 Polymerizability of Cyclic Acetals | 2637 | ||
4.10.1.3 Thermodynamics of Polymerization | 2637 | ||
4.10.2 Mechanism of Homogeneous Polymerization ofCyclic Acetals | 2638 | ||
4.10.2.1 General Considerations | 2638 | ||
4.10.2.2 Initiation | 2639 | ||
4.10.2.3 Propagation | 2641 | ||
4.10.2.3.1 Structure of active species | 2641 | ||
4.10.2.3.2 Reactivity of active species | 2642 | ||
4.10.2.4 Transfer and Termination | 2642 | ||
4.10.2.5 Formation of Cyclic Oligomers | 2643 | ||
4.10.2.6 Bicyclic Acetals | 2644 | ||
4.10.2.7 Microstructure of Polymer Chain | 2646 | ||
4.10.2.8 Functional Polyacetals | 2646 | ||
4.10.3 Heterogeneous Polymerization of 1,3,5-Trioxane | 2647 | ||
4.10.3.1 General Features of Heterogeneous Polymerization of 1,3,5-Trioxane | 2647 | ||
4.10.3.2 The ‘Induction’ Period in the Homo- andCopolymerization of 1,3,5-Trioxane | 2648 | ||
4.10.3.3 The Polymerization–Crystallization Stage inthe(Co)polymerizations of 1,3,5-Trioxane | 2657 | ||
4.10.3.4 Radiation-Initiated Solid-State Polymerization of1,3,5-Trioxane | 2660 | ||
4.10.3.5 Properties of Poly(oxymethylene) | 2660 | ||
Outlook | 2660 | ||
Acknowledgments | 2660 | ||
References | 2661 | ||
ROP of Cyclic Esters. Mechanisms of Ionic and Coordination Processes | 2665 | ||
4.11.1 Introduction | 2665 | ||
4.11.2 Thermodynamics of ROP of Cyclic Esters | 2667 | ||
4.11.2.1 Thermodynamics of ROP of Cyclic Esters: Some Particular Cases | 2670 | ||
4.11.3 Kinetics of the ROP of Cyclic Esters | 2672 | ||
4.11.3.1 Kinetic Polymerizability | 2672 | ||
4.11.3.2 Initiators and Active Centers: Structures and Reactivities | 2673 | ||
4.11.3.3 Initiation with Covalent Carboxylates | 2676 | ||
4.11.3.4 Propagation in Anionic ROP of Lactones | 2676 | ||
4.11.3.5 Propagation in Coordinated ROP of Cyclic Esters | 2678 | ||
4.11.4 Livingness of Polymerization in Processes Initiated with Multivalent Metal Alkoxides | 2681 | ||
4.11.5 Extent of Molar Mass Control in Processes Initiated with Multivalent Metal Alkoxides | 2682 | ||
4.11.6 Controlled Polymerization of Cyclic Esters Initiated with Single-Site Metal Alkoxides | 2683 | ||
4.11.7 Transfer Processes in the Anionic and Coordination Polymerizations of Cyclic Esters | 2683 | ||
4.11.8 Stereochemically Asymmetric ROP of Cyclic Esters | 2687 | ||
4.11.8.1 Stereocontrolled ROP of LA | 2689 | ||
4.11.8.2 Stereocontrolled ROP of β-BL | 2692 | ||
4.11.8.3 Stereocontrolled Copolymerization of l,l-LA with CL | 2693 | ||
4.11.9 Conclusions | 2694 | ||
References | 2694 | ||
ROP of Cyclic Carbonates and ROP of Macrocycles | 2699 | ||
4.12.1 Introduction | 2699 | ||
4.12.2 Synthesis of Cyclic Carbonates | 2700 | ||
4.12.2.1 Synthesis of Aliphatic Cyclic Carbonates | 2700 | ||
4.12.2.2 Synthesis of Aromatic Cyclic Carbonates | 2704 | ||
4.12.3 Polymerization of Aliphatic Cyclic Carbonates | 2706 | ||
4.12.3.1 Polymerization of Five-Membered Cyclic Carbonates | 2706 | ||
4.12.3.2 Polymerization of Six-Membered Cyclic Carbonates | 2712 | ||
4.12.3.3 Polymerization of Seven-Membered Cyclic andLarger Ring Size Cyclic Carbonates | 2737 | ||
4.12.4 Copolymerization of Cyclic Carbonates withOther Heterocyclic Monomers | 2740 | ||
4.12.4.1 Copolymerization of Five-Membered Cyclic Carbonates | 2740 | ||
4.12.4.2 Copolymerization of Six-Membered Cyclic Carbonates | 2742 | ||
4.12.5 Polymerization of Cyclic Thiocarbonates | 2750 | ||
4.12.6 Polymerization of Macrocycles | 2751 | ||
4.12.6.1 Polymerization of Macrocyclic Aromatic Carbonates | 2751 | ||
4.12.7 Conclusions | 2755 | ||
References | 2755 | ||
ROP of Cyclic Amines and Sulfides | 2761 | ||
4.13.1 Introduction | 2761 | ||
4.13.2 Cyclic Amines | 2761 | ||
4.13.2.1 Aziridines | 2761 | ||
4.13.2.2 Azetidines | 2765 | ||
4.13.3 Cyclic Sulfides | 2770 | ||
4.13.3.1 Thiiranes | 2770 | ||
4.13.3.2 Thietanes | 2776 | ||
4.13.3.3 Cyclic Disulfides | 2779 | ||
4.13.4 Conclusions and Outlook | 2780 | ||
References | 2780 | ||
Ring-Opening Polymerization of Cyclic Amides (Lactams) | 2783 | ||
4.14.1 Introduction | 2784 | ||
4.14.2 Lactams and Their Polymerizability | 2785 | ||
4.14.2.1 Lactam Family | 2785 | ||
4.14.2.2 Polymerizability | 2790 | ||
4.14.3 Outline of Lactam Polymerization Routes | 2797 | ||
4.14.4 Hydrolytic Polymerization | 2798 | ||
4.14.4.1 Reaction Mechanism | 2799 | ||
4.14.5 Cationic Polymerization | 2800 | ||
4.14.5.1 Reaction Mechanism | 2800 | ||
4.14.6 Acidolytic and Aminolytic Polymerizations | 2805 | ||
4.14.7 Anionic Polymerization | 2807 | ||
4.14.7.1 Reaction Mechanism | 2807 | ||
4.14.7.2 Side Reactions | 2811 | ||
4.14.7.3 Initiators | 2814 | ||
4.14.7.4 Activated Anionic Polymerization | 2817 | ||
4.14.7.5 Activators | 2820 | ||
4.14.8 Enzymatic Polymerization | 2827 | ||
4.14.9 Spontaneous Polymerization | 2827 | ||
4.14.10 Anionic Polymerization of CL | 2828 | ||
4.14.10.1 Overview | 2828 | ||
4.14.10.2 Kinetic Approaches in the Bulk Polymerization | 2829 | ||
4.14.10.3 Role of Activator and Initiator Concentrations | 2830 | ||
4.14.10.4 Cyclic Oligomers and Cyclic Species | 2832 | ||
4.14.11 Anionic Polymerization of Other Lactams | 2836 | ||
4.14.11.1 2-Pyrrolidone | 2836 | ||
4.14.11.2 2-Piperidone | 2837 | ||
4.14.11.3 ω-Laurolactam | 2837 | ||
4.14.11.4 Substituted β-Lactams and Their Living Polymerization | 2838 | ||
4.14.12 Anionic Copolymers | 2839 | ||
4.14.12.1 Introduction | 2839 | ||
4.14.12.2 Copolymerization of CL and ω-Laurolactam | 2839 | ||
4.14.12.3 Copolymerization of Lactams and Lactones | 2840 | ||
4.14.12.4 Block Copolymers and Other Copolymers | 2841 | ||
4.14.13 Industrial Applications | 2842 | ||
4.14.13.1 Introduction | 2842 | ||
4.14.13.2 Powdered Polyamides | 2842 | ||
4.14.13.3 RIM, RTM, Rotational Molding, and Reactive Extrusion | 2843 | ||
4.14.13.4 Composites and Nanocomposites of Anionically Synthesized Polyamides | 2844 | ||
References | 2844 | ||
Polymerization of Oxazolines | 2849 | ||
4.15.1 Introduction | 2849 | ||
4.15.2 Cationic Ring-Opening Polymerization | 2850 | ||
4.15.2.1 Monomers, Catalysts (Initiators), Reaction Mechanism, and Monomer Reactivity | 2850 | ||
4.15.2.2 CROP: Various Reaction Modes | 2854 | ||
4.15.2.3 Microwave-Assisted CROP Reaction | 2856 | ||
4.15.2.4 Copolymerization via CROP-Mode Reaction | 2856 | ||
4.15.3 Ring-Opening Polyaddition | 2861 | ||
4.15.3.1 ROPA Reaction between A-A-Type Monomer andB-B-Type Monomer | 2862 | ||
4.15.3.2 ROPA Reaction of AB-Type Monomers | 2863 | ||
4.15.4 ROPA for Polysaccharide Synthesis | 2864 | ||
4.15.4.1 Enzymatic ROPA of Sugar Oxazolines | 2864 | ||
4.15.4.2 Cationic ROPA of Sugar Oxazolines | 2867 | ||
4.15.5 Ring-Opening Polymerizations of Other Oxazoline Derivative Monomers | 2868 | ||
4.15.5.1 Polymerization of 5-Oxazolone | 2868 | ||
4.15.5.2 Polymerization of 1,3-Oxazine | 2868 | ||
4.15.5.3 Polymerization of 1,3-Oxazepine | 2868 | ||
4.15.6 Sythesis of Functional Polymers via CROP Process and Their Applications | 2869 | ||
4.15.6.1 Synthesis of End-Functionalized Polymers | 2869 | ||
4.15.6.2 Synthesis of Amphiphilic Copolymers | 2870 | ||
4.15.6.3 Synthesis of Stimuli-Responsible Polymers | 2871 | ||
4.15.6.4 Archtecture of New Polymeric Systems | 2872 | ||
4.15.6.5 Sythesis of Bio-Related Polymers | 2874 | ||
References | 2875 | ||
Ring-Opening Polymerization of Amino Acid N-Carboxyanhydrides | 2879 | ||
4.16.1 Introduction | 2879 | ||
4.16.2 Polypeptide Synthesis using NCAs | 2880 | ||
4.16.2.1 Conventional Methods | 2880 | ||
4.16.2.2 Transition Metal Initiators | 2881 | ||
4.16.2.3 Controlled Polymerization using Amine Initiators | 2883 | ||
4.16.2.4 Amine Hydrochloride-Initiated Polymerizations | 2884 | ||
4.16.2.5 N-Trimethylsilyl Amine Initiators | 2885 | ||
4.16.3 Copolypeptide Synthesis via ROP | 2886 | ||
4.16.3.1 Block Copolypeptides | 2886 | ||
4.16.3.2 Star Copolypeptides | 2887 | ||
4.16.3.3 Brush and Branched Copolypeptides | 2888 | ||
4.16.4 Side-Chain Functionalized Polypeptides | 2891 | ||
4.16.4.1 Nonionic Water-Soluble Polypeptides | 2893 | ||
4.16.4.2 Mesogen-Functionalized Polypeptides | 2895 | ||
4.16.4.3 Polypeptides Functionalized for ‘Click’ Reactivity | 2895 | ||
4.16.4.4 Sugar-Functionalized Polypeptides | 2897 | ||
4.16.5 Poly(β-Peptides) | 2897 | ||
4.16.6 Polypeptide Deprotection and Purification | 2898 | ||
4.16.7 Conclusions | 2899 | ||
References | 2899 | ||
Polymerization of Cyclic Siloxanes, Silanes, and Related Monomers | 2903 | ||
4.17.1 Monomers Polymerizable by Breaking theSiloxane Bonds | 2903 | ||
4.17.1.1 Cyclosiloxanes | 2903 | ||
4.17.1.2 Cyclooxysilylenes (Cyclosilaethers) | 2918 | ||
4.17.2 Ring-Opening Polymerization of Cyclic Organosilicon Monomers Not Involving Si–O Bond Cleavage | 2919 | ||
4.17.2.1 Cyclosilanes | 2919 | ||
4.17.2.2 Cyclocarbosilanes | 2921 | ||
4.17.2.3 Cyclosilazanes | 2922 | ||
4.17.2.4 Cyclostannasiloxanes | 2923 | ||
4.17.2.5 Ferrocenylsilanes | 2923 | ||
4.17.3 Final Remarks | 2923 | ||
References | 2924 | ||
Ring-Opening Polymerization of Cyclic Phosphorus Monomers | 2929 | ||
4.18.1 Scope of the Chapter | 2929 | ||
4.18.2 Polymerization of Cyclic Organophosphorus Compounds | 2929 | ||
4.18.2.1 Introduction | 2930 | ||
4.18.2.2 Anionic Polymerization | 2930 | ||
4.18.2.3 Cationic Polymerization | 2933 | ||
4.18.2.4 Polymerization of Other Cyclic P-Containing Monomers | 2935 | ||
4.18.2.5 Thermodynamics, Kinetics, and Mechanism ofPolymerization | 2935 | ||
4.18.2.6 Copolymerization | 2940 | ||
4.18.3 Polyaddition | 2944 | ||
4.18.4 Transformation of Poly(alkylene phosphate)s | 2945 | ||
4.18.5 Some Properties and Applications of Poly(alkylene phosphate)s | 2945 | ||
4.18.6 Polymerization of Cyclic Inorganic P-Containing Compounds | 2945 | ||
4.18.6.1 Polyphosphazenes | 2945 | ||
4.18.6.2 Poly(phosphazenylphosphazene)s | 2950 | ||
4.18.6.3 Poly(carbophosphazene)s | 2950 | ||
4.18.6.4 Poly(thiophosphazene)s | 2950 | ||
4.18.6.5 Poly(thionylphosphazene)s | 2951 | ||
4.18.6.6 Linear Polymers Containing Phosphorus and Transition Elements | 2951 | ||
4.18.6.7 Poly(organophosphazene)s and Related Polymers | 2951 | ||
4.18.7 Some Properties and Applications of Linear Poly(organophosphazene)s | 2952 | ||
4.18.8 Outlook | 2952 | ||
Acknowledgments | 2953 | ||
References | 2953 | ||
Radical Ring-Opening Polymerization | 2959 | ||
4.19.1 General | 2959 | ||
4.19.2 Cycloalkanes | 2959 | ||
4.19.3 Cyclic Ethers and Cyclic Sulfides | 2963 | ||
4.19.4 Cyclic Acetals | 2966 | ||
4.19.5 Spiroorthocarbonates and Spiroorthoesters | 2968 | ||
4.19.6 α-exo-Methylene Lactones | 2969 | ||
4.19.7 Cyclic Sulfones with Vinyl Group | 2970 | ||
4.19.8 Controlled Radical Ring-Opening Polymerization | 2970 | ||
4.19.9 Summary | 2971 | ||
References | 2973 | ||
Architectures of Polymers Synthesized using ROMP | 2975 | ||
4.20.1 Introduction | 2975 | ||
4.20.2 Catalysts (Grubbs and Schrock Type) | 2975 | ||
4.20.3 Basic Categories | 2975 | ||
4.20.4 Monomers | 2977 | ||
4.20.5 Linear Architectures | 2977 | ||
4.20.6 Polyacetylene | 2979 | ||
4.20.7 Diblocks/Triblocks | 2981 | ||
4.20.8 Random | 2983 | ||
4.20.9 Alternating | 2984 | ||
4.20.10 Cyclic | 2986 | ||
4.20.11 Grafted | 2986 | ||
4.20.12 Polyalkynes | 2988 | ||
4.20.13 Nano | 2989 | ||
4.20.14 Micelles | 2990 | ||
4.20.15 Polyrotaxanes and Polycatenane | 2991 | ||
4.20.16 Dendrimers | 2992 | ||
4.20.17 Star Polymers | 2994 | ||
4.20.18 Other | 2994 | ||
4.20.19 Conclusion | 2999 | ||
References | 2999 | ||
High-Molecular-Weight Poly(ethylene oxide) | 3003 | ||
4.21.1 Introduction | 3003 | ||
4.21.2 Oxirane Polymerization | 3003 | ||
4.21.2.1 Investigations of an Early Date | 3003 | ||
4.21.2.2 Anionic Polymerization in Solution | 3004 | ||
4.21.2.3 Role of Additives: Anionic Polymerization of Substituted Oxirane in Solution and Polymerization of PO | 3004 | ||
4.21.2.4 Synthesis of Polyglycidol | 3005 | ||
4.21.3 Anionic Coordination Polymerization | 3008 | ||
4.21.3.1 Calcium-Based Catalyst Systems: Polymerization in Suspensions and Synthesis of High-MW PEO | 3008 | ||
4.21.3.2 Ca-Based Initiators in Copolymerization | 3010 | ||
4.21.3.3 Aluminum-Based Catalysts | 3011 | ||
4.21.3.4 Double-Metal and Multimetal Cyanide Compounds as Initiators | 3014 | ||
4.21.4 Applications of High-MW Polyoxiranes | 3015 | ||
4.21.4.1 High-MW PEO Polyelectrolytes and Lithium Batteries | 3015 | ||
4.21.4.2 High-MW PEO in Drug Delivery Systems and Tissue Engineering | 3017 | ||
4.21.4.3 PEO Cross-linking: Hydrogels and Cryogels | 3018 | ||
References | 3019 | ||
Nonlinear Macromolecules by Ring-Opening Polymerization | 3023 | ||
4.22.1 Introduction | 3023 | ||
4.22.2 Background and History | 3023 | ||
4.22.2.1 General Concepts in Synthesis of Nonlinear Polymers by Ring-Opening Polymerization | 3023 | ||
4.22.2.2 Degree of Branching | 3025 | ||
4.22.3 Specific Concepts in the Synthesis of Nonlinear Polymers by Ring-Opening Polymerization | 3025 | ||
4.22.3.1 Cationic Ring-Opening | 3025 | ||
4.22.3.2 Anionic Ring-Opening Multibranching Polymerization | 3029 | ||
4.22.3.3 Catalytic Ring-Opening Multibranching Polymerization | 3034 | ||
4.22.4 Complex Polymer Architectures Containing Nonlinear Macromolecules Generated by ROP | 3040 | ||
4.22.4.1 Core Variation | 3040 | ||
4.22.4.2 Terminal Functionalization and Bioconjugation | 3041 | ||
4.22.4.3 Multiarm Star Polymers or ‘Hyperstars’ | 3043 | ||
4.22.4.4 Linear-Hyperbranched Block Copolymers | 3044 | ||
4.22.5 Conclusion and Perspectives | 3045 | ||
References | 3045 | ||
Current and Forthcoming Applications of ROMP-Derived Polymers: Functional Surfaces and Supports | 3049 | ||
4.23.1 Introduction to Ring-Opening Metathesis Polymerization | 3049 | ||
4.23.2 Initiators for ROMP | 3049 | ||
4.23.2.1 ROMP with Schrock Initiators | 3050 | ||
4.23.2.2 ROMP with Grubbs-Type Initiators | 3052 | ||
4.23.3 1-Alkyne Polymerization | 3052 | ||
4.23.4 Supports | 3053 | ||
4.23.4.1 Inorganic Surfaces | 3053 | ||
4.23.4.2 Organic Surfaces | 3060 | ||
4.23.5 Summary | 3081 | ||
References | 3081 | ||
Chain Extension by Ring Opening | 3085 | ||
4.24.1 General | 3085 | ||
4.24.2 Chain Extension | 3085 | ||
4.24.3 Diepoxides | 3086 | ||
4.24.4 Cyclic Imino Ethers | 3087 | ||
4.24.5 Cyclic Anhydrides | 3088 | ||
4.24.6 Bisoxazolinones | 3090 | ||
4.24.7 Coupling with Release of Blocking Groups | 3092 | ||
4.24.8 Mixed Systems | 3093 | ||
4.24.9 Conclusions | 3094 | ||
References | 3095 | ||
Ring-Opening Dispersion Polymerization | 3097 | ||
4.25.1 Introduction | 3097 | ||
4.25.2 Cationic Ring-Opening Dispersion Polymerization | 3098 | ||
4.25.3 Anionic and Pseudoanionic Ring-Opening Dispersion Polymerization | 3099 | ||
4.25.3.1 Continuous Media for the Anionic andPseudoanionic Dispersion Polymerizations of ε-Caprolactone andLactides | 3100 | ||
4.25.3.2 Initiators | 3101 | ||
4.25.3.3 Suspension Stabilizers | 3101 | ||
4.25.3.4 Typical Recipes for Dispersion Polymerizations ofε-Caprolactone and Lactide | 3101 | ||
4.25.3.5 Distribution of Diameters of Polyester Microspheres Synthesized in Dispersion Polymerization of Lactides | 3103 | ||
4.25.3.6 Control of Diameters of Polylactide Microspheres Formed in Ring-Opening Dispersion Polymerizations | 3104 | ||
4.25.3.7 Mechanism of Particle Formation During Ring-Opening Dispersion Polymerization | 3105 | ||
4.25.3.8 Kinetics of Dispersion Polymerization ofε-Caprolactone | 3106 | ||
4.25.3.9 Control of Molecular Weight in Dispersion Polymerization of ε-Caprolactone | 3108 | ||
4.25.3.10 Mechanism of Dispersion Polymerization ofε-Caprolactone and Lactides | 3109 | ||
4.25.4 Practical Importance of Ring-Opening Dispersion Polymerization | 3109 | ||
References | 3111 | ||
Ring-Opening Metathesis Polymerization in the Synthesis of Conjugated Polymers | 3113 | ||
4.26.1 Introduction | 3113 | ||
4.26.1.1 Preamble | 3113 | ||
4.26.1.2 Origins of Interest in Conjugated Polymers | 3113 | ||
4.26.2 Ring-Opening Polymerization of Monocyclic Polyenes | 3115 | ||
4.26.2.1 General Considerations | 3115 | ||
4.26.2.2 Unsaturated Three-Membered Rings as Starting Materials | 3116 | ||
4.26.2.3 Unsaturated Four-Membered Rings as Starting Materials | 3116 | ||
4.26.2.4 Unsaturated Five-Membered Rings as Starting Materials | 3120 | ||
4.26.2.5 Routes Involving ROMP of Six-Membered Ring Systems | 3124 | ||
4.26.2.6 Unsaturated Eight-Membered Rings as Starting Materials | 3125 | ||
4.26.2.7 Monomers with Larger than Eight-Membered Rings as Starting Materials | 3127 | ||
Summary | 3128 | ||
References | 3128 | ||
Oligomeric Poly(ethylene oxide)s. Functionalized Poly(ethylene glycol)s. PEGylation | 3131 | ||
4.27.1 Introduction | 3131 | ||
4.27.2 Properties of PEGs | 3131 | ||
4.27.3 Chemistry of PEGylation | 3132 | ||
4.27.3.1 Activated PEG Derivatives for Conjugation with Amines | 3132 | ||
4.27.3.2 Activated PEG Derivatives for Thiol Conjugation | 3133 | ||
4.27.3.3 Activated PEG Derivatives for ‘Click’ Conjugation | 3135 | ||
4.27.4 PEG Conjugation to Peptides and Proteins | 3135 | ||
4.27.4.1 Importance of Peptide/Protein–Polymer Conjugation | 3135 | ||
4.27.4.2 PEGylated Protein Drugs | 3137 | ||
4.27.4.3 PEGylated Enzymes | 3139 | ||
4.27.5 PEG Conjugation with Small Drugs | 3140 | ||
4.27.6 PEGylated Dendrimers as Drug Delivery Systems | 3141 | ||
4.27.7 PEGylated Inorganic–Organic Core-Shell Nanoparticles | 3141 | ||
References | 3144 | ||
Current and Forthcoming Applications of ROMP Polymers - Biorelated Polymers | 3147 | ||
4.28.1 Bioactive Polymers from the Ring-Opening Metathesis Polymerization | 3147 | ||
4.28.1.1 Introduction | 3147 | ||
4.28.1.2 Attributes of ROMP for Controlling Bioactive Ligand Incorporation | 3148 | ||
4.28.1.3 Synthetic Strategies for Bioactive Ligand Incorporation | 3149 | ||
4.28.1.4 Applications of Biologically Active Polymeric Displays | 3153 | ||
4.28.1.5 Conclusions | 3166 | ||
References | 3167 | ||
Polyphosphoesters: Controlled Ring-Opening Polymerization andBiological Applications | 3171 | ||
4.29.1 Introduction and Historical Background | 3171 | ||
4.29.2 Controlled Syntheses of PPEs by Ring-Opening Polymerization | 3172 | ||
4.29.2.1 Controlled Polymerization with Al(OiPr)3 | 3172 | ||
4.29.2.2 Controlled Polymerization with Sn(Oct)2 | 3173 | ||
4.29.2.3 Controlled Polymerization with Organocatalysts | 3175 | ||
4.29.3 Topological Structure of PPE | 3176 | ||
4.29.3.1 Random Copolymers of PPE | 3176 | ||
4.29.3.2 Block Copolymers of PPE | 3176 | ||
4.29.3.3 Star/Miktoarm Block Polymers of PPE | 3177 | ||
4.29.3.4 Graft/Comb Polymers of PPE | 3177 | ||
4.29.3.5 Hyperbranched Polymers of PPE | 3178 | ||
4.29.4 Thermoresponsive PPEs | 3179 | ||
4.29.5 Functional PPEs | 3180 | ||
4.29.6 Biomedical Applications of PPEs | 3183 | ||
4.29.6.1 Delivery of Therapeutic Small Molecules with PPE | 3183 | ||
4.29.6.2 Delivery of Plasmid DNA with PPE | 3187 | ||
4.29.6.3 Delivery of siRNA with PPE | 3191 | ||
4.29.6.4 PPE for Tissue Engineering Applications | 3193 | ||
4.29.7 Conclusions and Outlook | 3196 | ||
References | 3197 | ||
Industrial Applications of ROMP | 3201 | ||
4.30.1 Introduction | 3201 | ||
4.30.2 Olefin Metathesis in the Petrochemical Industry | 3202 | ||
4.30.2.1 Phillips Triolefin Process and OCT® | 3202 | ||
4.30.2.2 SHOP | 3202 | ||
4.30.3 Polymer Modification | 3202 | ||
4.30.3.1 Hydrogenated Acrylonitrile-Butadiene Copolymers (Therban® AT) | 3202 | ||
4.30.3.2 Hydrogenated Metathesized Soy Wax (NatureWax®) | 3203 | ||
4.30.4 ROMP Polymers Based on Dicyclopentadiene | 3203 | ||
4.30.4.1 Raw Material Considerations | 3203 | ||
4.30.4.2 Polydicyclopentadiene Based on Traditional Catalysts (Telene®, Metton®, Pentam®) | 3204 | ||
4.30.4.3 Early Applications of Grubbs Ruthenium Catalysts in pDCPD (Cyonyx®, Prometa®) | 3204 | ||
4.30.4.4 Polynorbornene (Norsorex®) | 3206 | ||
4.30.4.5 Cylic Olefin Copolymers (Zeonex®, Zeonor®, Arton®) | 3206 | ||
4.30.5 Linear Polyalkenamers | 3207 | ||
4.30.5.1 Polybutenamer | 3207 | ||
4.30.5.2 Polypentenamer | 3208 | ||
4.30.5.3 Polyoctenamer (Vestenamer®) | 3208 | ||
4.30.5.4 Polydodecenamer | 3208 | ||
4.30.5.5 End-Functional Polymers (Difol®) | 3208 | ||
4.30.6 Conclusion | 3209 | ||
References | 3209 | ||
Ring-Opening Polymerization of Cyclic Esters: Industrial Synthesis, Properties, Applications, and Perspectives | 3213 | ||
4.31.1 Introduction | 3213 | ||
4.31.2 ROP of Cyclic Esters: Generalities | 3214 | ||
4.31.3 Industrial Aliphatic Polyesters Implemented by ROP | 3216 | ||
4.31.3.1 Poly(lactide) | 3216 | ||
4.31.3.2 Polyglycolide | 3222 | ||
4.31.3.3 Poly(ε-caprolactone) | 3223 | ||
4.31.3.4 Poly(1,4-dioxan-2-one) | 3225 | ||
4.31.4 Conclusions and Outlook | 3227 | ||
References | 3227 | ||
Polymerization Kinetic Modeling and Macromolecular Reaction Engineering | 3231 | ||
4.32.1 Introduction | 3234 | ||
4.32.2 Stepwise Polymerization | 3235 | ||
4.32.2.1 Rate of Polymerization | 3235 | ||
4.32.2.2 Molecular Weight of Polymers | 3236 | ||
4.32.2.3 MWD of Polymers | 3236 | ||
4.32.2.4 Nonlinear Condensation Polymerization | 3237 | ||
4.32.3 Free-Radical Polymerization | 3238 | ||
4.32.3.1 Initiation, Propagation, and Termination | 3238 | ||
4.32.3.2 Rate of Polymerization | 3240 | ||
4.32.3.3 Diffusion-Controlled Reactions | 3240 | ||
4.32.3.4 Molecular Weight and Distribution of Polymers | 3242 | ||
4.32.3.5 Branching and Cross-linking | 3243 | ||
4.32.3.6 Method of Moments | 3244 | ||
4.32.4 Ionic Polymerization | 3244 | ||
4.32.4.1 Cationic Polymerization | 3244 | ||
4.32.4.2 Anionic Polymerization | 3245 | ||
4.32.4.3 Living Anionic Polymerization | 3246 | ||
4.32.5 Controlled Radical Polymerization | 3246 | ||
4.32.5.1 Stable Free-Radical Polymerization | 3247 | ||
4.32.5.2 Atom Transfer Radical Polymerization | 3248 | ||
4.32.5.3 Reversible Addition–Fragmentation Chain Transfer Radical Polymerization | 3249 | ||
4.32.5.4 Comparison of NMP, ATRP, and RAFT Polymerization | 3250 | ||
4.32.6 Ziegler–Natta Polymerization | 3250 | ||
4.32.6.1 Rate of Polymerization | 3252 | ||
4.32.6.2 Molecular Weight and Distribution of Polymer | 3252 | ||
4.32.6.3 Multiple-Active-Site-Type Model | 3253 | ||
4.32.7 Metallocene Polymerization | 3253 | ||
4.32.7.1 Long-Chain Branching with Constrained Geometry Catalysts | 3254 | ||
4.32.7.2 Binary Catalyst System for Long-Chain Branching | 3255 | ||
4.32.7.3 Post-Metallocene Development | 3256 | ||
4.32.8 Emulsion Polymerization | 3257 | ||
4.32.8.1 Particle Nucleation | 3258 | ||
4.32.8.2 Rate of Polymerization | 3259 | ||
4.32.8.3 Molecular Weight Development of Polymers | 3260 | ||
4.32.9 Dispersion and Suspension Polymerization | 3260 | ||
4.32.9.1 Dispersion Polymerization | 3260 | ||
4.32.9.2 Suspension Polymerization | 3262 | ||
4.32.10 Copolymerization | 3263 | ||
4.32.10.1 Terminal Model for Copolymer Compositions | 3263 | ||
4.32.10.2 Pseudokinetic Rate Constant Method | 3265 | ||
4.32.10.3 Vinyl/Divinyl Copolymerization | 3266 | ||
4.32.10.4 Cross-link Density Distribution | 3267 | ||
4.32.10.5 Kinetic Modeling of Gelation | 3268 | ||
4.32.11 Semibatch Control of Copolymer Composition | 3269 | ||
4.32.11.1 Monomer Feeding Policies for Uniform Copolymers | 3269 | ||
4.32.11.2 Stability in Semibatch Operation | 3270 | ||
4.32.11.3 Semibatch Design of Gradient Copolymers | 3271 | ||
4.32.12 Continuous Polymerization Processes | 3272 | ||
4.32.12.1 Steady-State Operation | 3273 | ||
4.32.12.2 Reactor RTD | 3273 | ||
4.32.12.3 Effect of RTD on Polymer Chain Properties | 3274 | ||
4.32.13 Industrial Examples of Polymer Production | 3275 | ||
4.32.13.1 Low-Density Polyethylene | 3276 | ||
4.32.13.2 High-Impact PP | 3276 | ||
4.32.13.3 Linear Low-Density and High-Density Polyethylene | 3277 | ||
4.32.13.4 Polystyrene | 3278 | ||
4.32.13.5 Polyvinyl Chloride | 3279 | ||
4.32.13.6 Nylon 66 | 3279 | ||
4.32.14 Conclusion and Outlook | 3280 | ||
Acknowledgment | 3280 | ||
References | 3280 | ||
Template Polymerization | 3285 | ||
4.33.1 Introduction | 3285 | ||
4.33.2 Mechanism of Template Polymerization | 3286 | ||
4.33.3 Radical Template Polymerization andCopolymerization | 3287 | ||
4.33.3.1 Models and Examples | 3287 | ||
4.33.3.2 Multimonomers as Templates | 3289 | ||
4.33.3.3 Kinetics of the Radical Template Polymerization | 3292 | ||
4.33.3.4 Radical Template Copolymerization | 3294 | ||
4.33.4 Template Polycondensation | 3297 | ||
4.33.5 Ring-Opening Template Polymerization | 3299 | ||
4.33.6 Special Kinds of Template Polymerization | 3300 | ||
4.33.6.1 Spontaneous Template Polymerization | 3300 | ||
4.33.6.2 Oxidative Template Polymerization | 3301 | ||
4.33.7 Products of Template Polymerization and Potential Applications | 3302 | ||
4.33.8 Polymerization in Confined Space | 3303 | ||
4.33.8.1 Introduction | 3303 | ||
4.33.8.2 Polymerization in Clathrates | 3303 | ||
4.33.8.3 Compartmentalization | 3304 | ||
4.33.9 Conclusion | 3305 | ||
References | 3306 | ||
Mechanistic Aspects of Solid-State Polycondensation | 3309 | ||
4.34.1 Introduction | 3309 | ||
4.34.2 Direct Solid-State Polycondensation | 3310 | ||
4.34.2.1 The Role of Hexane-1,6-Diamine Volatilization | 3311 | ||
4.34.2.2 The Role of Polycondensation Water | 3313 | ||
4.34.2.3 The Role of Catalysts | 3314 | ||
4.34.2.4 Low-Temperature Prepolymerization Process | 3315 | ||
4.34.3 Post-Solid-State Polycondensation | 3315 | ||
4.34.3.1 Polyamide 66 | 3315 | ||
4.34.3.2 Poly(ethylene terephthalate) | 3320 | ||
4.34.3.3 Poly(lactic acid) | 3323 | ||
4.34.4 Conclusions | 3324 | ||
References | 3324 | ||
Radical Polymerization at High Pressure | 3327 | ||
4.35.1 Introduction | 3327 | ||
4.35.2 Experiments and Data Treatment | 3328 | ||
4.35.2.1 Single Pulse-Pulsed Laser Polymerization | 3330 | ||
4.35.2.2 Pulsed Laser Polymerization-Size Exclusion Chromatography | 3331 | ||
4.35.3 Initiation, Propagation, and Termination Rate Coefficients of Radical Polymerization up to High Pressure | 3331 | ||
4.35.3.1 Decomposition of Peroxide Initiators at High Pressure | 3331 | ||
4.35.3.2 Pressure Dependence of Homopropagation Rate Coefficients | 3335 | ||
4.35.3.3 Pressure Dependence of Homotermination Rate Coefficients | 3336 | ||
4.35.4 High-Pressure Ethene Polymerization | 3339 | ||
4.35.4.1 Propagation and Termination | 3339 | ||
4.35.4.2 CT to Monomer | 3340 | ||
4.35.4.3 CT to Polymer and β-Scission | 3341 | ||
4.35.5 High-Pressure Ethene Copolymerization | 3341 | ||
4.35.6 Reversible Deactivated Radical Polymerization | 3342 | ||
4.35.7 Homogeneous-Phase Polymerization in scCO2 | 3344 | ||
4.35.7.1 Styrene–Methacrylate Copolymers | 3344 | ||
4.35.7.2 Fluorinated Olefins | 3345 | ||
4.35.8 Kinetics of Radical Polymerization in Homogeneous Mixture with scCO2 | 3347 | ||
References | 3350 | ||
Electroinitiated Polymerization | 3355 | ||
4.36.1 Introduction | 3355 | ||
4.36.2 Electroinitiated Polymerization of Vinyl Monomers for Promoting Coatings Adhesive to Metals | 3355 | ||
4.36.2.1 Implementation of the Electrografting of AN | 3356 | ||
4.36.2.2 Investigation of the Electrografting Process | 3357 | ||
4.36.2.3 Investigation of the Electrografting Mechanism | 3358 | ||
4.36.2.4 Effect of Solvent on the Electrografting of AN | 3358 | ||
4.36.2.5 Extension of the Electrografting Process to Monomers Other than AN | 3360 | ||
4.36.2.6 Microstructure of the Electrografted Chains | 3362 | ||
4.36.2.7 Variety of Substrates Suitable for Electrografting | 3363 | ||
4.36.2.8 Implementation of Electrografting in Aqueous Media | 3365 | ||
4.36.3 Electropolymerization of Conjugated Polymers as Active Layers in Advanced Devices | 3366 | ||
4.36.4 Electrografting of Conjugated Polymers | 3367 | ||
4.36.5 Conclusion | 3368 | ||
References | 3369 | ||
Photopolymerization | 3371 | ||
4.37.1 Introduction | 3371 | ||
4.37.2 Photochemical Condensation Reactions | 3371 | ||
4.37.2.1 Direct Photochemical Condensation Reactions | 3371 | ||
4.37.2.2 Photocatalyzed Condensation Polymerization Reactions | 3373 | ||
4.37.3 Photoinduced Active Center Polymerizations | 3375 | ||
4.37.3.1 Photoinitiated Radical Polymerizations | 3376 | ||
4.37.3.2 Photoinitiated Cationic Polymerizations | 3380 | ||
4.37.3.3 Photoinitiated Anionic Polymerizations | 3402 | ||
4.37.4 Conclusions | 3403 | ||
References | 3403 | ||
Frontal Polymerization | 3409 | ||
4.38.1 What Is Frontal Polymerization? | 3409 | ||
4.38.2 Photofrontal Polymerization | 3410 | ||
4.38.3 Isothermal Frontal Polymerization | 3410 | ||
4.38.4 Cryogenic Fronts | 3411 | ||
4.38.5 Thermal Frontal Polymerization | 3412 | ||
4.38.5.1 Origins | 3412 | ||
4.38.5.2 Attempts at Frontal Polymerization Reactors | 3412 | ||
4.38.5.3 Requirements for Frontal Polymerizations | 3412 | ||
4.38.5.4 Starting Fronts | 3413 | ||
4.38.5.5 Free-Radical Frontal Polymerization | 3413 | ||
4.38.5.6 Properties of Monomers | 3413 | ||
4.38.5.7 Frontal Polymerization in Solution | 3414 | ||
4.38.5.8 Temperature Profiles | 3414 | ||
4.38.5.9 Velocity Dependence on Initiator Concentration | 3415 | ||
4.38.5.10 Front Velocity as a Function of Temperature | 3415 | ||
4.38.5.11 The Effect of Type of Monomer and Functionality on Front Velocity | 3415 | ||
4.38.5.12 Solid Monomers | 3415 | ||
4.38.5.13 Effect of Pressure | 3417 | ||
4.38.5.14 Molecular Weight Distribution | 3418 | ||
4.38.5.15 Conversion | 3419 | ||
4.38.5.16 Interferences with Frontal Polymerization | 3420 | ||
4.38.5.17 The Effect of Fillers | 3425 | ||
4.38.5.18 Encapsulation of Initiators | 3425 | ||
4.38.5.19 Copolymerizations | 3425 | ||
4.38.5.20 Atom Transfer Radical Polymerization | 3425 | ||
4.38.5.21 Ring-Opening Metathesis Polymerization | 3425 | ||
4.38.5.22 Polyurethanes | 3426 | ||
4.38.5.23 Epoxy Curing | 3426 | ||
4.38.5.24 Binary Systems | 3426 | ||
4.38.5.25 Patents | 3427 | ||
4.38.5.26 Applications of Thermal Frontal Polymerization | 3427 | ||
4.38.6 Conclusions | 3428 | ||
References | 3429 | ||
Microwave-Assisted Polymerization | 3433 | ||
4.39.1 Interaction of Microwaves with Materials | 3433 | ||
4.39.2 Chain-Growth Polymerization Reactions | 3437 | ||
4.39.2.1 Free-Radical Polymerization | 3437 | ||
4.39.2.2 Controlled Radical Polymerization | 3439 | ||
4.39.2.3 Ring-Opening polymerization | 3444 | ||
4.39.2.4 Metathesis Polymerization | 3447 | ||
4.39.3 Step-Growth Polymerization Reactions | 3448 | ||
4.39.3.1 Thermoplastic Polymers | 3448 | ||
4.39.3.2 Thermosetting Resins | 3452 | ||
4.39.4 Polymer Composites and Nanocomposites | 3463 | ||
4.39.4.1 Polymer Composites | 3463 | ||
4.39.4.2 Nanocomposites | 3468 | ||
4.39.5 Scaling-Up Reactions under Microwave Irradiation | 3474 | ||
References | 3477 | ||
e9780444533494v5 | 3481 | ||
Polymer Science: A Comprehensive Reference | 3482 | ||
Copyright | 3485 | ||
Contents_of_Volume 5 | 3486 | ||
Volume Editors | 3488 | ||
Editor-in-Chief_Bio | 3490 | ||
Editors_Bio | 3492 | ||
Contributors_of_Volume 5 | 3500 | ||
Preface | 3502 | ||
Foreword | 3506 | ||
Introduction and Overview | 3508 | ||
5.01.1 Introduction | 51 | ||
5.01.2 Overview | 51 | ||
Principles of Step-Growth Polymerization (Polycondensation andPolyaddition) | 3514 | ||
5.02.1 Introduction and Historical Perspective | 3514 | ||
5.02.2 Structure–Property Relationships inStep-Growth Polymers | 3515 | ||
5.02.2.1 Synthetic Principles | 51 | ||
5.02.2.2 Molecular Weight Control | 52 | ||
5.02.2.3 Aliphatic versus Aromatic Polymers | 52 | ||
5.02.2.4 Influences of Intermolecular Interactions | 53 | ||
5.02.2.5 Polymer Architecture | 53 | ||
5.02.3 Synthesis of Step-Growth Polymers | 56 | ||
5.02.3.1 Polycondensation Polymers | 57 | ||
5.02.3.2 Polyaddition | 59 | ||
5.02.4 Future Direction for Step-Growth Polymers | 60 | ||
5.02.4.1 New Strategies for Step-Growth Polymers | 60 | ||
5.02.4.2 New Synthetic Approaches | 63 | ||
5.02.5 Concluding Remarks | 65 | ||
References | 65 | ||
Opportunities in Bio-Based Building Blocks for Polycondensates andVinyl Polymers | 3556 | ||
5.03.1 Introduction | 3556 | ||
5.03.1.1 Definition and Scope of Biopolymers | 3557 | ||
5.03.1.2 Value Chain of Biopolymers | 3558 | ||
5.03.2 Monomers | 3558 | ||
5.03.2.1 Monomers via Carbohydrate Fermentation | 3558 | ||
5.03.2.2 Monomers via Chemical Processing of Plant Oils | 3562 | ||
5.03.2.3 Aromatic Monomers via Biochemical Pathways | 3564 | ||
5.03.3 Approaches in Commodity Polymers | 3566 | ||
5.03.3.1 Polyolefins from Renewable Resources | 3566 | ||
5.03.3.2 Biodegradable Polymers from Renewable Resources | 3567 | ||
5.03.4 Approaches in Engineering Polymers | 65 | ||
5.03.4.1 Polyesters | 66 | ||
5.03.4.2 Polyamides | 66 | ||
5.03.5 Approaches for High Performance Polymers | 68 | ||
5.03.6 Conclusions | 69 | ||
References | 69 | ||
Sequence Control in One-Step Polycondensation | 3578 | ||
5.04.1 Introduction | 3578 | ||
5.04.2 Analysis of Constitutional Regularity | 3579 | ||
5.04.3 Sequential Polymers from Symmetric and Nonsymmetric Monomers | 3580 | ||
5.04.3.1 Head-to-Head or Tail-to-Tail Polymers | 3580 | ||
5.04.3.2 Head-to-Tail Polymers | 3585 | ||
5.04.4 Sequential Polymers from Two Nonsymmetric Monomers | 3588 | ||
5.04.4.1 One-Stage Synthesis | 3589 | ||
5.04.4.2 Direct Method | 3589 | ||
5.04.5 Sequential Polymer from Three Nonsymmetric Monomers | 3596 | ||
5.04.5.1 Direct Method | 3596 | ||
5.04.6 Conclusions | 3598 | ||
References | 3598 | ||
Nonstoichiometric Polycondensation | 3602 | ||
5.05.1 Introduction | 3602 | ||
5.05.2 Nonstoichiometric Polycondensation Caused by the Change in Reactivity | 3603 | ||
5.05.2.1 Polycondensation of α,α-Dihalomonomers | 3603 | ||
5.05.2.2 Palladium-Catalyzed Polycondensation | 3606 | ||
5.05.2.3 Phase Transfer Catalyzed Polycondensation | 3610 | ||
5.05.3 Nonstoichiometric Polycondensation Caused by the Change in the Higher Structure of Polymers | 3612 | ||
5.05.3.1 Nucleation–Elongation Polycondensation | 3612 | ||
5.05.3.2 Polycondensation Using Reaction-Induced Crystallization | 3614 | ||
5.05.4 Conclusion | 3619 | ||
References | 3619 | ||
Chain-Growth Condensation Polymerization | 3622 | ||
5.06.1 Introduction | 3622 | ||
5.06.2 p-Substituted Aromatic Polymers | 3622 | ||
5.06.2.1 Polyamides | 3622 | ||
5.06.2.2 Polyesters | 3626 | ||
5.06.2.3 Polyethers | 3627 | ||
5.06.3 m-Substituted Aromatic Polymers | 3629 | ||
5.06.3.1 Polyamides | 3629 | ||
5.06.3.2 Hyperbranched Polymers | 3631 | ||
5.06.4 Nonaromatic Polymers | 3632 | ||
5.06.4.1 Polysulfides and Polyesters | 3632 | ||
5.06.4.2 Polysilanes | 3634 | ||
5.06.4.3 Polyphosphazenes | 3634 | ||
5.06.4.3.1 Polymerization of ylides | 3635 | ||
5.06.5 π-Conjugated Polymers | 3637 | ||
5.06.5.1 Polythiophenes | 3637 | ||
5.06.5.2 Polyphenylenes | 3640 | ||
5.06.5.3 Polypyrroles | 3641 | ||
5.06.5.4 Polyfluorenes | 3642 | ||
5.06.6 Future Remarks | 3642 | ||
References | 3643 | ||
Oxidative Coupling Polymerization | 3648 | ||
5.07.1 Introduction | 3648 | ||
5.07.2 Oxidative Polymerization of Phenols andNaphthols | 3649 | ||
5.07.2.1 2,6-Dimethylphenol | 3649 | ||
5.07.2.2 Other 2,6-Disubstituted Phenols | 3654 | ||
5.07.2.3 2- and/or 6-Unsubstituted Phenols | 3654 | ||
5.07.2.4 Naphthols | 3662 | ||
5.07.3 Thiophenols and Their Derivatives | 3662 | ||
5.07.4 Anilines | 3664 | ||
5.07.4.1 Aniline | 3664 | ||
5.07.4.2 Other Aniline Derivatives | 3667 | ||
5.07.5 Pyrroles | 3668 | ||
5.07.5.1 Pyrrole | 3668 | ||
5.07.5.2 Other Pyrrole Derivatives | 3671 | ||
5.07.6 Thiophenes | 3671 | ||
5.07.6.1 Thiophene | 3671 | ||
5.07.6.2 2-Substituted Thiophenes | 3671 | ||
5.07.6.3 3-Substituted Thiophenes | 3671 | ||
5.07.6.4 3,4-Ethylenedioxythiophenes | 3672 | ||
5.07.6.5 Other Thiophene Derivatives | 3675 | ||
5.07.7 Other Aromatic Heterocycles | 3675 | ||
5.07.8 Aromatic Hydrocarbons | 3675 | ||
5.07.9 Other Monomers | 3676 | ||
5.07.10 Conclusion | 3676 | ||
References | 3677 | ||
Condensation Polymers via Metal-Catalyzed Coupling Reactions | 3682 | ||
5.08.1 Introduction | 3682 | ||
5.08.2 An Overview of Conjugated Polymers | 3682 | ||
5.08.3 Metal-Catalyzed Carbon–Carbon Bond Forming Reactions | 3683 | ||
5.08.3.1 Kumada and Negishi Coupling Reactions | 3683 | ||
5.08.3.2 Nickel Homocoupling Reaction | 3685 | ||
5.08.3.3 The Stille Reaction | 3685 | ||
5.08.3.4 The Suzuki Reaction | 3686 | ||
5.08.3.5 The Heck Reaction | 3687 | ||
5.08.3.6 The Sonogashira Reaction | 3688 | ||
5.08.3.7 Buchwald–Hartwig Amination | 3688 | ||
5.08.4 Metathesis Reactions – Acyclic Diene and Acyclic Diyne Metathesis | 3688 | ||
5.08.4.1 Acyclic Diene Metathesis | 3689 | ||
5.08.4.2 Acyclic Diyne Metathesis Polymerization | 3691 | ||
5.08.5 An Overview of Various Polymers Prepared Using Metal-Mediated Coupling Reactions | 3692 | ||
5.08.5.1 Poly(p-arylene) | 3692 | ||
5.08.5.2 Polythiophene | 3693 | ||
5.08.5.3 Poly(p-arylenevinylene) | 3694 | ||
5.08.5.4 Poly(aryleneethynylene)s | 3696 | ||
5.08.5.5 Polyaniline | 3696 | ||
5.08.6 Conclusion | 3698 | ||
References | 3698 | ||
Advances in Acyclic Diene Metathesis Polymerization | 3702 | ||
5.09.1 Introduction | 3702 | ||
5.09.1.1 Acyclic Diene Metathesis: Metathesis Polycondensation Chemistry | 3702 | ||
5.09.1.2 The Evolution of ADMET | 3702 | ||
5.09.2 Functional Polymers and Materials via ADMET | 3703 | ||
5.09.2.1 ‘Latent Reactive’ Polycarbosilane and Polycarbosiloxane Elastomers | 3703 | ||
5.09.2.2 Conjugated Polymers via ADMET | 3704 | ||
5.09.3 Exotic Polymer Structures | 3704 | ||
5.09.3.1 Hyperbranched Architectures via ADMET | 3704 | ||
5.09.3.2 Supramolecular Graft Copolymers | 3705 | ||
5.09.3.3 ‘Daisy Chain’ Polymers | 3705 | ||
5.09.4 Precision Polyolefins | 3706 | ||
5.09.5 Meeting the Benchmark: Linear Acyclic Diene Metathesis Polyethylene | 3707 | ||
5.09.6 Precision Halogenated Polyolefins | 3708 | ||
5.09.6.1 Synthesis of Precision Halogenated Polyolefins | 3708 | ||
5.09.6.2 Behavior of Precision Halogenated Polyolefins | 3709 | ||
5.09.7 Precision Polyolefins with Alkyl Branches | 3710 | ||
5.09.7.1 Synthesis of Precision Polyolefins with Alkyl Branches | 3710 | ||
5.09.7.2 Behavior of Precision Polyolefins with Alkyl Branches | 3711 | ||
5.09.7.3 Increasing the Spacing Between Alkyl Branches inPrecision Polyolefins | 3714 | ||
5.09.8 Precision Polyolefins with Ether Branches | 3715 | ||
5.09.8.1 Synthesis of Precision Polyolefins with Ether Branches | 3715 | ||
5.09.8.2 Behavior of Precision Polyolefins with Ether Branches | 3716 | ||
5.09.9 Precision Polyolefins with Pendant Acid Groups | 3716 | ||
5.09.9.1 Precise Carboxylic Acid Placement | 3716 | ||
5.09.9.2 Precise Phosphonic Acid and Sulfonic Acid Ester Placement | 3717 | ||
5.09.10 Precision Amphiphilic Copolymers | 3718 | ||
5.09.10.1 Synthesis of Precision Amphiphilic Copolymers | 3718 | ||
5.09.10.2 Behavior of Precision Amphiphilic Copolymers | 3719 | ||
5.09.11 Summary and Outlook | 3721 | ||
References | 3722 | ||
Enzymatic Polymerization | 3724 | ||
5.10.1 Introduction | 3724 | ||
5.10.2 Enzymatic Polycondensation | 3725 | ||
5.10.2.1 Polysaccharide Synthesis | 3725 | ||
5.10.2.2 Polyester Synthesis | 3729 | ||
5.10.2.3 Polyaromatics Synthesis | 3733 | ||
5.10.3 Enzymatic Polyaddition | 3738 | ||
5.10.3.1 Enzymatic Ring-Opening Polyaddition | 3738 | ||
5.10.4 Summary | 3741 | ||
References | 3742 | ||
Nonlinear Polycondensates | 3746 | ||
5.11.1 Introduction | 3746 | ||
5.11.2 Insoluble Cross-Linked Polymers | 3746 | ||
5.11.2.1 Polymerization of Multifunctional Monomers | 3746 | ||
5.11.2.2 Cross-Linking Reaction of Polymer Chains | 3747 | ||
5.11.2.3 Molecular Weight Distribution | 3748 | ||
5.11.3 Soluble Branched Polymers | 3749 | ||
5.11.3.1 Polymerization of ABx-Type Monomers | 3749 | ||
5.11.3.2 Polymerization of A2 and B3 Monomers | 3750 | ||
References | 3752 | ||
Post-Polymerization Modification | 3754 | ||
5.12.1 Historical Background and Definitions | 3754 | ||
5.12.2 General Considerations | 3755 | ||
5.12.2.1 Classifications | 3755 | ||
5.12.3 Functional Groups Employed in Chemical Modifications | 3757 | ||
5.12.3.1 Activated Esters | 3757 | ||
5.12.3.2 Anhydrides, Isocyanates, and Ketenes | 3758 | ||
5.12.3.3 Oxazolones and Epoxides | 3759 | ||
5.12.3.4 Aldehydes and Ketones | 3759 | ||
5.12.3.5 Azides with Alkynes | 3761 | ||
5.12.3.6 Dienes and Dienophiles | 3764 | ||
5.12.3.7 Halides | 3765 | ||
5.12.3.8 Thiols | 3766 | ||
5.12.4 Conclusions and Outlook | 3769 | ||
Acknowledgments | 3769 | ||
References | 3770 | ||
Supramolecular Polymers | 3776 | ||
5.13.1 Introduction | 3776 | ||
5.13.1.1 Definition of Supramolecular Polymers | 3776 | ||
5.13.1.2 Noncovalent Interactions | 3776 | ||
5.13.1.3 Supramolecular Polymerization | 3777 | ||
5.13.2 Metallo-supramolecular Polymers | 3780 | ||
5.13.2.1 General Aspects | 3780 | ||
5.13.2.2 Metal-binding Motifs in Metallo-supramolecular Polymers | 3780 | ||
5.13.2.3 Supramolecular Polymers via Coordinative Bonding | 3781 | ||
5.13.2.4 Supramolecular Polymers Based on Metal–arene Complexation | 3793 | ||
5.13.3 Supramolecular Polymers Based on Ionic Interactions | 3795 | ||
5.13.4 Supramolecular Polymers Based on Hydrogen Bonding | 3798 | ||
5.13.4.1 General Aspects | 3798 | ||
5.13.4.2 From Hydrogen Bonding to Supramolecular Polymers | 3801 | ||
5.13.5 Supramolecular Polymers Based on Multiple Supramolecular Motifs | 3807 | ||
5.13.6 Conclusion and Outlook | 3810 | ||
References | 3813 | ||
Chemistry and Technology of Step-Growth Polyesters | 3818 | ||
5.14.1 Introduction | 3818 | ||
5.14.1.1 Historical | 3818 | ||
5.14.1.2 General Polyester Characteristics | 3818 | ||
5.14.2 Synthetic Processes for Polyesters | 3819 | ||
5.14.2.1 Polyester Catalysts | 3819 | ||
5.14.2.2 Solution Polymerization | 3820 | ||
5.14.2.3 Interfacial Polymerization | 3821 | ||
5.14.2.4 Melt Polymerization | 3821 | ||
5.14.2.5 Solid-State Polymerization | 3824 | ||
5.14.3 Aliphatic Polyesters | 3824 | ||
5.14.3.1 Aliphatic Polyesters from Noncyclic Monomers | 3824 | ||
5.14.3.2 Alkyl Polyesters with Cycloaliphatic Units | 3825 | ||
5.14.4 Aryl–Alkyl Polyesters | 3827 | ||
5.14.4.1 Semicrystalline Polyesters | 3827 | ||
5.14.4.2 Amorphous Copolyesters | 3831 | ||
5.14.5 All-aromatic Polyesters | 3833 | ||
5.14.6 Summary | 3834 | ||
References | 3835 | ||
Relevant Website | 3837 | ||
Biodegradable Polyesters | 3840 | ||
5.15.1 Introduction | 3840 | ||
5.15.2 Synthetic Routes to Polyesters | 3840 | ||
5.15.2.1 Ring-Opening Polymerization of Cyclic Esters andPolycondensation | 3841 | ||
5.15.2.2 Radical Ring-Opening Polymerization of Cyclic Ketene Acetals | 3841 | ||
5.15.3 Classification, Biodegradability, andApplications of Polyesters | 3842 | ||
5.15.3.1 Polyhydroxyalkanoates | 3842 | ||
5.15.3.2 Poly(alkylene dicarboxylates): Homo- andCopolymers | 3843 | ||
5.15.3.3 Poly(aliphatic–aromatic) Copolyesters | 3846 | ||
5.15.4 Different Macromolecular Architectures andSpeciality Biodegradable Polyesters | 3847 | ||
5.15.4.1 Star Polyesters | 3847 | ||
5.15.4.2 Dendrimers and Hyperbranched Polyesters | 3848 | ||
5.15.4.3 Physically and Chemically Cross-Linked Biodegradable Polyesters: Shape-Memory Polymers andElastic Films | 3852 | ||
5.15.4.4 Liquid Crystalline Degradable Polyesters | 3856 | ||
5.15.4.5 Polyester-Based Degradable Ionomers | 3860 | ||
5.15.5 Biodegradable Polyester Nanoparticles | 3862 | ||
5.15.6 Conclusions | 3865 | ||
References | 3866 | ||
Polycarbonates | 3870 | ||
5.16.1 Introduction | 3870 | ||
5.16.2 Historical Development of PCs | 3870 | ||
5.16.3 Properties and Uses of PCs | 3871 | ||
5.16.3.1 Aromatic PCs | 3871 | ||
5.16.3.2 Aliphatic PCs | 3873 | ||
5.16.4 Synthesis of PCs | 3873 | ||
5.16.5 Interfacial Synthesis Process (Phosgene Process) | 3873 | ||
5.16.6 Transesterification Synthesis Process (Melt orSolventless Process) | 3874 | ||
5.16.6.1 Phosgene Process for DPC Synthesis | 3875 | ||
5.16.6.2 DMC Transesterification Process for DPC Synthesis | 3875 | ||
5.16.6.3 DPO Decarbonylation Process for DPC Synthesis | 3876 | ||
5.16.6.4 Oxidative Carbonylation Process (One-Step Process) for DPC Synthesis | 3876 | ||
5.16.7 ROP of Cyclic Oligomers | 3876 | ||
5.16.8 Oxidative Carbonylation Process (One-Step Process) | 3877 | ||
5.16.9 CO2 Process (Synthesis Process Using Carbon Dioxide or Carbonates) | 3878 | ||
5.16.9.1 PC Synthesis Via Cyclic Carbonate Transesterification | 3879 | ||
5.16.9.2 Copolymerization of CO2 and Cyclic Ethers | 3879 | ||
5.16.9.3 Polycondensation of CO2 or Alkaline Carbonates with Aliphatic Dihalides | 3881 | ||
5.16.9.4 ROP of Cyclic Carbonates | 3881 | ||
5.16.10 Conclusion | 3881 | ||
References | 3882 | ||
Aromatic Polyethers, Polyetherketones, Polysulfides, andPolysulfones | 3884 | ||
5.17.1 Introduction | 3884 | ||
5.17.2 Poly(arylene ether)s | 3885 | ||
5.17.2.1 General Synthesis Approaches | 3885 | ||
5.17.2.2 Other Functionalized Poly(arylene ether)s | 3891 | ||
5.17.2.3 Properties and Applications | 3894 | ||
5.17.3 Poly(arylene ether ketone)s | 3895 | ||
5.17.3.1 General Synthesis Approaches | 3895 | ||
5.17.3.2 Other Functionalized Poly(arylene ether ketone)s | 3902 | ||
5.17.3.3 Properties and Applications | 3906 | ||
5.17.4 Poly(arylene sulfone)s | 3907 | ||
5.17.4.1 General Synthesis Approaches | 70 | ||
5.17.4.2 Other Functionalized Poly(arylene ether sulfone)s | 124 | ||
5.17.4.3 Properties and Applications | 726 | ||
5.17.5 Poly(arylene sulfide)s | 728 | ||
5.17.5.1 General Synthesis Approaches | 728 | ||
5.17.5.2 Other Functionalized Poly(arylene sulfide)s | 1963 | ||
5.17.5.3 Properties and Applications | 3931 | ||
References | 3932 | ||
Chemistry and Technology of Polyamides | 3938 | ||
5.18.1 Introduction | 3939 | ||
5.18.1.1 Nomenclature and Types of Polyamides | 3939 | ||
5.18.1.2 Natural Polyamides (Polypeptides) and Brief History of Man-Made Polyamides | 3940 | ||
5.18.1.3 Chemistry of Amide Bond Formation and Control ofChain Structure and Chain Ends | 3940 | ||
5.18.1.4 Catalysis, Equilibria, and Kinetics of Hydrolytic Polycondensation | 3940 | ||
5.18.1.5 Side Reactions in Polyamide Synthesis | 3943 | ||
5.18.1.6 Molecular Mass, Molecular Mass Distribution, andMolecular Characterization of Polyamides | 3945 | ||
5.18.2 Hydrolytically Synthesized Fully Aliphatic Polyamides | 3946 | ||
5.18.2.1 Polyamide 6 | 3946 | ||
5.18.2.2 Polyamides 11 and 12 | 3949 | ||
5.18.2.3 Polyamide 66 | 3951 | ||
5.18.2.4 Polyamide 46 | 3953 | ||
5.18.2.5 Polyamides 69, 410, 610, and 612 | 3954 | ||
5.18.2.6 Other Aliphatic Polyamides and Copolyamides | 3956 | ||
5.18.2.7 Thermal Properties of Fully Aliphatic Homopolyamides | 3957 | ||
5.18.2.8 Other Properties of Fully Aliphatic Polyamides | 3960 | ||
5.18.3 Semiaromatic Polyamides | 3961 | ||
5.18.3.1 Preparation and Processing of Semiaromatic Polyamides | 3961 | ||
5.18.3.2 Semiaromatic Semicrystalline Polyamides | 3961 | ||
5.18.3.3 Amorphous Partially Aromatic Polyamides | 3964 | ||
5.18.3.4 Fully Aromatic Polyamides or Polyaramids | 3964 | ||
5.18.4 Segmented Block Copolymers of Polyamides and Elastomeric Polyethers | 3964 | ||
5.18.4.1 Chemistry and Chemical Structure of PEBAs | 3965 | ||
5.18.4.2 Morphology of PEBAs | 3965 | ||
5.18.4.3 Physical Properties and Processing of PEBAs | 3965 | ||
5.18.4.4 Applications and Trade Names of PEBAs | 3966 | ||
5.18.5 Polyamide Blends | 3966 | ||
5.18.5.1 Introduction | 3966 | ||
5.18.5.2 Polyamide/Elastomer Blends | 3967 | ||
5.18.5.3 Polyamide/Polypropylene Blends | 3968 | ||
5.18.5.4 Polyamide/ABS Blends | 3968 | ||
5.18.5.5 Polyamide/Polyphenylene Ether or Polyphenylene Oxide Blends | 3968 | ||
5.18.5.6 Polyamide/Brominated Polystyrene Blends | 3969 | ||
5.18.5.7 PA 6/PA 66 Blends | 3969 | ||
5.18.6 Applications of Polyamides | 3969 | ||
5.18.6.1 General Remarks on Properties | 3969 | ||
5.18.6.2 Automotive Applications | 3969 | ||
5.18.6.3 Electrical and Electronics Applications | 3970 | ||
5.18.6.4 General Industry Applications | 3970 | ||
5.18.6.5 Packaging and Film, Fiber, and Sheet Extrusion Applications | 3970 | ||
5.18.7 Summary, Main Conclusions, and Future Perspectives | 3970 | ||
References | 3971 | ||
Lyotropic Polycondensation including Fibers | 3976 | ||
5.19.1 Introduction | 51 | ||
5.19.1.1 Invention of Lyotropic Liquid Crystals | 51 | ||
5.19.1.2 Ladder Polymers | 51 | ||
5.19.1.3 Achieved Properties of Super Fibers from Lyotropic Polycondensates | 52 | ||
5.19.2 Aramids | 52 | ||
5.19.2.1 AB-Aramids | 53 | ||
5.19.2.2 AABB-Aramids | 53 | ||
5.19.2.3 Other Preparation Methods of PPTA | 54 | ||
5.19.2.4 Fiber Spinning | 54 | ||
5.19.2.5 Fiber Structure | 55 | ||
5.19.2.6 Copolymers | 55 | ||
5.19.3 Polybenzazole | 58 | ||
5.19.3.1 Polybenzimidazole | 59 | ||
5.19.3.2 PBO and Poly(p-phenylene benzobisthiazole) | 59 | ||
5.19.3.3 PBZ Fiber with Enhanced Lateral Interaction | 60 | ||
5.19.3.4 Poly(diimidazopyridinylene dihydroxyphenylene) | 60 | ||
5.19.3.5 Other Synthesis Methods of PBZ | 61 | ||
5.19.3.6 Other Structures | 61 | ||
5.19.4 Beyond PBZ | 62 | ||
5.19.4.1 3D Polymers | 62 | ||
5.19.4.2 Carbon Nanotube–PBO Nanocomposite | 63 | ||
5.19.4.3 Polyindigo | 63 | ||
References | 64 | ||
Polyimides | 4004 | ||
5.20.1 Introduction | 4004 | ||
5.20.1.1 Polymerization of Tetracarboxylic Dianhydrides andDiamines | 4005 | ||
5.20.1.2 Polymerization of Tetracarboxylic Dianhydrides with Diisocyanates | 4007 | ||
5.20.1.3 Polymerization of Tetracarboxylic Dianhydrides with Silylated Diamines | 4008 | ||
5.20.1.4 Polymerization of Diester Diacids with Diamines | 4009 | ||
5.20.1.5 Formation of PIs via Nucleophilic Nitro Group Displacement Reactions | 4009 | ||
5.20.1.6 Linear Polymerization of Bismaleimides by Michael Addition | 4010 | ||
5.20.1.7 Palladium-Catalyzed Carbonylation Polymerization for the Formation of PIs | 4010 | ||
5.20.2 Conventional PI | 4010 | ||
5.20.2.1 Poly(ether imide)s | 4010 | ||
5.20.2.2 Poly(amine imide)s | 4013 | ||
5.20.2.3 Poly(sulfide imide)s | 4014 | ||
5.20.2.4 Phosphorus-Containing PIs | 4015 | ||
5.20.2.5 Hyperbranched PIs | 4018 | ||
5.20.2.6 Bismaleimide-Type PIs | 4019 | ||
5.20.2.7 PI Copolymers | 4021 | ||
5.20.3 Functional PI | 4029 | ||
5.20.3.1 Electrochromic PI | 4029 | ||
5.20.3.2 Photoluminescent PI | 4032 | ||
5.20.3.3 PI for Memory Device | 4033 | ||
5.20.3.4 High Refractive Index PI | 4033 | ||
5.20.3.5 PIs for Fuel-cell Application | 4035 | ||
5.20.4 Conclusions | 4039 | ||
References | 4039 | ||
High-Performance Heterocyclic Polymers | 4044 | ||
5.21.1 Introduction | 4044 | ||
5.21.2 Polyazoles | 4044 | ||
5.21.2.1 Polyoxadiazoles | 4045 | ||
5.21.2.2 Polythiadiazoles | 4053 | ||
5.21.2.3 Polytriazoles | 4054 | ||
5.21.3 Polybenzazoles | 4056 | ||
5.21.3.1 Polybenzimidazoles | 4057 | ||
5.21.3.2 Polybenzoxazoles | 4065 | ||
5.21.3.3 Molecular Composites Based on Rigid-Rod Polybenzazoles | 4073 | ||
5.21.5 Aromatic Polyimides | 4078 | ||
5.21.5.1 Flexible-Chain Aromatic Polyimides | 4078 | ||
5.21.5.2 Rigid-Chain Aromatic Polyimides | 4082 | ||
5.21.6 Ladder and Semi-ladder Polymers | 4086 | ||
5.21.6.1 Polynaphthoylenebenzimidazoles Containing the•Flexibilizing Groups in Their Macromolecules | 4090 | ||
References | 4098 | ||
Polyphenylenes, Polyfluorenes, and Poly(phenylene vinylene)s bySuzuki Polycondensation and Related Methods | 4104 | ||
5.22.1 Introduction | 4104 | ||
5.22.2 Synthesis Background and Strategy | 4105 | ||
5.22.2.1 Polyphenylenes | 4105 | ||
5.22.2.2 Polyfluorenes | 4107 | ||
5.22.3 Fundamental Synthetic Aspects | 4107 | ||
5.22.3.1 General Remarks | 4107 | ||
5.22.3.2 Monomer Purity and Stoichiometry | 4108 | ||
5.22.3.3 Polymerization and End-Capping | 4108 | ||
5.22.3.4 Purification and Side Reactions | 4111 | ||
5.22.3.5 Molar Mass Determination | 4112 | ||
5.22.4 Recent Progress | 4114 | ||
5.22.4.1 Monomers | 4114 | ||
5.22.4.2 Catalysts | 4115 | ||
5.22.4.3 Microwave and Technical Scale Microreactor Applications | 4115 | ||
5.22.4.4 Catalyst-Transfer Polycondensation | 4116 | ||
5.22.5 Selected Examples | 4117 | ||
5.22.5.1 Liquid Crystalline and Amphiphilic Polyphenylenes and Polyelectrolytes | 4117 | ||
5.22.5.2 Shielded Polyphenylenes | 4117 | ||
5.22.5.3 Bridged and Ladder-Type Polyphenylenes | 4118 | ||
5.22.5.4 Kinked Polyphenylenes and Foldamers | 4118 | ||
5.22.5.5 Hyperbranched and Cross-Linked Polyphenylenes | 4120 | ||
5.22.5.6 Unsubstituted Polyphenylenes | 4120 | ||
5.22.6 Poly(phenylene vinylene)s | 4120 | ||
5.22.6.1 Suzuki polycondensation | 4120 | ||
5.22.6.2 Heck Polycondensation | 4123 | ||
5.22.6.3 Stille Polycondensation | 4129 | ||
5.22.6.4 Hiyama Polycondensation | 4130 | ||
5.22.6.5 Cascade Polycondensation | 4131 | ||
5.22.6.6 Multicomponent Polycondensation | 4132 | ||
5.22.6.7 McMurry Polycondensation | 4134 | ||
5.22.6.8 Acyclic Diene Metathesis Polymerization | 4134 | ||
5.22.7 Conclusions and Outlook | 4136 | ||
Acknowledgments | 4139 | ||
References | 4139 | ||
Metal-Containing Macromolecules | 4144 | ||
5.23.1 Introduction | 4144 | ||
5.23.2 Coordination Polymers | 4144 | ||
5.23.2.1 Porphyrins | 4147 | ||
5.23.2.2 Schiff Base Polymers | 4154 | ||
5.23.2.3 Phthalocyanine Systems | 4158 | ||
5.23.2.4 Pyridine and Related Systems | 4158 | ||
5.23.3 Polymers Containing Sandwich Complexes | 4163 | ||
5.23.3.1 Metallocene-Based Polymers | 4163 | ||
5.23.3.2 Transition Metal Arene Cyclopentadienyl Complexes | 4169 | ||
5.23.4 Macromolecules Containing Metal CarbonylComplexes | 4182 | ||
5.23.5 Transition Metal Polyynes | 4187 | ||
5.23.6 Metal–Metal Bonded Systems | 4189 | ||
5.23.7 Conclusion | 4189 | ||
Acknowledgments | 4191 | ||
References | 4191 | ||
Phosphorus-Containing Dendritic Architectures | 4196 | ||
5.24.1 Introduction | 4196 | ||
5.24.2 Syntheses of Phosphorus-Containing Dendrimers | 4198 | ||
5.24.2.1 Syntheses of Dendrimers by Simple Repetitive Multistep Processes | 4198 | ||
5.24.2.2 Accelerated Syntheses of Dendrimers | 4204 | ||
5.24.3 Syntheses of Phosphorus-Containing Dendrons | 4208 | ||
5.24.3.1 Synthesis of Dendrons from Phosphines | 4208 | ||
5.24.3.2 Synthesis of Dendrons from Other Cores | 4211 | ||
5.24.3.3 Reactivity of Dendrons | 4212 | ||
5.24.4 Syntheses of Special Phosphorus-Containing Dendritic Architectures | 4215 | ||
5.24.4.1 Special Dendritic Architectures Elaborated by Coupling Dendrons | 4215 | ||
5.24.4.2 Special Dendritic Architectures Elaborated from Dendrons | 4220 | ||
5.24.4.3 Special Dendritic Architectures Elaborated from Dendrimers | 4221 | ||
5.24.5 Conclusions | 4225 | ||
References | 4227 | ||
Epoxy Resins and Phenol-Formaldehyde Resins | 4230 | ||
5.25.1 Introduction of Epoxy Resins | 4230 | ||
5.25.2 Basic Characteristics of Epoxy Resins | 4231 | ||
5.25.3 Synthesis of Epoxy Resins | 4231 | ||
5.25.3.1 Synthesis of Glycidyl-Type Epoxy Resins | 4231 | ||
5.25.3.2 Syntheis of Glycidyl Ethers of Novolac Resins | 4232 | ||
5.25.4 Curing of Epoxy Resin | 4232 | ||
5.25.4.1 Curing by Primary Amines | 4233 | ||
5.25.4.2 Curing by Anhydrides | 4233 | ||
5.25.4.3 Other Curing Agents | 4234 | ||
5.25.4.4 Catalytic Curing Agents | 4234 | ||
5.25.5 General Properties of Epoxy Resins | 4235 | ||
5.25.5.1 Glass Transition Temperature of Cured Epoxy Resins | 4235 | ||
5.25.5.2 Thermal Degradation of Epoxy Resins | 4236 | ||
5.25.5.3 Toughening of Epoxy Resin | 4236 | ||
5.25.5.4 Liquid Crystalline Epoxy Resins | 4236 | ||
5.25.6 Introduction of Phenolic resins | 4237 | ||
5.25.7 Novolac | 4239 | ||
5.25.7.1 Bisphenol F | 4239 | ||
5.25.7.2 Random Novolac | 4239 | ||
5.25.7.3 High-Molecular-Weight Novolac | 4240 | ||
5.25.7.4 High Ortho Novolac | 4240 | ||
5.25.7.5 Heterogeneous Two-Phase Process | 4241 | ||
5.25.7.6 Curing of Novolac | 4242 | ||
5.25.7.7 Non-Hexa Cure | 4243 | ||
5.25.8 Resol | 4243 | ||
5.25.8.1 Methylol Phenols | 4243 | ||
5.25.8.2 Oligomers | 4244 | ||
5.25.8.3 Curing of Resol | 4245 | ||
5.25.9 Transformation of Phenolics | 4245 | ||
5.25.9.1 Epoxy | 4246 | ||
5.25.9.2 Cyanate Esters | 4246 | ||
5.25.9.3 Benzoxazines | 4247 | ||
5.25.10 Natural Products as Phenolics | 4251 | ||
5.25.11 Modification by Alloys and Co-curing | 4252 | ||
5.25.11.1 Modification of Phenolics by Alloying | 4252 | ||
5.25.11.2 Modification of Benzoxazine by Alloying | 4253 | ||
5.25.11.3 Alloying of Benzoxazine with Polyimide | 4254 | ||
5.25.11.4 Alloying of Benzoxazine with Bismaleimide | 4255 | ||
5.25.12 Hybrids and Composites | 4255 | ||
5.25.12.1 Preparation of Hybrids by Layered Clay | 4255 | ||
5.25.12.2 Preparation of Hybrid by Sol–Gel Process | 4255 | ||
5.25.13 Conclusion | 4256 | ||
References | 4256 | ||
High-Temperature Thermosets | 4260 | ||
5.26.1 Introduction | 51 | ||
5.26.1.1 High-Temperature Polymers | 51 | ||
5.26.1.2 High-Temperature Thermosets | 51 | ||
5.26.2 Thermosetting Monomers and Oligomers | 52 | ||
5.26.2.1 Bismaleimide- and Bisnadimide-Based Systems | 52 | ||
5.26.2.2 Ethynyl- and Phenylethynyl-Based Systems | 53 | ||
5.26.2.3 Cyanate Ester- and Phthalonitrile-Based Systems | 54 | ||
5.26.2.4 Benzocyclobutene- and Biphenylene-Based Systems | 54 | ||
5.26.2.5 Benzoxazine-Based Systems | 55 | ||
5.26.3 Thermosetting Liquid Crystals | 55 | ||
5.26.3.1 Reactive Thermotropic LC Monomers | 55 | ||
5.26.3.2 Reactive Thermotropic LC Oligomers | 55 | ||
5.26.3.3 Reactive Lyotropic Oligomers and Polymers | 56 | ||
5.26.4 Concluding Remarks | 57 | ||
References | 57 | ||
e9780444533494v6 | 4278 | ||
Polymer Science: A Comprehensive Reference | 4279 | ||
Copyright | 4282 | ||
Contents_of_Volume 6 | 4283 | ||
Volume Editors | 4285 | ||
Editor-in-Chief_Bio | 4287 | ||
Editors_Bio | 4289 | ||
Contributors_of_Volume6 | 4297 | ||
Preface | 4299 | ||
Foreword | 4303 | ||
Introduction: Aspects of Macromolecular Architecture and Discrete Nano-Objects | 4305 | ||
6.01.1 Introduction | 4305 | ||
6.01.2 Topology | 4305 | ||
6.01.3 Composition and Functionality | 4307 | ||
6.01.4 Shape-Controlled Polymers and Nanoobjects | 4307 | ||
Synthesis and Properties of Macrocyclic Polymers | 4309 | ||
6.02.1 Introduction | 4309 | ||
6.02.2 Synthesis of Cyclic Macromolecules | 4309 | ||
6.02.2.1 Macrocycles Resulting from Linear Ring-Chain Equilibrates | 4310 | ||
6.02.2.2 Cyclics Formed by REP | 4311 | ||
6.02.2.3 Size-Controlled Cyclic Polymers by End-to-End Ring Closure | 4313 | ||
6.02.3 Physical Properties of Cyclic Polymers | 4324 | ||
6.02.3.1 Characteristic Solution Behavior of Cyclic Polymers | 4324 | ||
6.02.3.2 Bulk Properties | 4327 | ||
References | 4330 | ||
Polymers with Star-Related Structures: Synthesis, Properties, and\rApplications | 4333 | ||
6.03.1 Synthesis of Star Polymers | 4333 | ||
6.03.1.1 Introduction | 4333 | ||
6.03.1.2 General Methods for the Synthesis of Star Polymers | 4334 | ||
6.03.1.3 Star Architectures | 4335 | ||
6.03.1.4 Synthesis of Star Polymers | 4336 | ||
6.03.2 Properties of Star Polymers | 4378 | ||
6.03.2.1 Introduction | 4378 | ||
6.03.2.2 Solution Properties | 4379 | ||
6.03.2.3 Bulk Properties | 4393 | ||
6.03.2.4 Star Polymer Dynamics and Rheological Properties | 4403 | ||
6.03.3 Applications of Star Polymers | 4407 | ||
6.03.3.1 Introduction | 4407 | ||
6.03.3.2 Commercialized Applications | 4407 | ||
6.03.3.3 Potential Applications | 4408 | ||
6.03.4 Conclusions | 4410 | ||
References | 4410 | ||
Dendrimers: Properties and Applications | 4417 | ||
6.04.1 Introduction | 4418 | ||
6.04.2 Synthesis of Dendrimers | 4418 | ||
6.04.2.1 Dendrimer Composition | 4418 | ||
6.04.2.2 Dendritic Growth Approaches | 4419 | ||
6.04.2.3 Growth Strategies Reviewed | 4422 | ||
6.04.2.4 Synthetic Overview of the Preparation of Common Dendrimer Types | 4425 | ||
6.04.2.5 Outlook | 4432 | ||
6.04.3 Properties and Characterization of Dendrimers | 4432 | ||
6.04.3.1 Standard Characterization Techniques | 4433 | ||
6.04.3.2 Gel Permeation Chromatography | 4438 | ||
6.04.3.3 Mass Spectrometry as a Characterization Tool of/forDendrimers | 4439 | ||
6.04.3.4 X-ray Scattering Techniques | 4442 | ||
6.04.3.5 Small-Angle Neutron Scattering | 4442 | ||
6.04.3.6 Characterization of Material Properties in Bulk and \rSolution | 4445 | ||
6.04.3.7 Microscopy Techniques | 4447 | ||
6.04.4 Biomedical Applications of Dendrimers | 4450 | ||
6.04.4.1 Dendrimers as Drug Carriers | 4450 | ||
6.04.4.2 Dendrimers for Imaging Applications | 4459 | ||
6.04.4.3 Dendrimers in Transfection Applications | 4467 | ||
6.04.4.4 BioD and Toxicological Aspects of Dendrimers | 4469 | ||
6.04.5 Commercial Applications and Sources | 4474 | ||
6.04.5.1 Dendritech | 4474 | ||
6.04.5.2 Dendritic Nanotechnologies | 4474 | ||
6.04.5.3 Starpharma Holdings Limited | 4474 | ||
6.04.5.4 Frontier Scientific | 4474 | ||
6.04.5.5 COLCOM | 4474 | ||
6.04.5.6 Hyperbranch Medical Technology | 4474 | ||
6.04.5.7 Sigma-Aldrich | 4474 | ||
6.04.5.8 Polymer Factory | 4474 | ||
6.04.6 Conclusions and Outlook in the Research Area | 4475 | ||
Acknowledgments | 4475 | ||
References | 4475 | ||
Hyperbranched Polymers: Synthetic Methodology, Properties, and \rComplex Polymer Architectures | 4481 | ||
6.05.1 Introduction: Definitions and Synthetic Strategies | 4481 | ||
6.05.2 Theoretical Aspects: Degree of Branching | 4483 | ||
6.05.3 Polycondensation and Polyaddition | 4484 | ||
6.05.3.1 AB2 and ABn-Monomers | 4484 | ||
6.05.3.2 An+Bm Methodology | 4486 | ||
6.05.3.3 Self-Condensing Vinyl Polymerization | 4488 | ||
6.05.3.4 Ring-Opening Multibranching Polymerization | 4491 | ||
6.05.3.5 Other Concepts | 4493 | ||
6.05.4 Complex Architectures Containing Hyperbranched Blocks | 4494 | ||
6.05.4.1 Multiarm Star Polymers | 4494 | ||
6.05.4.2 Linear Hyperbranched (Block) Copolymers and ‘Hypergrafts’ | 4496 | ||
6.05.4.3 Hyperbranched Polymers on Surfaces | 4497 | ||
6.05.4.4 Core–Shell Structures and Nanoparticles | 4498 | ||
6.05.5 Conclusion and Outlook | 4498 | ||
References | 4498 | ||
Molecular Brushes | 4503 | ||
6.06.1 Introduction | 4504 | ||
6.06.2 Synthesis | 4504 | ||
6.06.2.1 General Remarks | 4504 | ||
6.06.2.2 Grafting Through | 4504 | ||
6.06.2.3 Grafting Onto | 4512 | ||
6.06.2.4 Grafting From | 4516 | ||
6.06.2.5 Combined Grafting Approach | 4522 | ||
6.06.2.6 Block Copolymer Self-Assembly | 4526 | ||
6.06.2.7 Summary of Synthetic Approaches | 4528 | ||
6.06.3 Properties | 4529 | ||
6.06.3.1 Molecular Brushes in Solution | 4530 | ||
6.06.3.2 Molecular Brushes on Surfaces | 4533 | ||
6.06.4 Applications | 4540 | ||
6.06.4.1 Molecular Brushes as Templates for 1D Nanostructures | 4540 | ||
6.06.4.2 Stimuli-Responsive Molecular Brushes | 4549 | ||
6.06.4.3 Advanced Materials | 4559 | ||
6.06.5 Closing Remarks and Perspectives | 4561 | ||
References | 4563 | ||
Spherical Polymer Brushes | 4569 | ||
6.07.1 Introduction | 4569 | ||
6.07.2 Preparation of Brushes Anchored to Spherical Supports | 4570 | ||
6.07.3 Characterization | 4574 | ||
6.07.3.1 Morphology | 4575 | ||
6.07.3.2 Rheology | 4577 | ||
6.07.3.3 Computer Simulation | 4577 | ||
6.07.4 Physical Properties | 4578 | ||
6.07.4.1 Poly(ethylene oxide) Brushes | 4578 | ||
6.07.4.2 Responsive Neutral Brushes | 4578 | ||
6.07.4.3 Polyelectrolyte Brushes | 4579 | ||
6.07.4.4 Mixed Polymer Brushes at Liquid Interfaces | 4581 | ||
6.07.5 Applications | 4582 | ||
6.07.5.1 Carriers for Metal Nanoparticles | 4582 | ||
6.07.5.2 Spherical Polyelectrolyte Brushes as Carriers for Proteins and Enzymes | 4590 | ||
6.07.5.3 Retention Aids | 4593 | ||
6.07.6 Summary | 4593 | ||
References | 4593 | ||
Model Networks and Functional Conetworks | 4597 | ||
6.08.1 Introduction | 4597 | ||
6.08.2 Definitions | 4597 | ||
6.08.2.1 Model Networks | 4597 | ||
6.08.2.2 Quasi-Model Networks | 4597 | ||
6.08.2.3 Amphiphilic Conetworks | 4597 | ||
6.08.3 Model Networks | 4597 | ||
6.08.4 Quasi-Model Networks | 4603 | ||
6.08.5 Amphiphilic Conetworks | 4603 | ||
6.08.6 Conclusions | 4609 | ||
Acknowledgments | 4609 | ||
References | 4609 | ||
Polymer Nanogels and Microgels | 4613 | ||
6.09.1 Aqueous Microgels | 4613 | ||
6.09.1.1 Introduction | 4613 | ||
6.09.2 Synthetic Routes | 4614 | ||
6.09.2.1 Microgels by Cross-Linking of Macromolecules | 4614 | ||
6.09.2.2 Microgels by Polymerization Reactions | 4618 | ||
6.09.2.3 Post-modification of Microgels | 4625 | ||
6.09.3 Characterization by Scattering Methods | 4633 | ||
6.09.3.1 Size, Size Distribution, and Internal Structure: Light and Neutron Scattering Techniques | 4633 | ||
6.09.4 Applications of Microgels | 4639 | ||
6.09.4.1 Catalyst Carriers | 4639 | ||
6.09.4.2 Delivery Vehicles | 4642 | ||
6.09.4.3 Protein Separation | 4644 | ||
6.09.4.4 Tissue Engineering | 4645 | ||
6.09.4.5 Responsive Materials and Devices | 4645 | ||
References | 4649 | ||
Controlled End-Group Functionalization (Including Telechelics) | 4655 | ||
6.10.1 Introduction | 4656 | ||
6.10.2 Characterization Methods forChain-End-Functionalized Polymers | 4656 | ||
6.10.2.1 Chemical Methods | 4656 | ||
6.10.2.2 Chromatographic Methods | 4657 | ||
6.10.2.3 Spectroscopic Methods | 4658 | ||
6.10.2.4 MALDI-TOF Mass Spectrometry | 4658 | ||
6.10.3 Anionic Synthesis of Chain-End-Functionalized Polymers | 4658 | ||
6.10.3.1 Introduction | 4658 | ||
6.10.3.2 Specific Functionalization Reactions | 4659 | ||
6.10.3.3 General Functionalization Methods (GFM) | 4676 | ||
6.10.4 Radical Synthesis of Chain-End-Functionalized Polymers | 4687 | ||
6.10.4.1 Atom-Transfer Radical Polymerization | 4687 | ||
6.10.4.2 Radical Addition–Fragmentation Chain-Transfer (RAFT) Polymerization | 4699 | ||
6.10.4.3 Nitroxide-Mediated Polymerization | 4704 | ||
6.10.5 Cationic Synthesis of Chain-End-Functionalized Polymers | 4707 | ||
6.10.5.1 Functionalized Initiators | 4707 | ||
6.10.5.2 Postpolymerization Functionalization | 4708 | ||
6.10.5.3 End-Quenching and Subsequent Postpolymerization Functionalization | 4708 | ||
6.10.6 Conclusion | 4710 | ||
References | 4711 | ||
Robust, Efficient, and Orthogonal Chemistries for the Synthesis of Functionalized Macromolecules | 4717 | ||
6.11.1 Introduction | 4717 | ||
6.11.2 Functional Polymers and Architectures | 4718 | ||
6.11.3 Step Growth Polymerization via CuAAC or TEC | 4723 | ||
6.11.4 Polymer Backbone and Pendant Group Functionalization | 4724 | ||
6.11.5 Star and Miktoarm Architectures | 4725 | ||
6.11.6 Dendrimers | 4726 | ||
6.11.7 Cross-linked Network Architectures | 4727 | ||
6.11.8 Three-Dimensional (3D) Objects | 4731 | ||
6.11.9 Conclusions and Outlook | 4732 | ||
References | 4733 | ||
Controlled Composition: Statistical, Gradient, and Alternating Copolymers | 4737 | ||
6.12.1 Introduction | 4737 | ||
6.12.2 Copolymerization Models | 4737 | ||
6.12.2.1 Terminal Model | 4738 | ||
6.12.2.2 Penultimate Unit Model | 4739 | ||
6.12.2.3 Other Copolymerization Models | 4741 | ||
6.12.2.4 Model Discrimination | 4741 | ||
6.12.3 Statistical Copolymers | 4742 | ||
6.12.3.1 Homogeneous versus Heterogeneous Copolymers | 4743 | ||
6.12.3.2 Reactivity Ratios | 4747 | ||
6.12.4 Alternating Copolymers | 4748 | ||
6.12.5 Solvent Effects | 4749 | ||
6.12.6 Copolymers versus Homopolymers | 4750 | ||
6.12.7 Gradient Copolymers | 4750 | ||
6.12.7.1 Controlled/Living Radical Copolymerization versus Conventional Radical Copolymerization | 4750 | ||
6.12.7.2 The Early Stages of Gradient Copolymerization | 4752 | ||
6.12.7.3 Forced Composition Gradient Copolymers | 4752 | ||
6.12.7.4 Analysis of Gradient Copolymers | 4752 | ||
6.12.8 Properties of Copolymers | 4753 | ||
6.12.9 Epilogue | 4754 | ||
References | 4755 | ||
Well-Defined Block Copolymers | 4759 | ||
6.13.1 Introduction | 4759 | ||
6.13.2 Principles of Block Copolymerization | 4760 | ||
6.13.3 Linear Topologies | 4761 | ||
6.13.3.1 ABA Triblock Copolymers – Synthetic Strategies | 4761 | ||
6.13.3.2 ABC Triblock Terpolymers – Synthetic Strategies | 4762 | ||
6.13.4 Synthetic Methods Involving a Single Polymerization Mechanism | 4763 | ||
6.13.4.1 Anionic Polymerization | 4763 | ||
6.13.4.2 Group Transfer Polymerization | 4768 | ||
6.13.4.3 Cationic Polymerization | 4769 | ||
6.13.4.4 Controlled Radical Polymerization | 4770 | ||
6.13.4.5 AB by Coupling Reactions | 4772 | ||
6.13.5 Synthetic Methods through Mechanistic Transformations | 4774 | ||
6.13.5.1 Transformations Involving Anionic and Cationic Polymerizations | 4776 | ||
6.13.5.2 Transformations Involving Anionic and Controlled Free Radical Polymerization | 4782 | ||
6.13.5.3 Transformations Involving Cationic and Controlled Free Radical Polymerization | 4788 | ||
6.13.5.4 Transformations Involving Activated Monomer Polymerization | 4795 | ||
6.13.5.5 Transformations Involving Metathesis Polymerization | 4797 | ||
6.13.5.6 Coupling Reactions | 4803 | ||
6.13.6 Summary | 4806 | ||
References | 4808 | ||
Graft Copolymers and Comb-Shaped Homopolymers | 4815 | ||
6.14.1 Introduction | 4816 | ||
6.14.2 Some General Remarks on Graft Copolymers | 4817 | ||
6.14.3 Polymerization Processes Aimed to Be Used in\rGraft Copolymer Synthesis | 4818 | ||
6.14.4 Principles of Graft Copolymer Synthesis | 4818 | ||
6.14.4.1 ‘Grafting Onto’ Processes | 4819 | ||
6.14.4.2 ‘Grafting From’ Processes | 4819 | ||
6.14.4.3 ‘Grafting Through’ Processes | 4819 | ||
6.14.4.4 Other Grafting Processes | 4819 | ||
6.14.5 ‘Grafting Onto’ Methods | 4819 | ||
6.14.5.1 ‘Grafting Onto’ via Anionic Polymerization | 4820 | ||
6.14.5.2 ‘Grafting Onto’ via Cationic Polymerization | 4824 | ||
6.14.5.3 ‘Grafting Onto’ Based on Coordination Polymerization | 4825 | ||
6.14.5.4 ‘Grafting Onto’ via Other Processes | 4825 | ||
6.14.5.5 Noncovalent ‘Grafting Onto’ | 4826 | ||
6.14.6 ‘Grafting From’ Methods | 4827 | ||
6.14.6.1 ‘Grafting From’ via Anionic Vinyl and Ring-Opening Polymerization | 4827 | ||
6.14.6.2 ‘Grafting From’ via Cationic Ring-Opening Polymerization | 4829 | ||
6.14.6.3 ‘Grafting From’ via Free-Radical Polymerization | 4829 | ||
6.14.6.4 ‘Grafting From’ via Controlled Radical Polymerization | 4830 | ||
6.14.7 ‘Grafting Through’ Processes: The Macromonomer Method | 4833 | ||
6.14.7.1 Preliminary Remarks on the ‘Grafting Through’ Processes | 4833 | ||
6.14.7.2 Synthesis of Macromonomers | 4834 | ||
6.14.7.3 Radical Copolymerization of Macromonomers: From Classical to Controlled Polymerization | 4835 | ||
6.14.7.4 ‘Grafting Through’ via Ionic Polymerization | 4838 | ||
6.14.7.5 ‘Grafting Through’ via Ring-Opening Metathesis Polymerization | 4839 | ||
6.14.7.6 ‘Grafting Through’ via Coordination Polymerization | 4841 | ||
6.14.8 Other Grafting Processes | 4842 | ||
6.14.9 Conclusions | 4842 | ||
References | 4843 | ||
Synthetic-\rBiological Hybrid Polymers: Synthetic Designs, Properties, and Applications | 4847 | ||
6.15.1 Introduction and Potential Scope of Biohybrid Polymers | 4847 | ||
6.15.1.1 Peptide Bioconjugation: From Amino Acids to\rProteins | 4847 | ||
6.15.1.2 Bioconjugation with Nucleobases, Oligonucleotides, or Double-Stranded Nucleic Acids | 4850 | ||
6.15.1.3 Bioconjugation with Carbohydrates | 4851 | ||
6.15.2 Strategies to Synthesize Biohybrid Polymers | 4851 | ||
6.15.2.1 Synthesis of Biomolecules | 4851 | ||
6.15.2.2 Bioconjugation Strategies | 4854 | ||
6.15.3 Implementing Biopolymer Properties into \rSynthetic Polymer Systems | 4864 | ||
6.15.3.1 Programming Secondary Interactions along Polymer Chains | 4865 | ||
6.15.3.2 Programming Structure Formation in Synthetic Polymer Systems | 4868 | ||
6.15.3.3 Positioning of Chemical Functionalities to Generate Functions | 4881 | ||
6.15.3.4 Generating Materials That Actively Interact with\rBiological Systems | 4883 | ||
6.15.4 Conclusion and Outlook | 4884 | ||
References | 4885 | ||
Dynamic Supramolecular Polymers | 4891 | ||
6.16.1 Introduction | 4891 | ||
6.16.1.1 Historical Perspectives | 4891 | ||
6.16.1.2 Discrete, Directional Noncovalent Interactions | 4892 | ||
6.16.1.3 Classifications | 4894 | ||
6.16.2 Linear SPs | 4895 | ||
6.16.2.1 Isodesmic Growth | 4896 | ||
6.16.2.2 Ring-Chain Equilibrium Growth | 4902 | ||
6.16.3 Multivalent Supramolecular Assemblies | 4907 | ||
6.16.3.1 Grafts (Side-Chain Functionalization) | 4907 | ||
6.16.3.2 3D Cross-Linked Materials | 4911 | ||
6.16.3.3 Supramacromolecular Assemblies | 4916 | ||
6.16.4 Hierarchical Assemblies | 4925 | ||
6.16.4.1 Supramolecular Block Copolymers | 4925 | ||
6.16.4.2 Supramolecular Complexation in Covalent Block Copolymer Systems | 4926 | ||
6.16.4.3 Hierarchical Self-Assembly from Small Molecules | 4926 | ||
6.16.4.4 Bioinspired Hierarchical Assemblies | 4927 | ||
6.16.5 Conclusions and Outlook | 4928 | ||
References | 4928 | ||
Stereocontrolled Chiral Polymers | 4933 | ||
6.17.1 Introduction | 4933 | ||
6.17.2 Helical Polymers | 4935 | ||
6.17.2.1 Polyolefins | 4935 | ||
6.17.2.2 Polymethacrylates and Related Polymers | 4937 | ||
6.17.2.3 Poly(meth)acrylamides | 4948 | ||
6.17.2.4 Polystyrene-Related Polymers | 4950 | ||
6.17.2.5 Miscellaneous Vinyl Polymers | 4952 | ||
6.17.2.6 Polyaldehydes | 4952 | ||
6.17.2.7 Polyisocyanides | 4953 | ||
6.17.2.7.2 Polymers of diisocyanides (poly(quinoxaline-2,3-diyl)s) | 4957 | ||
6.17.2.8 Polyisocyanates and Related Polymers | 4958 | ||
6.17.2.9 Polyacetylene Derivatives and Related Polymers | 4962 | ||
6.17.2.10 Poly(aryleneethynylene)s | 4965 | ||
6.17.2.11 Polyarylenes and Related π-Conjugated Polymers | 4967 | ||
6.17.2.12 Si-Containing Polymers: Polysilanes and Other Polymers | 4971 | ||
6.17.2.13 Other Types of Polymers | 4972 | ||
6.17.3 Optically Active Polymers with Main-Chain Configurational Chirality | 4976 | ||
6.17.3.1 Vinyl Polymers | 4976 | ||
6.17.3.2 Diene Polymers | 4978 | ||
6.17.3.3 Other polymers | 4979 | ||
6.17.4 Enantiomer-Selective Polymerization | 4981 | ||
6.17.4.1 α-Olefins and Related Monomers | 4981 | ||
6.17.4.2 Methacrylates | 4982 | ||
6.17.4.3 Propylene Oxide, Propylene Sulfide, and Lactones | 4983 | ||
6.17.4.4 α-Amino Acid N-Carboxy Anhydride | 4983 | ||
6.17.4.5 Isocyanides | 4984 | ||
6.17.5 Summary | 4984 | ||
References | 4984 | ||
Conformation-Dependent Design of Synthetic Functional Copolymers | 4993 | ||
6.18.1 Introduction | 4993 | ||
6.18.2 Theoretical Approaches | 4994 | ||
6.18.2.1 Two Paradigms in Sequence Design | 4994 | ||
6.18.2.2 How Can We Characterize Copolymer Sequence? | 4994 | ||
6.18.2.3 Conformation-Dependent Sequence Design: Structure Dictates Sequence | 4996 | ||
6.18.3 Synthesis of Designed Copolymers | 5018 | ||
6.18.3.1 ‘Grafting through’ Approach | 5018 | ||
6.18.3.2 Conformation-Dependent Synthesis: Direct Copolymerization | 5018 | ||
6.18.3.3 Polymer-Analogous Reactions | 5019 | ||
6.18.4 Concluding Remarks | 5021 | ||
References | 5024 | ||
Rigid& | 5029 | ||
6.19.1 Introduction | 5029 | ||
6.19.2 Synthetic Aspects | 5030 | ||
6.19.2.1 Poly(p-phenylene) Rods | 5030 | ||
6.19.2.2 Poly(p-phenylene-vinylene) Rods | 5032 | ||
6.19.2.3 Poly(fluorene) Rods | 5034 | ||
6.19.2.4 Poly(phenyleneethynylene) Rods | 5037 | ||
6.19.2.5 Poly(thiophene) Rods | 5039 | ||
6.19.2.6 Poly(peptide) Rods | 5042 | ||
6.19.2.7 Poly(alkyl isocyanate) Rods | 5044 | ||
6.19.2.8 Other Rod Blocks | 5045 | ||
6.19.3 Organizational Features | 5047 | ||
6.19.3.1 Self-Assembly of Rod–Coil Copolymers | 5047 | ||
6.19.3.2 Self-Assembly and Supramolecular Architectures in Peptide- or Protein-Based Systems | 5058 | ||
6.19.4 Applications | 5060 | ||
6.19.4.1 Organic Electronics | 5061 | ||
6.19.4.2 Biofunctional Rod–Coil Block Copolymers | 5064 | ||
6.19.4.3 Sensoring Properties of Rod–Coil Block Copolymers | 5065 | ||
6.19.4.4 Rod–Coil Composite Resins | 5067 | ||
6.19.5 Alternating Rigid–Flexible Polymers | 5068 | ||
6.19.6 Conclusions | 5072 | ||
References | 5072 | ||
Individual Nano-Objects Obtained via Hierarchical Assembly of\rPolymer Building Blocks | 5079 | ||
6.20.1 Introduction to Nano-Objects | 5079 | ||
6.20.2 Synthetic Methodologies for the Preparation of\rNano-Objects | 5080 | ||
6.20.2.1 Solution-State Supramolecular Assembly Processes | 5081 | ||
6.20.2.2 Solid-State Supramolecular Assembly Processes | 5100 | ||
6.20.2.3 Templated Techniques | 5106 | ||
6.20.2.4 LbL Assembly Processes | 5113 | ||
6.20.3 Assembly of Nano-Objects into Complex Hierarchical Structures | 5117 | ||
6.20.4 Manipulation of Nano-Objects | 5118 | ||
6.20.4.1 Physical Manipulation | 5119 | ||
6.20.4.2 Chemical Manipulation | 5119 | ||
6.20.5 Conclusions and Outlook | 5121 | ||
References | 5121 | ||
e9780444533494v7 | 5125 | ||
Polymer Science: A Comprehensive Reference | 5126 | ||
Copyright | 5129 | ||
Contents_of_Volume 7 | 5130 | ||
VolumeEditors | 5132 | ||
Editor-in-Chief_Bio | 5134 | ||
Editors_Bio | 5136 | ||
Contributors_of_Volume 7 | 5144 | ||
Preface | 5146 | ||
Foreword | 5150 | ||
Introduction | 5152 | ||
Block Copolymers in the Condensed State | 5154 | ||
7.02.1 Introduction | 5154 | ||
7.02.2 Amorphous Block Copolymers | 5156 | ||
7.02.2.1 Linear Block Copolymers | 5156 | ||
7.02.2.2 Block Copolymers with Branched Topologies | 5166 | ||
7.02.2.3 Block Copolymer Blends | 5168 | ||
7.02.3 Semicrystalline Block Copolymers | 5175 | ||
7.02.3.1 Template, Break-Out, and Confined Crystallization | 5175 | ||
7.02.3.2 Linear Copolymers | 5176 | ||
7.02.3.3 Star Copolymers | 5178 | ||
7.02.4 Mechanical Properties of Block Copolymers | 5179 | ||
7.02.5 Alignment of Block Copolymer Morphologies under External Fields | 5181 | ||
7.02.5.1 Deformation under Stress | 5182 | ||
7.02.5.2 Electric Field | 5182 | ||
7.02.5.3 Magnetic Field | 5182 | ||
7.02.6 Block Copolymer Thin Films | 5183 | ||
7.02.6.1 Morphological Engineering via Thin Film Fabrication | 5184 | ||
7.02.6.2 Morphological Engineering via Block Copolymer Design | 5189 | ||
7.02.6.3 Morphological Engineering via External Fields | 5189 | ||
7.02.7 Summary | 5191 | ||
References | 5191 | ||
Block Copolymer Thin Films | 5196 | ||
7.03.1 Introduction | 5196 | ||
7.03.2 Symmetric BCP Thin Films: Lamellar Morphologies | 5197 | ||
7.03.3 Symmetric BCP Thin Films: Phase-Mixed Morphology | 5200 | ||
7.03.4 Asymmetric BCP Thin Films: Cylindrical Morphologies | 5200 | ||
7.03.5 Asymmetric BCP Thin Films: Spherical Morphologies | 5203 | ||
7.03.6 BCP Thin Films: Controlled Interfacial Interactions | 5204 | ||
7.03.7 BCP Thin Films: Electric Fields | 5205 | ||
7.03.8 BCP Thin Films: Magnetic Fields | 5206 | ||
7.03.9 BCP Thin Films: Solvent Evaporation | 5206 | ||
7.03.10 BCP Thin Films: Gradient Fields | 5207 | ||
7.03.11 BCP Thin Films: Surface Topography | 5209 | ||
7.03.12 BCP Thin Films: Faceted Surfaces | 5211 | ||
7.03.13 BCP Thin Films: Chemical Patterning | 5212 | ||
7.03.14 Nanopatterning from BCP Thin Films | 5212 | ||
7.03.15 Applications: Nanoporous Membrane for Filtration of Viruses | 5213 | ||
7.03.16 Applications: Nanoreactors | 5214 | ||
7.03.17 Applications: Nanoscaffolding | 5215 | ||
7.03.18 Applications: Templates from Nanodots to Nanorods | 5215 | ||
7.03.19 BCP Thin Films: Summary | 5216 | ||
References | 5216 | ||
Block Copolymers under Confinement | 5222 | ||
7.04.1 Introduction | 5222 | ||
7.04.2 Block Copolymers under Confinement | 5223 | ||
7.04.3 Principles of Complex Structure Formation from Block Copolymers under Confinement | 5226 | ||
7.04.3.1 Effects of Surface Interactions | 5226 | ||
7.04.3.2 Commensurability between the Confining Geometry and the Bulk Phase | 5228 | ||
7.04.3.3 Deformability of Block Copolymer Structures | 5229 | ||
7.04.4 Conclusion | 5230 | ||
Acknowledgments | 5230 | ||
References | 5231 | ||
Assemblies of Polymer-Based Nanoscopic Objects | 5234 | ||
7.05.1 Introduction | 5234 | ||
7.05.2 Polymer-Mediated Self-Assembly | 5234 | ||
7.05.3 Polymer-Templated Self-Assembly | 5236 | ||
7.05.4 TNP Self-Assembly | 5237 | ||
7.05.4.1 Shape Anisotropy | 5238 | ||
7.05.4.2 Experimental Studies of Tethered Nanoparticles | 5239 | ||
7.05.4.3 Simulation Studies of Tethered Nanoparticles: Generic Models | 5241 | ||
7.05.4.4 Conclusions: Comparison to Experiment andDetailed Models | 5251 | ||
References | 5253 | ||
Self-Assembly of Inorganic Nanoparticles in Polymer-Like Structures | 5258 | ||
7.06.1 Introduction | 5258 | ||
7.06.2 Experimental Methods Utilized for•the Self-Assembly of NPs in Nanopolymers | 5259 | ||
7.06.2.1 Template-Free Methods of NP Assembly | 5259 | ||
7.06.2.2 Template-Driven Assembly in 1D Nanostructures | 5270 | ||
7.06.2.3 Field-Assisted NP Assembly in Polymer-Like Structures | 5271 | ||
7.06.3 Properties of 1D Nanostructures | 5273 | ||
7.06.4 Applications of 1D Assemblies of NPs | 5274 | ||
7.06.5 Outlook | 5276 | ||
References | 5276 | ||
Hybrid Polymer-Inorganic Nanostructures | 5280 | ||
7.07.1 Introduction | 5280 | ||
7.07.2 Block Copolymer Self-Assembly | 5280 | ||
7.07.3 Nanostructured Diblock Copolymer–Aluminosilicate Nanoparticle Composites: A Model System | 5281 | ||
7.07.4 Moving from Amorphous to Crystalline Inorganic Materials | 5284 | ||
7.07.4.1 Transition Metal Oxides | 5284 | ||
7.07.4.2 Nanostructured Metals | 5285 | ||
7.07.5 Potential Applications of Nanostructured Block Copolymer-Derived Hybrids | 5286 | ||
7.07.6 Conclusions and Outlook | 5288 | ||
Acknowledgments | 5290 | ||
References | 5290 | ||
Peptide-Polymer Conjugates Toward Functional Hybrid Biomaterials | 5292 | ||
7.08.1 Introduction | 5292 | ||
7.08.2 Peptides/Proteins | 5293 | ||
7.08.2.1 Primary Structures | 5293 | ||
7.08.2.2 Secondary Structures | 5294 | ||
7.08.2.3 Tertiary Structures | 5294 | ||
7.08.2.4 Stability of Protein Folds | 5296 | ||
7.08.2.5 Peptides as Building Blocks for Hybrid Materials | 5297 | ||
7.08.2.6 The Promise of Coiled-Coils | 5297 | ||
7.08.3 Advantages of Peptide–Polymer Conjugates | 5299 | ||
7.08.4 Synthesis | 5300 | ||
7.08.4.1 Polypeptides | 5300 | ||
7.08.4.2 Peptides | 5301 | ||
7.08.4.3 Conjugates | 5301 | ||
7.08.5 Self-Assembly of Peptide–Polymer Conjugates | 5303 | ||
7.08.5.1 Linear Peptide–Polymer Conjugates Based on Simple Peptide Sequences | 5303 | ||
7.08.5.2 Peptide–Polymer Conjugates Based on Helix Bundle-Forming Peptides | 5303 | ||
7.08.5.3 Side Conjugates | 5304 | ||
7.08.5.4 Amphiphilic Peptide–Polymer Conjugates | 5304 | ||
7.08.6 Perspectives and Outlook | 5306 | ||
7.08.7 Conclusion | 5307 | ||
References | 5307 | ||
Layer-by-Layer Assembly of Multifunctional Hybrid Materials andNanoscale Devices | 5310 | ||
7.09.1 Introduction | 5310 | ||
7.09.2 Types of Interactions and Corresponding Materials Used for LbL | 5311 | ||
7.09.2.1 Electrostatic Interactions | 5312 | ||
7.09.2.2 Hydrogen Bonding | 5312 | ||
7.09.2.3 Base-Pair Interactions | 5312 | ||
7.09.2.4 Charge Transfer Interactions | 5312 | ||
7.09.2.5 Stereocomplexation | 5312 | ||
7.09.2.6 Host–Guest Interactions | 5312 | ||
7.09.2.7 Covalent Bonding | 5314 | ||
7.09.2.8 Metal Coordination Complexation | 5314 | ||
7.09.3 Substrates | 5314 | ||
7.09.3.1 Flat Surfaces | 5314 | ||
7.09.3.2 Colloidal Particles | 5315 | ||
7.09.3.3 Cylindrical Systems | 5317 | ||
7.09.3.3.1 Inside | 5317 | ||
7.09.3.3.2 Outside | 5317 | ||
7.09.4 LbL Deposition Techniques | 5318 | ||
7.09.4.1 Dipping LbL | 5318 | ||
7.09.4.2 Hydrodynamic LbL | 5319 | ||
7.09.4.3 Spin LbL | 5319 | ||
7.09.4.4 Spray LbL | 5319 | ||
7.09.4.5 Inkjet-Assisted LbL | 5320 | ||
7.09.4.6 LbL Deposition on Particles | 5320 | ||
7.09.4.6.1 Centrifugation | 5320 | ||
7.09.4.6.2 Sequential adsorption | 5320 | ||
7.09.4.6.3 Filtration/ultrafiltration | 5321 | ||
7.09.5 Characterization Methods | 5321 | ||
7.09.5.1 Monitoring Layer Buildup | 5321 | ||
7.09.5.1.1 By changes in optical absorbance | 5321 | ||
7.09.5.1.2 By changes in film thickness | 5323 | ||
7.09.5.2 Film Structure | 5323 | ||
7.09.5.3 Adsorption Kinetics | 5325 | ||
7.09.5.4 Chemical Composition | 5326 | ||
7.09.5.5 Imaging of LbL Films | 5327 | ||
7.09.6 Applications | 5328 | ||
7.09.6.1 Optical Devices | 5328 | ||
7.09.6.2 Nanoreactors | 5329 | ||
7.09.6.3 Functional Membranes for Separation Science | 5329 | ||
7.09.6.4 Electrochemical Devices | 5330 | ||
7.09.6.5 Multilayer Emulsions for Food Industry | 5330 | ||
7.09.6.6 Superhydrophobic/Superhydrophilic Coatings | 5330 | ||
7.09.6.7 Biomedical Applications | 5331 | ||
7.09.7 Conclusion and Perspective | 5331 | ||
References | 5332 | ||
Nanostructured Electrospun Fibers | 5338 | ||
7.10.1 Introduction | 5338 | ||
7.10.2 Formation of Fibers | 5340 | ||
7.10.3 Beaded Fibers | 5343 | ||
7.10.4 Core–shell and Hollow Fibers | 5345 | ||
7.10.5 Porous and Wrinkled Fibers | 5348 | ||
7.10.6 Block Copolymer Fibers | 5352 | ||
7.10.7 Applications of Electrospun Fibers | 5356 | ||
7.10.8 Conclusions and Perspectives | 5358 | ||
References | 5359 | ||
Soft Lithographic Approaches to Nanofabrication | 5362 | ||
7.11.1 Introduction | 5362 | ||
7.11.1.1 Nanofabrication | 5362 | ||
7.11.1.2 Soft Lithography and Unconventional Nanofabrication | 5363 | ||
7.11.1.3 Methods of Soft Lithography for Nanofabrication | 5363 | ||
7.11.1.4 Objective of the Chapter | 5364 | ||
7.11.1.5 Scope | 5364 | ||
7.11.2 Materials and Methods | 5364 | ||
7.11.2.1 Introduction | 5364 | ||
7.11.2.2 Preparation of Masters | 5364 | ||
7.11.2.3 Materials for Stamps | 5365 | ||
7.11.3 Printing | 5365 | ||
7.11.3.1 Introduction | 5365 | ||
7.11.3.2 Microcontact Printing | 5366 | ||
7.11.3.3 Decal Transfer Printing | 5367 | ||
7.11.3.4 Biological Applications of μCP | 5369 | ||
7.11.4 Molding | 5369 | ||
7.11.4.1 Introduction | 5369 | ||
7.11.4.2 Pushing the Limits of Molding | 5369 | ||
7.11.4.3 Step-and-Flash Imprint Lithography | 5369 | ||
7.11.4.4 Particle Replication in Nonwetting Templates | 5371 | ||
7.11.4.5 Three-Dimensional Molding | 5373 | ||
7.11.4.6 Micromolding in Capillaries | 5373 | ||
7.11.4.7 Solvent-Assisted Micromolding | 5374 | ||
7.11.5 2D and 3D Fabrication using Optical Soft Lithography | 5374 | ||
7.11.5.1 Introduction | 5374 | ||
7.11.5.2 3D Fabrication by Phase-Shifting Edge Lithography | 5374 | ||
7.11.5.3 3D Fabrication by Proximity-Field Nanopatterning | 5375 | ||
7.11.6 Nanoskiving | 5375 | ||
7.11.6.1 Introduction | 5375 | ||
7.11.6.2 Sectioning Planar Thin Films | 5375 | ||
7.11.6.3 Sectioning Parallel to Arrays of Nanoposts | 5377 | ||
7.11.6.4 Placement of Arrays on Arbitrary Substrates | 5377 | ||
7.11.7 Conclusions | 5379 | ||
Acknowledgments | 5379 | ||
References | 5380 | ||
Block Copolymer Thin Films on Patterned Substrates | 5384 | ||
7.12.1 Introduction | 5384 | ||
7.12.2 Block Copolymer Thin films on Topographical Prepatterns | 5385 | ||
7.12.2.1 Self-Assembly of Block Copolymers on the Homogeneous Topographical Surface | 5385 | ||
7.12.2.2 Self-Assembly of Block Copolymers on a Heterogeneous Topographical Surface | 5388 | ||
7.12.3 Block Copolymer Thin Films on Chemical Prepatterns | 5389 | ||
7.12.3.1 Self-Assembly of Block Copolymers on Dense Chemical Patterns | 5390 | ||
7.12.3.2 Self-Assembly of Block Copolymers on Sparse Chemical Patterns | 5392 | ||
7.12.4 Theory and Simulation of Block Copolymer Thin Films on Patterned Substrates | 5393 | ||
7.12.4.1 Overview of Methods | 5394 | ||
7.12.4.2 Representation of Surface and Surface Model | 5394 | ||
7.12.4.3 Simulation of Block Copolymer Thin Films on Topographical Patterns | 5396 | ||
7.12.4.4 Simulation of Block Copolymer Thin Films on Chemical Patterns | 5397 | ||
7.12.5 Future Issues for Block Copolymer Thin Films on Pattern Substrates | 5398 | ||
7.12.5.1 Issues in Materials and DSA Processes | 5398 | ||
7.12.5.2 Issues in Simulations | 5398 | ||
References | 5399 | ||
Nanoimprint Lithography of Polymers | 5402 | ||
7.13.1 Introduction | 5402 | ||
7.13.2 Major Accomplishments of Nanoimprint Lithography | 5402 | ||
7.13.3 Technical Issues of Nanoimprint Lithography | 5404 | ||
7.13.3.1 Nanoimprint Lithography Process | 5404 | ||
7.13.3.2 Nanoimprint Lithography Molds | 5407 | ||
7.13.3.3 Nanoimprint Lithography Resists | 5410 | ||
7.13.4 Applications | 5414 | ||
7.13.4.1 Microfluidics and Nanofluidics | 5414 | ||
7.13.4.2 Microelectronics | 5416 | ||
7.13.4.3 Patterned Magnetic Storage | 5418 | ||
7.13.4.4 Other Applications | 5420 | ||
7.13.5 Conclusions and Outlook | 5421 | ||
Acknowledgments | 5421 | ||
References | 5421 | ||
Modeling Mixtures of Nanorods and Polymers: Determining Structure-Property Relationship for Polymeric Nanocomposites | 5426 | ||
7.14.1 Introduction | 5426 | ||
7.14.1.1 The Polymeric Components | 5426 | ||
7.14.1.2 Inorganic Constituents | 5427 | ||
7.14.1.3 Ordering Nanoparticles in Diblock Copolymers | 5427 | ||
7.14.1.4 Macroscopic Properties | 5428 | ||
7.14.2 Nanorod Polymer Composites | 5429 | ||
7.14.2.1 Modeling Nanorod Polymer Composites | 5429 | ||
7.14.2.2 Cahn–Hilliard Brownian Dynamics Model of Nanorod Polymer Composites | 5429 | ||
7.14.2.3 Preferential Ordering in Nanorod Polymer Composites | 5430 | ||
7.14.3 Mechanical Properties | 5431 | ||
7.14.3.1 Lattice Spring Model of Micromechanics | 5431 | ||
7.14.4 Electrical Properties | 5432 | ||
7.14.4.1 Continuum Model of Electrical Conduction | 5433 | ||
7.14.5 Photovoltaic Properties | 5433 | ||
7.14.5.1 Drift–Diffusion Model of Photovoltaics | 5434 | ||
7.14.6 Conclusions | 5435 | ||
References | 5436 | ||
Sterically Stabilized Nanoparticles in Solutions and at Interfaces | 5438 | ||
7.15.1 Introduction – Sterically Stabilized Nanoparticles: Synthesis and the Role of Surface-Bound Ligands | 5438 | ||
7.15.1.1 Outline | 5438 | ||
7.15.2 Synthesis of Ligand-Stabilized Nanoparticles | 5438 | ||
7.15.2.1 ‘Janus Particles’ – Ideal Interfacial Mediators | 5441 | ||
7.15.3 Nanoparticles at the Air–Liquid Interface | 5442 | ||
7.15.4 Sterically Stabilized Nanoparticles at Liquid–Liquid Interfaces: From Particle-Stabilized EmulsionstoRobustMaterials | 5446 | ||
7.15.5 Controlling Miscibility with Bijels: From Simulation to Experiments | 5451 | ||
7.15.6 Sterically Stabilized Nanoparticles in Polymer Matrices – From Dispersion to Interfacial Pinning | 5454 | ||
7.15.6.1 Sterically Stabilized Nanoparticles as Fillers | 5455 | ||
7.15.6.2 Sterically Stabilized Nanoparticles in Electronically Active Materials | 5456 | ||
7.15.6.3 Optoelectronic Effects of Ligand-Stabilized QDs | 5457 | ||
7.15.6.4 Sterically Stabilized Nanoparticles Tailored for Block Copolymer Templates | 5459 | ||
References | 5460 | ||
Quasi-One-Component Polymer Nanocomposites Based on Particle Brush Assembly | 5464 | ||
7.16.1 Introduction | 5464 | ||
7.16.2 Structure of Particle Brush Systems | 5465 | ||
7.16.2.1 Theoretical Studies on the Effect of Polymer Graft Architecture on the Structure of Particle Brush Systems | 5465 | ||
7.16.2.2 Experimental Studies on the Effect of Polymer Graft Architecture on the Structure of Particle Brush Systems | 5467 | ||
7.16.3 Particle Brush-Based Quasi-One-Component Nanocomposites | 5470 | ||
7.16.3.1 Synthesis of Particle Brush Systems | 5470 | ||
7.16.3.2 Quasi-One-Component Nanocomposites Based on Densely Grafted Particle Brush Systems | 5471 | ||
7.16.3.3 Quasi-One-Component Nanocomposites Based on Sparse Particle Brush Systems | 5473 | ||
7.16.4 Conclusion | 5474 | ||
Acknowledgments | 5475 | ||
References | 5475 | ||
Electrical Conductivity of Polymer Nanocomposites | 5478 | ||
7.17.1 Introduction | 5478 | ||
7.17.2 Applications of Electrically Conductive Polymer Nanocomposites | 5478 | ||
7.17.3 Percolation Theory and Simulation | 5479 | ||
7.17.3.1 The Basics | 5479 | ||
7.17.3.2 Overview of the Theoretical and Simulation Approaches to Percolation of Anisotropic Particles | 5480 | ||
7.17.3.3 Excluded Volume Theory of Percolation | 5480 | ||
7.17.3.4 Simulations of Percolation | 5481 | ||
7.17.3.5 Percolation Model for Core–Shell Rods | 5482 | ||
7.17.3.6 Effective-Medium Approximations – An Alternative to Percolation | 5483 | ||
7.17.4 Mechanisms of Electrical Transport | 5483 | ||
7.17.4.1 Transport Mechanisms | 5483 | ||
7.17.4.2 Tunneling Percolation | 5483 | ||
7.17.4.3 Prediction of Network Conductivity | 5484 | ||
7.17.5 Filler Effects | 5485 | ||
7.17.5.1 Aspect Ratio | 5485 | ||
7.17.5.2 Polydispersity in Nanoparticle Size and Electrical Properties | 5485 | ||
7.17.5.3 Nanoparticle Orientation | 5486 | ||
7.17.5.4 Nanoparticle Flexibility and Waviness | 5488 | ||
7.17.6 Effects of Matrix Properties | 5488 | ||
7.17.7 Dispersion/Microstructure | 5489 | ||
7.17.7.1 Methods to Disperse Elongated Fillers in a Polymer Matrix | 5489 | ||
7.17.7.2 Methods to Quantify Dispersion | 5490 | ||
7.17.7.3 Effects of Dispersion on Electrical Properties | 5490 | ||
7.17.8 Concluding Remarks and Future Directions | 5492 | ||
Acknowledgments | 5493 | ||
References | 5493 | ||
Polymer Dynamics in Constrained Geometries | 5496 | ||
7.18.1 Introduction | 5496 | ||
7.18.2 The Nature of Confinement | 5497 | ||
7.18.3 Techniques to Quantify Dynamics | 5498 | ||
7.18.3.1 Calorimetry | 5498 | ||
7.18.3.2 Dielectric Spectroscopy | 5499 | ||
7.18.3.3 Dynamic Mechanical Spectroscopy and Related Mechanical Approaches | 5502 | ||
7.18.3.4 Mechanical Surface Probes | 5504 | ||
7.18.3.5 Diffusion Experiments | 5505 | ||
7.18.3.6 Flow Experiments | 5507 | ||
7.18.3.7 X-ray Techniques | 5508 | ||
7.18.3.8 Inelastic Neutron Scattering | 5509 | ||
7.18.3.9 Fluorescence Measurements | 5512 | ||
7.18.3.10 Nuclear Magnetic Resonance | 5515 | ||
7.18.3.11 Brillouin Light Scattering | 5516 | ||
7.18.3.12 Modeling and Simulation | 5517 | ||
7.18.4 Physical Mechanisms of Confinement | 5519 | ||
7.18.4.1 Finite Size versus Surface Interactions | 5520 | ||
7.18.4.2 Chain Conformation and Molecular Mass | 5520 | ||
7.18.4.3 Entanglement Density | 5521 | ||
7.18.4.4 Cooperative and Collective Motions | 5521 | ||
7.18.4.5 Nonequilibrium Effects | 5522 | ||
References | 5523 | ||
Polymer Nanomechanics | 5528 | ||
7.19.1 Introduction | 5529 | ||
7.19.2 Preliminary Mechanics Concepts | 5529 | ||
7.19.2.1 Hooke’s Law for 1D Linearly Elastic Materials | 5529 | ||
7.19.2.2 Extension to Higher Dimensions: Shear and Poisson’s Ratio | 5529 | ||
7.19.3 Contact Mechanics | 5530 | ||
7.19.3.1 The Hertz Model for Nonadhesive Contact | 5530 | ||
7.19.3.2 Mechanics of Microgels with Interpenetrating Polymer Network as Cell Mimic | 5531 | ||
7.19.3.3 Mechanical Properties of Thin Gels: Multicomponent Phospholipid Bilayer Membranes | 5533 | ||
7.19.4 Alternatives to Hertzian Mechanics | 5537 | ||
7.19.4.1 Effects of Finite Sample Thickness | 5537 | ||
7.19.4.2 Adhesive Contact: The Johnson-Kendall-Roberts (JKR) Model | 5537 | ||
7.19.4.3 Using Adhesive Interaction to Measure the Elastic Modulus of Polymer Surfaces | 5537 | ||
7.19.4.4 Viscoelastic Response of PDMS in the Adhesive Interaction with AFM Tips | 5539 | ||
7.19.4.5 Connection of Mechanical Properties and Polymer Conduction Behavior | 5544 | ||
7.19.5 Single-Molecule Extension Mechanics | 5548 | ||
7.19.5.1 Contribution of Hydrophobic Hydration to PS Extension Mechanics | 5548 | ||
7.19.6 Summary | 5552 | ||
References | 5552 | ||
e9780444533494v8 | 5556 | ||
Polymer Science: A Comprehensive Reference | 5557 | ||
Copyright | 5560 | ||
Contents_of_Volume 8 | 5561 | ||
Volume Editors | 5563 | ||
Editor-in-Chief_Bio | 5565 | ||
Editors_Bio | 5567 | ||
Contributors_of_Volume 8 | 5575 | ||
Preface | 5577 | ||
Foreword | 5581 | ||
Introduction - Applications of Polymers | 5583 | ||
8.01.1 Synopsis of Chapters | 5584 | ||
8.01.1.1 Top-Down versus Bottom-Up Patterning of Polymers | 5584 | ||
8.01.1.2 Photoresists and Advanced Patterning | 5585 | ||
8.01.1.3 Rapid Prototyping | 5585 | ||
8.01.1.4 Polymer-Based Sensors | 5585 | ||
8.01.1.5 Electroactive Liquid Crystal Polymers | 5585 | ||
8.01.1.6 Ink-Jet Printing of Functional Polymers forAdvanced Applications | 5586 | ||
8.01.1.7 Nanocomposites and Hybrid Materials | 5586 | ||
8.01.1.8 Polymer Photonics | 5586 | ||
8.01.1.9 Polymer-Based LED and Solar Cells | 5586 | ||
8.01.1.10 Optical Fibers (and Waveguides) | 5587 | ||
8.01.1.11 Adhesives and Sealants | 5587 | ||
8.01.1.12 Polymer Membranes | 5587 | ||
8.01.1.13 Polymer Additives | 5587 | ||
8.01.1.14 Stimuli-Responsive Polymer Systems | 5588 | ||
8.01.1.15 High-Performance Heterocyclic Polymers | 5588 | ||
8.01.1.16 Graphenes | 5588 | ||
8.01.1.17 Functionalized Carbon Nanotubes | 5588 | ||
8.01.2 Closing Remarks | 5589 | ||
Top-Down versus Bottom-Up Patterning of Polymers | 5591 | ||
8.02.1 Block Copolymer Self-Assembly for Patterning Applications | 5591 | ||
8.02.2 Block Copolymer Phase Behavior | 5592 | ||
8.02.2.1 Self-Assembly in the Bulk | 5592 | ||
8.02.2.2 Self-Assembly in Thin Films: Confinement Effects | 5594 | ||
8.02.2.3 Phase Behavior of Block Copolymer Blends | 5598 | ||
8.02.2.4 Solvent Annealing | 5603 | ||
8.02.2.5 The Bag of Tricks: Controlling Self-Assembly in Thin Films | 5606 | ||
8.02.3 Block Copolymer Templates | 5609 | ||
8.02.3.1 Block Copolymer Lithography: Patterning After Selective Removal of a Block | 5610 | ||
8.02.3.2 Patterning by Infiltration into a Self-Assembled Block Copolymer | 5611 | ||
8.02.4 The Intersection of Block Copolymer Self-Assembly with Photolithography | 5611 | ||
8.02.5 Outlook and Summary | 5612 | ||
References | 5613 | ||
Photoresists and Advanced Patterning | 5619 | ||
8.03.1 Introduction | 5619 | ||
8.03.2 Basic Properties and Requirements ofPhotoresists | 5622 | ||
8.03.3 Classification of Resists | 5624 | ||
8.03.4 Introduction to Early Optical Photoresists: Cyclized Rubber and DNQ–Novolac Resists | 5625 | ||
8.03.4.1 Cyclized Rubber Resists | 5625 | ||
8.03.4.2 DNQ–Novolac Resists | 5627 | ||
8.03.4.3 The Transition from DNQ–Novolac Resists toDUVResists | 5630 | ||
8.03.5 Introduction to Chemically Amplified Photoresists | 5631 | ||
8.03.6 Photochemical Acid Generators | 5633 | ||
8.03.7 Polymeric Materials and Mechanisms for CARs | 5634 | ||
8.03.7.1 CAR Materials Based on Polarity Change Mechanisms | 5634 | ||
8.03.7.2 CAR Materials Based on Rearrangements | 5641 | ||
8.03.7.3 CARs Based on Condensation and Esterification | 5641 | ||
8.03.7.4 CAR Materials Based on Cross-linking andPolymerization | 5642 | ||
8.03.7.5 CAR Materials Based on Depolymerization | 5643 | ||
8.03.7.6 Challenges Moving Forward for High-Resolution Patterning with CARs | 5646 | ||
8.03.8 e-Beam Resists | 5650 | ||
8.03.8.1 Acrylate e-Beam Resists | 5650 | ||
8.03.8.2 Poly(Olefin Sulfone) e-Beam Resists | 5652 | ||
8.03.8.3 Epoxy-Based e-Beam Resists | 5653 | ||
8.03.8.4 Styrene-Based e-Beam Resists | 5654 | ||
8.03.8.5 Styrene–Acrylate Copolymer Resists | 5654 | ||
8.03.8.6 Use of Optical Photoresists for e-Beam Patterning | 5655 | ||
8.03.9 Conclusions | 5655 | ||
References | 5655 | ||
Rapid Prototyping | 5659 | ||
8.04.1 Basic Principles of Rapid Prototyping | 5659 | ||
8.04.1.1 Introduction | 5659 | ||
8.04.1.2 Classification of RP Processes | 5660 | ||
8.04.2 Photopolymerization-Based RP Technologies | 5660 | ||
8.04.2.1 Basic Principles, Advantages, and Disadvantages | 5660 | ||
8.04.2.2 Commercial Photopolymerization-Based RP Processes | 5663 | ||
8.04.2.3 Materials for Photopolymerization-Based RP Processes | 5665 | ||
8.04.3 Extrusion-Based RP Processes | 5667 | ||
8.04.3.1 Basic Principles, Advantages, and Disadvantages | 5667 | ||
8.04.3.2 Commercial Extrusion-Based RP Processes | 5668 | ||
8.04.3.3 Materials Development for Extrusion-Based RP Processes | 5669 | ||
8.04.4 Powder-Based RP Processes | 5672 | ||
8.04.4.1 Basic Principles, Advantages, and Disadvantages | 5672 | ||
8.04.4.2 Powder-Based Commercial RP Processes | 5673 | ||
8.04.4.3 Materials Development for Powder-Based RP Processes | 5674 | ||
8.04.5 Laminated Object Manufacturing | 5677 | ||
8.04.5.1 Principles, Advantages, and Disadvantages | 5677 | ||
8.04.5.2 Commercial LOM Processes (Cubic Technologies) | 5678 | ||
8.04.5.3 Materials Development for Laminated Object Manufacturing | 5678 | ||
8.04.6 Conclusions | 5679 | ||
References | 5679 | ||
Polymer-Based Sensors | 5683 | ||
8.05.1 Polymers in Organic Electronics | 5683 | ||
8.05.1.1 A Brief Introduction to Polymer Electronics | 5683 | ||
8.05.1.2 Types of Sensors | 5684 | ||
8.05.2 Gas-Phase Sensing | 5687 | ||
8.05.2.1 Electrical Sensors in Gas Sensing | 5688 | ||
8.05.2.2 Optical Sensors in Gas Sensing | 5694 | ||
8.05.2.3 Mechanical Sensors in Gas Sensing | 5695 | ||
8.05.3 Liquid-Phase Sensing | 5696 | ||
8.05.3.1 Electrical Sensors in Liquid Sensing | 5697 | ||
8.05.3.2 Optical Sensors in Liquid Sensing | 5704 | ||
8.05.4 Conclusions | 5707 | ||
References | 5708 | ||
Electroactive Liquid Crystalline Polymers | 5711 | ||
8.06.1 Introduction | 5711 | ||
8.06.2 Semiconductive Polymers | 5711 | ||
8.06.2.1 Crosslinkable Liquid Crystals | 5713 | ||
8.06.2.2 Semiconducting Polymers of the Hairy Rod Type and Polymers with a Board-Like Shape | 5716 | ||
8.06.2.3 Molecularly Inhomogenous Systems | 5718 | ||
8.06.3 Electrooptical Switching of LC Polymers | 5718 | ||
8.06.4 Actuators | 5719 | ||
8.06.4.1 Ferroelectric LC Elastomers as Actuators andSensors | 5721 | ||
8.06.4.2 Thermally Triggered Actuators | 5722 | ||
8.06.5 Conclusion | 5724 | ||
References | 5724 | ||
Ink-Jet Printing of Functional Polymers for Advanced Applications | 5729 | ||
8.07.1 Ink-Jet Printing and Its Fundamental Properties | 5729 | ||
8.07.1.1 Introduction | 5729 | ||
8.07.1.2 Origin of Ink-Jet Printing | 5729 | ||
8.07.1.3 Working Principle of Piezoelectric Printheads | 5733 | ||
8.07.1.4 Fluid Dynamic Considerations | 5735 | ||
8.07.1.5 Printing of Droplets, Lines, and Films | 5736 | ||
8.07.1.6 Methods to Improve Print Resolution | 5736 | ||
8.07.2 Ink-Jet Printing Functional Materials | 5738 | ||
8.07.2.1 Introduction | 5738 | ||
8.07.2.2 Influence of Printing Height | 5739 | ||
8.07.2.3 Ink Behavior at the Substrate and the Coffee Drop Effect | 5742 | ||
8.07.2.4 Impact and Spreading of Droplets onto a Surface | 5745 | ||
8.07.3 Applications of Ink-Jet Printing | 5749 | ||
8.07.3.1 Introduction | 5749 | ||
8.07.3.2 Printed Electronics | 5749 | ||
8.07.3.3 Printed Libraries for Combinatorial Investigations ofStructure–Property Relationships | 5751 | ||
8.07.3.4 Reactive Ink-Jet Printing | 5753 | ||
8.07.4 Conclusions and Outlook | 5754 | ||
References | 5755 | ||
Nanocomposites and Hybrid Materials | 5759 | ||
8.08.1 Introduction | 5759 | ||
8.08.2 Nanoscaled Fillers | 5760 | ||
8.08.3 Nanocomposite Preparation | 5763 | ||
8.08.3.1 Particle Surface Modification | 5763 | ||
8.08.3.2 Melt Mixing | 5765 | ||
8.08.3.3 Solution Casting | 5768 | ||
8.08.3.4 In Situ Polymerization | 5770 | ||
8.08.3.5 In Situ Particle Generation | 5772 | ||
8.08.4 Applications | 5776 | ||
8.08.4.1 UV-Absorption in Inorganic/Polymer Nanocomposites | 5776 | ||
8.08.4.2 Translucent Nanocomposites With Tunable Color | 5777 | ||
8.08.4.3 Dichroic Nanocomposites | 5778 | ||
8.08.4.4 Low-Emissivity Systems | 5779 | ||
8.08.4.5 NIR Absorbing Additives for Laser Engraving | 5779 | ||
8.08.4.6 Luminescent Nanocomposite Materials | 5780 | ||
8.08.4.7 High and Low Refractive Index in Polymer Nanocomposites | 5782 | ||
8.08.4.8 Thermal Properties | 5783 | ||
8.08.5 Summary | 5788 | ||
References | 5788 | ||
Polymer Photonics | 5793 | ||
8.09.1 Introduction | 5793 | ||
8.09.1.1 Molecular Origins of Optical Nonlinearity | 5793 | ||
8.09.2 Second-Order NLO Polymers | 5794 | ||
8.09.2.1 Dipolar NLO Chromophores | 5794 | ||
8.09.2.2 Polymeric NLO Materials | 5799 | ||
8.09.2.3 Device Applications | 5814 | ||
8.09.3 Third-Order NLO Polymers | 5816 | ||
8.09.3.1 Characterization of Third-Order NLO Effects | 5816 | ||
8.09.3.2 Materials Showing Nonlinear Refractive Index (Optical Kerr Effect) | 5819 | ||
8.09.3.3 Two-Photon Absorbing (TPA) Materials | 5823 | ||
8.09.3.4 Applications of TPA Materials | 5833 | ||
8.09.4 Summary and Outlook | 5837 | ||
References | 5839 | ||
Polymer-Based LEDs and Solar Cells | 5843 | ||
8.10.1 Introduction | 5843 | ||
8.10.1.1 LEDs and Solar Cells: An Overview | 5843 | ||
8.10.2 Device Issues in Electroluminescent Materials and Full-Color Displays | 5843 | ||
8.10.2.1 Device Issues in Organic Solar Cells | 5846 | ||
8.10.3 Material Classes | 5849 | ||
8.10.3.1 Poly(arylene vinylene)s | 5849 | ||
8.10.3.2 Polyphenylenes | 5854 | ||
8.10.3.3 Polycarbazoles | 5857 | ||
8.10.3.4 Polythiophenes | 5858 | ||
8.10.4 Hybrid Solar Cells | 5861 | ||
8.10.5 Conclusions and Outlook | 5861 | ||
References | 5862 | ||
Optical Fibers | 5865 | ||
8.11.1 Introduction | 5865 | ||
8.11.2 Fundamentals of Fiber Optics | 5865 | ||
8.11.2.1 History of Fiber-Optic Communications | 5866 | ||
8.11.2.2 Basic Concepts of Optical Fibers | 5866 | ||
8.11.2.3 Classification | 5867 | ||
8.11.3 Plastic Optical Fibers | 5868 | ||
8.11.3.1 The Advent of Plastic Optical Fibers | 5869 | ||
8.11.3.2 Development of Graded-Index Plastic Optical Fibers | 5869 | ||
8.11.4 Transmission Properties | 5874 | ||
8.11.4.1 Bandwidth | 5874 | ||
8.11.4.2 Attenuation | 5875 | ||
8.11.5 Materials | 5879 | ||
8.11.5.1 Poly(methyl methacrylate) | 5879 | ||
8.11.5.2 Poly(styrene) | 5880 | ||
8.11.5.3 Poly(carbonate) | 5880 | ||
8.11.5.4 Perfluorinated Polymer | 5881 | ||
8.11.6 Conclusions | 5884 | ||
References | 5884 | ||
Adhesives and Sealants | 5887 | ||
8.12.1 Adhesives | 5888 | ||
8.12.2 Adhesive Testing | 5888 | ||
8.12.3 Pressure-Sensitive Adhesives | 5888 | ||
8.12.3.1 Tackifiers for PSAs | 5889 | ||
8.12.3.2 PSAs based upon natural rubber | 5890 | ||
8.12.3.3 PSAs based upon acrylic elastomers | 5890 | ||
8.12.3.4 PSAs based upon block copolymers | 5891 | ||
8.12.3.5 Silicones as PSAs | 5891 | ||
8.12.4 Rubber-Based Adhesives | 5891 | ||
8.12.4.1 Natural Rubber Solvent-Based Adhesives | 5891 | ||
8.12.4.2 Neoprene (Chloroprene) Solvent-Based Adhesives | 5891 | ||
8.12.4.3 Styrene–Butadiene Rubber-Based Adhesives | 5892 | ||
8.12.5 Hot Melt Adhesives | 5892 | ||
8.12.6 Natural Product-Based Adhesives | 5893 | ||
8.12.7 Structural Adhesives | 5893 | ||
8.12.7.1 Epoxy-Based Structural Adhesives | 5893 | ||
8.12.7.2 Phenolic Structural Adhesives | 5895 | ||
8.12.7.3 Polyurethanes as Structural Adhesives | 5895 | ||
8.12.7.4 Acrylics as Structural Adhesives | 5896 | ||
8.12.7.5 Cyanoacrylate Adhesives | 5897 | ||
8.12.7.6 Urea–Formaldehyde Adhesives | 5898 | ||
8.12.7.7 Higher Performance Structural Adhesives | 5898 | ||
8.12.8 Sealants | 5900 | ||
8.12.8.1 Performance Tests of Sealants | 5900 | ||
8.12.9 Future of Adhesives and Sealants | 5903 | ||
8.12.9.1 Better | 5903 | ||
8.12.9.2 Faster | 5903 | ||
8.12.9.3 Cheaper | 5903 | ||
8.12.9.4 Other Factors | 5903 | ||
8.12.9.5 Smaller | 5904 | ||
8.12.9.6 Smarter | 5904 | ||
References | 5904 | ||
Polymer Membranes | 5907 | ||
8.13.1 Introduction and Historical Background | 5907 | ||
8.13.2 Membrane Variants and Their Utility | 5908 | ||
8.13.3 Membrane Formation | 5909 | ||
8.13.3.1 Fundamentals of Membrane Formation | 5909 | ||
8.13.3.2 Membrane Formation Processes | 5911 | ||
8.13.4 Membranes in Gas and Liquid Separations | 5914 | ||
8.13.4.1 Fundamentals of Gas Permeability andPermselectivity | 5914 | ||
8.13.4.2 Upper Bound Concept | 5916 | ||
8.13.4.3 Group Contribution Methods | 5918 | ||
8.13.4.4 Gas and Liquid Membrane Separation Applications | 5918 | ||
8.13.5 Barrier Polymers | 5918 | ||
8.13.6 Membranes in Water Purification Processes | 5919 | ||
8.13.6.1 Reverse Osmosis and Desalination | 5919 | ||
8.13.6.2 Nano-, Ultra-, and Microfiltration Membranes for Water Purification | 5921 | ||
8.13.6.3 Electrodialysis | 5922 | ||
8.13.6.4 Dialysis and Hemodialysis | 5923 | ||
8.13.7 Membranes in Emerging Technologies | 5923 | ||
8.13.7.1 Fuel Cell Membranes | 5923 | ||
8.13.7.2 Membranes in Lithium Batteries | 5925 | ||
8.13.7.3 Electrically Conductive Polymer Membranes | 5925 | ||
8.13.7.4 Thin Films (Membranes) in Optoelectronic Applications | 5926 | ||
References | 5927 | ||
Polymer Additives | 5931 | ||
8.14.1 Introduction | 5931 | ||
8.14.1.1 Principles of Polymer Degradation | 5931 | ||
8.14.2 Thermo-Oxidative Degradation | 5932 | ||
8.14.3 Requirements for Polymer Stabilizers | 5934 | ||
8.14.4 Stabilization against Thermo-Oxidative Degradation | 5935 | ||
8.14.5 Stabilization of Polymers against Degradation under the Impact of Light | 5942 | ||
8.14.5.1 Introduction | 5942 | ||
8.14.5.2 Quenching of Photo-Oxidation with HA(L)S | 5944 | ||
8.14.5.3 HA(L)S-Based Free Radical Scavengers | 5944 | ||
8.14.5.4 UV Absorbers | 5947 | ||
8.14.5.5 Quenchers | 5948 | ||
8.14.5.6 Practical Considerations for the Use of HA(L)S | 5948 | ||
8.14.6 Multifunctional Additive for Engineering Polymers | 5949 | ||
8.14.7 Metal Ion Deactivators | 5949 | ||
8.14.8 Acid Scavengers | 5950 | ||
8.14.9 Analysis of Stabilizers in the Polymer Matrix | 5951 | ||
8.14.9.1 Introduction | 5951 | ||
8.14.9.2 Testing the Polymer Melt Stability during Processing | 5952 | ||
8.14.9.3 Examination of Long-Term Heat Aging | 5952 | ||
8.14.9.4 Other Methods Analyzing Long-Term Aging of Polymers | 5953 | ||
8.14.9.5 Testing of Polymer Stability against Light-Induced Degradation – Natural versus Artificial Weathering | 5954 | ||
8.14.9.6 Analytical Methods for Structural Characterization and Quantification of Polymer Additives | 5955 | ||
References | 5955 | ||
Stimuli-Responsive Polymer Systems | 5959 | ||
8.15.1 What Are ‘Responsive Polymers’? | 5959 | ||
8.15.2 Stimuli-Responsive Polymers | 5960 | ||
8.15.2.1 Temperature-Responsive Polymers | 5961 | ||
8.15.2.2 pH-Responsive Polymers | 5964 | ||
8.15.2.3 Other Stimuli-Responsive Polymers | 5966 | ||
8.15.3 Special Structures of Responsive Polymers | 5967 | ||
8.15.3.1 Controlled Synthesis and Block Copolymers | 5967 | ||
8.15.3.2 Cross-Linked Responsive Polymers | 5969 | ||
8.15.3.3 Various Geometries, Different Dimensions, andSurface Patterning | 5971 | ||
8.15.3.4 Bioconjugates | 5978 | ||
8.15.4 Properties of Responsive Polymers | 5979 | ||
8.15.4.1 Predictions and First Observation of Volume Phase Transition in Swollen Networks | 5979 | ||
8.15.4.2 Thermodynamic of Phase Separation | 5979 | ||
8.15.4.3 Processes at Volume Phase Transition | 5982 | ||
8.15.4.4 Monitoring of Volume Phase Transition | 5982 | ||
8.15.5 Responsive Polymers and Their Applications | 5985 | ||
8.15.5.1 General Remarks on Application | 5985 | ||
8.15.5.2 Application of Responsive Polymers | 5986 | ||
8.15.5.3 Examples | 5987 | ||
References | 5990 | ||
Graphene and Its Synthesis | 5997 | ||
8.16.1 Introduction and Physical Properties ofGraphene | 5997 | ||
8.16.2 Graphene Synthesis and Characterization | 6000 | ||
8.16.2.1 Micromechanical Exfoliation of Graphene | 6000 | ||
8.16.2.2 Graphene Oxide and Reduced Graphene Oxide | 6000 | ||
8.16.2.3 Liquid-Phase Exfoliation of Graphite | 6007 | ||
8.16.2.4 Graphene Growth by CVD | 6008 | ||
8.16.2.5 Epitaxial Growth of Graphene | 6009 | ||
8.16.3 Graphene Nanoribbons | 6009 | ||
8.16.4 Bottom-Up Organic Synthesis of Graphene Nanostructures | 6010 | ||
8.16.4.1 Solution Synthesis of Nanographene | 6010 | ||
8.16.4.2 Surface-Mediated Synthesis of Graphene Nanoribbons | 6012 | ||
8.16.4.3 Surface-Mediated Synthesis of Porous Graphene | 6015 | ||
8.16.5 Conclusions | 6017 | ||
References | 6017 | ||
Functionalized Carbon Nanotubes and Their Enhanced Polymers | 6021 | ||
8.17.1 Introduction | 6021 | ||
8.17.2 CNT Synthesis Techniques | 6023 | ||
8.17.2.1 Arc Discharge | 6023 | ||
8.17.2.2 Laser Ablation | 6025 | ||
8.17.2.3 Chemical Vapor Deposition | 6028 | ||
8.17.3 Functionalization of CNTs | 6030 | ||
8.17.3.1 Noncovalent Functionalization | 6031 | ||
8.17.3.2 Covalent Functionalization | 6035 | ||
8.17.3.3 Applications | 6039 | ||
8.17.4 CNT–Polymer Nanocomposites | 6045 | ||
8.17.4.1 CNT–Polymer Interactions | 6045 | ||
8.17.4.2 Fabrication of CNT–Polymer Nanocomposites | 6045 | ||
8.17.4.3 Properties of CNT/Polymer Nanocomposites | 6049 | ||
8.17.4.4 Applications | 6055 | ||
References | 6055 | ||
e9780444533494v9 | 6061 | ||
Polymer Science: A Comprehensive Reference | 6062 | ||
Copyright | 6065 | ||
Contents_of_Volume 9 | 6066 | ||
Volume Editors | 6068 | ||
Editor-in-Chief_Bio | 6070 | ||
Editors_Bio | 6072 | ||
Contributors_of_Volume9 | 6080 | ||
Preface | 6082 | ||
Foreword | 6086 | ||
Introduction and Overview | 6088 | ||
9.01.1 Introduction | 6088 | ||
9.01.2 Overview | 6088 | ||
Lifelike but Not Living: Selection of Synthetically Modified Bioinspired Nucleic Acids for Binding and Catalysis | 6090 | ||
9.02.1 Introduction | 6090 | ||
9.02.2 Basic Aspects of DNA and RNA Polymers | 6090 | ||
9.02.3 Three Discoveries That Transformed Nucleic Acid Chemistry | 6093 | ||
9.02.3.1 Catalytic RNA | 6093 | ||
9.02.3.2 PCR and Other Polymerases | 6094 | ||
9.02.3.3 Degenerate Oligonucleotide Synthesis and In Vitro Selection (SELEX) | 6094 | ||
9.02.4 Upper Limits of a Degenerate DNA Synthesis–\rA Cap on Outcome | 6095 | ||
9.02.5 Catalytic RNA Cleavage by Ribozymes and\rDNAzymes | 6097 | ||
9.02.6 DNAzymes – Deoxyribozymes | 6097 | ||
9.02.7 M2+-Independent RNA-Cleaving DNAs | 6099 | ||
9.02.8 RNase A-Catalyzed RNA Cleavage – M2+-Independent Catalytic Perfection | 6099 | ||
9.02.9 Early Attempts at Expanding the Catalytic Repertoire of Nucleic Acids | 6100 | ||
9.02.10 Simultaneous Incorporation of Imidazoles and Amines – Selection of M2+-Independent RNase AMimics | 6102 | ||
9.02.11 A Comparison of Two Selected M2+-Independent DNAzyme RNase A Mimics | 6104 | ||
9.02.12 M2+-Independent RNA-Cleaving DNAzymes with Three Modified Nucleosides | 6106 | ||
9.02.13 Nucleic Acid Diels–Alderases – Modified and\rUnmodified | 6108 | ||
9.02.14 Nanoparticle Templation by Modified RNAs | 6108 | ||
9.02.15 Other Reports of Modified rNTPs and dNTPs for Potential Selection | 6109 | ||
9.02.16 Non-Nucleobase Modifications – Altered Phosphodiester and Sugar Portions | 6111 | ||
9.02.17 Nucleobase-Modified Aptamers | 6112 | ||
9.02.18 Evolving Polymerases | 6113 | ||
9.02.19 Conclusions | 6116 | ||
Acknowledgments | 6117 | ||
References | 6117 | ||
Collagen | 6122 | ||
9.03.1 Introduction | 6122 | ||
9.03.2 The Collagen Fibril – A Building Block ofExtracellular Tissues | 6123 | ||
9.03.2.1 Synthesis of Procollagen and Fibril Self-Assembly | 6123 | ||
9.03.2.2 Structure of the Collagen Fibril | 6123 | ||
9.03.2.3 Mineralized Collagen Fibrils | 6125 | ||
9.03.3 Examples of Collagen-Based Natural Tissues | 6126 | ||
9.03.3.1 Tendons – Transmitting and Storing Mechanical Energy | 6126 | ||
9.03.3.2 Bone: Hierarchical Structure and Adaptation | 6128 | ||
9.03.3.3 A Tissue Made to Last a Life Time: Dentin | 6130 | ||
9.03.3.4 How to Make Collagen Transparent: The Cornea | 6132 | ||
9.03.3.5 Collagen Organization in Cylindrical Structures | 6132 | ||
9.03.3.6 Skin and Cartilage | 6134 | ||
9.03.4 Collagen as Biomaterial | 6135 | ||
9.03.4.1 Collagenous Materials for Biomaterial Use | 6135 | ||
9.03.4.2 Processing of Collagen | 6137 | ||
9.03.4.3 Applications of Collagen as Biomaterial | 6138 | ||
References | 6139 | ||
Silks | 6144 | ||
9.04.1 Introduction | 6144 | ||
9.04.2 Types of Silk Fibers | 6144 | ||
9.04.2.1 Silkworm Silk | 6144 | ||
9.04.2.2 Spiders | 6145 | ||
9.04.2.3 Other Insect Silks | 6145 | ||
9.04.3 Material Properties | 6146 | ||
9.04.3.1 Mechanical Properties | 6146 | ||
9.04.3.2 Thermal Properties | 6146 | ||
9.04.3.3 Ultraviolet Exposure | 6146 | ||
9.04.3.4 Aging | 6146 | ||
9.04.3.5 In Vivo Compatibility | 6146 | ||
9.04.4 Composition | 6146 | ||
9.04.5 Structure | 6147 | ||
9.04.6 Silk Processing | 6148 | ||
9.04.6.1 In Vivo Spinning | 6148 | ||
9.04.6.2 Artificial Processing | 6150 | ||
9.04.7 The Future | 6153 | ||
References | 6153 | ||
Elastins | 6158 | ||
9.05.1 Introduction | 6158 | ||
9.05.2 Native Elastin Derivatives: Sequence, Structure, and Function | 6159 | ||
9.05.2.1 Sequence Analysis of Native Elastin | 6159 | ||
9.05.2.2 Structural Analysis of Native Elastin | 6162 | ||
9.05.2.3 Coacervation of Elastin | 6165 | ||
9.05.2.4 Mechanism of Elasticity | 6167 | ||
9.05.2.5 Functional Significance of Elastin Polypeptide Conformations | 6168 | ||
9.05.3 Elastin-Mimetic Polypeptides: Synthesis andApplications | 6172 | ||
9.05.3.1 Introduction | 6172 | ||
9.05.3.2 Rational Design Approaches to Functional Elastin Polymers | 6173 | ||
9.05.3.3 Synthesis of Elastin-Mimetic Protein Polymers | 6174 | ||
9.05.3.3.1 Chemical synthesis of elastin-mimetic polypeptides | 6174 | ||
9.05.3.3.2 Genetically directed synthesis of elastin-mimetic polypeptides | 6176 | ||
9.05.3.3.3 Functionally expanded elastin-mimetic polypeptides | 6179 | ||
9.05.3.4 Elastin-Mimetic Polymer Architectures | 6180 | ||
9.05.3.4.1 Elastin-mimetic homopolymers | 6180 | ||
9.05.3.4.2 Elastin-mimetic block copolymers | 6181 | ||
9.05.3.4.3 Translational fusions to nonelastin sequences | 6183 | ||
9.05.3.5 Elastin-Mimetic Protein Polymers: Applications | 6184 | ||
9.05.3.5.1 Tissue engineering | 6184 | ||
9.05.3.5.2 Controlled delivery and release | 6185 | ||
9.05.3.5.3 Protein purification | 6185 | ||
9.05.3.5.4 Functionally responsive surfaces | 6186 | ||
9.05.3.5.5 Environmental remediation | 6186 | ||
9.05.4 Comparison between Native and Synthetic Elastins | 6186 | ||
References | 6187 | ||
Resilin in the Engineering of Elastomeric Biomaterials | 6191 | ||
9.06.1 Introduction | 6191 | ||
9.06.2 Native Resilin | 6191 | ||
9.06.2.1 Amino Acid Composition | 6191 | ||
9.06.2.2 Mechanical Properties | 6193 | ||
9.06.2.3 Conformational Origins of Elasticity | 6194 | ||
9.06.3 Recombinant Resilin-Like Polypeptides | 6194 | ||
9.06.3.1 Resilin Gene Identification | 6194 | ||
9.06.3.2 Expression and Purification of RLPs | 6195 | ||
9.06.3.3 Secondary Structure of RLPs | 6196 | ||
9.06.3.4 Mechanical Properties of Recombinant RLPs | 6197 | ||
9.06.3.5 RLP-Based Hydrophilic Elastomeric Biomaterials | 6197 | ||
9.06.4 Conclusions and Perspectives | 6200 | ||
Acknowledgments | 6200 | ||
References | 6200 | ||
Artificial Proteins | 6203 | ||
9.07.1 Introduction | 6203 | ||
9.07.2 Protein Biosynthesis and Genetic Engineering ofProtein Polymers | 6204 | ||
9.07.2.1 Protein Biosynthesis | 6204 | ||
9.07.2.2 Protein Engineering | 6204 | ||
9.07.3 Bioinspired Artificial Protein Polymers | 6205 | ||
9.07.3.1 Elastin-Like Polypeptides | 6205 | ||
9.07.3.2 Silk Analogs | 6207 | ||
9.07.3.3 Silk–Elastin Copolymers | 6207 | ||
9.07.3.4 Collagen-Inspired Protein Polymers | 6208 | ||
9.07.4 Biosynthesis of De Novo-Designed Protein Polymers | 6209 | ||
9.07.4.1 Periodic Polypeptides | 6209 | ||
9.07.4.2 Helical Polypeptides | 6212 | ||
9.07.4.3 Recent De Novo Protein Polymer Designs | 6217 | ||
9.07.5 Expanding the Scope of Protein Chemistry: Noncanonical Amino Acids | 6217 | ||
References | 6219 | ||
Polysaccharides | 6224 | ||
9.08.1 Introduction | 6224 | ||
9.08.2 The Chemistry of Carbohydrates | 6224 | ||
9.08.2.1 Accessing Carbohydrates and Their Polymers through Isolation and Synthesis | 6227 | ||
9.08.3 Glycopolymers | 6232 | ||
9.08.3.1 Glucans | 6232 | ||
9.08.3.2 N-Acetylglucosamine Polymers – Chitin/Chitosan | 6236 | ||
9.08.3.3 Glycosaminoglycans | 6237 | ||
9.08.3.4 Other Polysaccharides | 6238 | ||
9.08.4 Conclusions | 6239 | ||
References | 6240 | ||
Poly(hydroxyalkanoate)s | 6244 | ||
9.09.1 General Introduction | 6244 | ||
9.09.2 Biosynthesis of PHAs | 6244 | ||
9.09.2.1 Metabolic Pathways and Monomer-Supplying Enzymes for PHA Synthesis | 6247 | ||
9.09.2.2 Strategies for the Metabolic Engineering of Efficient PHA Production | 6248 | ||
9.09.2.3 Pathway Engineering for Recombinant Production of Conventional Polymers and Novel Polymers | 6251 | ||
9.09.2.4 Prospects | 6252 | ||
9.09.3 Structure and Properties of PHAs | 6253 | ||
9.09.3.1 Structure and Properties of P(3HB) and Its Copolymers | 6253 | ||
9.09.3.2 Improvement of Mechanical Properties of PHA Films by Cold-Drawing | 6254 | ||
9.09.3.3 PHA Fibers | 6254 | ||
9.09.3.4 PHA Nanofibers | 6257 | ||
9.09.3.5 Prospects | 6258 | ||
9.09.4 Biodegradability of PHAs | 6258 | ||
9.09.4.1 Environmental Degradation of PHAs | 6259 | ||
9.09.4.2 Structure and Function of PHA-Degrading Enzymes | 6259 | ||
9.09.4.3 Enzymatic Degradation of P(3HB) | 6260 | ||
9.09.4.4 Effect of Chemical Structures on Enzymatic Degradability | 6262 | ||
9.09.4.5 Recent Progress in the Investigation of Enzymatic Degradation of PHAs | 6263 | ||
9.09.4.6 Prospects | 6263 | ||
9.09.5 Industrial Production of P(3HB) andItsCopolymers | 6264 | ||
References | 6265 | ||
Polymers of the Cytoskeleton | 6270 | ||
9.10.1 Introduction | 6270 | ||
9.10.2 Cytoskeletal Filament Subunits | 6271 | ||
9.10.2.1 Subunit Structure: Actin, Tubulin, and Intermediate Filament Proteins | 6271 | ||
9.10.2.2 Biochemistry of Cytoskeletal Proteins | 6271 | ||
9.10.3 Cytoskeletal Assembly | 6272 | ||
9.10.3.1 Assembly Mechanisms: Nucleation/Elongation versus Polycondensation | 6272 | ||
9.10.3.2 Stage 1: Filament Nucleation | 6273 | ||
9.10.3.3 Stage 2: Filament Growth | 6274 | ||
9.10.3.4 Stage 3: Filament Maturation, Steady State, and Disassembly | 6275 | ||
9.10.4 Cytoskeletal-Binding Proteins | 6276 | ||
9.10.4.1 Monomer-Binding Proteins: Nucleation, Monomer Sequestration, and Nucleotide Exchange | 6276 | ||
9.10.4.2 Filament Severing | 6277 | ||
9.10.4.3 Polymerases | 6277 | ||
9.10.4.4 Cross-Linkers | 6277 | ||
9.10.5 Polyelectrolyte Properties: Counterion Cross-Linking | 6277 | ||
9.10.6 Mechanical Properties of the Cytoskeleton | 6278 | ||
9.10.6.2 Solutions of Semiflexible Polymers | 6282 | ||
9.10.6.3 Network Elasticity | 6283 | ||
9.10.7 Active, Nonequilibrium Gels | 6284 | ||
9.10.7.1 In Vitro Model Systems | 6284 | ||
9.10.8 Conclusions | 6285 | ||
References | 6285 | ||
Mechanical Interactions between Cells and Tissues | 6288 | ||
9.11.1 Introduction | 6288 | ||
9.11.2 Elasticity of Physiological Microenvironments | 6289 | ||
9.11.3 Cell-Induced Matrix Deformations | 6290 | ||
9.11.4 How Deeply Do Cells ‘Feel’? – Experiments | 6291 | ||
9.11.5 How Deeply Do Cells ‘Feel’? – Computations | 6292 | ||
9.11.6 Matrix-Mediated Cell–Cell Interactions | 6292 | ||
9.11.7 Cell Morphology and Cytoskeletal Forces Are\rDirected by Extracellular Mechanical Cues | 6293 | ||
9.11.8 Molecular Mechanics in Mechanism: From Forced Unfolding to ‘Heat Shock’ Proteins | 6293 | ||
9.11.9 Putting It All Together: Microenvironment Elasticity, Cytoskeletal Stress, and Gene Organization | 6294 | ||
9.11.10 Conclusion | 6294 | ||
Acknowledgments | 6295 | ||
References | 6295 | ||
Biological Adhesion | 6298 | ||
9.12.1 Introduction | 6298 | ||
9.12.2 Bioinspired Fibrillar Adhesives | 6298 | ||
9.12.2.1 Background | 6302 | ||
9.12.3.1 Fibrin Glue and Transglutaminase-Inspired Adhesives | 6302 | ||
9.12.3.2 Mussel Adhesives and Their Mimics | 6303 | ||
9.12.3.3 Sandcastle Worm Cements and Their Mimics | 6311 | ||
9.12.3.4 Brown Algae Adhesives and Their Mimics | 6312 | ||
9.12.4 Other Biological Adhesives as Future Targets of Biomimetic Systems | 6312 | ||
9.12.4.1 Barnacle Cements (Genus Balanus) | 6312 | ||
9.12.4.2 Oyster Adhesives | 6313 | ||
9.12.4.3 Frog Glues (Notaden bennetti) | 6313 | ||
9.12.5 Conclusion | 6313 | ||
Acknowledgments | 6314 | ||
References | 6314 | ||
Viral Packaging of Nucleic Acids | 6318 | ||
9.13.1 Introduction | 6318 | ||
9.13.2 Physical Models of dsDNA, ssDNA, and RNA | 6319 | ||
9.13.3 Internal Organization of a Viral Genome | 6320 | ||
9.13.4 Thermodynamic Forces in the Packaging in\rBacteriophages | 6322 | ||
9.13.4.1 Chain Deformation | 6322 | ||
9.13.4.2 Confinement Entropy | 6324 | ||
9.13.4.3 Electrostatic, Hydration, and Steric Interactions | 6325 | ||
9.13.4.4 Base-Pairing Interactions | 6326 | ||
9.13.5 Electrostatic Dominance in the Assembly of\rssRNA Viruses | 6326 | ||
9.13.6 Ejection Forces and Dynamics | 6328 | ||
References | 6329 | ||
Making New Materials from Viral Capsids | 6334 | ||
9.14.1 Introduction | 6334 | ||
9.14.2 Capsid-Based Templates for the Generation of\rInorganic Materials | 6336 | ||
9.14.2.1 Cowpea Chlorotic Mottle Virus | 6336 | ||
9.14.2.2 Chilo Iridescent Virus | 6337 | ||
9.14.2.3 Cowpea Mosaic Virus | 6337 | ||
9.14.2.4 Brome Mosaic Virus | 6338 | ||
9.14.2.5 Red Clover Necrotic Mosaic Virus | 6338 | ||
9.14.2.6 Bacteriophage M13 | 6338 | ||
9.14.2.7 Tobacco Mosaic Virus | 6339 | ||
9.14.2.8 Summary | 6339 | ||
9.14.3 Chemical Methods for the Covalent Modification of Viral Capsids | 6340 | ||
9.14.3.1 Cowpea Mosaic Virus | 6340 | ||
9.14.3.2 Cowpea Chlorotic Mottle Virus | 6342 | ||
9.14.3.3 Bacteriophage MS2 | 6342 | ||
9.14.3.4 Summary | 6343 | ||
9.14.4 Capsid-Based Materials for Drug Delivery, Diagnostics, and Tissue Engineering | 6343 | ||
9.14.4.1 Virus Capsids for Use in Magnetic Resonance Imaging | 6343 | ||
9.14.4.2 Chemically Modified Viral Capsids for Positron Emission Tomography Imaging | 6345 | ||
9.14.4.3 Chemically Modified Viral Capsids for\rPhotodynamic Therapy | 6345 | ||
9.14.4.4 Chemically Modified Viral Capsids for Anticancer Drug Delivery | 6346 | ||
9.14.4.5 Canine Parvovirus for Targeting Tumors Via the Transferrin Receptor | 6346 | ||
9.14.4.6 Engineered Filamentous Phage for Tissue Engineering | 6346 | ||
9.14.4.7 Summary | 6347 | ||
9.14.5 Capsid-Based Materials for Optical and\rCatalytic Applications | 6347 | ||
9.14.5.1 Self-Assembling Light-Harvesting Systems Based on the Tobacco Mosaic Virus | 6347 | ||
9.14.5.2 Photocatalytic Systems Based on Bacteriophage MS2 | 6348 | ||
9.14.5.3 Photocatalytic and Chemically Catalytic Systems Based on Bacteriophage M13 | 6349 | ||
9.14.5.4 Chemical Catalysis Using the Cowpea Mosaic Virus and Hepatitis B Virus | 6349 | ||
9.14.5.5 Summary | 6349 | ||
9.14.6 Summary and Future Challenges | 6349 | ||
Acknowledgments | 6350 | ||
References | 6350 | ||
Peptoid Oligomers: Peptidomimetics for Diverse Biomedical Applications | 6354 | ||
9.15.1 Background | 6354 | ||
9.15.1.1 Motivation: Peptoids as Compounds that Bridge the Value of Industrial Polymers and the Specificity of Biological Polymers | 6354 | ||
9.15.1.2 Other Peptidomimetics | 6354 | ||
9.15.1.3 Peptoids | 6356 | ||
9.15.2 Peptoid-Based Polymers | 6356 | ||
9.15.2.1 Peptoid Synthetic Versatility | 6356 | ||
9.15.2.2 Peptoid Polymers in the Solid State | 6358 | ||
9.15.2.3 Peptoid Polymers in Solution | 6358 | ||
9.15.3 Applications of Peptoid Polymers | 6361 | ||
9.15.3.1 Transfection Agents | 6361 | ||
9.15.3.2 Peptoid-Based ‘Drag-Tags’ for Bioanalytical DNA Separations | 6362 | ||
9.15.4 Antimicrobial Peptoids | 6363 | ||
9.15.4.1 Original Motivation: Mimicking AMPs | 6363 | ||
9.15.4.2 Antimicrobial Peptoids | 6363 | ||
9.15.4.3 Toward Therapeutic Applications of Antibacterial Peptoids | 6366 | ||
9.15.4.4 Future Directions: From Antimicrobial to Anticancer Peptoids | 6368 | ||
9.15.5 Concluding Remarks | 6371 | ||
References | 6371 | ||
Polymer-Membrane Interactions | 6376 | ||
9.16.1 Polymer–Membrane Interactions | 6376 | ||
9.16.2 Neutral Polymers | 6377 | ||
9.16.2.1 Pluronics | 6377 | ||
9.16.2.2 N-Isopropylacrylamide Polymers | 6380 | ||
9.16.3 Zwitterionic Polymers | 6381 | ||
9.16.4 Anionic Polymers | 6382 | ||
9.16.4.1 Poly(ethyl acrylic acid) | 6382 | ||
9.16.4.2 Poly(ethyl acrylic acid) Copolymers | 6382 | ||
9.16.4.3 Poly(alkyl acrylic acids) and Related Copolymers | 6383 | ||
9.16.4.4 Poly(methacrylic acid)s and Related Copolymers | 6385 | ||
9.16.4.5 Poly(acrylic acids) and Related Copolymers | 6386 | ||
9.16.4.6 Poly(styrene-alt-maleic anhydride) | 6386 | ||
9.16.4.7 Poly(l-lysine-alt-isophthalamide) Polymers | 6387 | ||
9.16.4.8 Delivery Using Poly(carboxylic acids) | 6388 | ||
9.16.5 Cationic Polymers | 6388 | ||
9.16.5.1 Cations in the Main Chain | 6388 | ||
9.16.5.2 Styrene-Based Polycations | 6389 | ||
9.16.5.3 Pyridinium-Based Polycations | 6390 | ||
9.16.5.4 Acrylic Polymers | 6391 | ||
9.16.5.5 Siloxane Polymers | 6392 | ||
9.16.5.6 Peptide-Based Polymers | 6393 | ||
9.16.5.7 Imide-Based ROMP Polymers | 6395 | ||
9.16.5.8 Ester- and Amide-Based ROMP Polymers | 6396 | ||
9.16.5.9 Conjugated Polymers | 6397 | ||
9.16.5.10 Other Polymers | 6398 | ||
9.16.5.11 Molecular Dynamics Simulations | 6399 | ||
9.16.6 Conclusion | 6400 | ||
References | 6400 | ||
Protein-Polymer Conjugates | 6404 | ||
9.17.1 Introduction | 6404 | ||
9.17.1.1 Controlled Radical Polymerization | 6404 | ||
9.17.1.2 Chemistries for Conjugation | 6404 | ||
9.17.1.3 Approaches to Conjugate Formation | 6405 | ||
9.17.2 Grafting To | 6407 | ||
9.17.2.1 Functionalized ATRP Initiators | 6408 | ||
9.17.2.2 Postpolymerization Modification of ATRP Polymers | 6408 | ||
9.17.2.3 Functionalized RAFT CTAs | 6411 | ||
9.17.2.4 Postpolymerization Modification of RAFT Polymers | 6413 | ||
9.17.3 Grafting From | 6415 | ||
9.17.3.1 Grafting From via ATRP and RAFT Polymerization | 6415 | ||
9.17.3.2 Grafting From via RAFT Polymerization | 6420 | ||
9.17.4 Conclusions and Outlook | 6422 | ||
Acknowledgements | 6422 | ||
References | 6422 | ||
Biomimetic Polymers (for Biomedical Applications) | 6426 | ||
9.18.1 Introduction | 6426 | ||
9.18.2 Interaction of Cells with their Environment: Potential of Biomaterial Design | 6427 | ||
9.18.2.1 Cell Adhesion | 6428 | ||
9.18.2.2 Morphogenetic and Mitogenic Factor Signaling | 6429 | ||
9.18.2.3 Mechanical Stimuli | 6430 | ||
9.18.2.4 Endocytosis | 6430 | ||
9.18.3 Biomimetic Strategies Applied for Polymeric Materials | 6431 | ||
9.18.3.1 Chemical Interactions | 6431 | ||
9.18.3.2 Functional Interactions | 6433 | ||
9.18.3.3 Switchable Mechanical Interactions | 6433 | ||
9.18.3.4 Textural Interactions | 6433 | ||
9.18.4 Polymers Used for Biomedical Applications: Biomimetic Modification Techniques | 6435 | ||
9.18.4.1 Natural Polymers | 6435 | ||
9.18.4.2 Synthetic Polymers | 6437 | ||
9.18.5 Examples of Biomedical Applications forBiomimetic Polymers | 6440 | ||
9.18.5.1 Tissue Engineering | 6440 | ||
9.18.5.2 Biomimetic Polymers in Gene Delivery | 6442 | ||
9.18.6 Characterization of Biomimetic Polymer Properties and of the Resulting Interactions with the Biological Environment | 6443 | ||
9.18.6.1 Determination of Surface Structure and Chemistry | 6443 | ||
9.18.6.2 Mechanical Testing | 6444 | ||
9.18.6.3 Fluorescence Imaging of Live Cells | 6444 | ||
9.18.7 Conclusion and Outlook | 6445 | ||
References | 6445 | ||
Biocompatibility | 6450 | ||
9.19.1 Introduction | 6450 | ||
9.19.2 Biocompatibility | 6450 | ||
9.19.3 Materials for Medical Devices | 6451 | ||
9.19.4 In Vitro Tests for Biocompatibility | 6451 | ||
9.19.5 In Vivo Tests for Biocompatibility | 6452 | ||
9.19.5.1 Sensitization, Irritation, and Intracutaneous (Intradermal) Reactivity | 6453 | ||
9.19.5.2 Systemic Toxicity (Acute Toxicity) and Subacute andSubchronic Toxicity | 6454 | ||
9.19.5.3 Genotoxicity | 6455 | ||
9.19.5.4 Implantation | 6455 | ||
9.19.5.5 Chronic Toxicity | 6455 | ||
9.19.5.6 Carcinogenicity | 6455 | ||
9.19.5.7 Reproductive and Developmental Toxicity | 6455 | ||
9.19.5.8 Biodegradation | 6455 | ||
9.19.6 Inflammation, Wound Healing, and the Foreign Body Response | 6456 | ||
9.19.6.1 Overview | 6456 | ||
9.19.6.2 Acute Inflammation | 6458 | ||
9.19.6.3 Chronic Inflammation | 6458 | ||
9.19.6.4 Granulation Tissue | 6459 | ||
9.19.6.5 Foreign Body Reaction | 6460 | ||
9.19.6.6 Fibrosis/Fibrous Encapsulation | 6461 | ||
9.19.7 Hemocompatibility | 6462 | ||
9.19.8 Immune Responses | 6463 | ||
9.19.9 Summary and Conclusion | 6467 | ||
References | 6468 | ||
Hydrogels | 6472 | ||
9.20.1 Introduction | 6472 | ||
9.20.1.1 Overview | 6472 | ||
9.20.1.2 Hydrogel Structure | 6473 | ||
9.20.2 Gel Swelling and Solute Transport | 6474 | ||
9.20.2.1 Equilibrium Swelling Theory | 6474 | ||
9.20.2.2 Rubber Elasticity Theory | 6475 | ||
9.20.2.3 Calculation of the Mesh Size | 6475 | ||
9.20.2.4 Diffusion in Hydrogels | 6475 | ||
9.20.3 ‘Intelligent’ Hydrogels | 6476 | ||
9.20.3.1 Temperature-Sensitive Hydrogels | 6476 | ||
9.20.3.2 pH-Sensitive Hydrogels | 6477 | ||
9.20.3.3 Glucose-Sensitive Hydrogels | 6478 | ||
9.20.3.4 Protein Sensitivity | 6479 | ||
9.20.3.5 DNA-Responsive Hydrogels | 6480 | ||
9.20.4 Conclusions | 6480 | ||
References | 6480 | ||
Polymeric Implants | 6484 | ||
9.21.1 Introduction | 6484 | ||
9.21.2 Properties of Biomedical Polymers | 6484 | ||
9.21.2.1 Biocompatibility Is a Fundamental Characteristic ofa Biomaterial | 6484 | ||
9.21.2.2 Additional Characteristics of a Polymeric Biomaterial | 6486 | ||
9.21.3 Key Polymers Used in Today’s Medical Devices | 6488 | ||
9.21.3.1 Silicones and Silicone Elastomers | 6488 | ||
9.21.3.2 Polyurethanes | 6489 | ||
9.21.3.3 Polyethylene | 6490 | ||
9.21.3.4 Poly(vinyl chloride) | 6490 | ||
9.21.3.5 Fluoropolymers (PTFE and Other Polymers in the Teflon® Family) | 6491 | ||
9.21.3.6 Poly(ethylene terephthalate) | 6491 | ||
9.21.3.7 Methacrylic and Acrylic Polymers | 6491 | ||
9.21.3.8 Poly(2-hydroxyethyl methacrylate) | 6492 | ||
9.21.3.9 Poly(N-isopropyl acrylamide) | 6492 | ||
9.21.3.10 Poly(ethylene glycol) | 6493 | ||
9.21.3.11 Biodegradable Polyesters (PLA, PGA, PCL) | 6493 | ||
9.21.3.12 Styrene-Isobutylene Block Copolymers | 6494 | ||
9.21.3.13 Natural Polymers | 6494 | ||
9.21.3.14 Porous Materials and Tissue Engineering Scaffolds | 6495 | ||
9.21.4 Perspectives and Opportunities | 6495 | ||
Acknowledgments | 6496 | ||
References | 6497 | ||
Photopolymerizable Systems | 6500 | ||
9.22.1 Introduction | 6500 | ||
9.22.2 Photopolymerization Reactions | 6501 | ||
9.22.2.1 Photoinitiators and Mechanisms of Initiation | 6502 | ||
9.22.2.2 Photopolymerizable Systems | 6505 | ||
9.22.2.3 Characterization of Photopolymerization Reactions | 6507 | ||
9.22.2.4 Parameters Influencing Photopolymerization Behavior | 6509 | ||
9.22.3 Applications | 6512 | ||
9.22.3.1 General Applications | 6512 | ||
9.22.3.2 Dental Applications | 6512 | ||
9.22.3.3 Tissue Engineering | 6514 | ||
9.22.3.4 Drug Delivery | 6519 | ||
9.22.4 Conclusion | 6521 | ||
References | 6521 | ||
Patterning of Polymeric Materials for Biological Applications | 6526 | ||
9.23.1 Introduction | 6526 | ||
9.23.2 Top-Down Polymer Patterning Techniques | 6527 | ||
9.23.2.1 Mask-Based Patterning Techniques | 6527 | ||
9.23.2.2 Printing and Writing Techniques | 6527 | ||
9.23.2.3 Molding Techniques | 6528 | ||
9.23.2.4 Contact Techniques | 6528 | ||
9.23.3 Bottom-Up Patterning Techniques | 6529 | ||
9.23.3.1 Macromolecular Assembly | 6529 | ||
9.23.3.2 Polymeric Nano/Microparticle Assembly | 6531 | ||
9.23.3.3 Layer-by-Layer Assembly | 6532 | ||
9.23.4 Integration of ‘Top-Down’ and ‘Bottom-Up’ Techniques | 6532 | ||
9.23.4.1 Chemically Patterned Surface as Template for Direct Assembly of Block Copolymers | 6533 | ||
9.23.4.2 Topologically Patterned Surfaces as Template for Direct Assembly of Block Copolymers | 6533 | ||
9.23.5 Biological Applications of Patterned Polymers | 6534 | ||
9.23.5.1 Patterning of Nucleic Acids and DNA | 6534 | ||
9.23.5.2 Protein Patterning | 6535 | ||
9.23.5.3 Micro- and Nanopatterning for Cellular Investigation | 6536 | ||
9.23.5.4 Chemical and Topographical Patterning to Enhance the Cellular Microenvironment | 6539 | ||
9.23.5.5 Patterning for Tissue and Organ Generation | 6539 | ||
9.23.6 Summary | 6540 | ||
Acknowledgments | 6541 | ||
References | 6541 | ||
High-Throughput Approaches | 6544 | ||
9.24.1 Introduction | 6544 | ||
9.24.2 Polyarylates | 6545 | ||
9.24.3 Cationic Polymers | 6547 | ||
9.24.3.1 Poly(β-amino esters) | 6547 | ||
9.24.3.2 PEI-Derived Polymers | 6549 | ||
9.24.3.3 Lipidoids | 6550 | ||
9.24.4 Organic Coatings | 6553 | ||
9.24.5 Polyolefin Catalyst Discovery | 6556 | ||
9.24.6 Polymers Generated through Radical Polymerization | 6558 | ||
9.24.6.1 Atom-Transfer Radical Polymerization | 6558 | ||
9.24.6.2 Reversible Addition-Fragmentation Chain Transfer | 6559 | ||
9.24.6.3 Nitroxide-Mediated Polymerization | 6561 | ||
9.24.7 Ring-Opening Polymerizations | 6563 | ||
9.24.8 Microarray Approaches | 6565 | ||
9.24.9 Other High-Throughput Screening Approaches | 6566 | ||
References | 6569 | ||
Programming Cells with Synthetic Polymers | 6572 | ||
9.25.1 Introduction | 6572 | ||
9.25.2 Extracellular Matrix as a Model for Materials to\rProgram Cells | 6573 | ||
9.25.3 Recruiting Host Cells | 6574 | ||
9.25.3.1 Chemotaxis as a Strategy | 6574 | ||
9.25.3.2 Developing Design Criteria to Guide Chemotaxis | 6574 | ||
9.25.3.3 Polymer Systems to Enable Cell Recruitment | 6575 | ||
9.25.3.4 Vascular Cell Recruitment for Angiogenesis on Demand | 6576 | ||
9.25.4 Programming Cells via Adhesive Interactions | 6577 | ||
9.25.5 Regulating Cell Dispersal | 6578 | ||
9.25.6 Bringing All Three Steps Together: Regulating Dendritic Cell Recruitment, Activation, and Dispersion | 6579 | ||
9.25.6.1 Future Directions | 6580 | ||
References | 6580 | ||
Nucleic Acid Delivery via Polymer Vehicles | 6584 | ||
9.26.1 Introduction | 6584 | ||
9.26.2 Polymer Vehicles for Nucleic Acid Delivery | 6585 | ||
9.26.2.1 Basics of Polyplex Formulation and Delivery | 6585 | ||
9.26.2.2 Examples of Polymer and Dendrimer Vehicles | 6586 | ||
9.26.3 Polyplex Characterization | 6586 | ||
9.26.3.1 Physicochemical Characterization Methods ofPolyplexes | 6586 | ||
9.26.3.2 Transfection and Toxicity Characterization of Polyplexes In Vitro | 6589 | ||
9.26.4 Polymer Structure–Nucleic Acid Delivery Relationships from In Vitro Studies | 6590 | ||
9.26.4.1 Polyethylenimine | 6590 | ||
9.26.4.2 Poly-l-lysine | 6593 | ||
9.26.4.3 Dendrimers | 6593 | ||
9.26.4.4 Chitosan | 6594 | ||
9.26.4.5 Poly(glycoamidoamine)s | 6595 | ||
9.26.4.6 Cyclodextrin Polymers | 6599 | ||
9.26.4.7 Poly(β-amino ester)s | 6603 | ||
9.26.5 Introduction to In Vivo Nucleic Acid Delivery with Polymers | 6604 | ||
9.26.5.1 Formulation Barriers | 6604 | ||
9.26.5.2 Example of In Vivo Application | 6607 | ||
9.26.6 Polymer–Nucleic Acid Therapeutics in Human Clinical Trials | 6610 | ||
References | 6611 | ||
Polymeric Imaging Agents | 6616 | ||
9.27.1 Introduction | 6616 | ||
9.27.1.1 Clinical Need for Contrast Agents | 6616 | ||
9.27.1.2 Polymeric Contrast Agents | 6616 | ||
9.27.2 X-Ray Imaging Contrast Agents | 6617 | ||
9.27.2.1 Introduction to X-Ray Imaging and X-Ray Contrast Agents | 6617 | ||
9.27.2.2 Liposomal X-Ray Agents | 6617 | ||
9.27.2.3 Polymeric Particles | 6618 | ||
9.27.2.4 Hydrogels | 6618 | ||
9.27.2.5 Gold Particles | 6618 | ||
9.27.3 Magnetic Resonance Imaging Contrast Agents | 6618 | ||
9.27.3.1 Introduction to Magnetic Resonance Imaging and\rMagnetic Resonance Imaging Contrast Agents | 6618 | ||
9.27.3.2 Liposomes | 6619 | ||
9.27.3.3 Superparamagnetic Iron Oxide Particles and\rUltrasmall Superparamagnetic Iron Oxide Nanoparticles | 6620 | ||
9.27.3.4 Dendrimers | 6621 | ||
9.27.4 Ultrasound Contrast Agents | 6621 | ||
9.27.4.1 Introduction to Ultrasound and Ultrasound Contrast Agents | 6621 | ||
9.27.4.2 Surfactant Ultrasound Contrast Agents | 6623 | ||
9.27.4.3 Liposomal Ultrasound Contrast Agents | 6624 | ||
9.27.4.4 Biodegradable Polymer Ultrasound Contrast Agents | 6624 | ||
9.27.5 Radionucleotide Imaging Agents | 6625 | ||
9.27.5.1 Single-Photon Emission Computed Tomography | 6625 | ||
9.27.5.2 Positron Emission Tomography | 6626 | ||
9.27.6 Optical Imaging Agents | 6626 | ||
9.27.7 Conclusions | 6628 | ||
References | 6629 | ||
Biodegradation of Polymers | 6634 | ||
9.28.1 Introduction | 6634 | ||
9.28.2 Polyesters | 6634 | ||
9.28.2.1 Base-Catalyzed Polyester Hydrolysis | 6634 | ||
9.28.2.2 Acid-Catalyzed Polyester Hydrolysis | 6637 | ||
9.28.2.3 Effects of Crystallinity on Polyester Degradation | 6637 | ||
9.28.2.4 Effects of Hydrophilicity on Polyester Degradation | 6638 | ||
9.28.2.5 Enzymatic Degradation of Polyesters | 6638 | ||
9.28.3 Polyanhydrides | 6639 | ||
9.28.3.1 Base-Catalyzed Polyanhydride Hydrolysis | 6639 | ||
9.28.3.2 Effects of Hydrophilicity on Polyanhydride Hydrolysis | 6642 | ||
9.28.3.3 Polymer Crystallinity | 6642 | ||
9.28.3.4 Effects of Drug Loading on Polyanhydride Hydrolysis | 6642 | ||
9.28.3.5 In Vivo Degradation of Polyanhydride Matrices | 6643 | ||
9.28.4 Polyorthoesters | 6644 | ||
9.28.4.1 Acid-Catalyzed Hydrolysis of Polyorthoesters | 6644 | ||
9.28.4.2 Factors Controlling the Degradation Rate of\rPolyorthoesters | 6644 | ||
9.28.5 Polyketals | 6645 | ||
9.28.5.1 Acid-Catalyzed Hydrolysis of Polyketals | 6645 | ||
References | 6645 | ||
e9780444533494v10 | 6648 | ||
Polymer Science: A Comprehensive Reference | 6649 | ||
Copyright | 6652 | ||
Contents_of_Volume 10 | 6653 | ||
VolumeEditors | 6657 | ||
Editor-in-Chief_Bio | 6659 | ||
Contributors_of_Volume 10 | 6669 | ||
Preface | 6673 | ||
Foreword | 6677 | ||
Introduction: Polymers for a Sustainable Environment and Green Energy | 6679 | ||
10.01.1 Introduction | 6679 | ||
References | 6680 | ||
Green Chemistry and Green Polymer Chemistry | 6683 | ||
10.02.1 Introduction | 6683 | ||
10.02.2 Green Chemistry | 6683 | ||
10.02.3 Green Polymer Chemistry | 6687 | ||
10.02.4 Biopolymer Definitions | 6688 | ||
10.02.4.1 Biopolymers Based on Biomass | 6689 | ||
10.02.4.2 Composition and Structure | 6689 | ||
10.02.4.3 Catalysis | 6689 | ||
10.02.4.4 Degradability | 6689 | ||
10.02.4.5 Compatibility | 6689 | ||
10.02.4.6 Production Capacities | 6690 | ||
References | 6690 | ||
Lipid-Based Polymer Building Blocks and Polymers | 6693 | ||
10.03.1 Introduction | 6693 | ||
10.03.2 Natural Fats and Oils as Polymer Building Blocks | 6694 | ||
10.03.2.1 Drying Oils | 6695 | ||
10.03.2.2 Autoxidation | 6703 | ||
10.03.2.3 Siccativation | 6704 | ||
10.03.2.4 Modification | 6705 | ||
10.03.2.5 Linoleum | 6705 | ||
10.03.2.6 Alkyd Resins | 6705 | ||
10.03.3 Oleochemical Polymer Building Blocks | 6707 | ||
10.03.3.1 Castor Oil | 6707 | ||
10.03.3.2 Ene Reactions | 6708 | ||
10.03.3.3 Hydroformylation | 6710 | ||
10.03.3.4 Carboxylation | 6714 | ||
10.03.3.5 Ozonolysis | 6717 | ||
10.03.3.6 Dimerization | 6718 | ||
10.03.3.7 Metathesis | 6720 | ||
10.03.3.8 Epoxidation | 6723 | ||
10.03.4 Glycerol | 6725 | ||
10.03.5 Summary | 6728 | ||
References | 6728 | ||
Mono-, Di-, and Oligosaccharides as Precursors for \rPolymer Synthesis | 6737 | ||
10.04.1 Introduction | 6738 | ||
10.04.1.1 Biomass | 6738 | ||
10.04.1.2 Building Blocks, Chemicals, and Potential Screening | 6739 | ||
10.04.1.3 Aim of This Chapter | 6739 | ||
10.04.2 Mono-, Di-, and Oligosaccharide-Based Platforms and Building Blocks | 6740 | ||
10.04.2.1 Carbohydrate-Based C2 Polymer Building Blocks | 6740 | ||
10.04.2.2 Carbohydrate-Based C3 Polymer Building Blocks | 6742 | ||
10.04.2.3 Carbohydrate-Based C4 Polymer Building Blocks | 6743 | ||
10.04.2.4 Carbohydrate-Based C5 Polymer Building Blocks | 6745 | ||
10.04.2.5 Carbohydrate-Based C6 Polymer Building Blocks | 6746 | ||
10.04.3 Carbohydrate-Based Polymers | 6748 | ||
10.04.3.1 Polyolefins | 6748 | ||
10.04.3.2 Thermoplastics Polyesters | 6749 | ||
10.04.3.3 Polyurethanes (PUs) and Polyureas | 6752 | ||
10.04.3.4 Emerging Products | 6753 | ||
10.04.4 Conclusions | 6756 | ||
References | 6757 | ||
Celluloses and Polyoses/Hemicelluloses | 6761 | ||
10.05.1 Introduction | 6762 | ||
10.05.2 Cellulose Sources and Isolation | 6762 | ||
10.05.2.1 Cellulose from Wood | 6762 | ||
10.05.2.2 Cellulose from 1-Year Plants | 6764 | ||
10.05.2.3 Bacterial Cellulose | 6764 | ||
10.05.3 Structure and Superstructure of Cellulose: Methods for Analysis | 6766 | ||
10.05.3.1 Molecular Structure: Nuclear Magnetic Resonance Analysis | 6766 | ||
10.05.3.2 Carbonyl and Carboxyl Groups in Cellulosics | 6766 | ||
10.05.3.3 Hydrogen Bond System in Cellulose | 6767 | ||
10.05.3.4 Crystalline Structure of Cellulose: X-Ray Diffraction | 6768 | ||
10.05.3.5 Morphological Structure | 6770 | ||
10.05.3.6 Molecular Weight: Viscometry and SEC | 6772 | ||
10.05.4 Cellulose Solvents | 6772 | ||
10.05.4.1 Derivatizing Solvents, Intermediates, and Transient Derivatives | 6773 | ||
10.05.4.2 Aqueous (Protic) Solvents | 6775 | ||
10.05.4.3 Nonaqueous, Nonderivatizing Systems | 6777 | ||
10.05.5 Cellulose Regeneration | 6780 | ||
10.05.5.1 Fiber Spinning | 6780 | ||
10.05.5.2 Nonwoven Material | 6786 | ||
10.05.6 Cellulose Esters | 6792 | ||
10.05.6.1 Esters of Carboxylic Acids | 6792 | ||
10.05.6.2 Inorganic Esters | 6797 | ||
10.05.7 Cellulose Ethers | 6802 | ||
10.05.7.1 Nonionic Ethers | 6806 | ||
10.05.7.2 Anionic Ethers | 6808 | ||
10.05.7.3 Cationic Ethers | 6809 | ||
10.05.7.4 Di- and Triphenylmethyl Ether Moieties as Protective Groups | 6810 | ||
10.05.7.5 Silyl Ethers of Cellulose | 6811 | ||
10.05.8 Deoxy Celluloses | 6814 | ||
10.05.9 Oxidation of Cellulose | 6817 | ||
10.05.10 Grafting Reactions | 6818 | ||
10.05.11 Hemicelluloses | 6820 | ||
References | 6823 | ||
Nanochitins and Nanochitosans, Paving the Way to Eco-Friendly and Energy-Saving Exploitation of Marine Resources | 6831 | ||
10.06.1 Structural Characteristics of Chitins In Vivo | 6831 | ||
10.06.2 β-Chitin: The Simplest 2D Hydrogen-Bonded Polymorph | 6832 | ||
10.06.3 α-Chitin: The 3D Hydrogen-Bonded Polymorph | 6834 | ||
10.06.4 Oxychitin | 6836 | ||
10.06.5 Simplified Preparation of Chitin Nanofibrils | 6837 | ||
10.06.6 Electrospinning | 6838 | ||
10.06.7 Conclusion | 6839 | ||
Acknowledgments | 6839 | ||
References | 6840 | ||
Starch-Based Biopolymers in Paper, Corrugating, and Other \rIndustrial Applications | 6843 | ||
10.07.1 Starch Basics | 6844 | ||
10.07.2 Markets | 6845 | ||
10.07.3 Starch Modification | 6847 | ||
10.07.3.1 Starch Substitution | 6848 | ||
10.07.3.2 Starch Thinning | 6849 | ||
10.07.3.3 Cold-Soluble Starches | 6850 | ||
10.07.4 Starch Handling and Cooking | 6851 | ||
10.07.4.1 Starch Supply and Handling | 6851 | ||
10.07.4.2 Starch Cooking | 6852 | ||
10.07.5 Industrial Applications | 6852 | ||
10.07.5.1 Paper and Board Applications | 6853 | ||
10.07.5.2 Corrugated Board | 6857 | ||
10.07.5.3 Industrial Binder Applications | 6860 | ||
10.07.6 Pharmaceutical and Chemical Applications | 6862 | ||
10.07.6.1 Starch and Glucose | 6862 | ||
10.07.6.2 Sorbitol | 6866 | ||
10.07.7 Outlook | 6869 | ||
References | 6870 | ||
Guar and Guar Derivatives | 6873 | ||
10.08.1 Introduction | 6873 | ||
10.08.2 From the Green Beans to Guar Splits and Guar Powders | 6873 | ||
10.08.3 Chemical Structure and Resulting Physicochemical Properties and Comparison withOtherPolysaccharides | 6873 | ||
10.08.4 Guar Derivatives | 6875 | ||
10.08.5 Major Applications of Guars | 6876 | ||
10.08.5.1 Food and Nutraceuticals | 6876 | ||
10.08.5.2 Pharmacy and Eye Care | 6877 | ||
10.08.5.3 Explosives | 6877 | ||
10.08.5.4 Mining | 6877 | ||
10.08.5.5 Textile | 6877 | ||
10.08.5.6 Water Treatment | 6878 | ||
10.08.5.7 Agrochemicals | 6878 | ||
10.08.5.8 Cosmetics | 6879 | ||
10.08.5.9 Oil Field | 6879 | ||
10.08.6 Conclusions and Outlooks | 6879 | ||
References | 6880 | ||
Acacia Gum | 6883 | ||
10.09.1 Origin | 6883 | ||
10.09.2 Acacia Gum and Sustainable Environment | 6883 | ||
10.09.3 Chemical Structure | 6884 | ||
10.09.4 Applications | 6884 | ||
10.09.4.1 Food Applications | 6884 | ||
10.09.4.2 Nutritional Applications | 6888 | ||
10.09.4.3 Nonfood Applications | 6889 | ||
10.09.5 Conclusion | 6889 | ||
References | 6889 | ||
Alginates: Properties and Applications | 6891 | ||
10.10.1 Introduction | 6891 | ||
10.10.2 Sources and Production | 6891 | ||
10.10.3 Chemical Composition and Conformation | 6891 | ||
10.10.4 Properties | 6892 | ||
10.10.4.1 Selective Ion Binding and Gel Formation | 6892 | ||
10.10.4.2 Gel Properties | 6892 | ||
10.10.4.3 Biological Properties of the Alginate Molecule | 6893 | ||
10.10.5 Tailoring of Alginates by In Vitro Modification | 6894 | ||
10.10.6 Technical Applications | 6894 | ||
10.10.7 Applications of Alginates in Medicine andBiotechnology | 6895 | ||
10.10.7.1 Traditional Uses | 6895 | ||
10.10.7.2 New and Potential Uses | 6896 | ||
10.10.8 Conclusions | 6896 | ||
References | 6896 | ||
Xanthan | 6899 | ||
10.11.1 Introduction | 6899 | ||
10.11.1.1 Regulatory Status | 6899 | ||
10.11.2 Chemical Structure and Biosynthesis | 6899 | ||
10.11.2.1 Structure | 6899 | ||
10.11.2.2 Biosynthesis | 6900 | ||
10.11.3 Production Process and Xanthan Modifications | 6901 | ||
10.11.3.1 Industrial Production of Xanthan | 6901 | ||
10.11.3.2 Xanthan Modifications | 6901 | ||
10.11.4 Physicochemical Properties | 6902 | ||
10.11.5 Applications | 6903 | ||
10.11.5.1 Food Applications | 6903 | ||
10.11.5.2 Applications in Animal Feed | 6904 | ||
10.11.5.3 Personal Care Applications | 6904 | ||
10.11.5.4 Pharmaceutical Applications | 6904 | ||
10.11.5.5 Industrial Applications | 6904 | ||
10.11.6 Perspectives | 6906 | ||
References | 6906 | ||
Polylactic Acid | 6909 | ||
10.12.1 Introduction | 6909 | ||
10.12.2 Nondepleting Properties of PLA | 6909 | ||
10.12.3 Market Potential of PLA | 6909 | ||
10.12.4 Process Routes to PLA | 6909 | ||
10.12.5 Processing of PLA | 6910 | ||
10.12.6 Properties of PLA | 6910 | ||
10.12.7 Perspective | 6910 | ||
10.12.8 LA as Raw Material of PLA | 6912 | ||
References | 6913 | ||
Gelatin | 6915 | ||
10.13.1 Gelatin | 6915 | ||
10.13.2 Chemical Composition | 6915 | ||
10.13.2.1 Stability | 6916 | ||
10.13.2.2 Sustainability | 6916 | ||
10.13.3 Physical and Chemical Properties | 6916 | ||
10.13.3.1 Gelation | 6916 | ||
10.13.3.2 Solubility | 6918 | ||
10.13.3.3 Amphoteric Character | 6918 | ||
10.13.3.4 Viscosity | 6919 | ||
10.13.3.5 Colloid and Emulsifying Properties | 6919 | ||
10.13.4 Manufacture and Processing | 6919 | ||
10.13.5 Economic Aspects | 6920 | ||
10.13.6 Analytical Test Methods and Quality Standards | 6920 | ||
10.13.7 Uses | 6921 | ||
10.13.7.1 Food Products | 6921 | ||
10.13.7.2 Pharmaceutical Products | 6921 | ||
10.13.7.3 Nutraceutical Properties | 6922 | ||
10.13.7.4 Photographic Products | 6922 | ||
10.13.7.5 Derivatized Gelatin | 6923 | ||
References | 6923 | ||
Processing Soy Protein Concentrate as Plastic in Polymer Blends | 6927 | ||
10.14.1 Introduction | 6927 | ||
10.14.2 Soy Protein Products and Fractionation | 6927 | ||
10.14.3 Plastic Application of Soy Protein | 6928 | ||
10.14.4 General Extrusion Compounding forProcessing SPC as a Plastic in Blending | 6928 | ||
10.14.5 Properties of PBAT/SPC Blends | 6929 | ||
10.14.5.1 Phase Structure | 6929 | ||
10.14.5.2 Tensile Properties | 6930 | ||
10.14.5.3 Water Absorption and Wet Strength | 6930 | ||
10.14.6 Conclusions | 6930 | ||
References | 6931 | ||
Lignin as Building Unit for Polymers | 6933 | ||
10.15.1 Constitution and Structure of Lignin fromRenewable Resources | 6933 | ||
10.15.2 Important Isolation Methods andTheirInfluence on the Properties of Lignin | 6934 | ||
10.15.3 Current Applications and Future Aspects ofthe Utilization of Lignin | 6937 | ||
10.15.3.1 Markets, Products, and Potentials | 6937 | ||
10.15.3.2 Biorefinery Concepts | 6940 | ||
10.15.3.3 Genetic Modification | 6940 | ||
10.15.4 Outlook | 6940 | ||
References | 6941 | ||
Natural Fibers | 6945 | ||
10.16.1 Generalities | 6945 | ||
10.16.2 Fiber Structure | 6947 | ||
10.16.2.1 Chemistry and Structure of Cellulose Fibers | 6947 | ||
10.16.2.2 Chemistry and Structure of Protein Fibers | 6948 | ||
10.16.3 Fiber Morphology | 6951 | ||
10.16.3.1 Cellulose Fibers | 6951 | ||
10.16.3.2 Animal Fiber | 6952 | ||
10.16.3.3 Silk–Spider Silk | 6952 | ||
10.16.4 Fiber Sourcing | 6952 | ||
10.16.4.1 Cotton | 6952 | ||
10.16.4.2 Bast Fibers (Flax, Hemp) | 6953 | ||
10.16.4.3 Animal Fibers | 6954 | ||
10.16.4.4 Silk | 6955 | ||
10.16.5 Summary of the Proprieties of Natural Fibers | 6955 | ||
10.16.6 Processing of Natural Fibers | 6955 | ||
10.16.6.1 Operations That Transform Fibers into Fabric | 6956 | ||
10.16.6.2 The Cleaning Operations | 6956 | ||
10.16.6.3 Stabilizing the Dimensions | 6956 | ||
10.16.6.4 Coating and Infiltrating | 6956 | ||
10.16.6.5 Surface Treatments | 6957 | ||
10.16.7 Conclusions | 6957 | ||
References | 6957 | ||
Natural Rubber | 6959 | ||
10.17.1 Introduction and History | 6959 | ||
10.17.2 Challenge Facing the Supply Chain | 6959 | ||
10.17.3 The Biosynthesis of Poly(cis-1,4-isoprene) | 6960 | ||
10.17.4 Nonisoprene Components of Natural Rubber\r(NR) | 6962 | ||
10.17.4.1 Proteins | 6962 | ||
10.17.4.2 Carbohydrates and Cyclitols | 6963 | ||
10.17.4.3 Lipids | 6964 | ||
10.17.4.4 Inorganic Compounds | 6965 | ||
10.17.5 NR Structure | 6965 | ||
10.17.5.1 Introduction | 6965 | ||
10.17.5.2 Microstructure | 6965 | ||
10.17.5.3 Mesostructure | 6966 | ||
10.17.6 NR in the Manufacture of Antivibration Parts | 6967 | ||
10.17.6.1 The Place of NR in Suspension Joints | 6967 | ||
10.17.6.2 NR/Synthetic Elastomer Competition | 6967 | ||
10.17.6.3 The Main Processes Used | 6968 | ||
10.17.7 General Aspects of NR Applications in Tires | 6968 | ||
10.17.8 Conclusion | 6969 | ||
References | 6969 | ||
Biocomposites: Long Natural Fiber-Reinforced Biopolymers | 6973 | ||
10.18.1 Introduction | 6973 | ||
10.18.2 Matrix Systems for NF-Reinforced Composites | 6974 | ||
10.18.2.1 Typical Polymers for NF-Reinforced Composites | 6974 | ||
10.18.2.2 Thermosetting Biopolymers for Biocomposites | 6975 | ||
10.18.3 Natural Fibers for Composites | 6977 | ||
10.18.3.1 Important Data of Natural Fibers | 6978 | ||
10.18.3.2 Requirements for Semifinished Textile Products | 6979 | ||
10.18.3.3 Fiber–Matrix Adhesion | 6980 | ||
10.18.4 Natural Composites and Biocomposites | 6980 | ||
10.18.4.1 Typical Processing for NF-Reinforced Composite Parts | 6981 | ||
10.18.5 Manual of Typical Challenges for Selected Applications | 6985 | ||
10.18.5.1 Light-Weight Paneling Elements: Door Panelings for Automobiles | 6985 | ||
10.18.5.2 Continuous Processed Structural Parts | 6985 | ||
10.18.5.3 Light-Weight Structural Parts: Safety Helmets | 6986 | ||
10.18.5.4 Flame-Resistant Paneling Structures | 6986 | ||
10.18.5.5 Demonstration Objects: RTM Parts fortheBioconcept-Car | 6987 | ||
10.18.5.6 Future Applications | 6990 | ||
10.18.6 Conclusions | 6990 | ||
10.18.7 Outlook | 6990 | ||
Acknowledgment | 6991 | ||
References | 6991 | ||
Performance Profile of Biopolymers Compared to Conventional Plastics | 6995 | ||
10.19.1 Introduction | 6995 | ||
10.19.2 Property Profiles of the Most Important Biopolymers | 6996 | ||
10.19.2.1 Polyvinyl Alcohol | 6996 | ||
10.19.2.2 Polycaprolactone | 6998 | ||
10.19.2.3 Polyhydroxyalkanoates | 6999 | ||
10.19.2.4 Polylactic Acid | 7002 | ||
10.19.2.5 PLA Blends and Copolymers | 7003 | ||
10.19.2.6 Bio-Copolyesters and Copolyester Blends | 7005 | ||
10.19.2.7 Starch/Starch Blends/Thermoplastic Starch | 7006 | ||
10.19.2.8 Cellulose Regenerates | 7007 | ||
10.19.2.9 Cellulose Derivatives (Cellulose Acetate (CA), Cellulose Propionate (CP), Cellulose Butyrate (CB), Cellulose Nitrate (CN), Cellulose-Acetate-Butyrate (CAB), and Cellulose-Acetate-Propionate (CAP)) | 7008 | ||
10.19.3 Properties in Comparison with Conventional Plastics | 7010 | ||
10.19.3.1 Biopolymer Materials for Injection Molding Applications | 7011 | ||
10.19.3.2 Biopolymer Film Materials | 7022 | ||
10.19.3.3 Conclusions for Future Applications | 7028 | ||
References | 7030 | ||
Processing of Plastics into Structural Components | 7033 | ||
10.20.1 Introduction | 7033 | ||
10.20.1.1 Some terms and Definitions | 7033 | ||
10.20.1.2 Flow characteristics of Polymer Melts | 7033 | ||
10.20.1.3 Basics of Mechanics | 7034 | ||
10.20.2 Procedures for Serial Production of Plastics Products | 7036 | ||
10.20.2.1 Injection Molding | 7037 | ||
10.20.2.2 Extrusion and Ancillary Processes | 7039 | ||
10.20.2.3 Compression Molding | 7041 | ||
10.20.2.4 Thermoforming | 7042 | ||
10.20.2.5 Welding | 7042 | ||
References | 7045 | ||
Processing and Performance Additives for Plastics | 7047 | ||
10.21.1 Introduction | 7047 | ||
10.21.2 Radical Generation | 7047 | ||
10.21.3 Surface Active Additives | 7048 | ||
10.21.3.1 Emulsifiers for Emulsion Polymerization | 7048 | ||
10.21.3.2 Antistatic Agents | 7048 | ||
10.21.3.3 Antifogging Agents | 7049 | ||
10.21.4 Additives for Polymer Processing | 7050 | ||
10.21.4.1 Lubricants | 7050 | ||
10.21.4.2 Mold Release Agents | 7050 | ||
10.21.4.3 Heat Stabilizers | 7050 | ||
10.21.4.4 Acid Scavengers | 7051 | ||
10.21.4.5 Polymeric Processing Aids | 7051 | ||
10.21.4.6 Curing Agents | 7052 | ||
10.21.4.7 Blowing Agents | 7052 | ||
10.21.5 Additives for Polymer Properties andPerformance | 7052 | ||
10.21.5.1 Plasticizers | 7052 | ||
10.21.5.2 Impact Modifiers | 7054 | ||
10.21.5.3 Antiblocking Agents | 7054 | ||
10.21.5.4 Slip Additives | 7054 | ||
10.21.6 Stabilization against Polymer Degradation | 7055 | ||
10.21.6.1 Antioxidants | 7055 | ||
10.21.6.2 Light Stabilizers | 7055 | ||
10.21.6.3 Flame Retardants | 7056 | ||
References | 7057 | ||
Processing and Performance Additives for Coatings | 7061 | ||
10.22.1 Introduction | 7061 | ||
10.22.2 Emulsification, Stabilization, and Dispersion | 7061 | ||
10.22.2.1 Emulsifiers | 7061 | ||
10.22.2.2 Dispersants | 7062 | ||
10.22.3 Foam Control | 7066 | ||
10.22.4 Rheology, Thickening, and Flow | 7067 | ||
10.22.5 Coalescence and Film Formation | 7070 | ||
10.22.6 Preservation | 7071 | ||
10.22.7 Coating Performance | 7072 | ||
Acknowledgment | 7072 | ||
References | 7072 | ||
Paper | 7075 | ||
10.23.1 Introduction | 7075 | ||
10.23.2 Paper History | 7075 | ||
10.23.3 Paper Applications and Trends | 7076 | ||
10.23.3.1 Writing and Printing | 7076 | ||
10.23.3.2 Currency and Other Financial Vehicles | 7077 | ||
10.23.3.3 Packaging | 7077 | ||
10.23.3.4 Wiping Applications | 7077 | ||
10.23.3.5 Personal Care Products | 7078 | ||
10.23.3.6 Construction and Industrial Product | 7079 | ||
10.23.4 Paper Manufacturing Basics | 7079 | ||
10.23.4.1 Chipping | 7079 | ||
10.23.4.2 Deinking | 7080 | ||
10.23.4.3 Chemical Pulping | 7081 | ||
10.23.4.4 Mechanical Pulping | 7081 | ||
10.23.4.5 Hydrapulper | 7081 | ||
10.23.4.6 Blend Chest | 7081 | ||
10.23.4.7 Refining | 7082 | ||
10.23.4.8 Wet End | 7082 | ||
10.23.4.9 Dry End | 7082 | ||
10.23.4.10 Converting and Printing | 7083 | ||
10.23.5 Cell Structure of Wood | 7083 | ||
10.23.6 Lignin and Cellulose Chemistry | 7084 | ||
10.23.7 Sustainable Forestry | 7086 | ||
References | 7087 | ||
Polyurethanes | 7089 | ||
10.24.1 General Description and Basic Reactions | 7090 | ||
10.24.1.1 Raw Materials | 7090 | ||
10.24.1.2 Macromolecular Structures | 7092 | ||
10.24.2 Foams and Elastomers | 7092 | ||
10.24.2.1 Production of Polyurethanes | 7092 | ||
10.24.2.2 Sustainability | 7092 | ||
10.24.2.3 Rigid Foam | 7092 | ||
10.24.2.4 Flexible Foam | 7094 | ||
10.24.2.5 Elastomers | 7095 | ||
10.24.2.6 Other Applications | 7095 | ||
10.24.2.7 Thermoplastic Polyurethanes | 7096 | ||
10.24.2.8 Renewable Resources | 7097 | ||
10.24.2.9 Recycling and Energy Recovery | 7098 | ||
10.24.2.10 Safety | 7098 | ||
10.24.3 Coatings and Adhesives | 7098 | ||
10.24.3.1 Coatings Introduction | 7098 | ||
10.24.3.2 High-Solids and Solvent-Free Polyurethane Coatings | 7098 | ||
10.24.3.3 Waterborne Polyurethane Coatings – Chemistry ofDispersions, Technology, and Applications | 7103 | ||
10.24.3.4 Radiation-Curing Polyurethane Coatings | 7111 | ||
10.24.3.5 Adhesives Introduction | 7112 | ||
10.24.3.6 Solvent-Free Reactive One-Component Polyurethane Adhesives | 7113 | ||
10.24.3.7 Two-Component Polyurethane Adhesives | 7114 | ||
10.24.3.8 Solvent-Free Silane-Terminated Polyurethanes | 7114 | ||
10.24.3.9 Waterborne Polyurethane Adhesives | 7115 | ||
10.24.3.10 Outlook for Polyurethane Coatings and Adhesives | 7117 | ||
References | 7117 | ||
Polysiloxanes | 7121 | ||
10.25.1 Introduction: Siloxanes and their Environmental Characteristics | 7121 | ||
10.25.2 How Siloxanes Contribute to Sustainable Manufacturing and Resource Conservation | 7122 | ||
10.25.3 New Applications with Polysiloxanes as Key Substances for Environmentally Important Processes | 7123 | ||
10.25.3.1 Lotus Effect: From a Bionic Phenomenon to a Useful Technology for Self-Cleaning Using Key Siloxane Properties\r | 7123 | ||
10.25.3.2 PUR Foams: How Siloxanes Allow More Ecologically-Friendly Foams for Insulation | 7124 | ||
10.25.3.3 Radiation Curing Release Coatings on BOPP Films | 7125 | ||
10.25.3.4 Silicone Derivatives as Ecologically-Friendly Enhancers forAgrochemicals | 7125 | ||
10.25.3.5 Polysiloxanes for Energy-Efficient Ceramics Production | 7126 | ||
10.25.3.6 Siloxanes for the Production of Solar Cells | 7126 | ||
10.25.3.7 Ecologic Water-Based Cleaning Polishes | 7127 | ||
10.25.4 Conclusion and Outlook | 7127 | ||
References | 7128 | ||
Lubricant and Fuel Additives Based on Polyalkylmethacrylates | 7131 | ||
10.26.1 Synthesis of Polyalkylmethacrylates | 7131 | ||
10.26.1.2 Manufacturing | 7132 | ||
10.26.2 The Chemistry of Polyalkylmethacrylates | 7133 | ||
10.26.2.1 Standard PAMA | 7133 | ||
10.26.2.2 PAMA/Olefin Copolymer Mixed Polymers andeOCP | 7133 | ||
10.26.2.3 Dispersant PAMA (d-PAMA) | 7134 | ||
10.26.2.4 Copolymers with α-olefins | 7134 | ||
10.26.2.5 Copolymers with Acrylates or Styrenes | 7134 | ||
10.26.2.6 PAMA/Ethylene Vinyl Acetate Mixed Polymers andeEVA | 7135 | ||
10.26.2.7 Manufacturing | 7135 | ||
10.26.2.8 Novel, PAMA-Derived XHVI Architectures | 7136 | ||
10.26.3 Applications of PAMAs | 7136 | ||
10.26.3.1 Viscosity Index Improvers | 7136 | ||
10.26.3.1.1 Definition of viscosity and viscosity index | 7136 | ||
10.26.3.1.2 Viscosity index improvers | 7137 | ||
10.26.3.1.3 Viscosity in service | 7138 | ||
10.26.3.1.4 Application of VIIs | 7139 | ||
10.26.3.2 Pour Point Depressants | 7145 | ||
10.26.3.2.1 PAMA pour point depressants | 7146 | ||
10.26.3.2.2 Low-temperature performance requirements | 7147 | ||
10.26.3.2.3 Selection of pour point depressants | 7147 | ||
10.26.3.2.4 Base stock trends | 7147 | ||
10.26.3.2.5 Development of low-temperature requirements for used engine oils | 7148 | ||
10.26.3.3 Biofuel Additives | 7148 | ||
10.26.3.4 Synthetic Oils Based on Methacrylates | 7150 | ||
10.26.3.5 Film Formers: PAMA-Based Friction Modifiers | 7151 | ||
References | 7154 | ||
Aqueous Emulsion Polymers | 7157 | ||
10.27.1 Introduction | 7158 | ||
10.27.2 Emulsion Polymerization and Powder Production | 7159 | ||
10.27.2.1 Emulsion Polymerization | 7159 | ||
10.27.2.2 Dispersible Powders | 7167 | ||
10.27.3 Introduction on Dry Mortars | 7169 | ||
10.27.3.1 Composition of Dry Mortars | 7169 | ||
10.27.3.2 Production | 7169 | ||
10.27.3.3 Types of Mortars, Their Applications, and Markets | 7170 | ||
10.27.4 Function of Dispersible Polymer Powders in Dry Mortars | 7170 | ||
10.27.5 Environmental Aspects of Using Polymer-Modified Dry Mortars | 7171 | ||
10.27.5.1 Technical and Environmental Aspects of Cement | 7171 | ||
10.27.5.2 Technical and Environmental Aspects of Gypsum as Mineral Binder | 7171 | ||
10.27.5.3 Technical and Environmental Aspects of Hydrated Lime | 7171 | ||
10.27.5.4 Technical and Environmental Aspects of Dry Loam | 7172 | ||
10.27.5.5 General Economic and Ecological Aspects of Dry Mortar Usage | 7172 | ||
10.27.5.6 LCA Aspects in the Construction Industry, Including Dry Mortars | 7172 | ||
10.27.6 Applications of Polymer-Modified Dry Mortars | 7173 | ||
10.27.6.1 Ceramic Tile Adhesives – Thin-Bed Method | 7173 | ||
10.27.6.2 Exterior Thermal Insulation Composite Systems | 7174 | ||
10.27.6.3 Self-Leveling Mortars and Screeds | 7176 | ||
10.27.6.4 Waterproofing Sealing Slurries | 7177 | ||
10.27.6.5 Repair Mortars | 7177 | ||
10.27.7 Summary on Polymers in Dry Mortars | 7178 | ||
10.27.8 Polymer Dispersions in Paper Manufacturing | 7178 | ||
10.27.8.1 Introduction | 7178 | ||
10.27.8.2 Binder for Paper Manufacturing | 7179 | ||
10.27.9 Polymer Dispersions in Adhesives | 7179 | ||
10.27.9.1 Pressure-Sensitive Adhesives | 7179 | ||
10.27.9.2 Paper and Packaging Adhesives | 7180 | ||
10.27.9.3 Flooring Adhesives | 7181 | ||
10.27.9.4 Wood Adhesives | 7182 | ||
10.27.10 Polymer Dispersions in Architectural Coatings | 7183 | ||
10.27.10.1 Global Coatings Demand | 7183 | ||
10.27.10.2 Exterior Architectural Coatings | 7183 | ||
10.27.10.3 Interior Architectural Coatings | 7184 | ||
10.27.10.4 Reduction of Energy Costs by Lower Heat Conductivity of Special Interior and Exterior Paints | 7185 | ||
10.27.10.5 Photocatalytic Oxidation to Destroy Bacteria and Neutralize Chemicals and Odor | 7186 | ||
10.27.10.6 Indoor Air Climate Improvement | 7186 | ||
10.27.11 Nonwoven Fabrics | 7186 | ||
10.27.11.1 Web Formation | 7186 | ||
10.27.11.2 Fibers | 7187 | ||
10.27.11.3 Web-Consolidation by Chemical Bonding | 7187 | ||
10.27.11.4 Web-Forming Processes with Chemical Bonding | 7187 | ||
10.27.11.5 Dispersion Technologies for Chemically Bonded Nonwovens | 7188 | ||
10.27.11.6 Carpet | 7188 | ||
10.27.11.7 Flexo- and Gravure Printing Inks | 7190 | ||
10.27.12 Summary and Outlook | 7191 | ||
References | 7192 | ||
Water-Based Epoxy Systems | 7197 | ||
10.28.1 Introduction | 7197 | ||
10.28.2 Definition | 7197 | ||
10.28.3 Classification of Waterborne Epoxy Technologies | 7199 | ||
10.28.4 Comparison of Waterborne and Solvent-Borne Epoxy Coatings | 7199 | ||
10.28.5 Waterborne Amine Hardeners: General Structural Requirements | 7199 | ||
10.28.6 Type I Waterborne Epoxy Technologies | 7199 | ||
10.28.6.1 Polyamide Curing Agents | 7199 | ||
10.28.6.2 Polyamine Epoxy Adducts | 7200 | ||
10.28.6.3 Miscellaneous Curing Agents | 7200 | ||
10.28.7 Type II Waterborne Epoxy Technologies | 7201 | ||
10.28.7.1 Epoxy Resin Dispersions | 7201 | ||
10.28.7.2 Polyamine Curing Agents | 7201 | ||
10.28.7.3 Formulation Guidelines | 7201 | ||
10.28.7.4 Resin Stoichiometry | 7201 | ||
10.28.7.5 Effect of Cosolvents | 7202 | ||
10.28.7.6 Recommended Pigments for Waterborne Coatings | 7202 | ||
10.28.7.7 Pot Life | 7202 | ||
10.28.7.8 Film Formation | 7202 | ||
10.28.7.9 Curing Agents in Detail | 7203 | ||
10.28.8 Deep Penetrating and Green Concrete Primer | 7206 | ||
10.28.9 Water Vapor Permeable Floor Systems | 7207 | ||
10.28.10 Concrete Coating Systems | 7207 | ||
10.28.11 Waterborne Epoxy Curing Agent Systems | 7207 | ||
10.28.12 Self-Leveling Floor Formulation | 7208 | ||
10.28.13 Self-Leveler | 7210 | ||
10.28.14 Low-Emission Industrial Floorings | 7212 | ||
10.28.15 Path to Low-Emission Floorings | 7213 | ||
10.28.16 Water-Based Low-Emission Formulation | 7214 | ||
10.28.17 Time Is Money | 7214 | ||
10.28.18 Conclusions | 7215 | ||
References | 7215 | ||
Powder Coatings | 7219 | ||
10.29.1 Introduction | 7220 | ||
10.29.2 General Concepts | 7220 | ||
10.29.2.1 Energy Saving | 7220 | ||
10.29.2.2 Energy Utilization in Polymer Manufacture | 7221 | ||
10.29.2.3 Energy Utilization in Powder Coatings Manufacture | 7221 | ||
10.29.2.4 Energy Saving in Powder Coatings Application | 7221 | ||
10.29.3 Material Saving | 7224 | ||
10.29.3.1 Efficient Conversion during Production of Powder Coatings | 7224 | ||
10.29.3.2 Optimized Application of Thin-Film Powder Coatings | 7224 | ||
10.29.4 Raw Materials | 7227 | ||
10.29.4.1 Polymers from Recycled Materials | 7227 | ||
10.29.4.2 Polymers from Renewable Bio-Based Sources | 7227 | ||
10.29.4.3 Pigments and Fillers | 7230 | ||
10.29.4.4 Toxicological Issues | 7232 | ||
10.29.5 Production of Powder Coatings | 7233 | ||
10.29.5.1 Weighing | 7233 | ||
10.29.5.2 Premixing | 7233 | ||
10.29.5.3 Extrusion | 7234 | ||
10.29.5.4 Cooling | 7234 | ||
10.29.5.5 Kibbling | 7234 | ||
10.29.5.6 Grinding | 7234 | ||
10.29.5.7 Classification | 7235 | ||
10.29.5.8 Packaging | 7235 | ||
10.29.5.9 Energy Consumption | 7235 | ||
10.29.5.10 Waste Management | 7235 | ||
10.29.5.11 Supply Chain Considerations | 7235 | ||
10.29.6 Application of Powder Coatings | 7236 | ||
10.29.6.1 Substrate Preparation | 7236 | ||
10.29.6.2 Application of the Powder Coating | 7236 | ||
10.29.6.2.1 Fluidization | 7236 | ||
10.29.6.2.2 Application to the part | 7237 | ||
10.29.6.2.3 Climate controlled application | 7238 | ||
10.29.6.2.4 Reutilization of oversprayed powder coating | 7240 | ||
10.29.6.2.5 Optimization of racking | 7240 | ||
10.29.6.2.6 Reduced waste on color change | 7241 | ||
10.29.6.2.7 Dense-phase pumps to reduce air consumption | 7241 | ||
10.29.6.3 Curing of the Powder Coating | 7241 | ||
10.29.6.3.1 Reduction in baking temperature | 7241 | ||
10.29.6.3.2 Alternative cure mechanisms | 7241 | ||
10.29.7 In-Use Considerations | 7242 | ||
10.29.8 Future Trends | 7242 | ||
10.29.8.1 The Status Quo | 7242 | ||
10.29.8.2 Lower Baking Temperatures | 7242 | ||
10.29.8.3 Raw Material Volatility | 7242 | ||
10.29.8.4 The Developing Global Mid-Market | 7242 | ||
10.29.8.5 Summary | 7242 | ||
References | 7243 | ||
Radiation-Curing Polymer Systems | 7245 | ||
10.30.1 Introduction | 7245 | ||
10.30.2 Technology | 7245 | ||
10.30.3 Formulations and Raw Materials | 7246 | ||
10.30.4 Network Formation and Characterization | 7248 | ||
10.30.5 Structure–Property Relationship | 7252 | ||
10.30.6 Applications | 7254 | ||
10.30.7 Perspectives | 7255 | ||
References | 7256 | ||
Plastics after Use: Sustainable Management of Material and Energy Resources | 7259 | ||
10.31.1 Introduction | 7259 | ||
10.31.2 Waste Management | 7259 | ||
10.31.2.1 Service of General Interest – Resource Efficiency – Climate Protection | 7259 | ||
10.31.3 Regulatory Framework for Waste Management in Europe | 7260 | ||
10.31.3.1 Specific Attention to Plastics after Use | 7260 | ||
10.31.4 Plastics Waste in Europe | 7262 | ||
10.31.4.1 Amounts, Distribution, and Characteristics | 7262 | ||
10.31.5 Plastics Waste Recovery | 7262 | ||
10.31.5.1 Part of an Integrated Waste Management | 7262 | ||
10.31.6 Plastics Waste Recovery and Sustainability | 7268 | ||
10.31.6.1 Environmental and Economic Aspects and Life Cycle Perspective | 7268 | ||
10.31.7 Outlook 2020 | 7271 | ||
10.31.7.1 Drivers and Barriers | 7271 | ||
10.31.7.2 The Sustainability Potential of Plastics After Use | 7272 | ||
References | 7272 | ||
Polymers in Energy Applications | 7275 | ||
10.32.1 Introduction | 7275 | ||
10.32.2 Chapter Summaries | 7276 | ||
Poly(Perfluorosulfonic Acid) Membranes | 7279 | ||
10.33.1 Introduction | 7279 | ||
10.33.1.1 Markets | 7279 | ||
10.33.1.2 Fuel Cell Background | 7280 | ||
10.33.1.3 Perfluorosulfonic Acid | 7281 | ||
10.33.1.4 Other Perfluorinated Ionomers | 7282 | ||
10.33.2 Membrane Manufacturing | 7283 | ||
10.33.2.1 Monomer and Polymer Synthesis | 7283 | ||
10.33.2.2 Membrane Processing | 7283 | ||
10.33.2.3 Dispersion Properties | 7285 | ||
10.33.3 Morphology | 7285 | ||
10.33.3.1 PFSA Phase-Separated Morphology | 7285 | ||
10.33.3.2 Dynamic Mechanical Analysis | 7286 | ||
10.33.3.3 Water Content and Morphology | 7287 | ||
10.33.4 Durability and Lifetime | 7287 | ||
10.33.4.1 General Mechanical Testing Discussion | 7287 | ||
10.33.4.2 Chemical Stability | 7288 | ||
10.33.4.3 Peroxide Degradation Mechanism | 7290 | ||
10.33.4.4 Peroxide Scavenging Additives | 7290 | ||
10.33.4.5 Reinforced Membranes | 7290 | ||
10.33.5 New Chemistry | 7292 | ||
10.33.5.1 Ultralow EW Ionomers | 7292 | ||
10.33.5.2 Cross-linking | 7293 | ||
10.33.6 Summary | 7295 | ||
References | 7295 | ||
Alternative Hydrocarbon Membranes by Step Growth | 7299 | ||
10.34.1 Introduction | 7299 | ||
10.34.2 Alternative Hydrocarbon Ionomer Membranes | 7302 | ||
10.34.2.1 Poly(arylene ether)s | 7302 | ||
10.34.2.2 Polyimides | 7310 | ||
10.34.2.3 Poly(p-phenylene)s | 7312 | ||
10.34.2.4 Poly(benzimidazole)s | 7313 | ||
10.34.2.5 Other Polymers | 7315 | ||
10.34.3 Recent Trends in Hydrocarbon Ionomer Membranes | 7315 | ||
10.34.3.1 Development of High IEC Membranes | 7316 | ||
10.34.3.2 Block Copolymers | 7317 | ||
10.34.3.3 Copolymer with Highly Sulfonated Moiety | 7322 | ||
10.34.3.4 Partially Fluorinated Hydrocarbon Ionomers | 7323 | ||
10.34.4 Application to Fuel Cells | 7324 | ||
10.34.5 Prospects | 7324 | ||
References | 7325 | ||
Alternative Proton Exchange Membranes by Chain-Growth Polymerization | 7329 | ||
10.35.1 Introduction | 7329 | ||
10.35.1.1 Proton Conduction in PEMs | 7331 | ||
10.35.1.2 Microstructure of Copolymers | 7333 | ||
10.35.1.3 Morphological Studies of Nafion PFSA Membranes | 7334 | ||
10.35.2 Chain-Growth Polymerization | 7336 | ||
10.35.2.1 Free-Radical Polymerization | 7336 | ||
10.35.2.2 Anionic Polymerization | 7337 | ||
10.35.2.3 Living Polymerization | 7338 | ||
10.35.2.4 Living Anionic Polymerization | 7338 | ||
10.35.2.5 Controlled/Living Radical Polymerization | 7339 | ||
10.35.3 Chain-Growth Polymerization Applied to PEM Materials | 7341 | ||
10.35.3.1 Alternative Membranes Synthesized byChain-Growth Polymerization | 7342 | ||
10.35.4 Conclusions and Future Directions | 7361 | ||
References | 7363 | ||
Polymers in Membrane Electrode Assemblies | 7369 | ||
10.36.1 Introduction | 7369 | ||
10.36.2 Polymer Electrolyte Membranes | 7369 | ||
10.36.2.1 Water Uptake | 7370 | ||
10.36.2.2 Proton Conductivity | 7374 | ||
10.36.2.3 Methanol Permeability | 7377 | ||
10.36.2.4 Summary | 7381 | ||
10.36.3 Polymer Electrolyte Ionomers in the Electrode | 7381 | ||
10.36.3.1 Historical Background | 7381 | ||
10.36.3.2 Structural Effect | 7383 | ||
10.36.3.3 Membrane–Electrode Interface | 7391 | ||
10.36.4 Summary | 7394 | ||
Acknowledgment | 7395 | ||
References | 7395 | ||
Morphology of Proton Exchange Membranes | 7399 | ||
10.37.1 Introduction | 7399 | ||
10.37.2 Perfluorosulfonate Ionomers as the Benchmark Materials for Proton Exchange Membranes | 7400 | ||
10.37.2.1 Types of PFSIs | 7400 | ||
10.37.3 Alternative Membrane Materials | 7401 | ||
10.37.3.1 Nonaliphatic Hydrocarbon-Based Alternative Membrane Materials | 7401 | ||
10.37.3.2 Organic/Inorganic Nanocomposite Membranes | 7409 | ||
10.37.3.3 Polymer Blends | 7412 | ||
10.37.3.4 Supported Composite Membranes | 7415 | ||
10.37.4 Evolution of Morphological Models forNafion® | 7418 | ||
10.37.4.1 Cluster-Network Model | 7419 | ||
10.37.4.2 Core–Shell Model | 7420 | ||
10.37.4.3 Local-Order Model | 7421 | ||
10.37.4.4 Lamellar Model | 7421 | ||
10.37.4.5 Sandwich-Like Model | 7422 | ||
10.37.4.6 Rod-Like Model | 7422 | ||
10.37.4.7 Fringed Micelle Model | 7422 | ||
10.37.4.8 Parallel Water Channel Model | 7423 | ||
10.37.5 Morphology–Property Relationships inIon-Containing Polymers | 7423 | ||
10.37.5.1 Effect of Morphology on Transport and Diffusion | 7423 | ||
10.37.5.2 Effect of Morphology on Gas Permeability | 7425 | ||
10.37.6 Development and Manipulation ofMorphological Features in Proton Exchange Membranes | 7426 | ||
10.37.6.1 Effect of Hydration on the Development ofMorphology in Nafion® Membranes | 7426 | ||
10.37.6.2 Manipulation of Morphology by Adjusting Casting Parameters | 7428 | ||
10.37.6.3 Development of Morphology via Thermal Annealing | 7430 | ||
10.37.6.4 Development of Morphology via Orientation | 7433 | ||
10.37.7 Computational Modeling/Simulation of Proton Exchange Membrane Morphology | 7436 | ||
10.37.7.1 Computational Modeling of Hydrated Nafion® | 7437 | ||
10.37.7.2 Investigation of Nafion® Morphology Using theMaxEnt Method | 7439 | ||
10.37.7.3 Computational Modeling of Oriented Nafion® | 7440 | ||
10.37.8 Conclusions | 7441 | ||
Acknowledgments | 7441 | ||
References | 7441 | ||
Polymer Electrolyte Membrane Degradation | 7445 | ||
10.38.1 Introduction | 7445 | ||
10.38.2 Mechanical Degradation of Polymer Electrolyte Membranes | 7446 | ||
10.38.3 Chemical Degradation of Polymer Electrolyte Membranes | 7447 | ||
10.38.4 Summary | 7451 | ||
References | 7451 | ||
Molecular and Mesoscale Modeling of Proton Exchange Membranes | 7455 | ||
10.39.1 Introduction | 7455 | ||
10.39.2 Simulations of PEMs | 7457 | ||
10.39.2.1 Ab Initio Dynamics | 7457 | ||
10.39.2.2 Classical Molecular Dynamics | 7466 | ||
10.39.2.3 Course-Grained Simulations | 7477 | ||
10.39.2.4 Statistical Mechanics | 7483 | ||
10.39.3 Future Directions | 7485 | ||
References | 7486 | ||
Polymers for Thin Film Capacitors: Energy Storage - Li Conducting Polymers | 7489 | ||
10.40.1 Capacitor Fundamentals | 7489 | ||
10.40.2 Dielectric Polymers | 7491 | ||
10.40.3 Biaxially Oriented PP Film Capacitors | 7492 | ||
10.40.4 Ferroelectric Poly(vinylidene fluoride)-Based Film Capacitors | 7494 | ||
10.40.5 High-Temperature Polymer Capacitors | 7498 | ||
10.40.6 Polymer Nanocomposite Capacitors | 7503 | ||
10.40.7 Conclusions | 7506 | ||
References | 7506 | ||
Aromatic Poly(amides) for Reverse Osmosis | 7509 | ||
10.41.1 Introduction | 7509 | ||
10.41.2 RO Theory | 7511 | ||
10.41.3 Real-World Design Considerations | 7513 | ||
10.41.4 RO History | 7515 | ||
10.41.5 Thin-Film Composites | 7515 | ||
10.41.6 Polyamide Thin-Film Composites | 7516 | ||
10.41.7 FT-30 Polymer Analogies | 7521 | ||
10.41.8 Conclusions | 7524 | ||
References | 7525 | ||
Electrolyzer Membranes | 7527 | ||
10.42.1 Introduction | 7528 | ||
10.42.2 Development of Polymer Electrolyte Membranes for Electrolysis | 7528 | ||
10.42.3 Polymer Membranes in the Chlor-Alkali Industry | 7529 | ||
10.42.4 Polymer Membranes in Gas Generators | 7529 | ||
10.42.5 Polymer Membranes in Early Regenerative Fuel Cells | 7530 | ||
10.42.6 Polymer Membrane Performance and\rDegradation | 7531 | ||
10.42.7 Performance Fundamentals | 7532 | ||
10.42.7.1 Basics of PEMEC Operation | 7532 | ||
10.42.8 Electrolysis and Thermochemical Cycles | 7539 | ||
10.42.9 Status of Nuclear Power Technology | 7540 | ||
10.42.10 Review of the Hybrid Sulfur Electrolyzer | 7541 | ||
10.42.11 Hybrid Sulfur Electrolyzer Performance | 7542 | ||
10.42.12 Conclusions | 7547 | ||
References | 7547 | ||
Index\r | 7551 | ||
Permission Acknowledgments | 7739 |