Menu Expand
Comprehensive Renewable Energy

Comprehensive Renewable Energy

Trevor Letcher

(2012)

Additional Information

Abstract

Comprehensive Renewable Energy, winner of a 2012 PROSE Award for Best Multi-volume Reference in Science from the Association of American Publishers, is the only work of its type at a time when renewable energy sources are seen increasingly as realistic alternatives to fossil fuels. As the majority of information published for the target audience is currently available via a wide range of journals, seeking relevant information (be that experimental, theoretical, and computational aspects of either a fundamental or applied nature) can be a time-consuming and complicated process.

Comprehensive Renewable Energy is arranged according to the most important themes in the field (photovoltaic technology; wind energy technology; fuel cells and hydrogen technology; biomass and biofuels production; hydropower applications; solar thermal systems: components and applications; geothermal energy; ocean energy), and as such users can feel confident that they will find all the relevant information in one place, with helpful cross-referencing between and within all the subject areas, to broaden their understanding and deepen their knowledge. It is an invaluable resource for teaching as well as in research.

Available online via SciVerse ScienceDirect and in print.

  • Editor-in Chief, Professor Ali Sayigh (Director General of WREN (World Renewable Energy Network) and Congress Chairman of WREC (World Renewable Energy Congress, UK) has assembled an impressive, world-class team of Volume Editors and Contributing Authors. Each chapter has been painstakingly reviewed and checked for consistent high quality. The result is an authoritative overview which ties the literature together and provides the user with a reliable background information and citation resource.
  • The field of renewable energy counts several journals that are directly and indirectly concerned with the field. There is no reference work that encompasses the entire field and unites the different areas of research through deep foundational reviews. Comprehensive Renewable Energy fills this vacuum, and can be considered the definitive work for this subject area. It will help users apply context to the diverse journal literature offering and aid them in identifying areas for further research.
  • Research into renewable energy is spread across a number of different disciplines and subject areas. These areas do not always share a unique identifying factor or subject themselves to clear and concise definitions. This work unites the different areas of research and allows users, regardless of their background, to navigate through the most essential concepts with ease, saving them time and vastly improving their understanding.
  • There are more than 1000 references from books, journals and the internet within the eight volumes. It is full of color charts, illustrations and photographs of real projects and research results from around the world.
  • The only reference work available that encompasses the entire field of renewable energy and unites the different areas of research through deep foundational reviews.
  • Allows readers, regardless of their background, to navigate through the most essential concepts with ease, saving them time and vastly improving their understanding

"…a useful acquisition for libraries that wish to acquire only one resource on the subject or for libraries that collect comprehensively in this area." --CHOICE, March 2013

Table of Contents

Section Title Page Action Price
e9780080878720v1.pdf 1
Cover\r 1
Comprehensive Renewable Energy\r 2
Copyright 5
Editor-In-Chief 6
Volume Editors\r 8
Contributors For All Volumes 12
Preface\r 20
Contents\r 24
Introduction to Photovoltaic Technology 36
1.02.1 Introduction 36
1.02.2 Guide to the Reader 37
1.02.2.1 Quick Guide 37
1.02.2.2 Detailed Guide 38
1.02.3 Conclusion 42
References 42
Solar Photovoltaics Technology: No Longer an Outlier 44
1.03.1 A Look at Policies, Progress, and Prognosis 44
1.03.2 A Glimpse at the Industry, the World, and the Markets 47
1.03.3 The Technologies 49
1.03.3.1 Evolutionary Technologies 50
1.03.3.2 Disruptive Technologies 52
1.03.3.3 Revolutionary Photovoltaics: The Chase Toward the Next Generations 56
1.03.4 Conclusions 58
e9780080878720v2 836
Cover\r 836
Comprehensive Renewable Energy \r 837
Copyright\r 840
Editor-In-Chief\r 841
Volume Editors \r 843
Contributors for all Volumes \r 847
Preface\r 855
Contents\r 859
Wind Energy - Introduction 867
2.01.1 Introduction 867
2.01.2 Pros and Cons of Wind Energy 869
2.01.3 Brief Content Presentation 871
2.01.4 Conclusions 874
References 875
Further Reading 876
Relevant Websites 876
Wind Energy Contribution in the Planet Energy Balance and Future Prospects 877
2.02.1 Introduction 877
2.02.2 Energy Consumption around the Planet 878
2.02.3 Electrical Power and Electrical Generation 880
2.02.4 Fossil Fuel Status of Our Planet 883
2.02.4.1 Oil Data 883
2.02.4.2 Natural Gas Data 886
2.02.4.3 Coal Data 886
2.02.5 The Role of RES and Fossil Fuels in the Energy Future of Our Planet 887
2.02.5.1 The Energy Balance of Our Planet 887
2.02.5.2 Time Depletion of Fossil Fuels 888
2.02.5.3 Environmental Impacts of Energy: Carbon Dioxide Emissions 888
2.02.5.4 Comparing RES and Fossil Fuels (Pros and Cons) with Emphasis on Wind Energy 891
2.02.6 Wind Power Status in the World Market 891
2.02.7 Time Evolution of the Major Wind Power Markets 893
2.02.8 Forecasting the Wind Power Time Evolution 897
2.02.9 The Future and Prospects of Wind Energy 901
2.02.10 Conclusions 903
References 903
Further Reading 905
Relevant Websites 905
History of Wind Power 907
2.03.1 Sails 907
2.03.2 Early Wind Devices and Applications 907
2.03.3 Persian Vertical Axis Designs 910
2.03.4 The Introduction of Windmills into Europe 910
2.03.5 Horizontal Axis Machines 911
2.03.6 Post and Tower Mills 912
2.03.7 Technological Developments 914
2.03.8 Theory and Experiment: The Early Science 915
2.03.9 The End of Windmills 917
2.03.10 The American Wind Pump 917
2.03.11 Electrical Power from the Wind 918
2.03.12 Large Machines 920
2.03.13 The Smith-Putnam Machine 922
2.03.14 Postwar Programs 924
2.03.15 The Mother of All Modern Wind Turbines 926
2.03.16 Ulrich Hütter 927
2.03.17 The Battle of the Blades: Two versus Three 927
2.03.18 Large Two-Bladed Wind Turbines 930
2.03.19 The California Wind Rush 932
2.03.20 Other Manufacturers 937
2.03.21 Large Vertical Axis Wind Turbines 937
2.03.22 Organizations: BWEA, EWEA, and IEA 937
Further Reading 938
Wind Energy Potential 939
2.04.1 Introduction 940
2.04.2 Wind Characteristics 940
2.04.2.1 Origin of Wind 940
2.04.2.2 Meteorology of Wind 940
2.04.2.3 Wind Direction and Wind Velocity 940
2.04.2.4 Fundamental Causes of Wind 940
2.04.3 Wind Measurements 941
2.04.3.1 Wind Speed 941
2.04.3.2 Cup Anemometers 941
2.04.3.3 Other Anemometers 941
2.04.3.4 Wind Direction 942
2.04.3.5 Wind Rose 942
2.04.3.6 Wind Speed Profiles 943
2.04.4 Analysis of Wind Regimes 947
2.04.4.1 Wind Speed Variation with Time 947
2.04.4.2 Mathematic Representation of Wind Speed 949
2.04.4.3 Wind Resource Atlas Models 952
2.04.4.4 Wind Resource Atlas 953
2.04.5 Dynamic Study of Wind Speed 953
2.04.5.1 Stochastic Models for Simulating and Forecasting Wind Speed Time Series 954
2.04.5.2 Bayesian Adaptive Combination of Wind Speed Forecasts from Neural Network Models 954
2.04.6 Wind Energy 955
2.04.6.1 Wind Energy Production 955
2.04.6.2 Wind Energy Potential 956
2.04.7 Conclusions 957
References 957
Further Reading 958
Wind Turbines: Evolution, Basic Principles, and Classifications 959
2.05.1 Introduction 959
2.05.2 Evolution of Modern Wind Turbines 959
2.05.2.1 Growth in Installed Capacity 960
2.05.2.2 Increase in Turbine Size 961
2.05.2.3 Improvements in System Performance 962
2.05.2.4 Advances in the Control and Power Transmission Systems 964
2.05.2.5 Economic Evolution 966
2.05.3 Basic Principles 966
2.05.3.1 Power Available in the Wind 966
2.05.3.2 Power Coefficient, Torque Coefficient, and Tip Speed Ratio 968
2.05.3.3 Airfoil Lift and Drag 968
2.05.4 Classifications of Wind Turbines 970
2.05.4.1 Horizontal Axis Wind Turbines 970
2.05.4.2 Vertical Axis Wind Turbines 972
2.05.5 Rotor Performance Curves 976
References 977
Further Reading 977
Energy Yield of Contemporary Wind Turbines 979
2.06.1 From Wind Power to Useful Wind Energy 980
2.06.1.1 Assessment of Wind Energy Losses 980
2.06.2 Wind Potential Evaluation for Energy Generation Purposes 983
2.06.2.1 Wind Speed Distributions 983
2.06.2.2 Determination of Weibull Main Parameters 986
2.06.2.3 The Impact of the Scale and Shape Factor Variation 988
2.06.2.4 Performance Assessment for the Weibull Distribution 990
2.06.2.5 Long-Term Study of Wind Energy Potential 990
2.06.2.6 Calm Spell Period Determination 991
2.06.2.7 Wind Gust Determination 992
2.06.3 Power Curves of Contemporary Wind Turbines 993
2.06.3.1 Description of a Typical Wind Turbine Power Curve 993
2.06.3.2 Producing a Wind Turbine Power Curve 993
2.06.3.3 Power Curve Modeling 995
2.06.3.4 Power Curve Estimation 997
2.06.4 Estimating the Energy Production of a Wind Turbine 998
2.06.4.1 From the Instantaneous Power Output to Energy Production 998
2.06.4.2 Estimating the Annual Wind Energy Production 1000
2.06.4.3 Estimating the Mean Power Coefficient 1001
2.06.4.4 The Impact of the Scale Factor Variation on the Mean Power Coefficient 1002
2.06.4.5 The Impact of the Shape Factor Variation on the Mean Power Coefficient 1003
2.06.4.6 The Impact of the Shape and Scale Factor Variation on the Annual Energy Production 1004
2.06.4.7 Energy Contribution of the Ascending and Rated Power Curve Segments 1004
2.06.4.8 Energy Yield Variation due to the Use of Theoretical Distributions 1006
2.06.5 Parameters Affecting the Power Output of a Wind Turbine 1006
2.06.5.1 The Wind Shear Variation 1006
2.06.5.2 Extrapolation of the Shape and Scale Parameters of Weibull at Hub Height 1010
2.06.5.3 Estimation of Wind Speed at Hub Height, Upstream of the Machine 1010
2.06.5.4 The Impact of Air Density Variation 1012
2.06.5.5 The Impact of the Wake Effect 1015
2.06.6 The Impact of Technical Availability on Wind Turbine Energy Output 1017
2.06.6.1 Causes of Technical Unavailability 1018
2.06.6.2 Estimating Technical Availability 1019
2.06.6.3 Experience Gained from the Monitoring of Technical Availability 1021
2.06.7 Selecting the Most Appropriate Wind Turbine 1024
2.06.7.1 The Role of Wind Turbine Databases 1025
2.06.7.2 Selecting the Most Appropriate Wind Turbine 1028
2.06.7.3 Determination of General Trends 1030
2.06.8 Conclusions 1030
References 1032
Further Reading 1034
Relevant Websites 1034
Wind Parks Design, Including Representative Case Studies 1035
2.07.1 Introduction 1035
2.07.2 The Selection of the Wind Park’s Installation Site 1037
2.07.2.1 Aiming at the Maximization of the Electricity Produced 1037
2.07.2.2 The Effect of Land Morphology on the Site Selection 1040
2.07.2.3 Aiming at the Minimization of the Set-Up Cost 1043
2.07.2.4 Installation Issues of the Wind Turbines 1043
2.07.2.5 Aiming at the Minimization of the Time Required for the Wind Park Project Implementation 1047
2.07.3 The Wind Potential Evaluation 1049
2.07.4 The Selection of the Wind Turbine Model 1052
2.07.5 The Micro-Siting of a Wind Park 1056
2.07.6 The Calculation of the Annual Electricity Production 1062
2.07.7 Social Approval of the Wind Park 1068
2.07.8 The Wind Park Integration in Local Networks 1072
2.07.8.1 The Power Quality Disturbances Caused by the Wind Turbines 1072
2.07.8.2 Wind Power Penetration in Weak Networks and Dynamic Security 1074
2.07.8.3 The Connection of Wind Parks in Electricity Networks 1075
2.07.9 Economic Analysis 1076
2.07.9.1 The Project’s Set-Up Cost Calculation and the Funding Scheme 1076
2.07.9.2 The Calculation of the Investment’s Annual Revenues 1076
2.07.9.3 Annual Expenses 1077
2.07.9.4 Investment’s Annual Net Profits 1077
2.07.9.5 Economic Indexes 1077
2.07.10 Presentation of Characteristic Case Studies 1077
2.07.10.1 The Design of a Wind Park in a Small Noninterconnected Power System 1078
2.07.10.2 The Design of a Wind Park in a Large Noninterconnected Power System 1082
2.07.10.3 The Roscoe Wind Park in Texas – Largest Onshore Wind Park 1084
2.07.10.4 The Thanet Wind Park in the United Kingdom – Largest Offshore Wind Park 1086
2.07.11 Epilog 1087
References 1088
Further Reading 1089
Aerodynamic Analysis of Wind Turbines 1091
2.08.1 Introduction 1091
2.08.2 Momentum Theory 1092
2.08.2.1 One-Dimensional Momentum Theory 1092
2.08.2.2 The Optimum Rotor of Glauert 1093
2.08.2.3 The Blade-Element Momentum Theory 1094
2.08.3 Advanced Aerodynamic Modeling 1097
2.08.3.1 Vortex Models 1097
2.08.3.2 Numerical Actuator Disk Models 1098
2.08.3.3 Full Navier–Stokes Modeling 1098
2.08.4 CFD Computations of Wind Turbine Rotors 1099
2.08.5 CFD in Wake Computations 1100
2.08.6 Rotor Optimization Using BEM Technique 1102
2.08.7 Noise from Wind Turbines 1104
References 1105
Further Reading 1106
Mechanical-Dynamic Loads 1109
2.09.1 Introduction 1110
2.09.2 Dynamic Analyses 1110
2.09.3 Load Cases 1112
2.09.4 Loads 1113
2.09.4.1 Aerodynamic Loads 1113
2.09.4.2 Hydrodynamic Loads 1115
2.09.4.3 Gravitational Loads 1117
2.09.4.4 Inertial Loads 1117
2.09.4.5 Control Loads 1117
2.09.4.6 Mooring System Loads 1118
2.09.4.7 Current Loads 1119
2.09.4.8 Ice Loads 1119
2.09.4.9 Soil Interaction Loads 1119
2.09.5 Case Studies: Examples of Load Modeling in the Integrated Analyses 1120
2.09.5.1 Onshore Wind Turbine: Wind-Induced Loads 1120
2.09.5.2 Offshore Wind Turbine: Wave- and Wind-Induced Loads 1124
2.09.6 Conclusions 1128
Appendix A: Environmental Conditions 1128
A.1 General 1128
A.2 Joint Distribution of Wave Conditions and Mean Wind 1128
Appendix B: Wind Theory 1129
Appendix C: Wave Theory 1131
C.1 Regular Wave Theory 1131
C.2 Modified Linear Wave Theory 1132
C.3 Irregular Wave Theory 1132
References 1133
Electrical Parts of Wind Turbines 1135
2.10.1 Introduction 1136
2.10.2 Power Control 1138
2.10.2.1 Pitch Control 1139
2.10.2.2 Yaw System 1143
2.10.3 Electricity Production 1145
2.10.3.1 The Generator 1145
2.10.3.2 Wind Turbine Generators 1147
2.10.3.3 Power Electronics 1160
2.10.4 Lightning Protection 1164
2.10.5 Small Wind Turbines 1167
2.10.6 Outlook 1169
2.10.7 Wind Turbine Industry 1172
2.10.7.1 Major Wind Turbine Manufacturers 1172
2.10.7.2 Subproviders 1190
References 1194
Further Reading 1194
Relevant Websites 1194
Wind Turbine Control Systems and Power Electronics 1195
2.11.1 Control Objectives 1196
2.11.2 Wind Turbine Modeling 1199
2.11.2.1 Mechanical Part 1200
2.11.2.2 Electrical Part – Generators and Converters 1202
2.11.2.3 Full Model 1207
2.11.3 Control 1209
2.11.3.1 Overall Control Strategy 1209
2.11.3.2 Pitch Control 1211
2.11.3.3 Generator Control 1218
2.11.3.4 Coupled Pitch–Generator Control 1224
2.11.3.5 Grid Control 1224
2.11.3.6 Yaw Control 1226
2.11.3.7 Grid Issues 1228
2.11.4 Fault Accommodation 1230
2.11.5 Hardware 1232
2.11.5.1 Sensors 1232
2.11.5.2 Actuators 1234
References 1235
Further Reading 1236
Relevant Websites 1236
Testing, Standardization, Certification in Wind Energy 1237
2.12.1 Introduction 1237
2.12.1.1 Brief History of Standardization in Wind Energy 1237
2.12.1.2 Wind Energy Technology-Specific Issues 1238
2.12.1.3 Overview and Status of International Wind Energy Standards 1238
2.12.2 Standards with Design Requirements for Wind Turbines 1239
2.12.2.1 Wind Turbine Design-Related IEC Standards 1240
2.12.2.2 Other Standards Related to Wind Turbine-Specific Design Aspects 1242
2.12.3 Testing Methods for Wind Turbines and Wind Plants 1242
2.12.3.1 Introduction 1242
2.12.3.2 Wind Speed Measurement 1243
2.12.3.3 Power Performance Testing 1243
2.12.3.4 Mechanical Load Measurements 1244
2.12.3.5 Acoustic Noise Measurements 1245
2.12.3.6 Electrical Characteristics and Power Quality Measurements 1246
2.12.3.7 Rotor Blade Testing 1246
2.12.3.8 Safety and Function Testing 1247
2.12.3.9 Measurement Quality 1248
2.12.4 Certification in the Wind Industry 1249
2.12.4.1 General Aspects of Certification in Wind Energy 1249
2.12.4.2 Certification Systems in Wind Energy 1249
2.12.5 Conclusions 1254
References 1254
IEC Standards (to be purchased via IEC or the National Standardization Institutes) 1255
Relevant Websites 1255
Design and Implementation of a Wind Power Project 1257
2.13.1 Introduction 1258
2.13.2 Project Management 1259
2.13.3 Finding Good Wind Sites 1260
2.13.4 Feasibility Study 1260
2.13.4.1 Impact on Neighbors 1261
2.13.4.2 Grid Connection 1261
2.13.4.3 Land for Wind Power Plants 1261
2.13.4.4 Opposing Interests 1261
2.13.4.5 Local Acceptance 1262
2.13.4.6 Permission 1262
2.13.5 Project Development 1262
2.13.5.1 Verification of Wind Resources 1262
2.13.5.2 Land Lease 1263
2.13.5.3 Micro-Siting and Optimization 1263
2.13.5.4 Environment Impact Assessment 1263
2.13.5.5 Public Dialogue 1263
2.13.5.6 Appeals and Mitigation 1264
2.13.6 Micro-Siting 1264
2.13.6.1 Wind Wakes 1264
2.13.6.2 Energy Rose 1265
2.13.6.3 Wind Farm Layout 1265
2.13.6.4 Optimization 1267
2.13.7 Estimation of Power Production 1269
2.13.7.1 Long-Term Wind Climate 1269
2.13.7.2 Wind Data 1269
2.13.7.3 Wind Data Sources 1272
2.13.8 Planning Tools 1273
2.13.8.1 The Wind Atlas Method 1273
2.13.8.2 Wind Measurements 1278
2.13.8.3 Pitfalls 1279
2.13.9 Choice of Wind Turbines 1282
2.13.9.1 Wind Turbine Size 1282
2.13.9.2 Type of Wind Turbines 1283
2.13.9.3 Wind Turbines Tailored to Wind Climate 1284
2.13.9.4 Supplier 1284
2.13.10 Economics of Wind Power Plants 1286
2.13.10.1 Investment 1287
2.13.10.2 Economic Result 1288
2.13.10.3 Revenues 1289
2.13.10.4 Calculation of Economic Result 1289
2.13.10.5 Risk Assessment 1290
2.13.10.6 Financing 1291
2.13.11 Documentation 1291
2.13.11.1 Project Description 1291
2.13.11.2 Environment Impact Assessment 1292
2.13.11.3 Economic Reports 1292
2.13.12 Building a Wind Power Plant 1293
2.13.12.1 Selection of Suppliers 1293
2.13.12.2 Contracts 1293
2.13.12.3 Supervision and Quality Control 1293
2.13.12.4 Commissioning and Transfer 1294
2.13.13 Operation 1294
2.13.13.1 Maintenance 1294
2.13.13.2 Condition Monitoring 1294
2.13.13.3 Performance Monitoring 1295
2.13.13.4 Decommissioning and Site Restoration 1295
2.13.14 Business Models 1295
2.13.15 Summary and Conclusion 1295
References 1296
Further Reading 1296
Offshore Wind Power Basics 1297
2.14.1 Introduction 1298
2.14.2 Offshore Wind Energy Status 1298
2.14.2.1 History and Background 1298
2.14.2.2 Offshore Wind Energy Activity 1300
2.14.3 Offshore Wind Farms – Basic Features 1306
2.14.3.1 Wind Turbine Design 1306
2.14.3.2 Support Structures and Towers 1307
2.14.3.3 Supplementary Equipment 1316
2.14.4 Offshore Wind Farm Design, Installation, and Maintenance 1318
2.14.4.1 Equipment Selection Requirements 1318
2.14.4.2 Other Wind Farm Design Considerations 1321
2.14.4.3 Installation and Transportation Facilities 1322
2.14.4.4 O&M Facilities 1324
2.14.5 Offshore Wind Energy Economic Considerations 1325
2.14.6 Environmental and Social Issues 1329
2.14.6.1 Noise Impacts 1329
2.14.6.2 Visual Impacts 1329
2.14.6.3 Impacts on Wild Life 1329
2.14.7 Future Trends and Prospects 1330
References 1332
Further Reading 1334
Relevant Websites 1334
Wind Energy Economics 1335
2.15.1 Introduction 1336
2.15.2 Basic Financial Issues 1337
2.15.2.1 Definitions 1337
2.15.2.2 Price Calculation Methods 1338
2.15.2.3 Recommended Practices 1338
2.15.2.4 Interest Rates 1338
2.15.2.5 Amortization Periods 1338
2.15.3 Cost and Performance Issues 1340
2.15.3.1 Balance of Plant Costs 1340
2.15.3.2 Operational Costs 1340
2.15.3.3 Size of Wind Farm 1341
2.15.3.4 Installed Costs and Wind Speeds 1341
2.15.4 Onshore Wind 1341
2.15.4.1 Historical Cost and Performance Trends 1341
2.15.4.2 Current Plant Costs 1342
2.15.4.3 Current Electricity Generation Costs 1343
2.15.4.4 Small Wind Turbines 1343
2.15.4.5 Historical Price Trends 1344
2.15.4.6 Current Installed Costs 1345
2.15.5 Analysis of Offshore Costs 1346
2.15.5.1 Operation and Maintenance Costs 1346
2.15.5.2 Water Depth and Distance from Shore 1347
2.15.6 Electricity-Generating Costs 1347
2.15.6.1 Generation Cost Comparisons 1348
2.15.6.2 Cost Comparisons – Wind and Other Plant 1349
2.15.6.3 Cost Comparisons on a Level Playing Field 1349
2.15.7 External Costs 1350
2.15.7.1 Types of External Cost 1350
2.15.7.2 Costing Pollution 1351
2.15.7.3 Market Solutions 1351
2.15.7.4 The UK Climate Change Levy 1352
2.15.7.5 Renewable Energy Support Mechanisms 1352
2.15.7.6 Embedded Generation Benefits 1352
2.15.8 Variability Costs 1353
2.15.8.1 Electricity Networks 1354
2.15.8.2 Characteristics of Wind Energy 1355
2.15.8.3 Assimilating Wind 1355
2.15.8.4 Extra Short-Term Reserve Needs and Costs 1356
2.15.8.5 Carbon Dioxide Savings 1357
2.15.8.6 Extra Backup and Its Costs 1357
2.15.8.7 Capacity Credit 1357
2.15.8.8 The Cost of Backup 1358
2.15.8.9 Transmission Constraints 1358
2.15.8.10 Wind Surpluses at High Penetration Levels 1358
2.15.8.11 Total Costs of Variability 1359
2.15.8.12 Mitigating the Effects and Costs of Variability 1360
2.15.9 Total Cost Estimates 1363
2.15.10 Future Price Trends 1363
2.15.10.1 Future Fuel Prices 1364
2.15.10.2 Price Comparisons in 2020 1365
2.15.11 Conclusions 1365
References 1366
Environmental-Social Benefits/Impacts of Wind Power 1369
2.16.1 Introduction – Scope and Objectives 1370
2.16.2 Main Environmental Benefits of Wind Power 1370
2.16.2.1 General Considerations 1370
2.16.2.2 Avoided Air Pollution – Reduction of CO2 Emissions 1370
2.16.2.3 Reduction of Water Consumption 1371
2.16.3 Main Social Benefits of Wind Power 1373
2.16.3.1 Fossil Fuel Saving/Substitution 1373
2.16.3.2 Regional Development – New Activities 1373
2.16.3.3 Employment Opportunities and Job Positions in the Wind Power Sector 1374
2.16.4 Environmental Behavior of Wind Energy 1376
2.16.5 Methods and Tools for Environmental Impact Assessment 1377
2.16.6 Noise Impact 1379
2.16.6.1 Qualitative and Quantitative Consideration of Noise Impact 1379
2.16.6.2 Research and Development Relevant to Wind Turbine Noise 1384
2.16.7 Wind Turbines’ Visual Impact and Aesthetics 1384
2.16.7.1 General Considerations on Visual Impact and Aesthetics 1384
2.16.7.2 Shadow Flickering 1388
2.16.8 Impacts in Fauna and Flora and Microclimate 1388
2.16.8.1 Impacts in Flora and Fauna 1388
2.16.8.2 Impacts on the Microclimate 1389
2.16.9 Other Environmental Impacts 1390
2.16.9.1 Interference of a Wind Turbine with Electromagnetic Communication Systems 1390
2.16.9.2 Traffic – Transportation and Access 1390
2.16.9.3 Archaeology and Cultural Heritage 1390
2.16.9.4 Health and Safety 1391
2.16.10 Offshore Environmental Impacts 1391
2.16.10.1 Offshore Noise Impact 1391
2.16.10.2 Construction and Decommissioning Noise 1392
2.16.10.3 Operational Noise 1392
2.16.10.4 Visual Impacts 1393
2.16.10.5 Impacts on Marine Mammals 1394
2.16.10.6 Impacts on Fish 1394
2.16.10.7 Impacts on Birds 1395
2.16.10.8 Effects of Offshore Wind Energy on the Microclimate 1396
2.16.11 Mitigation Measures – Conclusions 1396
2.16.11.1 The Importance of Wind Farm Siting 1396
2.16.11.2 Mitigation through Technology 1397
2.16.12 Social Acceptability of Wind Power Projects 1397
2.16.12.1 General Considerations 1397
2.16.12.2 Case Studies for Public Attitude Analysis 1400
2.16.13 The Public Attitude Toward Offshore Wind Parks 1401
2.16.14 Future Trends in Wind Parks’ Social and Environmental Impacts Assessment 1402
2.16.15 Conclusions 1403
References 1403
Further Reading 1404
Wind Energy Policy 1407
2.17.1 Introduction 1407
2.17.2 Energy and the Economy 1408
2.17.2.1 Global Energy Markets 1408
2.17.2.2 Renewable Energy Policy 1411
2.17.3 Fossil Fuel and Nuclear Options for Reducing CO2 Emissions 1414
2.17.3.1 Clean Coal 1414
2.17.3.2 Natural Gas 1415
2.17.3.3 Nuclear Power 1415
2.17.4 Renewable Alternatives to Fossil Fuels 1418
2.17.4.1 Biomass for Generating Electricity 1418
2.17.4.2 Hydraulics and Storage 1419
2.17.4.3 Geothermal 1420
2.17.4.4 Generating Electricity from Intermittent Energy Sources 1420
2.17.5 The Economics of Wind Energy in Electricity Generation 1421
2.17.5.1 Structure of Electricity Grids: Economics 1422
2.17.5.2 Integration of Wind Power into Electricity Grids 1425
2.17.6 Discussion 1431
References 1433
Further Reading 1434
Wind Power Integration 1435
2.18.1 Introduction 1436
2.18.2 Overview of Conventional Electrical Power Systems 1437
2.18.2.1 Structure of an Electrical Power System 1437
2.18.2.2 Operational Objectives of an Electrical Power System 1447
2.18.2.3 Operating States of an Electrical Power System 1447
2.18.3 The Distinctive Characteristics of Wind Energy 1452
2.18.3.1 The Unpredictability and Variability of Wind 1452
2.18.3.2 The Variability of Electrical Energy from Wind Sources 1454
2.18.4 Wind Power and Power System Interaction 1457
2.18.4.1 Comparison between Conventional and Wind Generation Technologies 1458
2.18.4.2 Potential Disturbances in the Interaction of Wind Turbines with the Electrical Network 1459
2.18.5 Planning and Operation of Wind Power Electrical Systems 1462
2.18.5.1 Repercussions of Wind Power for Power System Generation 1462
2.18.5.2 Impact of Wind Power on the Power Transmission and Distribution Networks 1468
2.18.6 Integration of Wind Energy into MGs 1473
2.18.6.1 MG Modeling 1477
2.18.6.2 Benefits of Wind Energy Integration into MGs 1477
2.18.6.3 Problems Associated with Wind Energy Penetration in MGs 1478
2.18.7 Questions Related to the Extra Costs of Wind Power Integration 1478
2.18.8 Requirements for Wind Energy Integration into Electrical Networks 1479
2.18.9 Wind Power Forecasting 1480
2.18.9.1 Physical Models 1481
2.18.9.2 Statistical and Data Mining Models 1481
2.18.9.3 Currently Implemented Forecasting Tools 1482
2.18.10 Future Trends 1483
References 1484
Further Reading 1488
Relevant Websites 1488
Stand-Alone, Hybrid Systems 1489
2.19.1 Introduction 1489
2.19.2 Historical Development of Wind Stand-Alone Energy Systems 1490
2.19.3 Contribution of Wind in Stand-Alone Energy Systems 1492
2.19.4 System Configuration 1495
2.19.4.1 Wind Turbine Generator 1497
2.19.4.2 Storage System Unit 1498
2.19.4.3 Complementary Electric Generator Unit 1498
2.19.4.4 Auxiliary Electronic Equipment 1498
2.19.5 Stand-Alone Hybrid Systems Configurations 1498
2.19.5.1 Stand-Alone Wind Power Systems 1499
2.19.5.2 Stand-Alone Wind–Diesel Power Systems 1502
2.19.5.3 Stand-Alone Wind–Photovoltaic Power Systems 1504
2.19.5.4 Stand-Alone Wind–Hydro Power Systems 1509
2.19.5.5 Stand-Alone Wind–Hydrogen Power Systems 1511
2.19.6 Energy Storage in Wind Stand-Alone Energy Systems 1513
2.19.6.1 Design Parameters of Energy Storage Systems 1515
2.19.6.2 Short Description of Energy Storage Technologies 1515
2.19.7 Design, Simulation, and Evaluation Software Tools for Wind-Based Hybrid Energy Systems 1517
References 1519
Further Reading 1521
Wind Power Industry and Markets 1523
2.20.1 Global Market Development 1523
2.20.2 Trends in the Development of Wind Turbines 1525
2.20.3 Main Drivers behind the Wind Power Development 1526
2.20.4 Market Development in Europe 1528
2.20.4.1 Germany 1528
2.20.4.2 Spain 1529
2.20.4.3 Rest of Europe 1530
2.20.5 Development of Wind Power in North America 1531
2.20.5.1 United States 1531
2.20.6 Wind Power Development in Asia 1532
2.20.6.1 China 1532
2.20.7 Offshore Wind Power Development 1532
2.20.8 Wind Turbine Manufacturers 1533
References 1535
Trends, Prospects, and R – D Directions in Wind Turbine Technology 1537
2.21.1 Brief Description of Wind Power Time Evolution 1538
2.21.2 The Current Wind Turbine Concept 1541
2.21.3 Size Evolution of Wind Turbines 1542
2.21.4 Pitch versus Stall and Active-Stall Wind Turbines 1545
2.21.5 Direct-Drive versus Gearbox 1546
2.21.6 Blade Design and Construction 1548
2.21.7 Innovative Concepts 1551
2.21.8 Environmental Impact Reduction 1553
2.21.9 Offshore Wind Parks 1554
2.21.10 Vertical-Axis Wind Turbines 1559
2.21.11 Small Wind Turbines 1562
2.21.12 Building-Integrated Wind Turbines 1565
2.21.13 Wind Energy Cost Time Evolution 1568
2.21.14 Research in the Wind Energy Sector 1572
2.21.15 Wind Energy Technological Problems and R&D Directions 1575
2.21.16 Financial Support of Wind Energy Research Efforts 1576
2.21.16.1 1998–2002 (FP5) 1576
2.21.16.2 2002–06 (FP6) 1577
2.21.16.3 2007–Today (FP7) 1577
2.21.17 Conclusions 1578
Appendix A Wind Energy Projects Funded by FP5 (1998–2002) 1579
Wind Turbines 1579
Research and Development of a 5MW Wind Turbine 1579
Development of a MW Scale Wind Turbine for High Wind Complex Terrain Sites 1579
Recommendations for Design of Offshore Wind Turbines 1579
Exploring New Concepts for Small and Medium-Sized Wind Mills with Improved Performance 1579
Blades and Rotors 1579
Wind Turbine Rotor Blades for Enhanced Aeroelastic Stability and Fatigue Life Using Passively Damped Composites 1579
Wind Turbine Blade Aerodynamics and Aeroelastics: Closing Knowledge Gaps 1579
Model Rotor Experiments Under Controlled Conditions 1579
Reliable Optimal Use of Materials for Wind Turbine Rotor Blades 1579
Silent Rotors by Acoustic Optimization 1579
Aerolastic Stability and Control of Large Wind Turbines 1580
Innovative Composite Hub for Wind Turbines 1580
Wind Resources Forecasting and Mapping 1580
Development of a Next Generation Wind Resource Forecasting System for the Large-Scale Integration of Onshore and Offshore Wind Farms 1580
A High Resolution Numerical Wind Energy Model for On- and Offshore Forecasting Using Ensemble Predictions 1580
Wind Energy Mapping Using Synthetic Aperture Radar 1580
Wind Farms 1580
Advanced Management and Surveillance of Wind Farms 1580
Efficient Development of Offshore Wind Farms 1580
Condition Monitoring for Offshore Wind Farms 1580
Integration of Wind Power 1580
Wind Energy Network 1580
Towards High Penetration and Firm Power from Wind Energy 1581
More Advanced Control Advice for Secure Operation of Isolated Power Systems with Increased Renewable Energy Penetration and’Storage 1581
Wind Power Integration in a Liberalized Electricity Market 1581
Cluster Pilot Project for the Integration of RES Into European Energy Sectors Using Hydrogen 1581
Solar and Wind Technology Excellence, Knowledge Exchange and Twinning Actions Romanian Centre 1581
Appendix B Wind Energy Projects Funded by FP6 (2002–06) 1581
Next generation design tool for optimization of wind farm topology and operation 1581
European Wind Integration Study 1581
South-East Europe Wind Energy Exploitation – Research and Demonstration of Wind Energy Utilization in Complex Terrain and Under Specific Local Wind Systems 1582
Wind Energy Technology Platform Secretariat 1582
Action Plan for High-Priority Renewable Energy Initiatives in Southern and Eastern Mediterranean Area 1582
Self Installing Wind Turbine 1582
Wind on the Grid: An Integrated Approach 1582
Decision Support for Large Scale Integration of Wind Power 1583
Development of a New Principle 3MW Direct Drive Generator and Wind Turbine 1583
Grid Architecture for Wind Power Production with Energy Storage through Load Shifting in Refrigerated Warehouses 1583
Integrated Wind Turbine Design 1583
Prediction of Waves, Wakes and Offshore Wind 1583
Dissemination Strategy on Electricity Balancing for large Scale Integration of Renewable Energy 1584
Distant Offshore Wind Farms with No Visual Impact in Deepwater 1584
Standardization of Ice Forces on Offshore Structures Design 1584
Hogsara Island Demonstration Project 1584
Appendix C Wind Energy Projects Funded by FP7 (Since 2007) 1584
Off-Shore Renewable Energy Conversion Platforms – Coordination Action 1584
Marine Renewable Integrated Application Platform 1585
Multi-Scale Data Assimilation, Advanced Wind Modeling and Forecasting with Emphasis to Extreme Weather Situations for’a’Secure Large-Scale Wind Power Integration 1585
Pilot Demonstration of Eleven 7MW-Class WEC at Estinnes in Belgium 1585
Northern Seas Wind Index Database 1585
PROcedures for TESTing and Measuring Wind Energy Systems 1585
Reliability Focused Research on Optimizing Wind Energy Systems Design, Operation and Maintenance: Tools, Proof of Concepts, Guidelines & Methodologies for a New Generation 1586
Future Deep Sea Wind Turbine Technologies 1586
High Altitude Wind Energy 1586
High Power, High Reliability Offshore Wind Technology 1586
References 1586
Further Reading 1589
Relevant Websites 1590
Special Wind Power Applications 1591
2.22.1 Introduction – The Water Demand Problem 1592
2.22.2 Desalination Processes and Plants 1592
2.22.2.1 General Considerations 1592
2.22.2.2 Membrane/RO Desalination Processes 1594
2.22.3 Energy Requirements of Desalination Processes 1595
2.22.3.1 General Issues 1595
2.22.3.2 Utilizing RESs in Desalination 1596
2.22.4 Integrated Systems of RES with Desalination Plants 1598
2.22.5 RO–Wind Desalination 1598
2.22.5.1 Basic Characteristics 1598
2.22.5.2 Design Issues 1599
2.22.5.3 Operational Issues – Technical Difficulties 1600
2.22.6 Wind–RO Configuration Possibilities 1600
2.22.6.1 Systems with Backup (Diesel/Grid) 1600
2.22.6.2 Systems without Backup 1600
2.22.6.3 Near-Constant Operating Conditions 1600
2.22.6.4 Storage Devices 1600
2.22.6.5 RO Unit Switching 1600
2.22.6.6 Wind Turbine Derating 1601
2.22.6.7 Variable Operating Conditions 1601
2.22.7 Implementation of Projects 1601
2.22.8 Implementation of Projects with Hybrid Energy Systems 1601
2.22.9 Economic Considerations in RES-Based Desalination 1602
2.22.9.1 Introductory Comments 1602
2.22.9.2 Parameters Affecting Economics of Desalination 1602
2.22.10 Examples of Wind-Based Desalination Applications – Case Studies 1604
2.22.10.1 General Issues for the Case Studies Analysis 1604
2.22.10.2 Libya 1605
2.22.10.3 Morocco 1605
2.22.10.4 Spain 1605
2.22.10.5 Milos Island, Greece 1605
2.22.11 Technological Developments and Future Trends in Hybrid Desalination Systems 1606
2.22.12 Telecommunication Stations 1606
2.22.12.1 General Considerations 1606
2.22.13 The Wind Power-Based T/C Station 1607
2.22.13.1 Configuration Options Overview 1608
2.22.14 Applications of Wind Energy in T/C Stations 1608
2.22.15 Wind Water Pumping Systems 1608
2.22.16 Water Pumping System Applications 1610
References 1611
Further Reading 1612
e9780080878720v3 1613
Cover\r 1613
Comprehensive Renewable Energy \r 1614
Copyright 1617
Editor-In-Chief\r 1618
Volume Editors 1620
Contributors For All Volumes 1624
Preface 1632
Contents 1636
Solar Thermal Systems: Components and Applications - Introduction 1644
3.01.1 The Sun 1645
3.01.2 Energy-Related Environmental Problems 1646
3.01.2.1 Acid Rain 1647
3.01.2.2 Ozone Layer Depletion 1647
3.01.2.3 Global Climate Change 1648
3.01.2.4 Renewable Energy Technologies 1648
3.01.2.4.1 Social and economic development 1649
3.01.2.4.2 Land restoration 1649
3.01.2.4.3 Reduced air pollution 1649
3.01.2.4.4 Abatement of global warming 1649
3.01.2.4.5 Fuel supply diversity 1649
3.01.2.4.6 Reducing the risks of nuclear weapons proliferation 1649
3.01.3 Environmental Characteristics of Solar Energy 1650
3.01.3.1 Equation of Time 1651
3.01.3.2 Longitude Correction 1651
3.01.3.3 Solar Angles 1651
3.01.3.3.1 Declination angle, δ 1653
3.01.3.3.2 Hour angle, h 1654
3.01.3.3.3 Solar altitude angle, α 1654
3.01.3.3.4 Solar azimuth angle, z 1655
3.01.3.3.5 Sun rise and set times and day length 1655
3.01.3.3.6 Incidence angle, θ 1655
3.01.3.4 The Incidence Angle for Moving Surfaces 1656
3.01.3.4.1 Full tracking 1657
3.01.3.4.2 N–S axis tilted/tilt daily adjusted 1657
3.01.3.4.3 N–S axis polar/E–W tracking 1657
3.01.3.4.4 E–W axis horizontal/N–S tracking 1659
3.01.3.4.5 N–S axis horizontal/E–W tracking 1660
3.01.3.4.5(i) Comparison 1660
3.01.3.5 Sun Path Diagrams 1660
3.01.4 Solar Radiation 1661
3.01.4.1 Thermal Radiation 1661
3.01.4.2 Transparent Plates 1664
3.01.5 The Solar Resource 1665
3.01.5.1 Typical Meteorological Year 1665
3.01.5.2 Typical Meteorological Year – Second Generation 1666
References 1667
The Solar Resource 1670
3.02.1 Introduction 1671
3.02.2 Sun–Earth Astronomical Relations 1672
3.02.3 Solar Constant 1675
3.02.4 Solar Spectrum 1676
3.02.4.1 Planck’s Law 1676
3.02.4.2 Wien’s Displacement Law 1676
3.02.4.3 Stefan–Boltzmann Law 1677
3.02.5 Interference of Solar Radiation with the Earth’s Atmosphere 1677
3.02.5.1 The Earth’s Atmosphere 1677
3.02.5.2 Optical Air Mass 1678
3.02.5.3 Attenuation of Solar Direct Radiation 1679
3.02.5.4 Rayleigh and Mie Scattering, Reflection, and Absorption 1679
3.02.6 Models of Broadband Solar Radiation on Horizontal and Tilted Surfaces 1682
3.02.6.1 Calculation of Solar Radiation on a Horizontal Plane 1683
3.02.6.2 The Meteorological Radiation Model 1686
3.02.6.3 Calculation of Solar Radiation on a Tilted Surface 1688
3.02.6.4 Quality Control of Solar Radiation Values 1692
3.02.7 Evaluation of Models 1692
3.02.7.1 The Standard Deviation 1693
3.02.7.2 The Root Mean Square Error 1693
3.02.7.3 The Mean Bias Error 1694
3.02.7.4 The Mean Absolute Bias Error 1694
3.02.7.5 The t-test 1694
3.02.7.6 The Index of Agreement (d) 1695
3.02.7.7 The Coefficient of Determination (R2) 1695
3.02.8 Models of Solar Spectral Radiation 1697
3.02.9 Net Solar Radiation 1697
3.02.10 Networks of Solar Radiation Stations – Solar Atlases 1701
3.02.11 Utility Tools for Solar Radiation Calculations 1705
3.02.12 Instruments for Measuring Solar Radiation 1707
3.02.12.1 Solar Radiometers 1707
3.02.12.2 The World Radiometric Reference 1710
3.02.12.3 Calibration of Solar Radiometers 1710
3.02.12.4 Uncertainty of Solar Radiometers 1710
3.02.12.5 Correction of Common Solar Radiometer Errors 1710
Appendix A: Spectral Distribution of Solar Radiation 1710
Appendix B: Radiometric Terminology 1721
Appendix C: The Sun as a Blackbody 1722
Appendix D: Physical Constants and Conversion Factors 1723
References 1723
History of Solar Energy 1728
3.03.1 Introduction 1728
3.03.1.1 The Sun 1729
3.03.2 The Early Times 1729
3.03.3 The Middle Ages 1730
3.03.4 The Twentieth Century 1734
3.03.4.1 Solar Engines – Solar Collectors 1734
3.03.4.2 The Development of Flat-Plate Collectors 1736
3.03.4.3 The Development of Selective Surfaces 1736
3.03.4.4 Space Heating and Cooling with Solar Collectors 1737
3.03.4.5 Concentrating System for Power Production 1738
3.03.5 The First Scientific Solar Energy Meetings 1739
3.03.6 Evacuated-Tube Collectors 1739
3.03.7 Heat Pipes 1740
3.03.8 Desalination with Solar Energy 1740
3.03.8.1 Solar Distillation 1740
3.03.8.2 Solar-Assisted Desalination 1743
References 1744
Further Reading 1745
Low Temperature Stationary Collectors 1746
3.04.1 Introduction 1746
3.04.1.1 Flat-Plate Collectors 1746
3.04.1.2 Absorbers for Liquid FPCs 1747
3.04.1.2.1 Stamped absorbers 1747
3.04.1.2.2 Tube absorbers 1747
3.04.1.2.3 Roll-bond absorbers 1749
3.04.1.2.4 Organic absorbers 1750
3.04.1.3 Absorbers for Air FPCs 1751
3.04.1.4 Absorber Coating 1751
3.04.1.5 Cover Material for FPCs 1754
3.04.1.6 Back and Side Insulation for FPCs 1756
3.04.1.7 Enclosure or Casing for FPCs 1756
3.04.1.8 Evacuated Tube Collectors 1759
3.04.2 Optical Analysis 1763
3.04.2.1 Reflection and Transmission of Radiation 1763
3.04.2.2 Antireflective Coatings 1768
3.04.2.3 Absorption of Solar Radiation 1769
3.04.2.4 Transmittance–Absorptance Product 1770
3.04.2.5 Absorbed Solar Energy 1771
3.04.3 Thermal Analysis 1772
3.04.3.1 Steady-State Energy Balance of FPC 1772
3.04.3.1.1 Radiation exchange between glazing and sky hrc−a 1773
3.04.3.1.2 Convection exchange between glazing and ambient hcc−a 1774
3.04.3.1.3 Radiation exchange between absorber and glazing hrp−c 1775
3.04.3.1.4 Convection exchange between absorber and cover hcp−c 1775
3.04.3.1.5 Conduction back and edge exchange between absorber and ambient 1775
3.04.3.1.6 Overall thermal loss determination qloss 1776
3.04.3.2 Solar Collector Top Heat Loss Coefficient Ut 1777
3.04.3.3 Useful Energy Transferred to the Working Fluid 1777
3.04.3.4 Collector Heat-Removal Factor 1781
3.04.4 Collector Performance Determination 1784
3.04.4.1 Collector Efficiency 1784
3.04.4.2 Incident Angle Modifier 1786
3.04.4.3 Determination of Effective Thermal Capacity 1788
References 1789
Low Concentration Ratio Solar Collectors 1792
3.05.1 Introduction 1793
3.05.1.1 Maximum Concentration Ratio 1793
3.05.2 Flat-Plate Collectors with Diffuse Reflectors 1794
3.05.3 Reverse Flat-Plate Collectors 1795
3.05.4 Compound Parabolic Collectors (CPC) 1796
3.05.4.1 Optical and Thermal Analysis of CPCs 1797
3.05.5 Concentrating Evacuated Tube Collectors 1801
3.05.6 Integrated Collector Storage Systems 1802
References 1805
High Concentration Solar Collectors 1808
3.06.1 Introduction 1810
3.06.2 General Considerations of High-Concentration Solar Collectors 1810
3.06.2.1 Basic Characteristics 1810
3.06.2.1.1 Components 1810
3.06.2.1.2 Characteristics 1810
3.06.2.1.2(i) Specular reflectivity 1810
3.06.2.1.2(ii) Shape accuracy 1810
3.06.2.2 Types 1811
3.06.2.2.1 Application 1811
3.06.2.2.2 Control 1811
3.06.2.3 System Determination of Performance 1811
3.06.2.3.1 Definition of efficiencies 1811
3.06.2.3.2 Sunshape 1811
3.06.2.4 Optical and Thermal Analysis of High-Concentration Solar Collector Systems 1812
3.06.2.4.1 Structure 1812
3.06.2.4.1(i) Geometry 1812
3.06.2.4.1(ii) Tracking accuracy 1812
3.06.2.4.2 Reflector 1812
3.06.2.4.2(i) Photogrammetry 1812
3.06.2.4.2(ii) Deflectometry 1813
3.06.2.4.2(iii) Reflectivity measurement 1813
3.06.2.4.2(iv) Laser 1814
3.06.2.4.2(v) Abrasion test 1814
3.06.2.4.3 Linear receiver 1815
3.06.2.4.3(i) Infrared light 1815
3.06.2.4.3(ii) Receiver reflection method 1815
3.06.2.4.3(iii) ParaScan 1815
3.06.2.4.3(iv) Vacuum hydrogen absorption 1816
3.06.2.4.3(iv)(a) Thermocouples 1816
3.06.2.4.3(v) Mass flow measurements 1816
3.06.2.4.3(vi) Further thermal tests (heat transport, pressure) 1816
3.06.2.4.4 Area receiver 1816
3.06.2.4.4(i) Luminance 1816
3.06.2.4.4(ii) Thermography 1816
3.06.2.4.4(iii) Infrared light 1817
3.06.2.4.4(iv) Absorber tests 1817
3.06.2.4.4(v) Moving bar, TCs 1817
3.06.2.4.4(vi) Mass flow measurements and thermal tests 1817
3.06.2.5 Operation and Maintenance 1817
3.06.2.5.1 Cleaning 1817
3.06.3 Parabolic Trough Collectors 1817
3.06.3.1 Introduction 1817
3.06.3.2 Basic Characteristics 1817
3.06.3.2.1 Structure 1817
3.06.3.2.2 Components 1818
3.06.3.2.3 Specific characteristics 1818
3.06.3.3 Types 1819
3.06.3.3.1 Size 1819
3.06.3.3.2 Material 1819
3.06.3.3.3 Heat transfer fluid 1819
3.06.3.3.4 Specific control components 1820
3.06.3.3.5 Drives 1820
3.06.3.3.6 Tracking system 1820
3.06.3.3.7 Diverse 1820
3.06.3.4 Construction and Installation 1821
3.06.3.4.1 Prefabrication 1821
3.06.3.4.2 In situ assembly 1821
3.06.3.4.3 Adjustment 1821
3.06.3.5 System-Specific Determination of Performance 1821
3.06.3.5.1 Definition of efficiencies 1821
3.06.3.5.2 Error sources 1821
3.06.3.6 Models of Collectors and Their Construction Details 1821
3.06.3.6.1 LS-1, LS-2, and LS-3 1821
3.06.3.6.2 EuroTrough 1822
3.06.3.6.3 Solargenix collector 1823
3.06.3.6.4 HelioTrough 1824
3.06.3.6.5 Ultimate Trough collector 1824
3.06.3.6.6 PT-1 1825
3.06.3.6.7 SkyTrough 1825
3.06.3.6.8 SenerTrough 1826
3.06.3.6.9 Research 1826
3.06.3.7 Solar Absorbers for PTCs 1826
3.06.3.7.1 The solar absorber of SCHOTT Solar 1826
3.06.3.7.2 The solar absorber of Siemens 1827
3.06.3.8 Operation and Maintenance 1827
3.06.3.8.1 Cleaning techniques 1827
3.06.3.8.2 Maintenance of HTF quality 1828
3.06.3.8.3 Replacement of parts 1828
3.06.3.8.4 Adjustment 1828
3.06.4 Central Receiver Systems 1828
3.06.4.1 Introduction 1828
3.06.4.2 Basic Characteristics 1828
3.06.4.2.1 Structure 1828
3.06.4.2.2 Components 1829
3.06.4.2.3 Specific characteristics 1829
3.06.4.3 Types 1829
3.06.4.3.1 Geometry of receiver aperture 1829
3.06.4.3.2 Heat transfer medium 1829
3.06.4.3.3 Receiver 1830
3.06.4.3.4 Tower construction 1830
3.06.4.3.5 Heliostat drives, kinematics, coupling, facets, mirror material, and foundation 1830
3.06.4.3.6 Specific control components 1830
3.06.4.3.7 Aim-point strategy 1830
3.06.4.4 System-Specific Determination of Performance 1830
3.06.4.4.1 Receiver efficiency and optical and thermal losses 1830
3.06.4.4.2 Heliostat loss mechanisms, tracking accuracy, and beam error 1831
3.06.4.5 Secondary Optics 1832
3.06.4.5.1 Tower reflector 1832
3.06.4.5.2 Secondary concentrators 1832
3.06.4.6 Models of Heliostats and Their Construction Details 1833
3.06.4.7 Receiver Types on the Market 1835
3.06.4.8 Operation and Maintenance 1838
3.06.4.8.1 Cleaning techniques 1838
3.06.4.8.2 Replacement of parts 1838
3.06.4.8.3 Adjustment 1838
3.06.5 Linear Fresnel Collectors 1838
3.06.5.1 Introduction 1838
3.06.5.2 Basic Characteristics 1838
3.06.5.2.1 Structure 1838
3.06.5.2.2 Components 1838
3.06.5.2.3 Specific characteristics 1838
3.06.5.3 Types 1839
3.06.5.3.1 Size 1839
3.06.5.3.2 Material 1839
3.06.5.3.3 Heat transfer fluid 1839
3.06.5.3.4 Specific operation control components 1839
3.06.5.3.5 Drives 1839
3.06.5.3.6 Tracking system 1839
3.06.5.4 System-Specific Determination of Performance 1839
3.06.5.4.1 Definition of efficiencies 1839
3.06.5.4.2 Error sources 1840
3.06.5.5 Models of Collectors and Their Construction Details 1840
3.06.5.5.1 Solar Power Group 1840
3.06.5.5.2 Solarmundo 1841
3.06.5.5.3 Ausra/Areva 1841
3.06.5.5.4 NOVATEC BioSol 1841
3.06.5.5.5 Mirroxx 1842
3.06.5.5.6 Research 1842
3.06.5.6 Operation and Maintenance 1842
3.06.5.6.1 Cleaning techniques 1842
3.06.5.6.2 Replacement of parts 1842
3.06.6 Solar Dish 1842
3.06.6.1 Introduction 1842
3.06.6.2 Basic Characteristics 1843
3.06.6.2.1 Structure 1843
3.06.6.2.2 Components 1843
3.06.6.2.3 Specific characteristics 1843
3.06.6.3 Types 1844
3.06.6.3.1 Geometry, material use, and surface characteristics of the concentrator 1844
3.06.6.3.2 Geometry of receiver aperture with Stirling device 1844
3.06.6.3.3 Characteristics of Stirling or Brayton engine 1844
3.06.6.3.4 Working gas 1845
3.06.6.4 System-Specific Determination of Performance 1845
3.06.6.4.1 Definition of efficiencies 1845
3.06.6.4.2 Error sources 1846
3.06.6.5 Models of Solar Dishes and Their Construction Details 1846
3.06.6.5.1 First models 1846
3.06.6.5.2 EuroDish 1846
3.06.6.5.3 Stirling Energy Systems 1847
3.06.6.5.4 SAIC and STM 1847
3.06.6.5.5 Infinia Solar System 1847
3.06.6.5.6 Others 1847
3.06.6.5.7 Research 1847
3.06.6.6 Operation and Maintenance 1848
3.06.6.6.1 Control system/diverse 1848
3.06.7 Criteria for the Choice of Technology 1848
3.06.7.1 Location 1848
3.06.7.2 Grid Capacity and Net System 1849
3.06.7.3 Local Cost Structure 1849
3.06.7.4 Country-Specific Subsidies, Feed-in Tariffs, and Environmental Laws 1849
References 1850
Thermal Energy Storage 1854
3.07.1 Introduction 1855
3.07.1.1 Definition of Thermal Energy Storage 1855
3.07.1.2 TES and Solar Energy 1856
3.07.1.3 Design of Storages 1856
3.07.1.4 Integration of Storages into Systems 1857
3.07.2 Methods for TES 1857
3.07.2.1 Sensible Heat 1857
3.07.2.1.1 Definition 1857
3.07.2.1.2 Air 1858
3.07.2.1.2.1 Thermal analysis of air systems 1859
3.07.2.1.3 Water 1859
3.07.2.1.3.1 Thermal analysis of water storage systems 1862
3.07.2.1.4 Other materials 1862
3.07.2.1.5 Underground thermal energy storage 1862
3.07.2.2 Latent Heat 1864
3.07.2.2.1 Definition 1864
3.07.2.2.2 Exergy analysis of a latent storage system 1865
3.07.2.3 Thermochemical Heat 1867
3.07.2.3.1 Definition 1867
3.07.2.3.2 Chemical reactions 1867
3.07.2.3.3 Sorption systems 1867
3.07.2.4 Comparison of Thermal Storage System Types 1870
3.07.3 Economics of TES 1870
3.07.3.1 TES and Energy Savings 1870
3.07.3.2 Thermoeconomics of TES 1871
3.07.4 Case Studies 1875
3.07.4.1 Combisystems 1875
3.07.4.2 BTES in a UK Office Building 1880
3.07.4.3 Molten Salts in High-Temperature Solar Power Plants 1882
3.07.4.4 Concrete and Other Solid Materials in High-Temperature Solar Power Plants 1885
3.07.4.5 PCM in Buildings as Passive Energy System 1886
3.07.4.6 PCM in Buildings as Active Energy System 1890
3.07.4.7 Seasonal Storage of Solar Energy 1891
3.07.4.8 Open Absorption Systems for Air Conditioning 1893
References 1896
Photovoltaic/Thermal Solar Collectors 1898
3.08.1 Introduction 1899
3.08.1.1 The Origins of PV/T Solar Energy Collectors 1899
3.08.1.2 Categorization of PV/T Collectors 1899
3.08.1.3 History of PV/T Collectors 1901
3.08.1.3.1 Early work on PV/T collectors 1901
3.08.1.3.2 The development of PV/T collectors 1901
3.08.2 Aspects of PV/T Collectors 1902
3.08.2.1 Electrical and Thermal Conversion of the Absorbed Solar Radiation 1902
3.08.2.2 The Effect of Illumination and Temperature to the Electrical Performance of Cells 1904
3.08.2.3 Design Principles of Flat-Plate PV/T Collectors 1906
3.08.2.4 Concentrating PV/T Collectors 1908
3.08.2.5 Aspects for CPVs 1910
3.08.2.6 Application Aspects of PV/T Collectors 1911
3.08.2.7 Economical and Environmental Aspects of PV/T Collectors 1912
3.08.3 PV/T Collector Performance 1912
3.08.3.1 PV/T Collector Analysis Principles 1912
3.08.3.2 Flat-Plate PV/T Collectors with Liquid Heat Recovery 1913
3.08.3.2.1 PV/T-water collector energy balance equations 1913
3.08.3.2.2 PV/T collector thermal losses 1914
3.08.3.2.3 The electrical part of the PV/T collector 1914
3.08.3.2.4 Thermal energy of PV/T collector 1914
3.08.3.2.5 Thermal energy of PV/T collector 1914
3.08.3.3 Flat-Plate PV/T Collectors with Air Heat Recovery 1914
3.08.3.3.1 PV/T-air collector energy balance equations 1915
3.08.3.3.2 Pressure drop 1915
3.08.3.3.3 Influence of geometrical and operational parameters 1916
3.08.3.4 PV/T-Air Collector in Natural Airflow 1917
3.08.3.4.1 Analysis of airflow rate 1917
3.08.3.4.2 Estimation of heat transfer coefficient, hc,and friction factor, f 1918
3.08.3.5 Design of Modified PV/T Systems 1919
3.08.3.6 Hybrid PV/T System Design Considerations 1920
3.08.3.6.1 PV/T collector efficiency test results 1921
3.08.3.7 Thermosiphonic PV/T Solar Water Heaters 1922
3.08.4 Application of PV/T Collectors 1923
3.08.4.1 Building Application Aspects 1923
3.08.4.1.1 PV/T collectors in the built environment 1923
3.08.4.1.2 The booster diffuse reflector concept 1924
3.08.4.2 PV/T Collectors Applied to Buildings 1925
3.08.4.2.1 PV/T-water collectors 1925
3.08.4.2.2 PV/T-air collectors 1928
3.08.4.3 The PVT/DUAL System Concept 1929
3.08.4.3.1 Modified PVT/DUAL systems 1929
3.08.4.4 PV/T–STC Combined Systems 1930
3.08.4.5 FRESNEL/PVT System for Solar Control of Buildings 1932
3.08.4.6 CPC/PVT Collector New Designs 1934
3.08.4.7 PV/T Collectors in Industry and Agriculture 1935
3.08.4.7.1 PV/T collectors in industry 1935
3.08.4.7.2 PV/T in agriculture 1937
3.08.4.7.3 PV/T collectors combined with other renewable energy sources 1938
3.08.4.7.4 Commercial PV/T collectors 1938
3.08.5 Epilog 1939
References 1939
Solar Selective Coatings 1944
3.09.1 Introduction 1944
3.09.1.1 Introductory Remarks and Definitions 1945
3.09.1.2 Definitions of Some Key Optical Properties 1946
3.09.2 Classes of Selective Absorbers 1947
3.09.2.1 Intrinsic Materials or Mass Absorbers – A Single Material Is Used Exhibiting the Desired Selectivity 1947
3.09.2.2 Tandem Stacks or Inverse Tandem Stacks of a Reflecting Surface and a Semiconductor on Top of It 1948
3.09.2.2.1 Some simple methods for the preparation of ‘tandem stacks’ 1948
3.09.2.2.2 Silicon and/or germanium on proper base surfaces 1949
3.09.2.2.3 Inverse tandem stacks 1949
3.09.2.3 Multilayer Stacks (Interference Stacks) 1949
3.09.2.4 Metal Particles in a Dielectric or Metal Matrix (Cermets) 1950
3.09.2.5 Surface Roughness 1951
3.09.2.6 Quantum Size Effects 1952
3.09.3 Characterization of Selective Surfaces 1952
References 1953
Further Reading 1955
Glazings and Coatings 1956
3.10.1 Introduction 1958
3.10.1.1 Summary 1958
3.10.1.2 Historical Development of Glass Manufacture 1958
3.10.1.3 Modern Windows 1959
3.10.1.4 Emerging Technologies 1959
3.10.2 Thermal and Optical Properties of Glazing and Coatings 1959
3.10.2.1 General Considerations 1959
3.10.2.1.1 Solar irradiation 1959
3.10.2.1.2 Optical properties of a glazing 1960
3.10.2.1.3 Definitions of useful terms 1960
3.10.2.1.4 Basic laws for solar and thermal radiation 1961
3.10.2.2 Optical Analysis of Glazing and Coatings 1962
3.10.2.2.1 Basic laws for the refraction and transmission of radiation 1962
3.10.2.2.2 Combined absorption and reflection for total transmittance 1963
3.10.2.3 Thermal Properties 1964
3.10.2.3.1 Theoretical background 1964
3.10.2.3.2 Practical considerations 1965
3.10.2.3.3 Other useful terms 1965
3.10.3 Low-Emittance Coatings 1966
3.10.3.1 General Considerations 1966
3.10.3.2 Solar Control Versus Thermal Insulation 1966
3.10.3.3 Deposition Methods 1967
3.10.3.3.1 Thermal evaporation 1967
3.10.3.3.2 Electron beam gun evaporation 1967
3.10.3.3.3 Sputtering 1967
3.10.3.3.4 Chemical methods 1967
3.10.3.4 Types of Coatings 1968
3.10.3.4.1 Doped metal oxides 1968
3.10.3.4.2 Coatings with metal layers 1968
3.10.3.4.3 Use of interface layers 1970
3.10.3.4.4 Application of a chemically and mechanically resistant top layer 1970
3.10.3.4.5 Development of asymmetrical coatings 1970
3.10.3.4.6 Development of Ag-based coatings resistant to high temperatures 1970
3.10.3.4.7 Development of coatings with double Ag layers 1970
3.10.3.5 Conclusions – Resumé 1970
3.10.4 Glass and Windows 1970
3.10.4.1 Float Glass 1970
3.10.4.1.1 Manufacture 1971
3.10.4.2 Toughened Glass 1971
3.10.4.2.1 Manufacture and properties 1972
3.10.4.3 Use of Glass in Solar Collectors 1972
3.10.4.3.1 Light admittance 1972
3.10.4.3.2 Weather protection and heat loss suppression 1973
3.10.4.4 Windows in the Built Environment 1973
3.10.4.5 Single-Glazed Windows 1974
3.10.4.5.1 Clear single glazing 1974
3.10.4.5.2 Tinted single glazing 1974
3.10.4.5.3 Reflective single glazing 1974
3.10.4.5.4 Low-emittance single glazing 1974
3.10.4.5.5 Self-cleaning single glazing 1974
3.10.4.6 Multiple-Glazed Windows 1975
3.10.4.6.1 Double glazing 1975
3.10.4.6.2 Triple and quadruple glazing for ultrahigh thermal insulation 1976
3.10.4.7 Window Frames 1976
3.10.4.7.1 Aluminum 1976
3.10.4.7.2 Wood and wood composites 1976
3.10.4.7.3 Plastics (vinyl, fiberglass, thermoplastics) 1977
3.10.4.7.4 Hybrid 1977
3.10.4.7.5 Effect of frames on the window thermal properties 1977
3.10.4.8 Spacers and Sealants 1978
3.10.4.9 Emerging Technologies 1979
3.10.4.10 Conclusions – Epilogue 1979
3.10.5 Evacuated Glazing 1979
3.10.5.1 Operating Principles 1979
3.10.5.2 Technology and Related Problems 1979
3.10.5.3 The State of the Art 1980
3.10.5.4 Comparison with Conventional Glazing 1981
3.10.5.5 Electrochromic Evacuated Glazing 1981
3.10.5.6 Conclusions 1982
3.10.6 Transparent Insulation 1982
3.10.6.1 Historical Background 1982
3.10.6.2 Optical and Thermal Properties 1982
3.10.6.3 Types of Available Materials 1983
3.10.6.3.1 Granular aerogels 1983
3.10.6.3.2 Monolithic silica aerogel 1984
3.10.6.3.3 Glass capillary structures 1984
3.10.6.4 Conclusions 1985
3.10.7 Chromogenic Materials and Devices 1985
3.10.7.1 Introduction 1985
3.10.7.2 Electrochromics 1985
3.10.7.3 Electrochromic Devices: Principles of Operation and Coloration Mechanisms 1986
3.10.7.4 Materials for Electrochromic Devices 1987
3.10.7.4.1 Transparent electrical conductors 1987
3.10.7.4.2 Active electrochromic film 1987
3.10.7.4.2(i) Tungsten oxide 1987
3.10.7.4.2(ii) Molybdenum oxide 1988
3.10.7.4.2(iii) Prussian blue 1988
3.10.7.4.3 Ion storage and protective layers 1988
3.10.7.4.3(i) Vanadium pentoxide 1988
3.10.7.4.3(ii) Other IS materials 1989
3.10.7.4.4 Protective layers – magnesium fluoride 1989
3.10.7.5 Performance of a Typical EC Device 1989
3.10.7.6 Photoelectrochromics 1989
3.10.7.7 Gasochromics 1993
3.10.7.8 Thermochromics 1993
3.10.7.9 Metal Hydride Switchable Mirrors 1993
3.10.7.10 Other Switching Devices 1993
3.10.7.10.1 Suspended particle devices 1994
3.10.7.10.2 Polymer-dispersed liquid crystal devices 1994
3.10.7.10.3 Micro-blinds 1994
3.10.7.11 Conclusions – Epilogue 1994
References 1994
Further Reading 1997
Relevant Websites 1997
Modeling and Simulation of Passive and Active Solar Thermal Systems 2000
3.11.1 Introduction 2002
3.11.2 Passive Solar Design Techniques and Systems 2002
3.11.2.1 Direct-Gain Modeling 2004
3.11.2.1.1 Transient heat conduction and steady-periodic (frequency domain) solution 2005
3.11.2.1.1(i) Admittance transfer functions for walls 2007
3.11.2.1.1(i)(a) Analysis 2009
3.11.2.1.2 Building transient response analysis 2010
3.11.2.1.3 Simplified analytical direct-gain room model and solution (passive) 2012
3.11.2.1.3(i) Important design approximation 2016
3.11.2.1.3(ii) Source models 2016
3.11.2.1.3(iii) Periodic solution 2017
3.11.2.1.3(iv) Approximate design method for temperature swings 2017
3.11.2.1.3(v) Detailed frequency domain zone model and building transfer functions 2018
3.11.2.1.3(vi) Analysis of building transfer functions 2020
3.11.2.1.3(vi)(a) Results 2020
3.11.2.1.3(vii) Heating/cooling load and room temperature calculation 2021
3.11.2.1.3(viii) Discrete Fourier series method for simulation 2022
3.11.3 PV/T Systems and Building-Integrated Photovoltaic/Thermal (BIPV/T) Systems 2022
3.11.3.1 Integration of Solar Technologies into the Building Envelope and BIPV/T 2022
3.11.3.2 A Simplified Open-Loop PV/T Model 2024
3.11.3.3 Transient and Steady-State Models for Open-Loop Air-Based BIPV/T Systems 2024
3.11.3.3.1 Air temperature variation within the control volume 2026
3.11.3.3.2 Radiative heat transfer 2026
3.11.3.3.3 Inlet air temperature effects 2026
3.11.3.3.3(i) Electrical efficiency modeling 2027
3.11.3.4 Heat Removal Factor and Thermal Efficiency for Open-Loop BIPV/T Systems 2031
3.11.4 Near-Optimal Design of Low-Energy Solar Homes 2032
3.11.4.1 Envelope and Passive Solar Design 2033
3.11.4.1.1 HVAC and renewable energy systems 2034
3.11.4.2 Overview of the Design of Two Net-Zero Energy Solar Homes 2037
3.11.5 Active Solar Systems 2039
3.11.6 The f-Chart Method 2039
3.11.6.1 Performance and Design of Liquid-Based Solar Heating Systems 2043
3.11.6.1.1 Storage capacity correction 2044
3.11.6.1.2 Collector flow rate correction 2044
3.11.6.1.3 Load heat exchanger size correction 2044
3.11.6.2 Performance and Design of Air-Based Solar Heating Systems 2045
3.11.6.2.1 Pebble-bed storage size correction 2045
3.11.6.2.2 Airflow rate correction 2045
3.11.6.3 Performance and Design of Solar Service Water Systems 2046
3.11.6.4 General Remarks 2046
3.11.7 Utilizability Method 2047
3.11.7.1 Hourly Utilizability 2047
3.11.7.2 Daily Utilizability 2049
3.11.7.3 Design of Active Systems with Utilizability Methods 2050
3.11.7.3.1 Hourly utilizability 2050
3.11.7.3.2 Daily utilizability 2051
3.11.8 The Φ¯, f-Chart Method 2051
3.11.8.1 Storage Tank Losses Correction 2053
3.11.8.2 Heat Exchanger Correction 2053
3.11.9 Modeling and Simulation of Solar Energy Systems 2053
3.11.9.1 The F-Chart Program 2054
3.11.9.2 The TRNSYS Simulation Program 2054
3.11.9.3 WATSUN Simulation Program 2056
3.11.10 Limitations of Simulations 2058
References 2058
Solar Hot Water Heating Systems 2062
3.12.1 Toward a Sustainable Energy System 2062
3.12.1.1 Solar Heat – Renewable Energy Source with High Potential 2062
3.12.1.2 Solar Water Heating 2063
3.12.1.3 Solar Energy for Developing Countries 2065
3.12.1.4 Market Introduction and Market Deployment of Solar Thermal Systems 2065
3.12.1.5 Solar Heat Worldwide 2066
3.12.1.5.1 Distribution by application 2066
3.12.2 Technologies for Solar Hot Water Systems 2068
3.12.2.1 Components and Concepts 2069
3.12.2.1.1 Solar DHW systems with natural circulation 2069
3.12.2.1.2 Solar DHW systems with forced circulation 2069
3.12.2.2 Solar Thermal Collectors 2069
3.12.2.2.1 High-performance flat-plate collectors 2072
3.12.2.2.2 Properties of collectors 2073
3.12.2.2.3 Integration of solar collectors 2073
3.12.2.2.4 New developments in the collector sector 2074
3.12.2.3 The Collector Circuit 2074
3.12.2.3.1 Drain-back system 2076
3.12.2.4 Thermal Storage 2077
3.12.2.4.1 Water storage technology 2077
3.12.2.4.2 Advanced heat storage technologies 2078
3.12.2.5 Decentralized and Centralized Solar Thermal Systems 2078
3.12.2.6 Auxiliary Heat Sources 2079
3.12.2.7 Hygienic Aspects of Solar Hot Water Heaters 2080
3.12.3 Design Principles of Solar Thermal Systems 2081
3.12.3.1 Meteorological Conditions and Simulation Tools 2081
3.12.3.2 The Solar System 2083
3.12.3.3 Collector Orientation and Inclination 2084
3.12.3.4 Solar DHW Systems for Households and Single-Family Houses 2085
3.12.3.5 Solar DHW Systems for Apartment Houses 2086
3.12.3.6 Solar-Combined Heating Systems 2087
3.12.4 Summary and Conclusion 2088
References 2089
Solar Space Heating and Cooling Systems 2092
3.13.1 Active Systems 2092
3.13.1.1 Direct Circulation Systems 2092
3.13.1.2 Indirect Water Heating Systems 2093
3.13.1.3 Air--Water Heating Systems 2095
3.13.2 Space Heating and Service Hot Water 2096
3.13.2.1 Air Systems 2098
3.13.2.2 Water Systems 2099
3.13.2.3 Location of Auxiliary Source 2101
3.13.2.4 Heat Pump Systems 2102
3.13.3 Solar Cooling 2103
3.13.3.1 Solar Sorption Cooling 2104
3.13.3.2 Solar-Mechanical Systems 2105
3.13.3.3 Solar-Related Air Conditioning 2105
3.13.3.4 Adsorption Units 2106
3.13.3.5 Absorption Units 2107
3.13.3.6 Lithium–Water Absorption Systems 2108
3.13.3.6.1 Thermodynamic analysis 2109
3.13.3.6.2 Design of single-effect LiBr–H2O absorption systems 2113
3.13.3.7 Ammonia–Water Absorption Systems 2114
3.13.3.8 Solar Cooling with Absorption Refrigeration 2115
3.13.4 Heat Storage Systems 2116
3.13.4.1 Air Systems Thermal Storage 2117
3.13.4.2 Liquid Systems Thermal Storage 2117
3.13.5 Module and Array Design 2118
3.13.5.1 Module Design 2118
3.13.5.2 Array Design 2118
3.13.5.3 Heat Exchangers 2120
3.13.6 Differential Temperature Controller 2121
References 2122
Solar Cooling and Refrigeration Systems 2124
3.14.1 Introduction 2124
3.14.2 Solar-Powered Cooling 2124
3.14.3 Need for Solar-Powered Cooling 2124
3.14.4 Solar-Powered Cooling Technologies 2125
3.14.4.1 Desiccant Cooling System 2125
3.14.4.2 Solid Desiccant 2126
3.14.4.3 Liquid Desiccant 2126
3.14.4.4 Absorption Systems 2127
3.14.4.5 Adsorption Systems 2129
3.14.4.6 Ejector Systems 2132
3.14.4.7 Photovoltaic–Compression Systems 2132
3.14.5 Relative Comparison of Solar Cooling Technologies 2133
3.14.5.1 Solar Coefficient of Performance 2133
5.14.5.2 Capital Cost Comparison 2134
5.14.5.3 Life-Cycle Cost Comparison 2134
3.14.6 Application of Solar Cooling System 2135
3.14.7 Integration with Solar Hot Water and Solar Tthermal Systems for Cost-Effectiveness 2135
5.14.8 Conclusions 2136
References 2136
Solar-Assisted Heat Pumps 2138
3.15.1 Introduction to the Concept of Solar-Assisted Heat Pumps 2138
3.15.2 Heat Pump Fundamentals 2138
3.15.2.1 Principles of Heat Pump Operation 2138
3.15.2.2 Thermodynamic Cycles 2140
3.15.2.3 Classification of Heat Pumps 2144
3.15.2.4 Renewable Heat Sources 2145
3.15.3 Solar-Assisted Heat Pump System 2149
3.15.3.1 Classification, Configurations, and Functions 2149
3.15.3.2 Direct Solar-Assisted Heat Pump Systems 2150
3.15.3.3 Series Solar-Assisted Heat Pump Systems 2151
3.15.3.4 Parallel Solar-Assisted Heat Pump 2154
3.15.3.5 Dual-Source Solar-Assisted Heat Pump 2159
3.15.3.6 Other Configurations 2160
3.15.4 Solar-Assisted Heat Pump System with Seasonal Storage 2162
3.15.4.1 Fundamental Options of Seasonal Energy Storage 2162
3.15.4.2 Classification and Evaluation of Seasonal Ground Storage 2164
3.15.4.3 Heat and Mass Transfer in the Ground Store, General Consideration 2167
3.15.4.4 Applications 2168
References 2170
Solar Desalination 2172
3.16.1 Introduction 2172
3.16.2 Solar Thermal Desalination Systems 2173
3.16.3 Photovoltaics-Driven Desalination Systems 2179
3.16.4 Solar Stills 2184
3.16.5 Solar Humidification–Dehumidification 2185
3.16.6 Solar Membrane Distillation 2186
3.16.7 Technologies Selection Guidelines 2189
3.16.8 Solar Desalination Applications 2190
3.16.8.1 Solar Thermal MES Plant for Seawater Desalination, Abu Dhabi, UAE 2190
3.16.8.2 Solar Thermal MED Plant for Seawater Desalination, Almeria, Spain 2192
3.16.8.3 PV–RO Plant for Seawater Desalination, Lampedusa Island, Italy 2196
3.16.8.4 PV–RO Plant for Brackish Water Desalination, Ceara, Brazil 2199
3.16.8.5 PV–RO Plant for Seawater Desalination, Pozo Izquierdo, Gran Canaria Island 2201
3.16.8.6 PV Water Pumping RO for Brackish Water Desalination, Saudi Arabia 2201
3.16.8.7 PV–RO Brackish Water Desalination, Aqaba, Jordan 2203
3.16.9 Lessons Learned 2206
3.16.10 Economics 2207
3.16.11 Market 2207
3.16.12 Conclusions 2207
References 2208
Industrial and Agricultural Applications of Solar Heat 2210
3.17.1 Introduction 2211
3.17.2 Characteristics of Industrial and Agricultural Energy Use 2211
3.17.2.1 Application Temperatures 2211
3.17.2.2 Economics 2212
3.17.3 Selection of Appropriate Solar Collector and Energy Storage Technologies 2212
3.17.3.1 Collector Types 2212
3.17.3.2 Aperture Cover Materials 2213
3.17.3.3 Flat-Plate Absorbers 2214
3.17.3.4 Line-Axis Collectors 2214
3.17.3.5 Nonconvecting Solar Panels 2215
3.17.4 System Component Layouts 2216
3.17.4.1 Components 2216
3.17.4.2 Generic Solar Industrial Process Heat System Layouts 2216
3.17.4.3 Real Solar Industrial Process Heat Systems 2218
3.17.4.4 Operational Limits 2219
3.17.5 Solar Hot Water Industrial and Agricultural Process Heat System Design 2220
3.17.5.1 Conceptual Distinctions 2220
3.17.5.2 Design Methodologies 2221
3.17.6 Solar Drying Technologies 2222
3.17.6.1 Solar Drying Processes 2222
3.17.6.2 Solar Dryer Types 2223
3.17.6.3 Practical Issues in the Use of Solar Dryers 2225
3.17.6.3.1 Analysis of solar dryers 2225
3.17.7 Solar Furnaces 2228
3.17.8 Greenhouses 2229
3.17.8.1 Achieving a Desired Interior Microclimate 2229
3.17.8.2 Greenhouse Heating and Cooling 2229
3.17.9 Heating and Ventilation of Industrial and Agricultural Buildings 2230
3.17.9.1 Solar Air Heating 2230
3.17.9.2 Direct Solar Gain and Thermal Mass 2230
3.17.10 Solar Cooking 2231
3.17.10.1 Types of Solar Cooker 2231
3.17.10.2 Analysis of Solar Cookers 2232
3.17.11 Solar Desalination 2232
3.17.11.1 Solar Desalination Systems 2232
3.17.11.2 Passive Basin Stills 2234
3.17.12 Solar Refrigeration 2235
3.17.12.1 Types of Solar Refrigeration 2235
3.17.12.2 Uses of Solar Refrigeration 2235
Acknowledgments 2235
References 2236
Concentrating Solar Power 2238
3.18.1 Introduction 2239
3.18.2 General Principles of Concentrating Systems 2239
3.18.2.1 Concentration Effect 2239
3.18.2.2 Energy and Mass Balance 2240
3.18.2.3 Grid-Connected or Island Systems 2240
3.18.2.4 Recooling 2240
3.18.2.4.1 Closed-circuit recooling systems 2240
3.18.2.4.2 Wet cooling systems 2240
3.18.2.4.3 Mechanical draft cooling systems 2241
3.18.2.4.4 Natural draft cooling towers 2241
3.18.2.4.5 Hybrid cooling towers 2242
3.18.2.4.6 Fan-assisted natural draft cooling towers 2243
3.18.2.4.7 Air-driven condensers 2243
3.18.3 Power Conversion Systems 2243
3.18.3.1 Solar Only 2243
3.18.3.1.1 Steam cycles 2243
3.18.3.1.2 Organic Rankine cycles 2246
3.18.3.1.3 Gas turbines 2247
3.18.3.1.4 Solar dishes 2248
3.18.3.2 Increase in Operational Hours 2248
3.18.3.2.1 Hybridization 2248
3.18.3.2.1(i) Integrated solar combined cycle system 2249
3.18.3.2.1(i)(a) Preheating for fossil power plants 2250
3.18.3.2.1(i)(b) Gas engine 2250
3.18.3.2.1(i)(c) Burner 2250
3.18.3.2.1(i)(d) Gas turbine 2251
3.18.3.2.2 Storage 2252
3.18.3.2.2(i) Solid media 2252
3.18.3.2.2(ii) Organic media 2252
3.18.3.2.2(iii) Phase-change materials 2252
3.18.3.2.2(iv) Adiabatic pressurized air storage 2253
3.18.3.2.2(v) Others 2254
3.18.4 Cogeneration 2254
3.18.4.1 Solar Cooling 2254
3.18.4.1.1 Principles and technologies of solar cooling 2255
3.18.4.1.2 Thermally driven cooling systems 2255
3.18.4.1.3 Absorption chillers 2255
3.18.4.1.4 Adsorption chillers 2256
3.18.4.1.5 Best-practice examples for solar cooling 2256
3.18.4.1.6 State of the art of solar cooling 2257
3.18.4.1.7 Market expectations for solar cooling 2257
3.18.4.2 Desalination 2257
3.18.4.3 Off-Heat Usage 2258
3.18.5 Examples 2258
3.18.5.1 Commercial 2258
3.18.5.1.1 SEGS 2258
3.18.5.1.2 Andasol 1–3 2259
3.18.5.1.3 PS10, PS20 2260
3.18.5.1.4 STJ 2262
3.18.5.1.5 Nevada Solar One 2263
3.18.5.1.6 Sierra SunTower 2263
3.18.5.1.7 Dish farm California 2265
3.18.5.1.8 PE 1 2265
3.18.5.1.9 AORA 2265
3.18.5.1.10 Kimberlina solar thermal power plant 2266
3.18.5.1.11 Others/under construction 2266
3.18.5.1.11(i) Gemasolar 2266
3.18.5.2 Research 2267
3.18.5.2.1 Solar One 2267
3.18.5.2.2 Solar Two 2268
3.18.5.2.3 CESA-1 2269
3.18.5.2.4 DISS 2269
3.18.5.2.5 STJ 2270
3.18.5.2.6 SSPS 2270
3.18.5.2.7 Others 2270
3.18.5.2.7(i) Themis 2270
3.18.5.2.7(ii) Solar Research Facility Unit 2271
3.18.5.2.7(iii) EURELIOS 2271
3.18.5.2.7(iv) SEDC 2271
3.18.5.2.7(vi) CSIRO 2271
3.18.5.2.7(vii) Sunshine 2272
3.18.5.2.7(viii) SPP-5 2272
3.18.5.3 Studies 2272
3.18.5.3.1 GAST 2272
3.18.5.3.2 PHOEBUS 2272
3.18.6 Economical Aspects 2272
3.18.7 Environmental Aspects 2273
3.18.7.1 Emission 2273
3.18.7.2 Impact on Flora and Fauna 2273
3.18.7.3 Life Cycle Assessment 2273
3.18.8 Future Potential 2274
3.18.8.1 Desertec 2274
3.18.8.2 United States and Europe 2274
3.18.8.3 MENA Region 2277
3.18.8.4 Future Research Fields 2277
References 2277
Passive Solar Architecture 2280
3.19.1 Introduction 2280
3.19.1.1 Energy and Urbanization 2280
3.19.1.2 Solar Architecture – History and Concepts 2281
3.19.1.3 Solar Architecture – Comprehensive Design and Operation 2282
3.19.1.3.1 Passive solar heating 2282
3.19.1.3.2 Passive cooling 2285
3.19.2 Role of Solar Architecture in Urban Buildings 2287
3.19.2.1 Development of Cool-Colored Materials 2287
3.19.2.2 Use of Phase Change Materials to Enhance the Performance of Cool-Colored Coatings 2289
3.19.2.3 Development of Thermochromic Coatings 2291
3.19.2.4 Development and Testing of Colored Thin-Film Layers of Asphalt 2291
3.19.2.5 Green Spaces for Urban Buildings 2294
3.19.2.6 Discussion 2296
3.19.3 Control Systems for Solar Architecture 2297
3.19.3.1 Controlled Parameters and Control Variables in Passive Solar Architecture 2298
3.19.3.2 Control Strategies in Solar Architecture 2299
3.19.3.2.1 Conventional control for solar architecture 2299
3.19.3.2.2 Advanced control 2300
3.19.3.2.3 Intelligent systems 2302
3.19.4 Conclusion and Future Prospects 2306
References 2306
e9780080878720v4 2311
Cover\r 2311
Comprehensive Renewable Energy \r 2312
Copyright 2315
Editor-In-Chief \r 2316
Volume Editors\r 2318
Contributors For All Volumes 2322
Preface 2330
Contents 2334
Fuel Cells and Hydrogen Technology - Introduction 2342
4.01.1 Introduction 32
4.01.2 Volume Introduction 34
4.01.3 Introduction to Basic Electrochemistry 34
4.01.4 Conclusions 35
References 35
Current Perspective on Hydrogen and Fuel Cells 2354
4.02.1 Space Applications of Hydrogen 2354
4.02.1.1 Space Propulsion 2354
4.02.1.2 Space Battery Power and Energy Storage – NiH2 Batteries 39
4.02.1.3 Astronaut Environmental Control and Life Support 39
4.02.1.4 Scientific Instrument Cooling 41
4.02.2 Space Applications of Fuel Cells 56
4.02.2.1 Gemini 57
4.02.2.2 Apollo 57
4.02.2.3 Space Shuttle 57
4.02.3 Other Current Uses of Hydrogen and Fuel Cells 57
4.02.3.1 Current Uses of Hydrogen 57
4.02.3.2 Current Uses of Fuel Cells 61
References 98
Hydrogen Economics and Policy 2386
4.03.1 Introduction 2387
4.03.2 The Hydrogen Energy Chain – Technological Characterizations and Economic Challenges 1490
4.03.2.1 Production 2389
4.03.2.2 Infrastructure 2393
4.03.2.3 Storage 2396
4.03.2.4 End-Use Technologies and Applications 2399
4.03.2.5 Conclusions on Economics 2405
4.03.3 Hydrogen within the Whole-Energy-System Context 2406
4.03.3.1 Effects of Transport Decarbonization on Low-Carbon Energy Resources 2406
4.03.3.2 Decarbonization of the Electricity Grid – Opportunities for Hydrogen 2407
4.03.3.3 Summary on Whole System Interactions 99
4.03.4 Developing Policies to Support Hydrogen 100
4.03.4.1 Policies in the Transport Sector 100
4.03.4.2 Policies in the Electricity Sector 101
4.03.4.3 Policies Relating to Fundamental Scientific Research 128
4.03.5 Conclusion 128
References 129
Further Reading 130
Relevant Websites 132
Hydrogen Safety Engineering: The State-of-the-Art and Future Progress 2418
4.04.1 Introduction 2419
4.04.2 Hazards Related to Hydrogen Properties 2422
4.04.3 Regulations, Codes, and Standards and Hydrogen Safety Engineering 2423
4.04.4 Unignited Releases of Hydrogen 2427
4.04.4.1 Momentum-Controlled Jets 2427
4.04.4.2 The Underexpanded Jet Theory 2430
4.04.4.3 Transition from Momentum- to Buoyancy-Controlled Flow within a Jet 2431
4.04.5 Hydrogen Fires 2432
4.04.5.1 Dimensional Flame Length Correlation 2432
4.04.5.2 The Nomogram for Flame Length Calculation 2365
4.04.5.3 Dimensionless Flame Length Correlation 2433
4.04.5.4 Separation Distance: Jet Flame Tip Location Compared to Lower Flammability Limit Location 2435
4.04.6 Pressure Effects of Hydrogen Unscheduled Releases 2436
4.04.6.1 Unignited Release in a Garage-Like Enclosure 2436
4.04.6.2 Delayed Ignition of Nonpremixed Turbulent Jets 2438
4.04.7 Deflagrations and Detonations 1242
4.04.8 Safety Strategies and Accident Mitigation Techniques 2442
4.04.8.1 Inherently Safer Design of Fuel Cell Systems 2442
4.04.8.2 Mitigation of Release Consequences 2443
4.04.8.3 Reduction of Separation Distances Informed by the Hydrogen Safety Engineering 2443
4.04.8.4 Mitigation by Barriers 2443
4.04.8.5 Mitigation of Deflagration-to-Detonation Transition 2444
4.04.8.6 Prevention of Deflagration-to-Detonation Transition within a Fuel Cell 2444
4.04.8.7 Detection and Hydrogen Sensors 2444
4.04.9 Future Progress and Development 2445
4.04.9.1 Release Phenomena 2445
4.04.9.2 Ignition Phenomena 2445
4.04.9.3 Hydrogen Fires 2445
4.04.9.4 Deflagrations and Detonations 2446
4.04.9.5 Storage 2446
4.04.9.6 High-Pressure Electrolyzers 2446
4.04.9.7 Hazard and Risk Identification and Analysis for Early Markets 2446
4.04.10 Conclusions 2446
Acknowledgments 2448
References 2448
Hydrogen Storage: Compressed Gas 2452
4.05.1 Introduction 2452
4.05.2 Containment Vessels 2452
4.05.3 Theory and Principles of Design 2453
4.05.3.1 Steel Vessels 2453
4.05.3.2 Composite Vessels 2457
4.05.4 Codes and Standards and Best Practices 2457
4.05.4.1 Storage Tanks 2458
4.05.4.2 Connectors – Joints and Fittings for Hydrogen 2243
4.05.4.3 Auxiliary Equipment 2464
4.05.4.4 Basic Safety Requirements When Installing Hydrogen Systems 2465
4.05.4.5 Codes and Standards 2468
4.05.4.6 Case Studies 2469
References 2476
Hydrogen Storage: Liquid and Chemical 2478
4.06.1 Introduction 2478
4.06.2 Physical Hydrogen Storage 2478
4.06.3 Metal Hydrides 2480
4.06.4 Chemical Hydrides 2480
4.06.4.1 Ammonia Borane 246
4.06.4.2 Amidoboranes and Derivatives 1307
4.06.5 Complex Hydrides 2488
4.06.5.1 Borohydrides 2488
4.06.5.2 Amide–Hydride Systems 2490
4.06.6 Pending Issues 201
References 2495
Alkaline Fuel Cells: Theory and Application 2500
4.07.1 Introduction 2501
4.07.2 General Principles and Fundamentals of Alkaline Cells 2501
4.07.2.1 Cathode Catalyst Materials 2503
4.07.2.2 Platinum Group Metal Catalysts 2503
4.07.2.3 Non-Platinum Group Metal Catalysts 2504
4.07.2.4 Cathodes Performance 2504
4.07.2.5 Anode Catalyst Materials 2504
4.07.3 Alkaline Fuel Cells Developed with Liquid Electrolytes 2506
4.07.3.1 Gas Diffusion Electrode for AFC 2506
4.07.3.2 Stack and System Design 2511
4.07.3.3 System Achievements 2513
4.07.4 Alkaline Fuel Cell Based on Anion Exchange Membranes 2516
4.07.4.1 Anion Exchange Membrane Chemistry and Challenges 2516
4.07.4.2 Review of the Main Classes of AEMs 2518
4.07.4.3 Ionomer Development/Membrane Electrode Assembly Fabrication 2519
4.07.4.4 Alkaline Anion Exchange Membrane Fuel Cells Performance 2519
4.07.5 Conclusions 2522
References 2522
PEM Fuel Cells: Applications 2524
4.08.1 Introduction 2525
4.08.2 Features of the PEMFC 2526
4.08.2.1 Proton-Conducting Membranes 2526
4.08.2.2 Modified PFSA Membranes 2529
4.08.2.3 Alternative Sulfonated Membrane Materials 2529
4.08.2.4 Acid–Base Complex Membranes 2530
4.08.2.5 Ionic Liquid Membranes 2530
4.08.2.6 High-Temperature Proton Conductors 2530
4.08.3 Electrodes and Catalysts 2531
4.08.3.1 Anode Materials 2531
4.08.3.2 Cathode Materials 1961
4.08.3.3 Preparation and Physical Structure of the Catalyst Layers 2532
4.08.3.4 Gas Diffusion Layers and Stack Construction 2533
4.08.4 Humidification and Water Management 2535
4.08.4.1 Overview of the Problem 2535
4.08.4.2 Running PEMFCs without Extra Humidification (Air-Breathing Stacks) 2535
4.08.4.3 External Humidification 2536
4.08.5 Pressurized versus Air-Breathing Stacks 2538
4.08.5.1 Influence of Pressure on Cell Voltage 2538
4.08.5.2 Other Factors Affecting Choice of Pressure – Balance of Plant and System Design 365
4.08.6 Operating Temperature and Stack Cooling 405
4.08.6.1 Air-Breathing Systems 2540
4.6.06.2 Separate Reactant and Air or Water Cooling 2540
4.08.7 Applications for Small-Scale Portable Power Generation Markets (500W–5kW) 2541
4.08.7.1 Market Segment 2541
4.08.7.2 The Technologies 2546
4.08.8 Applications for Stationary Power and Cogeneration 129
4.08.8.1 Prospects for Stationary Fuel Cell Power Systems 2549
4.08.8.2 Technology Developers 130
4.08.8.3 System Design 2550
4.08.8.4 Cogeneration and Large-Scale Power Generation 133
4.08.9 Applications for Transport 134
4.08.9.1 The Outlook for Road Vehicles 134
4.08.9.2 Hybrids 134
4.08.9.3 PEMFCs and Alternative Fuels 136
4.08.9.4 Buses 137
4.08.9.5 Fuel Cell Road Vehicle Manufacturers 137
4.08.9.6 Planes, Boats, and Trains 228
4.08.10 Hydrogen Energy Storage for Renewable Energy Systems and the Role of PEMFCs 228
References 228
Further Reading 268
Relevant Websites 268
Prediction of Solar Irradiance and Photovoltaic Power 270
1.13.1 Introduction 271
1.13.2 Applications of Irradiance and PV Power Forecasts 272
1.13.2.1 Grid Integration of PV Power 272
1.13.2.2 Stand-Alone Systems and Small Networks 274
1.13.2.3 Other Applications 274
1.13.3 Models for the Prediction of Solar Irradiance and PV Power 274
1.13.3.1 Basic Steps in a Power Prediction System 275
1.13.3.2 Irradiance Forecasting 277
1.13.3.3 PV Power Forecasting 291
1.13.4 Concepts for Evaluation of Irradiance and Power Forecasts 296
1.13.4.1 Specification of Test Case 296
1.13.4.2 Graphical Analysis 296
1.13.4.3 Statistical Error Measures 297
1.13.4.4 Selection of Data for Evaluation and Normalization 298
1.13.4.5 Reference Forecasts 299
1.13.4.6 Skill Scores and Improvement Scores 300
1.13.4.7 Evaluation of Forecast Accuracy in Dependence on Meteorological and Climatological Conditions 300
1.13.4.8 Uncertainty Information 301
1.13.5 Evaluation and Comparison of Different Approaches for Irradiance Forecasting 302
1.13.5.1 Measurement Data 302
1.13.5.2 NWP-Based Forecasts 302
1.13.5.3 Results for NWP-Based Forecasting Approaches 304
1.13.5.4 Comparison of Satellite-Based Irradiance Forecasts with NWP-Based Forecasts 306
1.13.5.5 Summary and Outlook 308
1.13.6 Example of a Regional PV Power Prediction System 308
1.13.6.1 Measurement Data 310
1.13.6.2 Overview of the Power Prediction Scheme 311
1.13.6.3 Irradiance Forecasts 311
1.13.6.4 Power Forecasts 312
1.13.7 Summary and Outlook 319
Molten Carbonate Fuel Cells: Theory and Application 2568
4.09.1 Introduction 2568
4.09.2 Carbonate Fuel Cell Chemistry and System Configuration 2569
4.09.3 Cell Stack and Power Plant Design 2570
4.09.4 Advantages of MCFC Power Plants 2572
4.09.5 Applications of MCFC Power Plants 2573
4.09.5.1 Self-Generation Applications 1648
4.09.5.2 Grid Support Applications 2574
4.09.5.3 Renewable MCFC Power Plant Applications 2576
4.09.6 Future Advanced MCFC Applications 2579
4.09.6.1 Hydrogen Production – DFC-H2 Concept 2579
4.09.6.2 Carbon Separation 2579
4.09.7 Conclusions 2580
References 2580
Solid Oxide Fuel Cells: Theory and Materials 2582
4.10.1 Introduction 2582
4.10.1.1 Fuel Cells 2583
4.10.1.2 Thermodynamics 2095
4.10.1.3 The Nernst Equation 2586
4.10.1.4 The SOFC 2587
4.10.1.5 SOFC Components 2587
4.10.1.5.1 Electrolyte 2587
4.10.1.5.2 Cathode 2588
4.10.1.5.3 Anode 2588
4.10.1.5.4 Interconnect 2589
4.10.1.6 Example Systems 555
4.10.2 Conclusion 2595
Acknowledgment 2596
References 2596
Biological and Microbial Fuel Cells 2598
4.11.1 Introduction 2598
4.11.2 Fuel Cells and Biological Fuel Cells 2599
4.11.2.1 Conventional Fuel Cells 2599
4.11.2.2 Biological Fuel Cells 2600
4.11.2.3 Enzymatic Fuel Cells 2600
4.11.2.4 Types of Biofuel Cells and Enzymes 2601
4.11.3 Microbial Fuel Cells 2365
4.11.3.1 Development of MFC 2606
4.11.3.2 Electricity Generation Mechanism in MFC 2606
4.11.3.3 Working Principles of MFC 2607
4.11.3.4 Mediatorless MFC 2608
4.11.3.5 Organic Matter Removal in MFC 2608
4.11.3.6 MFC Operating Conditions and Material Aspects 2609
4.11.3.7 Microbial Electrolysis 2614
4.11.4 Conclusions 2615
Acknowledgment 2616
References 2616
Hydrogen and Fuel Cells in Transport 2622
4.12.1 Introduction 2622
4.12.2 Choice of Fuel Cell Technology 2343
4.12.3 Hydrogen Production, Usage, and Infrastructure 2624
4.12.4 Hydrogen Vehicles 2625
4.12.4.1 Forklifts 2625
4.12.4.2 Other Early Markets 2626
4.12.4.3 Buses 2627
4.12.4.4 Cars 2628
4.12.4.5 Ships 2630
4.12.4.6 Aircraft 2631
4.12.5 Legislation 2632
4.12.6 Conclusions 2633
References 2633
H2 and Fuel Cells as Controlled Renewables: FC Power Electronics 2636
4.13.1 Terrestrial Applications 2637
4.13.1.1 Low Carbon Energy Conversion 2637
4.13.2 Traditional Inverter Safe Operating Area 2638
4.13.2.1 General Approach 2638
4.13.2.2 Extending the Inverter SOA 2638
4.13.3 Enabling Poor Voltage Regulation Systems 2640
4.13.3.1 Multiswitch Voltage Source Inverter 2640
4.13.4 Analysis for 250kW Grid-Connected Fuel Cell 2641
4.13.4.1 A 250kW Grid-Connected Solid Oxide Fuel Cell 2641
4.13.4.2 Inverter Power Loss Analysis 2641
4.13.4.3 Buck Converter Power Loss Analysis 2642
4.13.4.4 Operating Point Power Loss Analysis 2643
4.13.5 Experimental Study of a Two-Switch MS-VSI 2644
4.13.5.1 Static Voltage Balancing 2644
4.13.5.2 Dynamic Voltage Balancing 2644
4.13.5.3 Laboratory Test Environment 2644
4.13.5.4 Implementation of Switch Voltage Balance and Gate-Drive Circuitry 2645
4.13.5.5 Commission of Voltage Balance Circuit 2646
4.13.5.6 H-Bridge Operation 2646
4.13.6 Summary 2646
4.13.7 Test Characterization of a H2 PEM Fuel Cell for Road Vehicle Applications 2648
4.13.7.1 Introduction 2648
4.13.7.2 MES-DEA PEMFCs 2649
4.13.7.3 Fuel Cell Test Facility 2651
4.13.7.4 Fuel Cell Test Characterization 2652
4.13.8 Summary 2656
4.13.9 A H2 PEM Fuel Cell and High Energy Dense Battery Hybrid Energy Source for an Urban Electric Vehicle 2658
4.13.9.1 Introduction 2658
4.13.9.2 Vehicle Energy and Power Requirements 2659
4.13.9.3 Fuel Cells for Transportation 2661
4.13.9.4 Fuel Cell Modeling 2661
4.13.9.5 Vehicle Traction Battery 2663
4.13.9.6 Vehicle Performance Evaluation 2665
4.13.10 Summary 2666
Appendix I Model Data and Component Specifications 2666
Appendix II Zebra Equivalent Circuit Model 2668
Acknowledgments 2669
References 2669
Future Perspective on Hydrogen and Fuel Cells 2672
4.14.1 Overview 2672
4.14.2 Why Hydrogen? 2673
4.14.3 Hydrogen for Transport 2674
4.14.4 Stationary Power 2675
4.14.5 The Efficiency Debate 2676
4.14.5.1 A Holistic Approach 2676
4.14.6 From Here to There 2678
4.14.7 Conclusions 2680
References 2680
Further Reading 428
Preface and Context to Hydrogen and Fuel Cells 2682
4.01.1 Introduction 2682
4.01.2 An Overview of This Volume 2685
4.01.2.1 Chapter 4.01: Introduction 2686
4.01.2.2 Chapter 4.02: Current Perspective on Hydrogen and Fuel Cells 2688
4.01.2.3 Chapter 4.03: Hydrogen Economics and Policy 2688
4.01.2.4 Chapter 4.04: Hydrogen Safety Engineering: The State-of-the-Art and Future Progress 2688
4.01.2.5 Chapter 4.05: Hydrogen Storage: Compressed Gas 2688
4.01.2.6 Chapter 4.06: Hydrogen Storage: Liquid and Chemical 2688
4.01.2.7 Chapter 4.07: Alkaline Fuel Cells: Theory and Application 2688
4.01.2.8 Chapter 4.08: PEM Fuel Cells: Applications 2688
4.01.2.9 Chapter 4.09: Molten Carbonate Fuel Cells: Theory and Application 1311
4.01.2.10 Chapter 4.10: Solid Oxide Fuel Cells: Theory and Materials 2689
4.01.2.11 Chapter 4.11: Biological and Microbial Fuel Cells 2689
4.01.2.12 Chapter 4.12: Hydrogen and Fuel Cells in Transport 2689
4.01.2.13 Chapter 4.13: H2 and Fuel Cells as Controlled Renewables: FC Power Electronics 2689
4.01.2.14 Chapter 4.14: Future Perspective on Hydrogen and Fuel Cells 2689
4.01.3 Hydrogen and Fuel Cell Technology – Supplementary Material 2689
4.01.3.1 Flow Cells or Regenerative Fuel Cells 2689
4.01.3.2 Hydrogen Production – Electrolysis 2691
4.01.3.3 Hydrogen Demonstration Units – State of the Art 2692
4.01.4 Introduction to Basic Electrochemistry 2698
4.01.4.1 Redox Reactions 2699
e9780080878720v5 2702
Cover\r 2702
Comprehensive Renewable Energy \r 2703
Copyright 2706
Editor-In-Chief 2707
Volume Editors 2709
Contributors For All Volumes 2713
Preface\r 2721
Contents\r 2725
Biomass and Biofuels -\r Introduction 2733
5.01.1 Background 2733
5.01.2 Basic Technology 2734
5.01.3 Widespread Deployment of Biomass and Biofuels 2735
5.01.3.1 Biodiesel 2735
5.01.3.2 Other Biofuels 2736
5.01.4 Issues, Constraints, and Limitations 2736
5.01.5 Technology Solutions – New Processes 2737
5.01.5.1 Anaerobic Digestion 2737
5.01.5.2 Advanced Biofuel Processes 2738
5.01.6 Technology Solutions – New Feedstocks 2738
5.01.6.1 Algae 2738
5.01.6.2 Other Options for Increasing Feedstock Availability 2739
5.01.7 Expanding the Envelope 2739
5.01.8 Recent Developments 2740
5.01.9 The Way Forward for Biomass and Biofuels 2741
References 2741
Historical Perspectives on Biofuels 2743
5.02.1 Introduction 2743
5.02.2 Early Engine Developments 2743
5.02.3 Ethanol 2743
5.02.4 Vegetable Oil-Based Fuels 2744
Conclusion 2745
References 2746
Bioethanol Development in Brazil 2747
5.03.1 Background 2747
5.03.1.1 Ethanol from Sugarcane: A Brief History 2747
5.03.1.2 The Brazilian Sugarcane Industry: An Overview 2748
5.03.1.3 Sugarcane Ethanol in Brazil 2748
5.03.1.4 Foreign Presence 2749
5.03.2 Continuing Industry Growth 2749
5.03.2.1 Key Drivers: Flex-Fuel Vehicles and Mandatory Blending 2749
5.03.2.2 Best Agricultural and Environmental Practices 2750
5.03.2.3 Additional Uses of Bioethanol 2750
5.03.2.4 Brazilian Ethanol: A Low-Carbon Solution 2751
5.03.2.5 Sugar Production and Sugar Trade 2751
5.03.2.6 Bioelectricity: From Self-Sufficiency to New Product 2752
5.03.2.7 A Clean Energy Matrix 2752
5.03.3 Social and Environmental Responsibility 2753
5.03.3.1 Competitive Advantages 2753
5.03.3.2 Sugarcane in the Amazon and Other Myths 2753
5.03.3.3 ‘Food versus Fuel’ in Brazil 2754
5.03.3.4 The ‘Green Protocol’ to End Sugarcane Burning 2754
5.03.3.5 Ensuring Employability of Displaced Workers 2754
5.03.3.6 Work Conditions and Social Responsibility 2755
5.03.3.7 The ‘National Commitment’ on Labor Practices 2755
5.03.4 Looking to the Future 2756
5.03.4.1 About UNICA 2757
5.03.4.2 Mission 2757
5.03.4.3 Priorities 2757
5.03.4.4 Strategies 2758
References 2758
Biomass Power Generation 2759
5.04.1 Why Is There a Trend to Build Stand-Alone Biomass Power Plants? 2760
5.04.2 Is Biomass Power Generation Sustainable? 2760
5.04.3 Life-Cycle Analysis 2761
5.04.4 How Does Biomass Power Generation Pay? 2761
5.04.5 Legislation and Regulation 2763
5.04.5.1 Emission Limits 2763
5.04.6 What Technology Choices Are Available? 2764
5.04.6.1 Technology Development 2764
5.04.6.2 Fixed and Moving Grates 2765
5.04.6.3 Suspension Firing 2765
5.04.6.4 Fluidized Beds 2766
5.04.6.5 Gasification 2769
5.04.7 Potential Biofuels 2769
5.04.7.1 Solid Biofuels 2769
5.04.7.2 Liquid Biofuels for Power Generation/Combined Heat and Power 2771
5.04.8 Health and Safety 2772
5.04.8.1 Personnel Issues 2772
5.04.8.2 Process Safety 2773
5.04.9 Material Handling and Fuel Processing 2775
5.04.9.1 Bulk Density 2775
5.04.9.2 Storing Biomass 2775
5.04.9.3 Fuel Preparation 2776
5.04.10 Combustion 2779
5.04.10.1 Principles of Combustion 2779
5.04.10.2 Practicalities 2779
5.04.10.3 Unburnt Carbon and Carbon Monoxide 2781
5.04.10.4 Impact of Biomass Combustion 2781
5.04.11 Environmental Impact 2783
5.04.11.1 Gaseous Emissions 2783
5.04.11.2 Solid Residuals 2783
5.04.12 Conclusions 2784
References 2784
Biomass Co-Firing 2787
5.05.1 Introduction 2788
5.05.1.1 Global Trend 2788
5.05.1.2 Challenges Facing the Power Industry 2789
5.05.2 Available Biomass Materials 2789
5.05.2.1 Wood-Based Fuels 2789
5.05.2.2 Energy Crops 2789
5.05.2.3 Agricultural Residues 2790
5.05.2.4 Processed Wood (Wood Pellets and Torrefied Wood) 2791
5.05.2.5 Liquid Biomass 2792
5.05.2.6 Gaseous Biomass 2793
5.05.3 Combustion Technology 2793
5.05.3.1 Pulverized Coal Combustion 2793
5.05.3.2 Fluidized Bed Combustion 2793
5.05.3.3 Stoker Combustion 2793
5.05.3.4 Cyclone Boilers 2794
5.05.3.5 Gasification 2794
5.05.3.6 Gasification Techniques 2794
5.05.4 Co-firing Methods 2795
5.05.4.1 Direct Co-firing 2795
5.05.4.2 Parallel Co-firing 2796
5.05.4.3 Indirect Co-firing 2796
5.05.5 Global Overview of Biomass Co-firing Plant 2796
5.05.5.1 United States 2796
5.05.5.2 Netherlands 2797
5.05.5.3 United Kingdom 2798
5.05.6 Health and Safety Issues Associated with Co-firing 2800
5.05.6.1 Spontaneous Fires 2800
5.05.6.2 Exposure to Biomass and Coal Dust 2801
5.05.7 Technical Issues regarding Biomass Co-firing 2801
5.05.7.1 Fuel Delivery, Storage, and Preparation 2802
5.05.7.2 Supply of Biomass 2802
5.05.7.3 Properties of Biomass and Their Effects on Plant Operations 2802
5.05.8 Conclusions 2804
References 2804
Further Reading 2805
A Global Bioenergy Market 2807
5.06.1 Bioenergy 2807
5.06.1.1 A Note on Bioenergy Policy Measures 2807
5.06.2 Biofuels, Biomass, and Bioenergy: Definitions 2808
5.06.3 Limitations 2808
5.06.4 Bioenergy Markets and Trade 2809
5.06.4.1 Wood Fuels 2809
5.06.4.2 Liquid Biofuels 2811
5.06.5 A Global Bioenergy Market? The Extent of Bioenergy Markets 2811
5.06.5.1 Energy Market Integration in General 2812
5.06.5.2 Bioenergy Market Integration 2813
5.06.6 Barriers to Bioenergy Trade 2813
5.06.6.1 Import Tariffs, Export Subsidies, and the Like 2813
5.06.6.2 Nonexplicit Trade Barriers 2814
5.06.7 Discussion: The Future of Bioenergy Trade 2814
References 2815
Biomass CHP Energy Systems: A Critical Assessment 2819
5.07.1 Introduction 2819
5.07.2 Biomass CHP Options 2820
5.07.2.1 Combustion 2821
5.07.2.2 Gasification 2821
5.07.2.3 Summary of Technology Properties 2822
5.07.3 Bioenergy System Aspects 2822
5.07.3.1 Biomass Markets and CO2 Effects 2823
5.07.3.2 Biomass Competition between Sectors 2824
5.07.4 Biomass CHP Technology System Aspects 2825
5.07.4.1 Competitiveness of Biomass CHP Options 2826
5.07.4.2 Scale Effects of Biomass CHP 2827
5.07.5 Concluding Remarks 2828
References 2829
Relevant Websites 2829
Ethics of Biofuel Production 2831
5.08.1 Introduction 2831
5.08.2 A Model for Sustainability Management Systems 2831
5.08.3 RTFO 2835
5.08.4 RED 2835
5.08.5 ISCC 2836
5.08.6 RSB 2836
5.08.7 RSPO 2836
5.08.8 RTRS 2837
5.08.9 CEN Standard on Biomass for Transport Biofuels 2837
5.08.10 ISO Standard on Biomass for Energy 2837
5.08.11 Various Standards in the Retail Sector 2838
5.08.12 International Labor Laws 2838
5.08.13 Indirect Land Use Change 2839
5.08.14 Conclusions 2839
References 2839
Life Cycle Analysis Perspective on Greenhouse Gas Savings 2841
5.09.1 Biofuel Potential 2841
5.09.2 Life Cycle Assessment 2842
5.09.3 Net Energy Balances for Biofuels 2846
5.09.4 Greenhouse Gas Emissions Results 2847
5.09.5 Land Use Change 2849
5.09.6 Direct Land Use Change 2849
5.09.7 Indirect Land Use Change 2852
5.09.8 Soil Nitrous Oxide Emissions 2853
5.09.9 Sources of Processing Energy 2855
5.09.10 Coproducts 2858
5.09.11 Future Biofuel Technologies 2859
5.09.12 Conclusions and Recommendations 2862
References 2862
Biomass Gasification and Pyrolysis 2865
5.10.1 Introduction 2866
5.10.2 Historical Development 2866
5.10.3 Basic Gasification Technology 2867
5.10.4 Gasifier Designs 2868
5.10.4.1 Fixed Bed 2868
5.10.4.2 Fluidized Bed 2869
5.10.4.3 Entrained Flow 2870
5.10.4.4 Plasma 2871
5.10.4.5 Choice of Oxidant 2871
5.10.5 Gasifier Feedstock Supply 2871
5.10.5.1 Waste Biomass Feedstocks 2872
5.10.5.2 Virgin Biomass Feedstocks 2873
5.10.5.3 Typical Fuel Characteristics and Key Contaminants 2873
5.10.5.4 Feedstock Reception and Handling 2874
5.10.6 Gas Processing 2874
5.10.6.1 Contaminants and Their Impacts 2874
5.10.6.2 Gas Cleaning Technologies 2877
5.10.7 Overview of Gasification Technology Options 2879
5.10.8 Pyrolysis 2880
5.10.9 Case Studies 2881
5.10.9.1 Entrained Flow Gasifier 2881
5.10.9.2 Fluidized Bed Gasifiers 2881
5.10.9.3 Fixed Bed 2882
5.10.9.4 Plasma 2883
5.10.10 Recent and Future Developments 2883
5.10.11 Further Reading 2884
References 2884
Biomass to Liquids Technology 2887
5.11.1 Introduction 2888
5.11.1.1 Biofuels Drivers and Issues 2889
5.11.2 The BtL Process 2891
5.11.3 A Brief History of FT 2892
5.11.4 Steps in Biomass Conversion to Liquids via FT 2894
5.11.4.1 Feedstock Preparation and Pretreatment 2894
5.11.4.2 Gasifiers for FT 2900
5.11.4.3 Syngas Cleanup for FT 2904
5.11.4.4 Syngas Conditioning for FT 2909
5.11.4.5 FT Process 2909
5.11.5 Alternative BtL Fuel Options 2915
5.11.5.1 Methanol 2915
5.11.5.2 Dimethyl Ether 2916
5.11.5.3 Gasoline 2917
5.11.5.4 Mixed Alcohols (via Catalysts) 2917
5.11.5.5 Alcohols (via Fermentation) 2918
5.11.5.6 Hydrogen and BioSNG 2918
5.11.5.7 Summary 2919
5.11.6 Timescales and Development of BtL Processes 2919
5.11.7 BtL Implementation Progress 2920
5.11.7.1 BioMCN 2921
5.11.7.2 Enerkem 2922
5.11.7.3 Choren 2922
5.11.7.4 Range Fuels 2922
5.11.7.5 INEOS Bio 2922
5.11.7.6 NSE Biofuels 2923
5.11.7.7 Chemrec 2923
5.11.7.8 Summary 2923
5.11.8 Outline of BtL Economics 2923
5.11.8.1 Capital Costs 2923
5.11.8.2 Feedstock Cost Analysis 2926
5.11.8.3 Economies of Scale 2928
5.11.8.4 Summary 2928
5.11.9 Environmental Issues 2929
5.11.9.1 GHG Savings 2929
5.11.9.2 Comparative Technology GHG Saving Effectiveness 2932
5.11.9.3 Comparative Land Use Effectiveness 2932
5.11.9.4 Summary 2933
5.11.10 Summary and Outlook 2935
References 2936
Further Reading 2936
Relevant Websites 2936
Intensification of Biofuel Production 2937
5.12.1 Biodiesel 2937
5.12.1.1 Introduction: The Biodiesel Reaction 2937
5.12.1.2 A Generic Biodiesel Flowsheet 2938
5.12.1.3 Reactors 2938
5.12.1.4 GRP/BRP Separation 2941
5.12.1.5 Other Downstream Processing Steps 2941
5.12.2 Bioethanol 2942
5.12.2.1 Ethanol Dehydration 2942
5.12.2.2 Integrating Alcohol Removal with Fermentation 2944
References 2946
Biofuels from Waste Materials 2949
5.13.1 Introduction 2950
5.13.2 Biodiesel Production from WVO 2950
5.13.2.1 The Significance of Producing Biodiesel from WVO 2950
5.13.2.2 Challenges Facing Biodiesel Production from WVO 2951
5.13.2.3 Quality of WVO-Based Biodiesel 2957
5.13.3 Summary: Biodiesel from Waste 2960
5.13.4 Bioethanol Production from LCWs 2960
5.13.4.1 Significance of Producing Bioethanol from LCWs 2960
5.13.4.2 Sources of LC Biomass 2963
5.13.4.3 LC Biomass Recalcitrance 2963
5.13.4.4 Factors Limiting LC Biomass Digestibility 2964
5.13.4.5 Production of Ethanol from LCWs 2965
5.13.4.6 Challenges to Bioethanol Production from Lignocellulose 2966
5.13.4.7 Pretreatment Processes 2966
5.13.4.8 Saccharification and Fermentation 2980
5.13.4.9 Consolidated Bioprocessing 2982
5.13.5 Summary: Bioethanol from Waste 2982
References 2982
Woody Biomass 2995
5.14.1 Introduction 2996
5.14.2 Novel Short-Rotation Woody Crops/Short-Rotation Forestry for Bioenergy Applications 2996
5.14.2.1 Woody Coppice Production and Harvesting 2996
5.14.2.2 Single-Stem Hardwoods 3000
5.14.2.3 Single-Stem Softwoods 3006
5.14.2.4 Single-Stem Harvest and Handling 3008
5.14.2.5 Comparison of Production Inputs and Costs for Poplar, Pine, Eucalypts, and Willow Biomass 3009
5.14.2.6 Projections of Energy Crop Supply: A Methodology and US Results 3010
5.14.2.7 Sustainability of Short-Rotation Woody Crops/Short-Rotation Forestry 3013
5.14.3 Forestland-Derived Resources 3014
5.14.3.1 Primary Forest Residues 3015
5.14.3.2 Fuelwood 3018
5.14.3.3 Wood Processing Residues 3018
5.14.3.4 Urban Wood Residues 3018
5.14.4 Conclusions 3019
References 3020
Further Reading 3023
Relevant Websites 3023
Potential for Yield Improvement 3025
5.15.1 Introduction 3025
5.15.2 History of Oilseed Rape Production 3025
5.15.3 Yield Potential 3028
5.15.4 Genetic Constraint to Yield Improvement 3031
5.15.5 Crop Management Constraint to Yield Improvement 3031
5.15.6 Genetic Approaches 3032
5.15.7 Conclusions 3033
References 3034
Further Reading 3035
Renewable Fuels: An Automotive Perspective 3037
5.16.1 Introduction 3037
5.16.1.1 Causes for Concern 3037
5.16.1.2 What Are the Options? 3039
5.16.2 Competing Transport Energy Carriers 3040
5.16.2.1 Electrification of the Vehicle Fleet 3040
5.16.2.2 Hydrogen 3042
5.16.2.3 Biofuels 3045
5.16.3 Alcohol as Fuels for ICEs 3048
5.16.3.1 Physicochemical Properties 3049
5.16.3.2 Low-Carbon-Number Alcohols as Fuels for SI Engines 3051
5.16.3.3 Low-Carbon-Number Alcohols as Fuels for Compression-Ignition Engines 3054
5.16.3.4 Safety Aspects of Alcohol Fuels 3055
5.16.4 The Biomass Limit and Beyond 3059
5.16.4.1 The Biomass Limit 3059
5.16.4.2 Beyond the Biomass Limit – Electrofuels 3060
5.16.5 Technologies to Increase the Use of Alcohols in the Vehicle Fleet 3064
5.16.5.1 Tri-Flex-Fuel Vehicles 3064
5.16.5.2 Ternary Blends to Extend the Displacement of Gasoline by Alcohols 3065
5.16.6 Sustainable Organic Fuels for Transport 3067
5.16.7 Conclusions 3070
References 3070
Further Reading 3074
Use of Biofuels in a Range of Engine Configurations 3075
5.17.1 Introduction 3075
5.17.2 Biofuel Blends with Fossil Fuels for Transport Use 3075
5.17.2.1 Ethanol–Diesel Blends 3076
5.17.3 Engine Modifications for Biofuel Operation 3078
5.17.3.1 Petrol (Gasoline) Engines 3078
5.17.3.2 Diesel Engines 3079
5.17.4 Biofuels and Bio-Oils in Stationary Engines 3080
5.17.4.1 Biodiesel/Fossil Diesel Blends 3080
5.17.4.2 Straight Vegetable Oils 3081
5.17.5 Dual Fuel Operation 3081
5.17.5.1 Fuels and Fuel Properties 3082
5.17.5.2 The Dual Fuel Combustion Process 3082
5.17.5.3 Reported Operational Experience on Dual Fuel Stationary Engines 3082
5.17.5.4 Combustion Improvement in Dual Fuel Engines Running on Straight Vegetable Oil 3083
5.17.5.5 Utilization of Biomass-Derived Gaseous Fuels in Stationary Engines 3083
5.17.6 Conclusions 3086
References 3086
Biochar 3089
5.18.1 Introduction 3089
5.18.2 Archaeology and Soil Fertility Beginnings 3090
5.18.2.1 Soil Organic Matter 3090
5.18.2.2 Terra Preta 3091
5.18.3 A New Focus: Carbon Sequestration 3092
5.18.3.1 The Global Carbon Cycle 3094
5.18.3.2 Black Carbons 3094
5.18.3.3 Carbon Sequestration Potential of Biochar 3096
5.18.3.4 Half-Life of Biochar in Soils 3096
5.18.3.5 Efforts to Encourage the Adoption of Biochar into Agricultural Practices 3097
5.18.4 Biochar Sources 3098
5.18.4.1 Slow Pyrolysis and Traditional Charcoal Making 3098
5.18.4.2 Torrefaction and Feedstock Pretreatment 3100
5.18.4.3 Fast Pyrolysis and Bio-Oil 3100
5.18.4.4 Flash Pyrolysis and the Effects of Pressure 3102
5.18.4.5 Gasification and Syngas 3103
5.18.4.6 Biochar as a Coproduct 3103
5.18.5 Biochar Properties 3104
5.18.5.1 Biochar Composition 3104
5.18.5.2 Physical Properties 3105
5.18.5.3 Chemical Properties 3106
5.18.5.4 Biochar Engineering 3109
5.18.6 Promising Biochar Scenarios and Synergies 3110
5.18.6.1 Bioenergy and Biochar Coproduction 3111
5.18.6.2 Farming Impacts 3111
5.18.6.3 Site Remediation 3112
5.18.6.4 Developing Countries 3112
5.18.7 Challenges to Applying Biochar 3114
5.18.7.1 Economics of Alternative Uses 3114
5.18.7.2 Handling 3114
5.18.7.3 Potential Soil/Crop Drawbacks 3115
5.18.8 Future Progress and Development 3116
References 3116
Further Reading 3116
Relevant Websites 3116
Extracting Additional Value from Biomass 3117
5.19.1 Introduction 3117
5.19.2 The Current Position 3119
5.19.3 Future Development – Background 3121
5.19.4 The Future: Extending the Envelope by Exploiting Higher Value Metabolites 3122
5.19.5 Conclusion 3124
References 3125
Further Reading 3125
Relevant Website 3125
Biomass to Chemicals 3127
5.20.1 Introduction 3127
5.20.2 Biodiesel: Conversion of Glycerine Coproduct and Other Side Streams 3128
5.20.2.1 Introduction 3128
5.20.2.2 Biodiesel Production without the By-Product Glycerol 3128
5.20.2.3 Increasing the Value of Glycerol 3128
5.20.2.4 Chemicals from Glycerol 3130
5.20.3 Fuels from Fermentation Processes: Use of Biomass Raw Material, Fuel Production Intermediates, and’Coproducts for Chemical Production 3132
5.20.3.1 Lignocellulosic Feedstocks for Chemical Production 3132
5.20.3.2 Lignin: Depolymerization or Direct Use? 3133
5.20.4 Use of Bio-Alcohols as Chemicals and Chemical Intermediates 3136
5.20.4.1 Ethyl Acetate 3137
5.20.4.2 Single-Walled Carbon Nanotubes 3137
5.20.4.3 Hydrogen 3138
5.20.4.4 Ethanol Fuel Cells 3138
5.20.5 Biochar (Solid Biofuel): Chemicals from Pyrolysis Oil 3138
5.20.5.1 Comparison of Major Techniques 3138
5.20.5.2 Polycyclic Aromatic Hydrocarbons 3139
5.20.5.3 Fabricated Microwave Pyrolysis 3139
5.20.6 Conclusions and Future Prospects 3140
References 3141
Bioenergy Policy Development 3143
5.21.1 Introduction 3144
5.21.1.1 Greenhouse Gas Reductions: A Complicated Policy Driver 3144
5.21.1.2 Bioenergy Potential 3145
5.21.1.3 Unique Attributes of Biomass and Supply Chains 3146
5.21.2 Bioenergy Policy Development 3147
5.21.2.1 Achieving GHG Reductions with Biomass: A Key Policy Objective 3147
5.21.2.2 Achieving Sustainable Development with Bioenergy: Key Policy Objectives 3148
5.21.2.3 The Role of Energy Markets 3150
5.21.2.4 Correcting Market Failures 3150
5.21.2.5 Environmental Policy Options 3151
5.21.2.6 The Role of Markets in Ensuring Economic Efficiency 3156
5.21.2.7 Scale of Impacts and Nonfinancial Barriers 3156
5.21.3 Application of Environmental Policy Options to Bioenergy 3158
5.21.3.1 Historical Bioenergy Policy Development 3158
5.21.3.2 A Multidimensional Problem 3159
5.21.3.3 Attempts to Address the Problem 3159
5.21.4 A Way Forward 3159
5.21.4.1 The Need for a Holistic Approach 3159
5.21.4.2 Land-Use Challenges 3160
5.21.4.3 Biomass Action Plans 3160
5.21.5 Conclusions 3160
References 3161
Further Reading 3161
e9780080878720v6 3163
Cover\r 3163
Comprehensive Renewable Energy\r 3164
Copyright 3167
Editor-In-Chief \r 3168
Volume Editors 3170
Contributors For All Volumes 3174
Preface 3182
Contents 3186
Hydro Power -\r Introduction 3194
6.01.1 Introduction 3194
6.01.2 Hydroelectricity Progress and Development 3197
6.01.2.1 Key Features of Hydroelectric Power 3199
6.01.2.2 Hydropower Development 3202
6.01.3 Volume Presentation 3205
6.01.3.1 Contributions and Authors, Affiliations of Volume 6 3207
References 3207
Hydro Power: A Multi Benefit Solution for Renewable Energy 3208
6.02.1 Introduction 3209
6.02.2 How Hydropower Works 3209
6.02.2.1 Characteristics of Hydropower Plants 3209
6.02.2.2 Types of Turbines 3217
6.02.2.3 Types of Dams 3221
6.02.3 History of Hydropower 3224
6.02.3.1 Historical Background 3224
6.02.3.2 Hydro Energy and Other Primary Energies 3226
6.02.3.3 World Examples 3226
6.02.4 Hydropower Development in a Multipurpose Setting 3231
6.02.4.1 Benefits of Hydropower 3231
6.02.5 Negative Attributes of Hydropower Project 3234
6.02.6 Renewable Electricity Production 3235
6.02.6.1 Recall 3235
6.02.6.2 Sources of Renewable Electricity Energy 3235
6.02.6.3 Characteristics of Renewable Energy Sources 3235
6.02.6.4 Distribution per Region of the Percentage of Hydroelectricity and Renewable Non-Hydroelectricity Generation in’the’World 3236
6.02.6.5 Findings about Renewable Electricity Production 3237
6.02.7 Conclusion 3238
Further Reading 3239
Management of Hydropower Impacts through Construction and’Operation 3242
6.03.1 Introduction 3243
6.03.1.1 Background 3243
6.03.1.2 Upstream Impacts 3246
6.03.1.3 Downstream Impacts 3249
6.03.2 Reservoir Water Quality 3251
6.03.2.1 Introduction 3251
6.03.2.2 General Characteristics of Reservoirs 3252
6.03.2.3 Water Quality Processes – Eutrophication and Oxygenation 3254
6.03.2.4 Water Quality Parameters 3257
6.03.2.5 Nutrient Dynamics 3259
6.03.2.6 Overview of Water Quality Models of a Reservoir 3260
6.03.2.7 Lake Stability 3261
6.03.2.8 Water Quality Models 3263
6.03.2.9 Final Remarks 3266
6.03.3 Management of the Impact of Hydraulic Processes in Hydropower Operation 3266
6.03.3.1 Introduction 3266
6.03.3.2 Reduction of Gas-Supersaturated Water 3268
6.03.3.3 Control of Floating Debris 3272
6.03.3.4 Hydropower Operating Strategies 3276
6.03.3.5 Mitigation Measures 3280
References 3283
Large Hydropower Plants of Brazil 3286
6.04.1 Introduction and Background 3286
6.04.1.1 Historical Evolution of the Electric Sector in Brazil 3287
6.04.1.2 Main Hydroelectric Projects 3289
6.04.2 The 14000MW Itaipu Hydroelectric Project 3289
6.04.2.1 General Description of the Project 3289
6.04.2.2 The Dam 3291
6.04.2.3 The Spillway 3292
6.04.2.4 The Power Plant 3292
6.04.3 The 8125MW Tucurui Hydroelectric Project 3294
6.04.4 The 6450MW Madeira Hydroelectric Complex 3297
6.04.4.1 The Santo Antonio Project 3298
6.04.4.2 The Jirau Project 3299
6.04.5 The Iguaçu River Projects 3301
6.04.5.1 The Foz do Areia Project 3301
6.04.5.2 The Segredo Project 3303
6.04.5.3 The Salto Santiago Project 3304
6.04.5.4 The Salto Osorio Project 3307
6.04.5.5 The Salto Caxias Project 3309
6.04.6 The Uruguay River Projects 3312
6.04.6.1 The Machadinho Project 3312
6.04.6.2 The Itá Project 3314
6.04.6.3 The Campos Novos Project 3316
6.04.6.4 The Barra Grande Project 3317
6.04.7 The Belo Monte Project 3318
References 3320
Overview of Institutional Structure Reform of the Cameroon Power Sector and Assessments 3322
6.05.1 Introduction 3322
6.05.2 Hydro Potential 3323
6.05.2.1 The River System 3323
6.05.2.2 Existing Hydro Plants 3324
6.05.2.2.1 Production and transportation of electricity 3325
6.05.3 Dams 3327
6.05.3.1 Storage Dams Under Operation 3327
6.05.3.2 Hydrology 3328
6.05.4 Mid-Term Development Plan for Hydro Plants in Cameroon 3328
6.05.4.1 Objectives 3328
6.05.4.2 Context of the Development Plan 3330
6.05.4.3 Future Outlook 3330
6.05.4.4 Memve’Elé 3332
6.05.4.5 Mekin Hydropower Project 3334
6.05.4.6 Bini Warak Project 3338
6.05.4.7 Colomines Project 3338
6.05.4.8 Ngassona Falls 210 Project 3339
6.05.4.9 Overview of Institutional Structure Reform 3340
6.05.4.10 Weaknesses of Institutions 3342
6.05.4.11 Investing in the Electric Power Sector 3342
6.05.5 Conclusion 3343
References 3343
Relevant Websites 3344
Recent Hydropower Solutions in Canada 3346
6.06.1 Introduction 3346
6.06.2 Hydroelectric Power in Canada 3346
6.06.2.1 Hydroelectric History in Canada 3346
6.06.2.2 Hydroelectric Opportunities in Canada 3347
6.06.3 Recent Hydropower Solutions in Manitoba 3349
6.06.3.1 General 3349
6.06.3.2 Wuskwatim Generating Station Project 3352
6.06.4 Recent Hydropower Solutions in Quebec 3354
6.06.4.1 Existing Hydropower Solutions 3354
6.06.4.2 More Recent Hydropower Solutions 3354
6.06.4.3 Hydropower Plants Under Construction 3356
6.06.5 Recent Hydropower Implementations in British Columbia 3366
6.06.5.1 General 3366
6.06.5.2 Revelstoke Complex 3368
6.06.6 Conclusion 3370
References 3370
The Three Gorges Project in China 3372
6.07.1 Introduction 3373
6.07.1.1 Location and Natural Condition 3373
6.07.1.2 Project Scale and Main Objectives 3375
6.07.2 Hydraulic Complex Structures 3376
6.07.2.1 Dam 3377
6.07.2.2 Powerhouse 3381
6.07.2.3 Navigation Structures 3386
6.07.2.4 Maopingxi Dam 3393
6.07.3 Project Construction 3393
6.07.3.1 Demonstration and Construction 3393
6.07.3.2 Construction by Stages 3394
6.07.3.3 Construction Management 3401
6.07.4 Challenges and Achievements 3403
6.07.4.1 Resettlements 3403
6.07.4.2 Sediment 3405
6.07.4.3 Protection of Ecosystem and Environment 3406
6.07.4.4 Prevention and Control of Geological Hazards 3409
6.07.4.5 Protection of Cultural Relics 3410
6.07.4.6 Analysis of Dam Break 3412
6.07.4.7 Benefits 3413
6.07.4.8 Technical Advancement 3414
References 3419
Further Reading 3419
Relevant Websites 3419
The Recent Trend in Development of Hydro Plants in India 3420
6.08.1 Present Status and Future Planning 3420
6.08.1.1 World Bank Comments 3422
6.08.2 Hydrology and Climate Change 3423
6.08.3 Environment Study 3427
6.08.4 Reservoir and Downstream Flow 3430
6.08.5 Rehabilitation and Resettlement 3432
6.08.6 Project Planning and Implementation 3433
6.08.7 Storage and ROR Hydroelectric Projects 3435
6.08.8 Sediment Transport and Related Issues 3437
6.08.9 Socioeconomic Development and Hydropower in the Himalaya Northeast Region 3444
6.08.10 Conclusion 3445
References 3445
Hydropower Development in Iran: Vision and Strategy 3446
6.09.1 Introduction 3446
6.09.2 Energy Generation in Iran 3446
6.09.2.1 Energy Flow in Iran 3446
6.09.2.2 Electricity Generation in Iran 3447
6.09.3 Considerations and Requirements for Hydropower Developments 3449
6.09.3.1 Requirements 3449
6.09.3.2 Restrictions and Limitations 3449
6.09.4 Potentiality of Hydropower Projects 3450
6.09.4.1 Under Operation Projects 3450
6.09.4.2 Under Construction Projects 3451
6.09.4.3 Under Study Projects 3451
References 3456
Hydropower Development in Japan 3458
6.10.1 Outline of the History of Hydropower Development in Japan 3458
6.10.1.1 The Start of Hydropower Production 3459
6.10.1.2 The Start of Long-Distance Transmission of Electric Power and Large Hydropower Dams 3459
6.10.1.3 The Development of Dams and Conduit-Type High-Capacity Hydropower Production 3460
6.10.1.4 The Increased Use of River Water as an Energy Source 3461
6.10.1.5 Electric Power Shortages and the Postwar Reorganization of Electric Power 3462
6.10.1.6 Development of Large-Scale Dam-Type Hydropower Plants 3463
6.10.1.7 Hydropower Dams from the Rapid Economic Growth Period to the Stable Growth Period 3463
6.10.2 Current State of Hydropower in Japan 3467
6.10.2.1 Primary Energy in Japan 3467
6.10.2.2 Development of Hydroelectric Power in Japan 3469
6.10.2.3 Hydroelectric Power Development 3469
6.10.2.4 Development of Pumped-Storage Power Plant 3470
6.10.3 Hydropower in Japan and Future Challenges 3473
6.10.3.1 Energy Situation in Japan and Hydropower 3473
6.10.3.2 Hydropower in Japan and Future Challenges 3473
6.10.4 Successful Efforts in Japan 3474
6.10.4.1 Large-Scale Pumped-Storage Power Plants in Tokyo Electric Power Company 3474
6.10.4.2 Sediment Flushing of Reservoir by Large-Scale Flashing Facilities in the Kansai Electric Power Company 3481
6.10.4.3 Reservoir Bypass of Sediment and Turbid Water during Flood in the Kansai Electric Power Company 3487
6.10.4.4 Measures for Ecosystems 3491
Relevant Websites 3500
Evolution of Hydropower in Spain 3502
6.11.1 Hydroelectric Power in Spain 3502
6.11.1.1 Electric Power and Hydroelectric Power 3502
6.11.1.2 The Strategic Importance of Hydroelectric Power 3503
6.11.1.3 Hydrology, River Network, and Hydroelectric Development 3504
6.11.1.4 Power Plants and Main Developments 3506
6.11.1.5 Producing Companies 3508
6.11.2 Evolution of Schemes and First Developments 3508
6.11.2.1 Periods in the Evolution of Development 3508
6.11.2.2 The 1890–1940 Period 3510
6.11.2.3 The 1940–60 Period 3516
6.11.2.4 The 1960–75 Period 3520
6.11.2.5 The Last Three Decades 3526
6.11.3 A Representative Case: The Duero System and Its Evolution 3529
6.11.4 The Future of Hydroelectric Power in Spain 3532
References 3534
Hydropower in Switzerland 3536
6.12.1 Short Recall of Switzerland’s Characteristics 3536
6.12.2 The Drainage Basins of Switzerland 3536
6.12.3 Electricity Production in Switzerland 3536
6.12.3.1 In General 3536
6.12.3.2 Large-Scale Hydropower Plants 3538
6.12.3.3 Small-Scale Hydropower Plants 3539
6.12.3.4 Dams 3539
6.12.4 List of the Dams in Switzerland 3540
6.12.5 New Developments 3542
6.12.6 Dixence, Grande-Dixence, and Cleuson-Dixence Schemes as an Example of Capacity Increase 3543
6.12.6.1 In General 3543
6.12.6.2 First Stage: The Dixence Scheme 3543
6.12.6.3 Second Stage: The Grande-Dixence Scheme 3543
6.12.6.4 Third Stage: The Cleuson-Dixence Scheme 3544
6.12.7 New Hydroelectric Schemes Presently under Construction in Switzerland 3545
6.12.7.1 The Nant de Dranse Scheme 3545
6.12.7.2 The Linthal 2015 Project 3546
6.12.7.3 The Hongrin-Léman Plus Project 3547
Relevant Websites 3547
Long-Term Sediment Management for Sustainable Hydropower 3548
6.13.1 Introduction 3548
6.13.1.1 General 3548
6.13.1.2 The DPSIR Framework 3550
6.13.2 Driving Forces 3550
6.13.3 Pressures 3550
6.13.3.1 Variability in Pressures 3551
6.13.3.2 Measurement Techniques 3553
6.13.4 State 3555
6.13.4.1 Capacity Loss 3555
6.13.4.2 Sedimentation Pattern 3555
6.13.5 Impact 3556
6.13.6 Responses 3558
6.13.6.1 Measures Addressing Driving Forces 3558
6.13.6.2 Measures Addressing Pressures 3558
6.13.6.3 Measures Addressing the State 3559
6.13.6.4 Measures Addressing Impacts 3560
6.13.6.5 Numerical Modeling for Sustainable Sediment Management 3560
6.13.6.6 Assessing Sustainability of Hydropower Projects 3563
6.13.7 Conclusion 3569
References 3569
Durability Design of Concrete Hydropower Structures 3570
6.14.1 Introduction 3571
6.14.1.1 General 3571
6.14.2 Early Cracking 3573
6.14.2.1 General 3573
6.14.2.2 Definition of Early Cracking 3573
6.14.2.3 The Causes of Early Cracking 3573
6.14.2.4 Controlling the Cracking of Concrete Hydropower Structures 3575
6.14.2.5 State-of-the-Art Joints 3575
6.14.3 Durability Problems 3578
6.14.3.1 General 3578
6.14.3.2 How Concrete Hydropower Structures Become Damaged 3579
6.14.3.3 Carbonation and Reinforcement Corrosion 3579
6.14.3.4 Freezing and Thawing 3580
6.14.3.5 Concrete Expansion and Contraction 3580
6.14.3.6 Chloride and Sulfate Attack 3581
6.14.3.7 Alkali–Aggregate Reaction 3582
6.14.3.8 Seepage Scouring 3583
6.14.3.9 Abrasion and Cavitation 3583
6.14.3.10 Other Less Important Factors 3584
6.14.4 Durability Design 3585
6.14.4.1 Performance-Based Durability Design 3585
6.14.4.2 Expert System 3585
6.14.4.3 The Direction of Future Research 3585
6.14.5 How to Maintain a Durable Concrete 3586
6.14.5.1 Material Selection 3586
6.14.5.2 Design 3588
6.14.5.3 Construction 3589
6.14.5.4 Inspection and Assessment 3590
6.14.5.5 Rehabilitation 3590
6.14.6 Case Histories for Durable Concrete 3592
6.14.6.1 Shi Lianghe Key Project in China 3592
6.14.6.2 Fengman Hydropower Structure in China 3592
6.14.6.3 Haikou Key Project in China 3592
6.14.6.4 Butgenbach Dam in Belgium 3593
6.14.6.5 Baoying Key Project in China 3594
6.14.7 Conclusion 3596
References 3596
Pumped Storage Hydropower Developments 3598
6.15.1 Inroduction 3599
6.15.2 Electrical Energy Storage 3599
6.15.2.1 General Issues 3599
6.15.2.2 Applications 3600
6.15.2.3 Storage Technologies 3603
6.15.3 Pumped Storage Hydropower Plant 3605
6.15.3.1 Characteristics 3605
6.15.3.2 History 3605
6.15.3.3 Characteristics of Pump–Turbines 3606
6.15.4 Examples of Remarkable Pumped Storage Power Plants 3611
6.15.4.1 Okinawa Seawater Pumped Storage Power Plant 3611
6.15.4.2 Goldisthal Pumped Storage Power Plant 3619
6.15.4.3 Tianhuangping Pumped Storage Power Plant 3622
6.15.4.4 Coo-Trois Ponts Pumped Storage Power Plant 3624
References 3627
Simplified Generic Axial-Flow Microhydro Turbines 3628
6.16.1 Introduction and Context 3629
6.16.1.1 What Is a Simplified Generic Axial-Flow Microhydro Turbine? 3629
6.16.1.2 Who Would Use Such a Turbine? 3631
6.16.1.3 Representative Designs 3631
6.16.1.4 Energy Alternatives and Unconventional Economics 3635
6.16.1.5 What Is Specific Speed? 3635
6.16.2 Component-Level Design Methods 3636
6.16.2.1 Water Supply 3637
6.16.2.2 Volute 3642
6.16.2.3 Runner 3646
6.16.2.4 Draft Tube 3649
6.16.3 Turbine Selection from an Existing Range 3653
6.16.4 Direct Sizing 3656
6.16.5 Conclusions 3658
Further Reading 3658
References 3659
Development of a Small Hydroelectric Scheme at Horseshoe Bend, Teviot River, Central Otago, New Zealand 3660
6.17.1 Introduction 3660
6.17.2 Background 3661
6.17.3 Scheme Layout and Specifications 3661
6.17.4 Project Development and Processes 3663
6.17.5 Land Tenure 3663
6.17.6 Resource Consents 3663
6.17.7 Project Management 3665
6.17.8 Contract Framework 3665
6.17.9 Interesting Features of Design and Construction 3666
6.17.9.1 Control Valve Positioned at the Tunnel Outlet 3666
6.17.10 RCC Dam Design and Construction 3666
6.17.10.1 Geological and Hydrological Setting 3666
6.17.10.2 Site Layout 3667
6.17.10.3 RCC Mix Design and Handling Characteristics 3668
6.17.10.4 GIN Foundation Grouting Method 3670
6.17.10.5 Commissioning/Performance Monitoring 3673
6.17.11 Conclusions 3675
References 3676
Recent Achievements in Hydraulic Research in China 3678
6.18.1 Introduction 3678
6.18.2 Energy Dissipation 3680
6.18.2.1 Slit Bucket 3680
6.18.2.2 Flaring Pier Gate 3682
6.18.2.3 Jet Flows Collision with Plunge Pool in High-Arch Dams 3685
6.18.2.4 Orifice Spillway Tunnel 3687
6.18.2.5 Vortex Shaft Spillway Tunnel 3688
6.18.3 Aeration and Cavitation Mitigation Measures 3690
6.18.4 Flow-Induced Vibration 3692
6.18.5 Discharge Spraying by Jet Flow 3692
6.18.6 Hydraulic Field Observations 3695
References 3697
e9780080878720v7 3700
Cover 3700
Comprehensive Renewable Energy 3701
Copyright 3704
Editor-In-Chief 3705
Volume Editors 3707
Contributors For All Volumes 3711
Preface 3719
Contents 3723
7.02.1 Introduction 32
7.02.2 Geothermal Systems 34
7.02.3 Geothermal System Properties and Processes 34
7.02.4 Pressure Diffusion and Fluid Flow 35
7.02.5 Heat Transfer 35
7.02.5.1 Porous Layer Model 38
7.02.5.2 Horizontal Fracture Model 38
7.02.5.3 Porous Model with Cold Recharge 39
7.02.6 Two-Phase Regions or Systems 39
7.02.7 Geothermal Wells 39
7.02.8 Utilization Response of Geothermal Systems 41
7.02.9 Monitoring 42
7.02.10 Modelling of Geothermal Systems – Overview 42
7.02.11 Static Modeling (Volumetric Assessment) 56
7.02.12 Dynamic Modeling 57
7.02.13 Geothermal Resource Management 57
7.02.14 Reinjection 57
7.02.15 Renewability of Geothermal Resources 57
7.02.16 Sustainable Geothermal Utilization 58
7.02.17 Conclusions 92
References 59
Further Reading 61
History of Photovoltaics 62
1.04.1 Harnessing Solar Energy – A New Invention? 62
1.04.2 What Was the Catalyst for Photovoltaic Development? 64
1.04.3 A Photovoltaic Modern Historical Timeline 68
1.04.4 Current Photovoltaic Technologies 72
1.04.5 Photovoltaics – Where We Are Now? 74
References 75
Historical and Future Cost Dynamics of Photovoltaic Technology 78
1.05.1 Introduction: Observed Reductions in the Cost of Photovoltaics 78
1.05.2 What Caused the 700× Reduction in the Cost of PV? 79
1.05.2.1 Identifying Drivers of Change 80
1.05.2.2 R&D and Efficiency Improvements 80
1.05.2.3 Sequential Niche Markets 80
1.05.2.4 Expectations about Future Demand 81
1.05.2.5 Learning by Doing 82
1.05.2.6 Intertechnology Spillovers 82
1.05.2.7 Materials 82
1.05.2.8 Drivers Related to Supply and Demand 83
1.05.2.9 Quality and Product Attributes 84
1.05.2.10 Interactions between R&D and Experience in Production 85
1.05.3 Using Learning Curves to Predict Costs 85
1.05.3.1 Use of Experience Curves in Modeling and Policy 85
1.05.3.2 Problems with Using Experience Curves 86
1.05.3.3 How Reliable Are Experience Curve Predictions? 88
1.05.4 Nonincremental Cost-Reducing Developments 92
1.05.4.1 Identifying Breakthroughs 92
1.05.4.2 Results: Combining Expert Opinion and Patent Analysis 96
1.05.5 Modeling Nonincremental Changes in PV 98
1.05.5.1 An Approach to Modeling Nonincremental Technological Change 98
1.05.5.2 Results for Nonincremental Technological Change 99
1.05.5.3 Summary of Nonincremental Modeling 100
1.05.6 Future Progress and Development 100
References 101
Feed-In Tariffs and Other Support Mechanisms for Solar PV Promotion 104
1.06.1 Introduction 105
1.06.2 Overview of Support Mechanisms for Renewable Electricity 106
1.06.2.1 Quota-Based Support (TGC and RPS) 107
1.06.2.2 Tender Systems 108
1.06.2.3 Net Metering 108
1.06.2.4 Feed-In Tariffs 108
1.06.2.5 Tax and Investment Incentives 109
1.06.2.6 Assessment of Support Mechanisms (Effectiveness and Efficiency) 109
1.06.3 Singapore 110
1.06.3.1 Introduction 110
1.06.3.2 Existing Support Schemes 110
1.06.3.3 Challenges and Prospects for the Future 113
1.06.4 United States 114
1.06.4.1 Introduction 114
1.06.4.2 Existing Support Schemes 115
1.06.4.3 Challenges and Prospects for the Future 120
1.06.5 European Union (Germany and Spain) 121
1.06.5.1 Introduction: Europe 121
1.06.5.2 Support Mechanisms 122
1.06.5.3 Germany 122
1.06.5.4 Spain 122
1.06.6 Common Features of Best Practice Promotion Schemes 124
1.06.6.1 Eligible Producers 125
1.06.6.2 Purchase Obligations 125
1.06.6.3 Tariff Calculation Methodology 125
1.06.6.4 Duration of Tariff Payment 128
1.06.6.5 Financing Mechanism 128
1.06.6.6 Progress Report 129
1.06.6.7 Tariff Differentiation According to Plant Size 129
1.06.6.8 Tariff Differentiation According to Plant Type (Location) 130
1.06.6.9 Tariff Degression 130
1.06.6.10 Inflation Indexation 132
1.06.6.11 Design Options for Better Market Integration 133
1.06.6.12 Challenges and Prospects for the Future 134
1.06.7 Conclusion and Outlook 134
1.06.7.1 Leveling the Playing Field 136
1.06.7.2 Investment Structure and Actor Groups on Future Electricity Markets 137
References 137
Finance Mechanisms and Incentives for Photovoltaic Technologies in Developing Countries 142
1.07.1 Background: Photovoltaics, Rural Electrification, and Millennium Development Goals 142
1.07.1.1 Development Assistance for Renewables in Developing Countries 144
1.07.1.2 Analytical Framework for Support Mechanism of PV in Rural Areas 145
1.07.2 PV in Developing Countries: Current Situation 145
1.07.2.1 Evolution of Grid-Connected/Off-Grid PV Systems 145
1.07.2.2 Evolution of Electrification Rates and Off-Grid PV Systems for Rural Areas 145
1.07.2.3 Energy Technology Options for Rural Areas 146
1.07.3 Current Costs of PV in Developing Countries 147
1.07.4 Ownership, Organization, and Local Participation 150
1.07.4.1 Community-Based Model 151
1.07.4.2 Private Ownership/Private Operator 151
1.07.4.3 Rural Energy Service Company Model 151
1.07.5 Financing Channels for PV in Rural Renewable Energy 151
1.07.5.1 Consumer Finance 152
1.07.5.2 Market Development Finance 154
1.07.5.3 Public Sector Finance (Poverty Alleviation) 155
1.07.6 PV Tariff Setting and Incentives for Rural Electrification 155
1.07.6.1 Procedure for Annual Revision 156
1.07.7 Finance Instruments to Promote PV Systems in Rural Areas in Developing Countries 156
1.07.7.1 Capital Subsidies, Consumer Grants, and Guarantees 156
1.07.7.2 Renewable Energy Service Companies 157
1.07.7.3 Leasing or Hire Purchase Model 157
1.07.7.4 Renewable Portfolio Standards 158
1.07.7.5 Small Power Producer Regulation 158
1.07.7.6 Tender System 159
1.07.7.7 Fiscal Incentives: Reduction in VAT and Import Duty Reduction 159
1.07.7.8 Public Finance Pools 159
1.07.7.9 Bank Financing: Low Interest and Soft Loans 159
1.07.7.10 Carbon Financing 160
1.07.7.11 Transitions from Off-Grid to On-Grid Generation Systems 161
1.07.8 Innovative Financing Mechanisms for Rural Renewable Energy 161
1.07.8.1 Renewable Energy Premium Tariff 161
1.07.8.2 GET FiTs for Developing Countries 165
1.07.9 Financial Risk Management 166
1.07.9.1 Risk Characterization 167
1.07.10 Conclusions 168
Acknowledgments 170
References 170
Environmental Impacts of Photovoltaic Life Cycles 174
1.08.1 Introduction 175
1.08.2 Background 175
1.08.3 Life Cycle of Photovoltaics 175
1.08.4 Life-Cycle Inventory 177
1.08.4.1 Modules 177
1.08.4.2 Balance of System 178
1.08.5 Energy Payback Times and Greenhouse Gas Emissions 178
1.08.5.1 Energy Payback Time 178
1.08.5.2 Greenhouse Gas Emissions 179
1.08.6 Criteria Pollutant and Heavy Metal Emissions 181
1.08.6.1 Criteria Pollutant Emissions 181
1.08.6.2 Heavy Metal Emissions 182
1.08.7 Life-Cycle Risk Analysis 184
1.08.7.1 Risk Classification 184
1.08.7.2 Risks of Accidents in the Photovoltaic Life Cycle 184
1.08.7.3 Comparison with Other Energy Technologies 186
1.08.7.4 Limitation of the Study 188
1.08.8 Conclusion 188
Acknowledgement 189
References 189
Overview of the Global PV Industry 192
1.09.1 Introduction 193
1.09.2 Development of the Photovoltaic Industry 195
1.09.3 The Photovoltaic Industry in 2010 198
1.09.3.1 Technology Mix 199
1.09.3.2 Solar Cell Production Companies 200
1.09.3.3 Polysilicon Supply 204
1.09.3.4 Polysilicon Manufacturers 204
1.09.4 Outlook 206
References 208
Vision for Photovoltaics in the Future 210
1.10.1 Photovoltaics Today 211
1.10.1.1 Markets 211
1.10.1.2 Technologies 212
1.10.1.3 Competitiveness 212
1.10.1.4 Electricity Prices 212
1.10.1.5 Policy Support 213
1.10.2 Future Market Development 214
1.10.2.1 PV as a Mainstream Power Source in Europe by 2020 and Beyond 214
1.10.2.2 US and Canadian Markets Slowly Taking Off 215
1.10.2.3 Japan Has a Moderately Ambitious PV Target for 2020 215
1.10.2.4 The Rise of Sunbelt Countries 215
1.10.2.5 Global PV Installed Capacity Could Reach More Than 4500GW by 2050 216
1.10.3 The EPIA Vision for 2050 217
1.10.3.1 Introduction 217
1.10.3.2 A Dynamic Vision on PV Competitiveness and Grid Development 218
1.10.3.3 Necessary Steps to Unlocking PV Potential 218
1.10.3.4 Policy Recommendations for a Bright 2050 Future 219
1.10.4 Future Changes in Electricity Systems 220
1.10.4.1 Managing Variability 220
1.10.4.2 From Centralized to Decentralized Energy Generation 220
1.10.4.3 Peak Load Shaving 221
1.10.4.4 Super Smart Grid 221
1.10.4.5 Decentralized Storage 222
1.10.4.6 DSM 222
1.10.5 Future Market Segmentation 222
1.10.6 Future Share of On-Grid/Off-Grid Applications 223
1.10.6.1 Extending the National Grid 223
1.10.6.2 Providing Off-Grid Solutions 223
1.10.6.3 Coupling Mini-Grids with Hybrid Power 223
1.10.7 Future Technological Trends 223
1.10.7.1 The Evolution of PV Module and System Prices 224
1.10.7.2 Cost of Electricity Generation 226
1.10.8 Recommendations 227
1.10.8.1 Policy Recommendations 227
1.10.8.2 Investments in Technology and in PV Projects 227
1.10.8.3 Grid Infrastructures Adaptations 228
1.10.9 Conclusion 228
References 229
Storage Options for Photovoltaics 230
1.11.1 Introduction 230
1.11.2 Grid Flexibility and Reliability 230
1.11.3 Energy Storage and Conventional Power Systems 231
1.11.4 Solar Electricity and Energy Storage 232
1.11.4.1 Impact on the Grid of Solar and Wind Electricity Penetration 232
1.11.4.2 Solar, Wind, and Energy Storage: Integration Applications 234
1.11.5 Energy Storage Technologies 235
1.11.6 Power Quality Storage Technologies 236
1.11.6.1 Superconducting Magnetic Energy Storage 236
1.11.6.2 Electric Double-Layer Capacitors 236
1.11.6.3 Flywheels 236
1.11.7 Bridging Power Storage Technologies: Batteries 237
1.11.7.1 Lead–Acid Batteries 237
1.11.7.2 Lithium-Ion Batteries 238
1.11.7.3 Flow Batteries 239
1.11.8 Energy Management Storage Technologies 239
1.11.8.1 Pumped Hydro Energy Storage 239
1.11.8.2 Compressed Air Energy Storage 241
1.11.9 Conclusions 242
References 242
Solar Radiation Resource Assessment for Renewable Energy Conversion 244
1.12.1 Introduction 245
1.12.1.1 The Sun as Star 245
1.12.1.2 The Earth and the Sun 246
1.12.2 Fundamentals of Solar Radiation 246
1.12.2.1 Solar Geometry 246
1.12.2.2 The Atmospheric Filter 247
1.12.2.3 Spectral Considerations 247
1.12.3 Fuel for Solar Energy Collectors 248
1.12.3.1 Photovoltaic and Solar Thermal Flat Panels 249
1.12.3.2 Solar Thermal Systems 250
1.12.3.3 Sustainable Applications 250
1.12.4 Measuring Solar Radiation 250
1.12.4.1 Solar Radiometers and Detectors 250
1.12.4.2 Radiometer Calibration 252
1.12.4.3 World Radiometric Reference: the Calibration Reference 252
1.12.4.4 Traceability 253
1.12.4.5 Pyrheliometer Calibrations 254
1.12.4.6 Pyranometer Calibrations 254
1.12.4.7 Radiometric Uncertainty and Performance 255
1.12.5 Modeling Solar Radiation 256
1.12.5.1 Physics-Based Models 256
1.12.5.2 Empirical Models 256
1.12.5.3 Satellite-Based Models 256
1.12.5.4 Geographical Information System Models 257
1.12.6 Converting Solar Radiation Data to Application-Specific Data 257
1.12.6.1 Estimating Hemispherical Radiation on a Tilt 257
1.12.6.2 Estimating Direct Beam (DNI) from Global Horizontal Radiation 257
1.12.6.3 Estimating Diffuse Hemispherical Radiation from Global or DNI 258
1.12.7 Measured and Model Data Set Properties 258
1.12.7.1 Period of Record 258
1.12.7.2 Temporal Resolution 259
1.12.7.3 Spatial Coverage 259
1.12.7.4 Modeled Data Sets 259
1.12.8 Model Estimate Uncertainties 260
1.12.9 Developing Solar Radiation Resource Databases 260
1.12.9.1 Developing the NSRDB 260
1.12.9.2 Sources of Solar Radiation and Meteorological Data 261
1.12.10 Applications: Calculating Solar Radiation for Flat-Plate and Concentrating Collectors 263
1.12.11 Future Directions 265
References 267
7.03.3.2 Gas Fluxes 2872
7.03.4.5 Multiple Mineral Equilibria Approach 92
7.03.4.6 Example of Application 61
7.03.5 Geophysical Methods 93
7.03.5.1 Resistivity Methods 93
7.03.5.2 Resistivity of Rocks 128
7.03.5.3 Seismic Methods 134
7.03.5.4 Thermal Methods 229
References 312
7.04.3 Characterization of Solids 2761
7.05.7.3 Greenhouse Heating in Hungary 154
7.06.3.2 Further Types: Energy Piles, Geothermal Baskets 516
7.06.5 Site Investigations for Dimensioning 591
7.07.2 Scope of the Section 3289
7.07.4 Binary Plants 2538
7.08.3.1 Uniform Corrosion 621
7.08.3.7 Hydrogen Embrittlement 968
7.08.4 Variables and Corrosive Species That Affect Corrosion Rates 629
7.08.4.12 Other Factors 1392
7.08.6 Scaling in Geothermal Environments 206
7.09.1 Introduction 2888
7.10.6.3 Toward SED? 3342
7.10.7.4 Goal 4: Reduce Child Mortality Rate 312
7.10.7.5 Goal 5: Improve Maternal Health 312
7.10.7.6 Goal 6: Combat HIV/AIDs, Malaria, and Other Diseases 314
7.10.7.7 Goal 7: Ensure Environmental Sustainability 315
7.10.7.8 Goal 8: Develop a Global Partnership for Development 316
7.10.7.9 Summary 316
7.10.8 Climate Change, CDM, and Geothermal Energy 317
7.10.8.1 The Potential of Geothermal Power to Mitigate GHG Emissions 317
7.10.8.2 CDM and Geothermal Energy 317
7.10.9 Toward SED Using Geothermal Power 318
7.10.10 Conclusion 319
References 320
Principles of Solar Energy Conversion 324
1.14.1 Introduction 325
1.14.2 The PV Effect 325
1.14.3 Solar Cells in Circuits 325
1.14.4 Solar Resource 326
1.14.4.1 Blackbody Radiation 326
1.14.5 Absorption Profile of a Solar Cell 327
1.14.6 Semiconductors 328
1.14.6.1 Energy Band Structure 328
1.14.6.2 Carrier Populations in Semiconductor Materials 329
1.14.6.3 Doping 331
1.14.6.4 Pn Junction 332
1.14.7 Generation and Recombination 332
1.14.7.1 Thermal Generation and Recombination 333
1.14.7.2 Radiative Generation and Recombination 333
1.14.7.3 Carrier–Carrier Generation and Recombination 334
1.14.7.4 Impurity and Surface Generation and Recombination 334
1.14.8 Thermal Energy into Chemical Energy 335
1.14.8.1 Current Extraction 336
1.14.9 Generalized Planck 336
1.14.9.1 Density of Photon States 337
1.14.9.2 Geometrical Factor 337
1.14.9.3 Occupation of Photon States 338
1.14.10 Detailed Balance 339
1.14.10.1 Shockley–Queisser Limiting Efficiency 339
1.14.10.2 Real-World Devices 340
1.14.11 Intrinsic Loss Mechanisms in Solar Cells 340
1.14.11.1 Below Eg Loss 341
1.14.11.2 Emission Loss 342
1.14.11.3 Thermalization 342
1.14.11.4 Carnot Loss 342
1.14.11.5 Boltzmann Loss 342
1.14.12 Exceeding the Shockley–Queisser Limiting Efficiency 343
1.14.13 Summary 343
References 344
Thermodynamics of Photovoltaics 346
1.15.1 Introduction 347
1.15.2 Thermodynamics of Thermal Radiation 347
1.15.2.1 Photon Gas 347
1.15.2.2 The Continuous Spectrum Approximation 348
1.15.2.3 Fluxes of Photon Properties 349
1.15.2.4 Spectral Property Radiances for Blackbodies and Bandgap Materials 349
1.15.2.5 Geometrical Factor of Radiation Sources 350
1.15.2.6 Diluted Thermal Radiation 353
1.15.3 Concentration of Solar Radiation 356
1.15.3.1 The Étendue of Beam Radiation 356
1.15.3.2 Upper Bounds on Beam Solar Radiation Concentration 357
1.15.3.3 Upper Bounds on Scattered Solar Radiation Concentration 358
1.15.4 Upper Bounds for Thermal Radiation Energy Conversion 359
1.15.4.1 Available Work of Enclosed Thermal Radiation 359
1.15.4.2 Available Work of Free Thermal Radiation 361
1.15.4.3 Available Work of Blackbody Radiation as a Particular Case 363
1.15.4.4 Discussion 364
1.15.5 Models of Monogap Solar PV Converters 365
1.15.5.1 Modeling Absorption and Recombination Processes 365
1.15.5.2 Modeling Multiple Impact Ionization 370
1.15.6 Models of Omnicolor Solar Converters 376
1.15.6.1 Omnicolor PT Converters 376
1.15.6.2 Omnicolor PV Converters 378
1.15.6.3 Unified Model of Omnicolor Converters 380
1.15.6.4 Discussion 380
1.15.7 Conclusions 381
References 381
Further Reading 382
Crystalline Silicon Solar Cells: State-of-the-Art and Future Developments 384
1.16.1 General Introduction 384
1.16.1.1 Photovoltaic Market 384
1.16.1.2 Historical Development of Cell Efficiency 385
1.16.1.3 Maximum Achievable Efficiency 385
1.16.2 Current Status of Silicon Solar Cell Technology 386
1.16.2.1 Basic Structure of a Silicon Solar Cell 386
1.16.2.2 Physical Structure of an Industrial Silicon Solar Cell 386
1.16.2.3 Process Sequence 389
1.16.3 Influence of Basic Parameters 394
1.16.4 Strategies for Improvement 395
1.16.4.1 Dielectric Surface Passivation 395
1.16.4.2 Metallization 397
1.16.4.3 Bulk Properties 399
1.16.5 High-Efficiency Cell Structures on p-type Silicon 402
1.16.5.1 Main Approaches for High Efficiencies in p-type Devices 402
1.16.5.2 Passivated Emitter and Rear Cell 402
1.16.5.3 Metal Wrap-Through Solar Cells 403
1.16.5.4 MWT-PERC 404
1.16.5.5 Emitter Wrap-Through Solar Cells 405
1.16.6 High-Efficiency Structures on n-type Silicon 406
1.16.6.1 Aluminum-Alloyed Back Junction 406
1.16.6.2 n-Type Cells with Boron-Diffused Front Emitter 407
1.16.6.3 Back-Contact Solar Cells with Boron-Diffused Back Junction 408
1.16.6.4 Heterojunction Solar Cells 410
1.16.6.5 Alternative Emitters 411
1.16.7 Conclusion 412
References 412
Thin-Film Silicon PV Technology 420
1.17.1 Introduction 420
1.17.2 Thin-Film Silicon Solar Cell Structures 420
1.17.2.1 Amorphous Silicon 420
1.17.2.2 Microcrystalline Silicon 422
1.17.2.3 Multijunction Solar Cell 423
1.17.2.4 Light Trapping 424
1.17.2.5 Heterojunction a-Si/c-Si Solar Cells 424
1.17.3 Challenges of Thin-Film Si PV Technology 425
1.17.4 Fabrication of Thin-Film Si Modules 426
1.17.5 Applications 427
1.17.6 Conclusions 428
References 428
Chalcopyrite Thin-Film Materials and Solar Cells 430
1.18.1 Introduction 430
1.18.2 Material Properties 431
1.18.2.1 Structure 431
1.18.2.2 Optical Properties 432
1.18.2.3 Electrical Properties 434
1.18.3 Deposition Methods 437
1.18.3.1 Single-Step Deposition 438
1.18.3.2 Sequential Deposition 439
1.18.3.3 General Considerations 441
1.18.4 Device Structure 441
1.18.4.1 Substrate 441
1.18.4.2 Barrier Layers 443
1.18.4.3 Back Contact 443
1.18.4.4 Buffer Layer 443
1.18.4.5 Front Contact 445
1.18.5 Device Properties 445
1.18.6 Outlook 448
References 449
Cadmium Telluride Photovoltaic Thin Film: CdTe 454
1.19.1 Introduction 454
1.19.2 Brief History of CdTe PV Devices 454
1.19.3 Attempts Toward Initial Commercial Modules 455
1.19.4 Review of Present Commercial Industry/Device Designs 455
1.19.5 General CdTe Material Properties 457
1.19.6 Layer-Specific Process Description for Superstrate CdTe Devices 458
1.19.6.1 Superstrate Materials 458
1.19.6.2 TCO Layer 459
1.19.6.3 Buffer Layer 459
1.19.6.4 CdS Layer 460
1.19.6.5 CdTe Layer 461
1.19.6.6 CdCl2 Activation 462
1.19.6.7 Back Contact 463
1.19.7 Where Is the Junction? 465
1.19.8 Considerations for Large-Scale Deployment 465
1.19.8.1 Reliability 466
1.19.8.2 Mineral Availability 467
1.19.8.3 Environmental 467
1.19.8.4 Energy-Payback Time 467
1.19.9 Conclusion 468
Acknowledgments 468
References 468
Plastic Solar Cells 470
1.20.1 Introduction 471
1.20.1.1 Why Solar Cells? 471
1.20.1.2 Why OSCs? 472
1.20.2 Fundamentals 473
1.20.2.1 Comparison of Inorganic Solar Cells and OSCs 473
1.20.2.2 Solar Cell Device Architectures 479
1.20.2.3 Characteristic Values of a Solar Cell 480
1.20.3 Materials for OSCs 481
1.20.3.1 Active Materials for OSCs 481
1.20.3.2 Interfacial Materials 484
1.20.3.3 Electrode Materials 487
1.20.4 Driving Efficiency 488
1.20.4.1 Preferable Properties of the Donor Molecule 488
1.20.4.2 Impact of Morphology 488
1.20.4.3 Improved Material Properties for Efficiency Increase 492
1.20.4.4 Effect of Interference in the Device 494
1.20.4.5 Solar Cell Architectures for Enhanced Device Performance 494
1.20.5 Stability of OSCs 496
1.20.5.1 Encapsulation 496
1.20.5.2 Electrodes 497
1.20.5.3 Interfacial Layers 498
1.20.5.4 Active Materials 499
1.20.5.5 Testing the Lifetime 500
1.20.6 Production Methods 501
1.20.6.1 Layer Deposition for Single Devices 501
1.20.6.2 Large-Scale Production Methods 503
1.20.7 Summary and Outlook 504
References 505
Further Reading 511
Mesoporous Dye-Sensitized Solar Cells 512
1.21.1 Introduction 512
1.21.2 Mesoporous Dye-Sensitized Solar Cells 513
1.21.2.1 Overview of Current Status and Operational Principles 513
1.21.2.2 The Kinetic Model – Electron-Transfer Processes 515
1.21.2.3 Basic Characterization of DSC Devices 518
1.21.2.4 Development of Material Components and Devices 521
1.21.3 Future Outlook 525
References 525
Multiple Junction Solar Cells 528
1.22.1 Introduction 528
1.22.2 Key Issues for Realizing High-Efficiency MJ Solar Cells 529
1.22.2.1 Selection of Cell Materials and Improving Quality 529
1.22.2.2 Lattice Matching Between Cell Materials and Substrates 531
1.22.2.3 Effectiveness of Wide Bandgap Back-Surface-Field Layer 532
1.22.2.4 Low-Loss Tunnel Junction for Intercell Connection and Preventing Impurity Diffusion from Tunnel Junction 533
1.22.3 High-Efficiency InGaP/GaAs/Ge 3-Junction Solar Cells and their Space Applications 534
1.22.3.1 Development of High-Efficiency InGaP/GaAs/Ge 3-Junction Solar Cells 534
1.22.3.2 Radiation Resistance of InGaP-Based MJ Solar Cells 536
1.22.3.3 Space Applications of InGaP/GaAs/Ge 3-Junction Solar Cells 537
1.22.4 Low-Cost Potential of Concentrator MJ Solar Cell Modules and High-Efficiency Concentrator InGaP/GaAs/Ge’3-Junction Solar Cell Modules and Terrestrial Applications 537
1.22.5 Most Recent Results of MJ Cells 540
1.22.6 Future Directions 540
Acknowledgments 544
References 545
Application of Micro- and Nanotechnology in Photovoltaics 546
1.23.1 Introduction 546
1.23.2 Application of Micro and Nanotechnologies to Conventional PV 548
1.23.2.1 Improved Performance 549
1.23.2.2 Process Improvements 552
1.23.3 Nanoarchitectures 554
1.23.3.1 Nanocomposites 554
1.23.3.2 Nano/Microwires 555
1.23.4 Quantum Structures 556
1.23.4.1 Multi-Exciton Generation 556
1.23.4.2 Hot Carriers 557
1.23.4.3 Intermediate Bands 558
1.23.4.4 Plasmonics 558
1.23.5 Outlook 559
1.23.6 Conclusions 560
References 560
Upconversion 564
1.24.1 Introduction 564
1.24.2 Single Threshold Solar Cells 565
1.24.3 Upconversion-Assisted Solar Cells: Equivalent Circuits 566
1.24.4 Solar Concentration 569
1.24.5 Definition of Upconversion Efficiency 569
1.24.5.1 Monochromatic Optical Efficiency 570
1.24.5.2 Photoelectrical Efficiency 571
1.24.6 Practical Implementation 571
1.24.6.1 Rare Earths 571
1.24.6.2 Upconversion with Organic Molecules 572
1.24.6.3 Comparison between Organics and Rare Earths 577
1.24.7 Prospects 577
References 578
Further Reading 579
Downconversion 580
1.25.1 Introduction 580
1.25.2 Equivalent Circuits 581
1.25.3 Practical Applications 585
1.25.3.1 QC in Rare-Earth Materials 586
1.25.3.2 MEG in Semiconductor Nanostructures 588
1.25.3.3 SF in Organic Materials 590
1.25.4 Prospects 591
References 591
Down-Shifting of the Incident Light for Photovoltaic Applications 594
1.26.1 Introduction 594
1.26.2 The Down-Shifting Concept 596
1.26.3 Luminescent Down-Shifters Applied for Solar Cells 598
1.26.3.1 Silicon-Based Solar Cells 598
1.26.3.2 Gallium Arsenide-Based Devices 599
1.26.3.3 Cadmium-Based Solar Cells 599
1.26.3.4 Organic-Based Solar Cells 600
1.26.3.5 Critical Parameters 600
1.26.4 Simulation Approach – Modeling of the Spectral Response 602
1.26.4.1 Limit for the Efficiency 602
1.26.4.2 Modeling of the Spectral Response 603
1.26.5 Rare Earth-Based Down-Shifting Layers 604
1.26.5.1 Radiative and Nonradiative Transitions 605
1.26.5.2 Energy Transfer 605
1.26.5.3 Efficiency of Rare Earth Ions in Down-Shifting Layers 605
1.26.6 Quantum Dots-Based Down-Shifting Layers 606
1.26.6.1 Quantum Size Effects 607
1.26.6.2 Efficiency of Quantum Dots in Down-Shifting Layers 607
1.26.7 Organic Dyes-Based Down-Shifting Layers 609
1.26.7.1 Optical Properties 609
1.26.7.2 Efficiency of Organic Dyes in Down-Shifting Layers 610
1.26.8 Commercial Applications and Patents 611
1.26.8.1 Patents and Down-Shifting Technology 611
1.26.8.2 Commercial Applications 612
1.26.9 Conclusions 613
Acknowledgment 614
References 614
Luminescent Solar Concentrator 618
1.27.1 Introduction 618
1.27.2 Theory of Luminescent Solar Concentrators 619
1.27.2.1 The Factors that Determine the Efficiency of Luminescent Concentrator Systems 619
1.27.2.2 Thermodynamic Efficiency Limits 620
1.27.2.3 Thermodynamic Models of the Luminescent Concentrator 621
1.27.2.4 Ray Tracing Simulations of Luminescent Concentrators 623
1.27.3 Materials for Luminescent Solar Concentrators 624
1.27.3.1 Organic Dyes 624
1.27.3.2 Inorganic Luminescent Materials 625
1.27.4 Luminescent Solar Concentrator System Designs and Achieved Results 625
1.27.4.1 System Designs 625
1.27.4.2 Achieved System Efficiencies 626
1.27.5 The Future Development of Luminescent Solar Concentrators 627
1.27.5.1 Extending the Used Spectral Range into the IR 627
1.27.5.2 Controlling Escape Cone Losses 627
1.27.6 Conclusion 630
Acknowledgments 630
References 630
Thermophotovoltaics 634
1.28.1 Introduction 634
1.28.2 Thermophotovoltaic System 635
1.28.2.1 Heat Source 636
1.28.2.2 Selective Emitter 636
1.28.2.3 Filter 638
1.28.2.4 Thermophotovoltaic Cells 639
1.28.3 TPV Cells 639
1.28.3.1 Introduction 639
1.28.3.2 Possible Materials 639
1.28.3.3 TPV Cells Based on GaSb 639
1.28.3.4 TPV Cells Based on InGaAs/InP 641
1.28.3.5 TPV Cells on InGaSb Substrates 641
1.28.3.6 Low-Band Gap TPV Cells Based on InAsSbP 642
1.28.3.7 Germanium-Based Cells 642
1.28.4 TPV Concepts 643
1.28.4.1 Solar Thermophotovoltaic 643
1.28.4.2 Micron-Gap ThermoPhotoVoltaics 644
1.28.4.3 Radioisotope Thermophotovoltaics 644
1.28.5 TPV Systems 645
1.28.5.1 Introduction 645
1.28.5.2 Midnight Sun 645
1.28.5.3 TPV Prototype System Built by PSI 646
1.28.6 TPV Market Potential 647
1.28.7 Summary and Outlook 647
References 648
Intermediate Band Solar Cells 650
1.29.1 Introduction 650
1.29.2 Theoretical Model of the Intermediate Band Solar Cell 650
1.29.3 The Impurity-Based Approach or ‘Bulk IBSC’ 655
1.29.4 The QD-IBSC 659
1.29.4.1 The Use of QDs for Implementing an IBSC 659
1.29.4.2 QD-IBSC Prototypes 661
1.29.4.3 Proof of the Concept 662
1.29.4.4 Strategies to Boost the Efficiency of the QD-IBSC 663
1.29.5 Summary 666
Acknowledgments 668
References 668
Plasmonics for Photovoltaics 672
1.30.1 Introduction 672
1.30.2 Background 673
1.30.3 Surface Plasmons 673
1.30.3.1 General 673
1.30.3.2 Scattering Mechanism 675
1.30.3.3 Effect of Size 675
1.30.3.4 Effect of Shape 676
1.30.3.5 Effect of Material Properties 677
1.30.3.6 Effect of Dielectric Medium 677
1.30.3.7 Effect of Surface Coverage 678
1.30.3.8 Nanoparticle Location 679
1.30.4 Nanoparticle Fabrication 682
1.30.5 Applications of Plasmonics in PV 683
1.30.6 Potential of Plasmonics for Third-Generation Solar Cells 684
1.30.7 Future Outlook 685
1.30.8 Conclusion 686
Acknowledgments 686
References 686
Artificial Leaves: Towards Bio-Inspired Solar Energy Converters 688
1.31.1 The Design of Natural Photosynthesis 688
1.31.1.1 Photosynthetic Light-Harvesting Antennae 689
1.31.1.2 Photosynthetic RCs 690
1.31.1.3 Supramolecular Organization 691
1.31.2 Design Principles of Natural Photosynthesis 694
1.31.2.1 Photon Absorption, Excitation Energy Transfer, and Electron Transfer 694
1.31.2.2 Photochemical Thermodynamics of Energy Storage 695
1.31.3 The Design of an Artificial Leaf 697
1.31.3.1 Interfacing Proteins onto Solid-State Surfaces 697
1.31.3.2 Protein Maquettes for Artificial Photosynthesis 698
1.31.3.3 Bio-Inspired Self-assembled Artificial Antennae 700
1.31.3.4 Bio-Inspired DA Constructs 701
1.31.4 Outlook: The Construction of a Fuel-Producing Solar Cell 705
References 706
Further reading 708
Design and Components of Photovoltaic Systems 710
1.32.1 Introduction 710
1.32.2 PV Cells and Modules 711
1.32.2.1 Solar Cells 711
1.32.3 Balance of System 716
1.32.3.1 Inverters 716
1.32.3.2 Mounting Structures 717
1.32.3.3 Batteries 718
1.32.3.4 Charge Regulators 718
1.32.4 PV System Design 718
1.32.4.1 Hybrid Solar–Diesel System for Mandhoo Island 718
1.32.4.2 100MW PV Plant in Abu Dhabi Desert Area 721
1.32.5 Conclusions 725
References 726
BIPV in Architecture and Urban Planning 728
1.33.1 Introduction 728
1.33.1.1 Building Integration of Photovoltaics Will Be the Future 728
1.33.1.2 Definition of Building Integration 729
1.33.2 Photovoltaics in the Urban Planning Process 730
1.33.2.1 Planning for Renewables 730
1.33.2.2 Site Layout and Solar Access 730
1.33.2.3 Successful Implementation 730
1.33.2.4 Long-Term Operation 730
1.33.3 Steps in the Design Process with BIPV 731
1.33.3.1 Urban Planning – Related Design Aspects 731
1.33.3.2 Practical Rules for Integration 732
1.33.3.3 Step-by-Step Design 733
1.33.3.4 Design Process: Strategic Planning 733
1.33.4 BIPV in Architecture 734
1.33.4.1 Architectural Functions of PV Modules 734
1.33.4.2 PV Integrated as Roofing Louvres, Façades, and Shading Devices 736
1.33.4.3 Architectural Criteria for Well-Integrated Systems 736
1.33.4.4 Integration of PV Modules in Architecture 737
1.33.5 Concluding Remarks 737
References 738
Further Reading 738
Product-Integrated Photovoltaics 740
1.34.1 Introduction 740
1.34.1.1 What Is PIPV? 740
1.34.1.2 The Structure of This Chapter 742
1.34.2 Overview of Existing PIPV 742
1.34.2.1 The Early Days of PIPV 742
1.34.2.2 Lighting Products with Integrated PV 743
1.34.2.3 Business-to-Business Applications with Integrated PV 743
1.34.2.4 Recreational Products with Integrated PV 744
1.34.2.5 Vehicles and Transportation 745
1.34.2.6 Arts 745
1.34.3 Designing Products with Integrated PV 747
1.34.3.1 Area Constraints in Design 747
1.34.3.2 Design Processes and PIPV 747
1.34.4 Technical Aspects of PIPV 748
1.34.4.1 PV Cells 748
1.34.4.2 Irradiance and Solar Cell Performance 751
1.34.4.3 Rechargeable Batteries 753
1.34.5 System Design and Energy Balance 754
1.34.5.1 Irradiance 755
1.34.5.2 PV Power Conversion 755
1.34.5.3 Electronic Conversions 755
1.34.5.4 Efficiency of the Storage Device 755
1.34.5.5 Power Consumption 755
1.34.6 Costs of PIPV 756
1.34.7 Environmental Aspects of PIPV 756
1.34.8 Human Factors of PIPV 758
1.34.9 Design and Manufacturing of PIPV 759
1.34.10 Outlook on PIPV and Conclusions 761
References 761
Further Reading 763
Very Large-Scale Photovoltaic Systems 764
1.35.1 What is Very Large-Scale Photovoltaic System? 764
1.35.1.1 Definition of Very Large-Scale Photovoltaic 764
1.35.1.2 Multibenefit Approach 764
1.35.1.3 Deployment Strategies 765
1.35.2 Evaluation of the VLS-PV from Various Aspects 765
1.35.2.1 Energy Potential 765
1.35.2.2 Economics of VLS-PV 767
1.35.2.3 Technologies for VLS-PV 768
1.35.2.4 Environmental Aspects 768
1.35.3 Progress in VLS-PV 770
1.35.3.1 VLS-PV as a Dream 770
1.35.3.2 Dream to Reality 770
1.35.3.3 Emerging New Initiatives in MENA Regions 770
1.35.4 Future for the VLS-PV 772
1.35.4.1 Sustainability Issues 772
1.35.4.2 VLS-PV Visions and Roadmap 774
1.35.5 Conclusion 774
References 775
Concentration Photovoltaics 776
1.36.1 Introduction 776
1.36.1.1 Cells 777
1.36.1.2 Thermal Management 778
1.36.1.3 Optics 778
1.36.1.4 Modules 779
1.36.1.5 Tracking Systems 779
1.36.2 Historical Review 780
1.36.3 Standardization of CPV Systems and Components 780
1.36.4 ISFOC CPV Demonstration Power Plants 781
1.36.4.1 Puertollano – La Nava 781
1.36.4.2 Concentrix – El Villar 782
1.36.4.3 SolFocus – Almoguera 782
1.36.4.4 Regulatory Framework 782
1.36.4.5 Engineering, Construction, and Commissioning of CPV Plants 784
1.36.5 CPV Characterization and Rating 785
1.36.5.1 Procedure 786
1.36.5.2 Standard Test Conditions 786
1.36.5.3 DC Rating Procedure 786
1.36.5.4 AC Rating Procedure 789
1.36.5.5 Status and Results 790
1.36.6 Production Results 791
1.36.6.1 Performance 791
1.36.6.2 Operation and Maintenance 793
1.36.7 Outlook 794
References 795
Further Reading 796
Relevant Websites 796
Solar Power Satellites 798
1.37.1 Background and Historical Development 798
1.37.2 Power-Beaming Fundamentals 799
1.37.2.1 Efficiency of Microwave Transmission 799
1.37.2.2 Spot Diameter 799
1.37.2.3 Minimum Power Level for Microwave Beaming 800
1.37.2.4 Can a Large Aperture Be Synthesized from Many Small Transmitters? 801
1.37.2.5 Power Transmission by Laser Beaming 801
1.37.3 Why Put Solar in Space? 801
1.37.3.1 Continuous Sunlight 802
1.37.3.2 Sun Pointing 802
1.37.3.3 No Atmosphere 802
1.37.3.4 Summation: How Much More Power Do You Get by Putting the Cells in Space? 802
1.37.3.5 Future Evolution 802
1.37.4 Is Geosynchronous the Right Orbit? 803
1.37.5 The Economic Case 803
1.37.5.1 Quick and Dirty Economics 803
1.37.6 Beaming Power to Space: A First Step to SPS? 804
1.37.7 Summary Points to Ponder 805
References 805
Performance Monitoring 806
1.38.1 Introduction 806
1.38.2 Defining Photovoltaic Performance 807
1.38.2.1 System Efficiency 807
1.38.2.2 System Yield 807
1.38.2.3 Performance Ratio 808
1.38.2.4 Performance of Stand-Alone Systems 808
1.38.3 Module Energy Prediction 809
1.38.4 PV Systems – Performance Prediction 812
1.38.5 PV Module Performance Monitoring in Practice 812
1.38.6 PV System Performance Monitoring in Practice 814
1.38.6.1 Measurements and Sensors 814
1.38.6.2 Monitoring in Practice 815
1.38.7 Summary 816
References 816
Standards in Photovoltaic Technology 818
1.39.1 History 818
1.39.1.1 The Early PV Development in the United States 818
1.39.1.2 Establishment of IEC TC82 819
1.39.1.3 The European Commission’s Joint Research Centre 819
1.39.1.4 The Early IEC Standards 819
1.39.1.5 The Working Groups 820
1.39.2 Standards for Performance Determination of PV Devices 820
1.39.2.1 Introduction 820
1.39.2.2 Performance Determination of PV Devices 820
1.39.2.3 Existing IEC Standards 821
1.39.2.4 Discussion and Conclusion 823
1.39.3 Reliability Testing of PV Modules 824
1.39.3.1 Introduction 824
1.39.3.2 The Beginning of an International Standard for Type Approval Testing 824
1.39.3.3 Weathering Test or Dedicated Stress to Identify Failure Mechanisms 824
1.39.3.4 Type Approval Testing 824
1.39.3.5 Pass/Fail Criteria 824
1.39.3.6 Environmental Testing 825
1.39.3.7 Correlation of Reliability Testing with Lifetime 826
1.39.4 Energy Performance and Energy Rating 826
1.39.5 Concentrating PV Standards 828
1.39.5.1 CPV Design Qualification IEC 62108 828
1.39.5.2 Other Standards in Preparation 829
1.39.6 Outlook 830
1.39.6.1 New Technologies 830
1.39.6.2 Major Markets 830
1.39.6.3 TC82 Priorities 830
1.39.7 Conclusion 830
Appendix 831
Past Chairmen of TC82 831
References 833
e9780080878720v8 4029
Cover\r 4029
Comprehensive Renewable Energy 4030
Copyright 4033
Editor-In-Chief 4034
Volume Editors 4036
Contributors For All Volumes 4040
Preface 4048
Contents 4052
Generating Electrical Power from Ocean Resources 4060
8.01.1 Introduction 4060
8.01.2 Wave Energy Conversion 4060
8.01.3 Marine Current Energy Conversion 4061
8.01.4 Technology Development Assessment 4062
8.01.5 Prototype Device Development and Commercial Farms 4063
8.01.6 Future Prospects 4064
Acknowledgments 4065
References 4065
Historical Aspects of Wave Energy Conversion 4066
8.02.1 Introduction 4066
8.02.2 The Wave Energy Resource 4067
8.02.3 Wave Energy Technologies 4067
8.02.4 Conclusion 4068
References 4068
Resource Assessment for Wave Energy 4070
8.03.1 Introduction 4071
8.03.2 Mathematical Description of Ocean Waves 4071
8.03.2.1 Regular Waves 4071
8.03.2.2 Irregular Waves 4072
8.03.3 Estimating WEC Power 4079
8.03.4 Wave Measurements and Modeling 4082
8.03.4.1 Wave Measurements from Moored Buoys 4082
8.03.4.2 Wave Measurements from Satellite Altimeters 4090
8.03.4.3 Numerical Wave Models 4104
8.03.5 Variability and Predictability of WEC Yield 4109
8.03.5.1 Sampling Variability 4110
8.03.5.2 Synoptic and Seasonal Variability 4110
8.03.5.3 Interannual and Climatic Variability 4110
8.03.6 Estimation of Extremes 4111
8.03.6.1 Introduction 4111
8.03.6.2 Short-Term Distributions of Wave and Crest Heights 4111
8.03.6.3 Long-Term Distributions of Extreme Sea States 4113
8.03.6.4 Combining Long-Term and Short-Term Distributions 4129
References 4132
Development of Wave Devices from Initial Conception to Commercial Demonstration 4138
8.04.1 A Structured Program to Mitigate Risk – The TRL Approach 4139
8.04.2 Funding Opportunities 4141
8.04.2.1 Funding for Device Development 4141
8.04.2.2 Further Support 4142
8.04.3 Physical Model Testing and Similarity 4143
8.04.3.1 Introduction 4143
8.04.3.2 Similarity between Physical Model and Full-Scale Prototype 4144
8.04.3.3 Design and Testing of Physical Scale Models in the Laboratory 4147
8.04.4 Sea Trials of Large-Scale Prototypes 4155
8.04.4.1 Introduction 4155
8.04.4.2 Sea Trials with Scale Models 4156
8.04.4.3 Sea Trials with Full-Scale Prototypes 4156
8.04.4.4 Sea Trials with WECs in an Array 4160
8.04.5 Frequency versus Time Domain 4163
8.04.5.1 Introduction 4163
8.04.5.2 Frequency Domain 4163
8.04.5.3 Time Domain 4167
References 4168
Air Turbines 4170
8.05.1 Introduction 4170
8.05.2 Basic Equations 4171
8.05.3 Two-Dimensional Cascade Flow Analysis of Axial-Flow Turbines 4172
8.05.3.1 Wells Turbine 4173
8.05.3.2 Self-Rectifying Impulse Turbine 4179
8.05.3.3 Wells Turbine versus Impulse Turbine 4181
8.05.4 Three-Dimensional Flow Analysis of Axial-Flow Turbines 4182
8.05.5 Model Testing of Air Turbines 4183
8.05.5.2 Test Rigs 4184
8.05.6 Wells Turbine Performance 4185
8.05.6.1 Advanced Wells Turbine Configurations 4187
8.05.7 Performance of Self-Rectifying Axial-Flow Impulse Turbine 4190
8.05.8 Other Air Turbines for Bidirectional Flows 4191
8.05.8.1 Denniss-Auld Turbine 4191
8.05.8.2 Radial-Flow Self-Rectifying Impulse Turbine 4195
8.05.8.3 Twin Unidirectional Impulse Turbine Topology 4196
8.05.9 Some Air Turbine Prototypes 4198
8.05.10 Turbine Integration into OWC Plant 4200
8.05.10.1 Hydrodynamics of OWC 4200
8.05.10.2 Linear Turbine 4201
8.05.10.3 Nonlinear Turbine 4204
8.05.10.4 Valve-Controlled Air Flow 4205
8.05.10.5 Noise 4205
8.05.11 Conclusions 4205
References 4206
Economics of Ocean Energy 4210
8.06.1 Introduction 4210
8.06.2 Cost Estimates of Wave and Tidal Stream Systems 4211
8.06.3 The Capital Investment Decision 4212
8.06.3.1 Discounting: Present Value 4212
8.06.3.2 Net Present Value 4213
8.06.3.3 Discounted COE 4213
8.06.3.4 Discount Rates 4214
8.06.3.5 Strategy 4214
8.06.4 Capital Costs 4214
8.06.4.1 Preliminary Works 4215
8.06.4.2 Marine Energy Devices 4215
8.06.4.3 Civil Engineering Infrastructure 4215
8.06.4.4 Electrical Infrastructure 4216
8.06.4.5 Site to Grid Transmission 4216
8.06.4.6 Deployment 4217
8.06.4.7 Decommissioning 4217
8.06.5 Operating Costs 4217
8.06.5.1 Periodic Expenditures 4218
8.06.5.2 Planned Maintenance 4218
8.06.5.3 Unplanned Maintenance 4218
8.06.6 Vessels for Offshore Work 4219
8.06.6.1 Vessel Type and Unit Cost 4219
8.06.6.2 Duration of Offshore Vessel Use 4219
8.06.6.3 Vessel Cost Summary 4221
8.06.7 Revenue 4221
8.06.7.1 Energy Production 4221
8.06.7.2 Value of a Unit of Electricity 4222
8.06.8 Future Prospects 4223
8.06.8.1 Evolution of Costs in the Marine Sector 4223
8.06.8.2 Mechanisms for Cost Evolution 4225
8.06.8.3 Summary 4227
References 4227
Further Reading 4228
Index\r 4230
Permission Acknowledgments 4384