Additional Information
Book Details
Abstract
Comprehensive Renewable Energy, winner of a 2012 PROSE Award for Best Multi-volume Reference in Science from the Association of American Publishers, is the only work of its type at a time when renewable energy sources are seen increasingly as realistic alternatives to fossil fuels. As the majority of information published for the target audience is currently available via a wide range of journals, seeking relevant information (be that experimental, theoretical, and computational aspects of either a fundamental or applied nature) can be a time-consuming and complicated process.
Comprehensive Renewable Energy is arranged according to the most important themes in the field (photovoltaic technology; wind energy technology; fuel cells and hydrogen technology; biomass and biofuels production; hydropower applications; solar thermal systems: components and applications; geothermal energy; ocean energy), and as such users can feel confident that they will find all the relevant information in one place, with helpful cross-referencing between and within all the subject areas, to broaden their understanding and deepen their knowledge. It is an invaluable resource for teaching as well as in research.
Available online via SciVerse ScienceDirect and in print.
- Editor-in Chief, Professor Ali Sayigh (Director General of WREN (World Renewable Energy Network) and Congress Chairman of WREC (World Renewable Energy Congress, UK) has assembled an impressive, world-class team of Volume Editors and Contributing Authors. Each chapter has been painstakingly reviewed and checked for consistent high quality. The result is an authoritative overview which ties the literature together and provides the user with a reliable background information and citation resource.
- The field of renewable energy counts several journals that are directly and indirectly concerned with the field. There is no reference work that encompasses the entire field and unites the different areas of research through deep foundational reviews. Comprehensive Renewable Energy fills this vacuum, and can be considered the definitive work for this subject area. It will help users apply context to the diverse journal literature offering and aid them in identifying areas for further research.
- Research into renewable energy is spread across a number of different disciplines and subject areas. These areas do not always share a unique identifying factor or subject themselves to clear and concise definitions. This work unites the different areas of research and allows users, regardless of their background, to navigate through the most essential concepts with ease, saving them time and vastly improving their understanding.
- There are more than 1000 references from books, journals and the internet within the eight volumes. It is full of color charts, illustrations and photographs of real projects and research results from around the world.
- The only reference work available that encompasses the entire field of renewable energy and unites the different areas of research through deep foundational reviews.
- Allows readers, regardless of their background, to navigate through the most essential concepts with ease, saving them time and vastly improving their understanding
"…a useful acquisition for libraries that wish to acquire only one resource on the subject or for libraries that collect comprehensively in this area." --CHOICE, March 2013
Table of Contents
Section Title | Page | Action | Price |
---|---|---|---|
e9780080878720v1.pdf | 1 | ||
Cover\r | 1 | ||
Comprehensive Renewable Energy\r | 2 | ||
Copyright | 5 | ||
Editor-In-Chief | 6 | ||
Volume Editors\r | 8 | ||
Contributors For All Volumes | 12 | ||
Preface\r | 20 | ||
Contents\r | 24 | ||
Introduction to Photovoltaic Technology | 36 | ||
1.02.1 Introduction | 36 | ||
1.02.2 Guide to the Reader | 37 | ||
1.02.2.1 Quick Guide | 37 | ||
1.02.2.2 Detailed Guide | 38 | ||
1.02.3 Conclusion | 42 | ||
References | 42 | ||
Solar Photovoltaics Technology: No Longer an Outlier | 44 | ||
1.03.1 A Look at Policies, Progress, and Prognosis | 44 | ||
1.03.2 A Glimpse at the Industry, the World, and the Markets | 47 | ||
1.03.3 The Technologies | 49 | ||
1.03.3.1 Evolutionary Technologies | 50 | ||
1.03.3.2 Disruptive Technologies | 52 | ||
1.03.3.3 Revolutionary Photovoltaics: The Chase Toward the Next Generations | 56 | ||
1.03.4 Conclusions | 58 | ||
e9780080878720v2 | 836 | ||
Cover\r | 836 | ||
Comprehensive Renewable Energy \r | 837 | ||
Copyright\r | 840 | ||
Editor-In-Chief\r | 841 | ||
Volume Editors \r | 843 | ||
Contributors for all Volumes \r | 847 | ||
Preface\r | 855 | ||
Contents\r | 859 | ||
Wind Energy - Introduction | 867 | ||
2.01.1 Introduction | 867 | ||
2.01.2 Pros and Cons of Wind Energy | 869 | ||
2.01.3 Brief Content Presentation | 871 | ||
2.01.4 Conclusions | 874 | ||
References | 875 | ||
Further Reading | 876 | ||
Relevant Websites | 876 | ||
Wind Energy Contribution in the Planet Energy Balance and Future Prospects | 877 | ||
2.02.1 Introduction | 877 | ||
2.02.2 Energy Consumption around the Planet | 878 | ||
2.02.3 Electrical Power and Electrical Generation | 880 | ||
2.02.4 Fossil Fuel Status of Our Planet | 883 | ||
2.02.4.1 Oil Data | 883 | ||
2.02.4.2 Natural Gas Data | 886 | ||
2.02.4.3 Coal Data | 886 | ||
2.02.5 The Role of RES and Fossil Fuels in the Energy Future of Our Planet | 887 | ||
2.02.5.1 The Energy Balance of Our Planet | 887 | ||
2.02.5.2 Time Depletion of Fossil Fuels | 888 | ||
2.02.5.3 Environmental Impacts of Energy: Carbon Dioxide Emissions | 888 | ||
2.02.5.4 Comparing RES and Fossil Fuels (Pros and Cons) with Emphasis on Wind Energy | 891 | ||
2.02.6 Wind Power Status in the World Market | 891 | ||
2.02.7 Time Evolution of the Major Wind Power Markets | 893 | ||
2.02.8 Forecasting the Wind Power Time Evolution | 897 | ||
2.02.9 The Future and Prospects of Wind Energy | 901 | ||
2.02.10 Conclusions | 903 | ||
References | 903 | ||
Further Reading | 905 | ||
Relevant Websites | 905 | ||
History of Wind Power | 907 | ||
2.03.1 Sails | 907 | ||
2.03.2 Early Wind Devices and Applications | 907 | ||
2.03.3 Persian Vertical Axis Designs | 910 | ||
2.03.4 The Introduction of Windmills into Europe | 910 | ||
2.03.5 Horizontal Axis Machines | 911 | ||
2.03.6 Post and Tower Mills | 912 | ||
2.03.7 Technological Developments | 914 | ||
2.03.8 Theory and Experiment: The Early Science | 915 | ||
2.03.9 The End of Windmills | 917 | ||
2.03.10 The American Wind Pump | 917 | ||
2.03.11 Electrical Power from the Wind | 918 | ||
2.03.12 Large Machines | 920 | ||
2.03.13 The Smith-Putnam Machine | 922 | ||
2.03.14 Postwar Programs | 924 | ||
2.03.15 The Mother of All Modern Wind Turbines | 926 | ||
2.03.16 Ulrich Hütter | 927 | ||
2.03.17 The Battle of the Blades: Two versus Three | 927 | ||
2.03.18 Large Two-Bladed Wind Turbines | 930 | ||
2.03.19 The California Wind Rush | 932 | ||
2.03.20 Other Manufacturers | 937 | ||
2.03.21 Large Vertical Axis Wind Turbines | 937 | ||
2.03.22 Organizations: BWEA, EWEA, and IEA | 937 | ||
Further Reading | 938 | ||
Wind Energy Potential | 939 | ||
2.04.1 Introduction | 940 | ||
2.04.2 Wind Characteristics | 940 | ||
2.04.2.1 Origin of Wind | 940 | ||
2.04.2.2 Meteorology of Wind | 940 | ||
2.04.2.3 Wind Direction and Wind Velocity | 940 | ||
2.04.2.4 Fundamental Causes of Wind | 940 | ||
2.04.3 Wind Measurements | 941 | ||
2.04.3.1 Wind Speed | 941 | ||
2.04.3.2 Cup Anemometers | 941 | ||
2.04.3.3 Other Anemometers | 941 | ||
2.04.3.4 Wind Direction | 942 | ||
2.04.3.5 Wind Rose | 942 | ||
2.04.3.6 Wind Speed Profiles | 943 | ||
2.04.4 Analysis of Wind Regimes | 947 | ||
2.04.4.1 Wind Speed Variation with Time | 947 | ||
2.04.4.2 Mathematic Representation of Wind Speed | 949 | ||
2.04.4.3 Wind Resource Atlas Models | 952 | ||
2.04.4.4 Wind Resource Atlas | 953 | ||
2.04.5 Dynamic Study of Wind Speed | 953 | ||
2.04.5.1 Stochastic Models for Simulating and Forecasting Wind Speed Time Series | 954 | ||
2.04.5.2 Bayesian Adaptive Combination of Wind Speed Forecasts from Neural Network Models | 954 | ||
2.04.6 Wind Energy | 955 | ||
2.04.6.1 Wind Energy Production | 955 | ||
2.04.6.2 Wind Energy Potential | 956 | ||
2.04.7 Conclusions | 957 | ||
References | 957 | ||
Further Reading | 958 | ||
Wind Turbines: Evolution, Basic Principles, and Classifications | 959 | ||
2.05.1 Introduction | 959 | ||
2.05.2 Evolution of Modern Wind Turbines | 959 | ||
2.05.2.1 Growth in Installed Capacity | 960 | ||
2.05.2.2 Increase in Turbine Size | 961 | ||
2.05.2.3 Improvements in System Performance | 962 | ||
2.05.2.4 Advances in the Control and Power Transmission Systems | 964 | ||
2.05.2.5 Economic Evolution | 966 | ||
2.05.3 Basic Principles | 966 | ||
2.05.3.1 Power Available in the Wind | 966 | ||
2.05.3.2 Power Coefficient, Torque Coefficient, and Tip Speed Ratio | 968 | ||
2.05.3.3 Airfoil Lift and Drag | 968 | ||
2.05.4 Classifications of Wind Turbines | 970 | ||
2.05.4.1 Horizontal Axis Wind Turbines | 970 | ||
2.05.4.2 Vertical Axis Wind Turbines | 972 | ||
2.05.5 Rotor Performance Curves | 976 | ||
References | 977 | ||
Further Reading | 977 | ||
Energy Yield of Contemporary Wind Turbines | 979 | ||
2.06.1 From Wind Power to Useful Wind Energy | 980 | ||
2.06.1.1 Assessment of Wind Energy Losses | 980 | ||
2.06.2 Wind Potential Evaluation for Energy Generation Purposes | 983 | ||
2.06.2.1 Wind Speed Distributions | 983 | ||
2.06.2.2 Determination of Weibull Main Parameters | 986 | ||
2.06.2.3 The Impact of the Scale and Shape Factor Variation | 988 | ||
2.06.2.4 Performance Assessment for the Weibull Distribution | 990 | ||
2.06.2.5 Long-Term Study of Wind Energy Potential | 990 | ||
2.06.2.6 Calm Spell Period Determination | 991 | ||
2.06.2.7 Wind Gust Determination | 992 | ||
2.06.3 Power Curves of Contemporary Wind Turbines | 993 | ||
2.06.3.1 Description of a Typical Wind Turbine Power Curve | 993 | ||
2.06.3.2 Producing a Wind Turbine Power Curve | 993 | ||
2.06.3.3 Power Curve Modeling | 995 | ||
2.06.3.4 Power Curve Estimation | 997 | ||
2.06.4 Estimating the Energy Production of a Wind Turbine | 998 | ||
2.06.4.1 From the Instantaneous Power Output to Energy Production | 998 | ||
2.06.4.2 Estimating the Annual Wind Energy Production | 1000 | ||
2.06.4.3 Estimating the Mean Power Coefficient | 1001 | ||
2.06.4.4 The Impact of the Scale Factor Variation on the Mean Power Coefficient | 1002 | ||
2.06.4.5 The Impact of the Shape Factor Variation on the Mean Power Coefficient | 1003 | ||
2.06.4.6 The Impact of the Shape and Scale Factor Variation on the Annual Energy Production | 1004 | ||
2.06.4.7 Energy Contribution of the Ascending and Rated Power Curve Segments | 1004 | ||
2.06.4.8 Energy Yield Variation due to the Use of Theoretical Distributions | 1006 | ||
2.06.5 Parameters Affecting the Power Output of a Wind Turbine | 1006 | ||
2.06.5.1 The Wind Shear Variation | 1006 | ||
2.06.5.2 Extrapolation of the Shape and Scale Parameters of Weibull at Hub Height | 1010 | ||
2.06.5.3 Estimation of Wind Speed at Hub Height, Upstream of the Machine | 1010 | ||
2.06.5.4 The Impact of Air Density Variation | 1012 | ||
2.06.5.5 The Impact of the Wake Effect | 1015 | ||
2.06.6 The Impact of Technical Availability on Wind Turbine Energy Output | 1017 | ||
2.06.6.1 Causes of Technical Unavailability | 1018 | ||
2.06.6.2 Estimating Technical Availability | 1019 | ||
2.06.6.3 Experience Gained from the Monitoring of Technical Availability | 1021 | ||
2.06.7 Selecting the Most Appropriate Wind Turbine | 1024 | ||
2.06.7.1 The Role of Wind Turbine Databases | 1025 | ||
2.06.7.2 Selecting the Most Appropriate Wind Turbine | 1028 | ||
2.06.7.3 Determination of General Trends | 1030 | ||
2.06.8 Conclusions | 1030 | ||
References | 1032 | ||
Further Reading | 1034 | ||
Relevant Websites | 1034 | ||
Wind Parks Design, Including Representative Case Studies | 1035 | ||
2.07.1 Introduction | 1035 | ||
2.07.2 The Selection of the Wind Park’s Installation Site | 1037 | ||
2.07.2.1 Aiming at the Maximization of the Electricity Produced | 1037 | ||
2.07.2.2 The Effect of Land Morphology on the Site Selection | 1040 | ||
2.07.2.3 Aiming at the Minimization of the Set-Up Cost | 1043 | ||
2.07.2.4 Installation Issues of the Wind Turbines | 1043 | ||
2.07.2.5 Aiming at the Minimization of the Time Required for the Wind Park Project Implementation | 1047 | ||
2.07.3 The Wind Potential Evaluation | 1049 | ||
2.07.4 The Selection of the Wind Turbine Model | 1052 | ||
2.07.5 The Micro-Siting of a Wind Park | 1056 | ||
2.07.6 The Calculation of the Annual Electricity Production | 1062 | ||
2.07.7 Social Approval of the Wind Park | 1068 | ||
2.07.8 The Wind Park Integration in Local Networks | 1072 | ||
2.07.8.1 The Power Quality Disturbances Caused by the Wind Turbines | 1072 | ||
2.07.8.2 Wind Power Penetration in Weak Networks and Dynamic Security | 1074 | ||
2.07.8.3 The Connection of Wind Parks in Electricity Networks | 1075 | ||
2.07.9 Economic Analysis | 1076 | ||
2.07.9.1 The Project’s Set-Up Cost Calculation and the Funding Scheme | 1076 | ||
2.07.9.2 The Calculation of the Investment’s Annual Revenues | 1076 | ||
2.07.9.3 Annual Expenses | 1077 | ||
2.07.9.4 Investment’s Annual Net Profits | 1077 | ||
2.07.9.5 Economic Indexes | 1077 | ||
2.07.10 Presentation of Characteristic Case Studies | 1077 | ||
2.07.10.1 The Design of a Wind Park in a Small Noninterconnected Power System | 1078 | ||
2.07.10.2 The Design of a Wind Park in a Large Noninterconnected Power System | 1082 | ||
2.07.10.3 The Roscoe Wind Park in Texas – Largest Onshore Wind Park | 1084 | ||
2.07.10.4 The Thanet Wind Park in the United Kingdom – Largest Offshore Wind Park | 1086 | ||
2.07.11 Epilog | 1087 | ||
References | 1088 | ||
Further Reading | 1089 | ||
Aerodynamic Analysis of Wind Turbines | 1091 | ||
2.08.1 Introduction | 1091 | ||
2.08.2 Momentum Theory | 1092 | ||
2.08.2.1 One-Dimensional Momentum Theory | 1092 | ||
2.08.2.2 The Optimum Rotor of Glauert | 1093 | ||
2.08.2.3 The Blade-Element Momentum Theory | 1094 | ||
2.08.3 Advanced Aerodynamic Modeling | 1097 | ||
2.08.3.1 Vortex Models | 1097 | ||
2.08.3.2 Numerical Actuator Disk Models | 1098 | ||
2.08.3.3 Full Navier–Stokes Modeling | 1098 | ||
2.08.4 CFD Computations of Wind Turbine Rotors | 1099 | ||
2.08.5 CFD in Wake Computations | 1100 | ||
2.08.6 Rotor Optimization Using BEM Technique | 1102 | ||
2.08.7 Noise from Wind Turbines | 1104 | ||
References | 1105 | ||
Further Reading | 1106 | ||
Mechanical-Dynamic Loads | 1109 | ||
2.09.1 Introduction | 1110 | ||
2.09.2 Dynamic Analyses | 1110 | ||
2.09.3 Load Cases | 1112 | ||
2.09.4 Loads | 1113 | ||
2.09.4.1 Aerodynamic Loads | 1113 | ||
2.09.4.2 Hydrodynamic Loads | 1115 | ||
2.09.4.3 Gravitational Loads | 1117 | ||
2.09.4.4 Inertial Loads | 1117 | ||
2.09.4.5 Control Loads | 1117 | ||
2.09.4.6 Mooring System Loads | 1118 | ||
2.09.4.7 Current Loads | 1119 | ||
2.09.4.8 Ice Loads | 1119 | ||
2.09.4.9 Soil Interaction Loads | 1119 | ||
2.09.5 Case Studies: Examples of Load Modeling in the Integrated Analyses | 1120 | ||
2.09.5.1 Onshore Wind Turbine: Wind-Induced Loads | 1120 | ||
2.09.5.2 Offshore Wind Turbine: Wave- and Wind-Induced Loads | 1124 | ||
2.09.6 Conclusions | 1128 | ||
Appendix A: Environmental Conditions | 1128 | ||
A.1 General | 1128 | ||
A.2 Joint Distribution of Wave Conditions and Mean Wind | 1128 | ||
Appendix B: Wind Theory | 1129 | ||
Appendix C: Wave Theory | 1131 | ||
C.1 Regular Wave Theory | 1131 | ||
C.2 Modified Linear Wave Theory | 1132 | ||
C.3 Irregular Wave Theory | 1132 | ||
References | 1133 | ||
Electrical Parts of Wind Turbines | 1135 | ||
2.10.1 Introduction | 1136 | ||
2.10.2 Power Control | 1138 | ||
2.10.2.1 Pitch Control | 1139 | ||
2.10.2.2 Yaw System | 1143 | ||
2.10.3 Electricity Production | 1145 | ||
2.10.3.1 The Generator | 1145 | ||
2.10.3.2 Wind Turbine Generators | 1147 | ||
2.10.3.3 Power Electronics | 1160 | ||
2.10.4 Lightning Protection | 1164 | ||
2.10.5 Small Wind Turbines | 1167 | ||
2.10.6 Outlook | 1169 | ||
2.10.7 Wind Turbine Industry | 1172 | ||
2.10.7.1 Major Wind Turbine Manufacturers | 1172 | ||
2.10.7.2 Subproviders | 1190 | ||
References | 1194 | ||
Further Reading | 1194 | ||
Relevant Websites | 1194 | ||
Wind Turbine Control Systems and Power Electronics | 1195 | ||
2.11.1 Control Objectives | 1196 | ||
2.11.2 Wind Turbine Modeling | 1199 | ||
2.11.2.1 Mechanical Part | 1200 | ||
2.11.2.2 Electrical Part – Generators and Converters | 1202 | ||
2.11.2.3 Full Model | 1207 | ||
2.11.3 Control | 1209 | ||
2.11.3.1 Overall Control Strategy | 1209 | ||
2.11.3.2 Pitch Control | 1211 | ||
2.11.3.3 Generator Control | 1218 | ||
2.11.3.4 Coupled Pitch–Generator Control | 1224 | ||
2.11.3.5 Grid Control | 1224 | ||
2.11.3.6 Yaw Control | 1226 | ||
2.11.3.7 Grid Issues | 1228 | ||
2.11.4 Fault Accommodation | 1230 | ||
2.11.5 Hardware | 1232 | ||
2.11.5.1 Sensors | 1232 | ||
2.11.5.2 Actuators | 1234 | ||
References | 1235 | ||
Further Reading | 1236 | ||
Relevant Websites | 1236 | ||
Testing, Standardization, Certification in Wind Energy | 1237 | ||
2.12.1 Introduction | 1237 | ||
2.12.1.1 Brief History of Standardization in Wind Energy | 1237 | ||
2.12.1.2 Wind Energy Technology-Specific Issues | 1238 | ||
2.12.1.3 Overview and Status of International Wind Energy Standards | 1238 | ||
2.12.2 Standards with Design Requirements for Wind Turbines | 1239 | ||
2.12.2.1 Wind Turbine Design-Related IEC Standards | 1240 | ||
2.12.2.2 Other Standards Related to Wind Turbine-Specific Design Aspects | 1242 | ||
2.12.3 Testing Methods for Wind Turbines and Wind Plants | 1242 | ||
2.12.3.1 Introduction | 1242 | ||
2.12.3.2 Wind Speed Measurement | 1243 | ||
2.12.3.3 Power Performance Testing | 1243 | ||
2.12.3.4 Mechanical Load Measurements | 1244 | ||
2.12.3.5 Acoustic Noise Measurements | 1245 | ||
2.12.3.6 Electrical Characteristics and Power Quality Measurements | 1246 | ||
2.12.3.7 Rotor Blade Testing | 1246 | ||
2.12.3.8 Safety and Function Testing | 1247 | ||
2.12.3.9 Measurement Quality | 1248 | ||
2.12.4 Certification in the Wind Industry | 1249 | ||
2.12.4.1 General Aspects of Certification in Wind Energy | 1249 | ||
2.12.4.2 Certification Systems in Wind Energy | 1249 | ||
2.12.5 Conclusions | 1254 | ||
References | 1254 | ||
IEC Standards (to be purchased via IEC or the National Standardization Institutes) | 1255 | ||
Relevant Websites | 1255 | ||
Design and Implementation of a Wind Power Project | 1257 | ||
2.13.1 Introduction | 1258 | ||
2.13.2 Project Management | 1259 | ||
2.13.3 Finding Good Wind Sites | 1260 | ||
2.13.4 Feasibility Study | 1260 | ||
2.13.4.1 Impact on Neighbors | 1261 | ||
2.13.4.2 Grid Connection | 1261 | ||
2.13.4.3 Land for Wind Power Plants | 1261 | ||
2.13.4.4 Opposing Interests | 1261 | ||
2.13.4.5 Local Acceptance | 1262 | ||
2.13.4.6 Permission | 1262 | ||
2.13.5 Project Development | 1262 | ||
2.13.5.1 Verification of Wind Resources | 1262 | ||
2.13.5.2 Land Lease | 1263 | ||
2.13.5.3 Micro-Siting and Optimization | 1263 | ||
2.13.5.4 Environment Impact Assessment | 1263 | ||
2.13.5.5 Public Dialogue | 1263 | ||
2.13.5.6 Appeals and Mitigation | 1264 | ||
2.13.6 Micro-Siting | 1264 | ||
2.13.6.1 Wind Wakes | 1264 | ||
2.13.6.2 Energy Rose | 1265 | ||
2.13.6.3 Wind Farm Layout | 1265 | ||
2.13.6.4 Optimization | 1267 | ||
2.13.7 Estimation of Power Production | 1269 | ||
2.13.7.1 Long-Term Wind Climate | 1269 | ||
2.13.7.2 Wind Data | 1269 | ||
2.13.7.3 Wind Data Sources | 1272 | ||
2.13.8 Planning Tools | 1273 | ||
2.13.8.1 The Wind Atlas Method | 1273 | ||
2.13.8.2 Wind Measurements | 1278 | ||
2.13.8.3 Pitfalls | 1279 | ||
2.13.9 Choice of Wind Turbines | 1282 | ||
2.13.9.1 Wind Turbine Size | 1282 | ||
2.13.9.2 Type of Wind Turbines | 1283 | ||
2.13.9.3 Wind Turbines Tailored to Wind Climate | 1284 | ||
2.13.9.4 Supplier | 1284 | ||
2.13.10 Economics of Wind Power Plants | 1286 | ||
2.13.10.1 Investment | 1287 | ||
2.13.10.2 Economic Result | 1288 | ||
2.13.10.3 Revenues | 1289 | ||
2.13.10.4 Calculation of Economic Result | 1289 | ||
2.13.10.5 Risk Assessment | 1290 | ||
2.13.10.6 Financing | 1291 | ||
2.13.11 Documentation | 1291 | ||
2.13.11.1 Project Description | 1291 | ||
2.13.11.2 Environment Impact Assessment | 1292 | ||
2.13.11.3 Economic Reports | 1292 | ||
2.13.12 Building a Wind Power Plant | 1293 | ||
2.13.12.1 Selection of Suppliers | 1293 | ||
2.13.12.2 Contracts | 1293 | ||
2.13.12.3 Supervision and Quality Control | 1293 | ||
2.13.12.4 Commissioning and Transfer | 1294 | ||
2.13.13 Operation | 1294 | ||
2.13.13.1 Maintenance | 1294 | ||
2.13.13.2 Condition Monitoring | 1294 | ||
2.13.13.3 Performance Monitoring | 1295 | ||
2.13.13.4 Decommissioning and Site Restoration | 1295 | ||
2.13.14 Business Models | 1295 | ||
2.13.15 Summary and Conclusion | 1295 | ||
References | 1296 | ||
Further Reading | 1296 | ||
Offshore Wind Power Basics | 1297 | ||
2.14.1 Introduction | 1298 | ||
2.14.2 Offshore Wind Energy Status | 1298 | ||
2.14.2.1 History and Background | 1298 | ||
2.14.2.2 Offshore Wind Energy Activity | 1300 | ||
2.14.3 Offshore Wind Farms – Basic Features | 1306 | ||
2.14.3.1 Wind Turbine Design | 1306 | ||
2.14.3.2 Support Structures and Towers | 1307 | ||
2.14.3.3 Supplementary Equipment | 1316 | ||
2.14.4 Offshore Wind Farm Design, Installation, and Maintenance | 1318 | ||
2.14.4.1 Equipment Selection Requirements | 1318 | ||
2.14.4.2 Other Wind Farm Design Considerations | 1321 | ||
2.14.4.3 Installation and Transportation Facilities | 1322 | ||
2.14.4.4 O&M Facilities | 1324 | ||
2.14.5 Offshore Wind Energy Economic Considerations | 1325 | ||
2.14.6 Environmental and Social Issues | 1329 | ||
2.14.6.1 Noise Impacts | 1329 | ||
2.14.6.2 Visual Impacts | 1329 | ||
2.14.6.3 Impacts on Wild Life | 1329 | ||
2.14.7 Future Trends and Prospects | 1330 | ||
References | 1332 | ||
Further Reading | 1334 | ||
Relevant Websites | 1334 | ||
Wind Energy Economics | 1335 | ||
2.15.1 Introduction | 1336 | ||
2.15.2 Basic Financial Issues | 1337 | ||
2.15.2.1 Definitions | 1337 | ||
2.15.2.2 Price Calculation Methods | 1338 | ||
2.15.2.3 Recommended Practices | 1338 | ||
2.15.2.4 Interest Rates | 1338 | ||
2.15.2.5 Amortization Periods | 1338 | ||
2.15.3 Cost and Performance Issues | 1340 | ||
2.15.3.1 Balance of Plant Costs | 1340 | ||
2.15.3.2 Operational Costs | 1340 | ||
2.15.3.3 Size of Wind Farm | 1341 | ||
2.15.3.4 Installed Costs and Wind Speeds | 1341 | ||
2.15.4 Onshore Wind | 1341 | ||
2.15.4.1 Historical Cost and Performance Trends | 1341 | ||
2.15.4.2 Current Plant Costs | 1342 | ||
2.15.4.3 Current Electricity Generation Costs | 1343 | ||
2.15.4.4 Small Wind Turbines | 1343 | ||
2.15.4.5 Historical Price Trends | 1344 | ||
2.15.4.6 Current Installed Costs | 1345 | ||
2.15.5 Analysis of Offshore Costs | 1346 | ||
2.15.5.1 Operation and Maintenance Costs | 1346 | ||
2.15.5.2 Water Depth and Distance from Shore | 1347 | ||
2.15.6 Electricity-Generating Costs | 1347 | ||
2.15.6.1 Generation Cost Comparisons | 1348 | ||
2.15.6.2 Cost Comparisons – Wind and Other Plant | 1349 | ||
2.15.6.3 Cost Comparisons on a Level Playing Field | 1349 | ||
2.15.7 External Costs | 1350 | ||
2.15.7.1 Types of External Cost | 1350 | ||
2.15.7.2 Costing Pollution | 1351 | ||
2.15.7.3 Market Solutions | 1351 | ||
2.15.7.4 The UK Climate Change Levy | 1352 | ||
2.15.7.5 Renewable Energy Support Mechanisms | 1352 | ||
2.15.7.6 Embedded Generation Benefits | 1352 | ||
2.15.8 Variability Costs | 1353 | ||
2.15.8.1 Electricity Networks | 1354 | ||
2.15.8.2 Characteristics of Wind Energy | 1355 | ||
2.15.8.3 Assimilating Wind | 1355 | ||
2.15.8.4 Extra Short-Term Reserve Needs and Costs | 1356 | ||
2.15.8.5 Carbon Dioxide Savings | 1357 | ||
2.15.8.6 Extra Backup and Its Costs | 1357 | ||
2.15.8.7 Capacity Credit | 1357 | ||
2.15.8.8 The Cost of Backup | 1358 | ||
2.15.8.9 Transmission Constraints | 1358 | ||
2.15.8.10 Wind Surpluses at High Penetration Levels | 1358 | ||
2.15.8.11 Total Costs of Variability | 1359 | ||
2.15.8.12 Mitigating the Effects and Costs of Variability | 1360 | ||
2.15.9 Total Cost Estimates | 1363 | ||
2.15.10 Future Price Trends | 1363 | ||
2.15.10.1 Future Fuel Prices | 1364 | ||
2.15.10.2 Price Comparisons in 2020 | 1365 | ||
2.15.11 Conclusions | 1365 | ||
References | 1366 | ||
Environmental-Social Benefits/Impacts of Wind Power | 1369 | ||
2.16.1 Introduction – Scope and Objectives | 1370 | ||
2.16.2 Main Environmental Benefits of Wind Power | 1370 | ||
2.16.2.1 General Considerations | 1370 | ||
2.16.2.2 Avoided Air Pollution – Reduction of CO2 Emissions | 1370 | ||
2.16.2.3 Reduction of Water Consumption | 1371 | ||
2.16.3 Main Social Benefits of Wind Power | 1373 | ||
2.16.3.1 Fossil Fuel Saving/Substitution | 1373 | ||
2.16.3.2 Regional Development – New Activities | 1373 | ||
2.16.3.3 Employment Opportunities and Job Positions in the Wind Power Sector | 1374 | ||
2.16.4 Environmental Behavior of Wind Energy | 1376 | ||
2.16.5 Methods and Tools for Environmental Impact Assessment | 1377 | ||
2.16.6 Noise Impact | 1379 | ||
2.16.6.1 Qualitative and Quantitative Consideration of Noise Impact | 1379 | ||
2.16.6.2 Research and Development Relevant to Wind Turbine Noise | 1384 | ||
2.16.7 Wind Turbines’ Visual Impact and Aesthetics | 1384 | ||
2.16.7.1 General Considerations on Visual Impact and Aesthetics | 1384 | ||
2.16.7.2 Shadow Flickering | 1388 | ||
2.16.8 Impacts in Fauna and Flora and Microclimate | 1388 | ||
2.16.8.1 Impacts in Flora and Fauna | 1388 | ||
2.16.8.2 Impacts on the Microclimate | 1389 | ||
2.16.9 Other Environmental Impacts | 1390 | ||
2.16.9.1 Interference of a Wind Turbine with Electromagnetic Communication Systems | 1390 | ||
2.16.9.2 Traffic – Transportation and Access | 1390 | ||
2.16.9.3 Archaeology and Cultural Heritage | 1390 | ||
2.16.9.4 Health and Safety | 1391 | ||
2.16.10 Offshore Environmental Impacts | 1391 | ||
2.16.10.1 Offshore Noise Impact | 1391 | ||
2.16.10.2 Construction and Decommissioning Noise | 1392 | ||
2.16.10.3 Operational Noise | 1392 | ||
2.16.10.4 Visual Impacts | 1393 | ||
2.16.10.5 Impacts on Marine Mammals | 1394 | ||
2.16.10.6 Impacts on Fish | 1394 | ||
2.16.10.7 Impacts on Birds | 1395 | ||
2.16.10.8 Effects of Offshore Wind Energy on the Microclimate | 1396 | ||
2.16.11 Mitigation Measures – Conclusions | 1396 | ||
2.16.11.1 The Importance of Wind Farm Siting | 1396 | ||
2.16.11.2 Mitigation through Technology | 1397 | ||
2.16.12 Social Acceptability of Wind Power Projects | 1397 | ||
2.16.12.1 General Considerations | 1397 | ||
2.16.12.2 Case Studies for Public Attitude Analysis | 1400 | ||
2.16.13 The Public Attitude Toward Offshore Wind Parks | 1401 | ||
2.16.14 Future Trends in Wind Parks’ Social and Environmental Impacts Assessment | 1402 | ||
2.16.15 Conclusions | 1403 | ||
References | 1403 | ||
Further Reading | 1404 | ||
Wind Energy Policy | 1407 | ||
2.17.1 Introduction | 1407 | ||
2.17.2 Energy and the Economy | 1408 | ||
2.17.2.1 Global Energy Markets | 1408 | ||
2.17.2.2 Renewable Energy Policy | 1411 | ||
2.17.3 Fossil Fuel and Nuclear Options for Reducing CO2 Emissions | 1414 | ||
2.17.3.1 Clean Coal | 1414 | ||
2.17.3.2 Natural Gas | 1415 | ||
2.17.3.3 Nuclear Power | 1415 | ||
2.17.4 Renewable Alternatives to Fossil Fuels | 1418 | ||
2.17.4.1 Biomass for Generating Electricity | 1418 | ||
2.17.4.2 Hydraulics and Storage | 1419 | ||
2.17.4.3 Geothermal | 1420 | ||
2.17.4.4 Generating Electricity from Intermittent Energy Sources | 1420 | ||
2.17.5 The Economics of Wind Energy in Electricity Generation | 1421 | ||
2.17.5.1 Structure of Electricity Grids: Economics | 1422 | ||
2.17.5.2 Integration of Wind Power into Electricity Grids | 1425 | ||
2.17.6 Discussion | 1431 | ||
References | 1433 | ||
Further Reading | 1434 | ||
Wind Power Integration | 1435 | ||
2.18.1 Introduction | 1436 | ||
2.18.2 Overview of Conventional Electrical Power Systems | 1437 | ||
2.18.2.1 Structure of an Electrical Power System | 1437 | ||
2.18.2.2 Operational Objectives of an Electrical Power System | 1447 | ||
2.18.2.3 Operating States of an Electrical Power System | 1447 | ||
2.18.3 The Distinctive Characteristics of Wind Energy | 1452 | ||
2.18.3.1 The Unpredictability and Variability of Wind | 1452 | ||
2.18.3.2 The Variability of Electrical Energy from Wind Sources | 1454 | ||
2.18.4 Wind Power and Power System Interaction | 1457 | ||
2.18.4.1 Comparison between Conventional and Wind Generation Technologies | 1458 | ||
2.18.4.2 Potential Disturbances in the Interaction of Wind Turbines with the Electrical Network | 1459 | ||
2.18.5 Planning and Operation of Wind Power Electrical Systems | 1462 | ||
2.18.5.1 Repercussions of Wind Power for Power System Generation | 1462 | ||
2.18.5.2 Impact of Wind Power on the Power Transmission and Distribution Networks | 1468 | ||
2.18.6 Integration of Wind Energy into MGs | 1473 | ||
2.18.6.1 MG Modeling | 1477 | ||
2.18.6.2 Benefits of Wind Energy Integration into MGs | 1477 | ||
2.18.6.3 Problems Associated with Wind Energy Penetration in MGs | 1478 | ||
2.18.7 Questions Related to the Extra Costs of Wind Power Integration | 1478 | ||
2.18.8 Requirements for Wind Energy Integration into Electrical Networks | 1479 | ||
2.18.9 Wind Power Forecasting | 1480 | ||
2.18.9.1 Physical Models | 1481 | ||
2.18.9.2 Statistical and Data Mining Models | 1481 | ||
2.18.9.3 Currently Implemented Forecasting Tools | 1482 | ||
2.18.10 Future Trends | 1483 | ||
References | 1484 | ||
Further Reading | 1488 | ||
Relevant Websites | 1488 | ||
Stand-Alone, Hybrid Systems | 1489 | ||
2.19.1 Introduction | 1489 | ||
2.19.2 Historical Development of Wind Stand-Alone Energy Systems | 1490 | ||
2.19.3 Contribution of Wind in Stand-Alone Energy Systems | 1492 | ||
2.19.4 System Configuration | 1495 | ||
2.19.4.1 Wind Turbine Generator | 1497 | ||
2.19.4.2 Storage System Unit | 1498 | ||
2.19.4.3 Complementary Electric Generator Unit | 1498 | ||
2.19.4.4 Auxiliary Electronic Equipment | 1498 | ||
2.19.5 Stand-Alone Hybrid Systems Configurations | 1498 | ||
2.19.5.1 Stand-Alone Wind Power Systems | 1499 | ||
2.19.5.2 Stand-Alone Wind–Diesel Power Systems | 1502 | ||
2.19.5.3 Stand-Alone Wind–Photovoltaic Power Systems | 1504 | ||
2.19.5.4 Stand-Alone Wind–Hydro Power Systems | 1509 | ||
2.19.5.5 Stand-Alone Wind–Hydrogen Power Systems | 1511 | ||
2.19.6 Energy Storage in Wind Stand-Alone Energy Systems | 1513 | ||
2.19.6.1 Design Parameters of Energy Storage Systems | 1515 | ||
2.19.6.2 Short Description of Energy Storage Technologies | 1515 | ||
2.19.7 Design, Simulation, and Evaluation Software Tools for Wind-Based Hybrid Energy Systems | 1517 | ||
References | 1519 | ||
Further Reading | 1521 | ||
Wind Power Industry and Markets | 1523 | ||
2.20.1 Global Market Development | 1523 | ||
2.20.2 Trends in the Development of Wind Turbines | 1525 | ||
2.20.3 Main Drivers behind the Wind Power Development | 1526 | ||
2.20.4 Market Development in Europe | 1528 | ||
2.20.4.1 Germany | 1528 | ||
2.20.4.2 Spain | 1529 | ||
2.20.4.3 Rest of Europe | 1530 | ||
2.20.5 Development of Wind Power in North America | 1531 | ||
2.20.5.1 United States | 1531 | ||
2.20.6 Wind Power Development in Asia | 1532 | ||
2.20.6.1 China | 1532 | ||
2.20.7 Offshore Wind Power Development | 1532 | ||
2.20.8 Wind Turbine Manufacturers | 1533 | ||
References | 1535 | ||
Trends, Prospects, and R – D Directions in Wind Turbine Technology | 1537 | ||
2.21.1 Brief Description of Wind Power Time Evolution | 1538 | ||
2.21.2 The Current Wind Turbine Concept | 1541 | ||
2.21.3 Size Evolution of Wind Turbines | 1542 | ||
2.21.4 Pitch versus Stall and Active-Stall Wind Turbines | 1545 | ||
2.21.5 Direct-Drive versus Gearbox | 1546 | ||
2.21.6 Blade Design and Construction | 1548 | ||
2.21.7 Innovative Concepts | 1551 | ||
2.21.8 Environmental Impact Reduction | 1553 | ||
2.21.9 Offshore Wind Parks | 1554 | ||
2.21.10 Vertical-Axis Wind Turbines | 1559 | ||
2.21.11 Small Wind Turbines | 1562 | ||
2.21.12 Building-Integrated Wind Turbines | 1565 | ||
2.21.13 Wind Energy Cost Time Evolution | 1568 | ||
2.21.14 Research in the Wind Energy Sector | 1572 | ||
2.21.15 Wind Energy Technological Problems and R&D Directions | 1575 | ||
2.21.16 Financial Support of Wind Energy Research Efforts | 1576 | ||
2.21.16.1 1998–2002 (FP5) | 1576 | ||
2.21.16.2 2002–06 (FP6) | 1577 | ||
2.21.16.3 2007–Today (FP7) | 1577 | ||
2.21.17 Conclusions | 1578 | ||
Appendix A Wind Energy Projects Funded by FP5 (1998–2002) | 1579 | ||
Wind Turbines | 1579 | ||
Research and Development of a 5MW Wind Turbine | 1579 | ||
Development of a MW Scale Wind Turbine for High Wind Complex Terrain Sites | 1579 | ||
Recommendations for Design of Offshore Wind Turbines | 1579 | ||
Exploring New Concepts for Small and Medium-Sized Wind Mills with Improved Performance | 1579 | ||
Blades and Rotors | 1579 | ||
Wind Turbine Rotor Blades for Enhanced Aeroelastic Stability and Fatigue Life Using Passively Damped Composites | 1579 | ||
Wind Turbine Blade Aerodynamics and Aeroelastics: Closing Knowledge Gaps | 1579 | ||
Model Rotor Experiments Under Controlled Conditions | 1579 | ||
Reliable Optimal Use of Materials for Wind Turbine Rotor Blades | 1579 | ||
Silent Rotors by Acoustic Optimization | 1579 | ||
Aerolastic Stability and Control of Large Wind Turbines | 1580 | ||
Innovative Composite Hub for Wind Turbines | 1580 | ||
Wind Resources Forecasting and Mapping | 1580 | ||
Development of a Next Generation Wind Resource Forecasting System for the Large-Scale Integration of Onshore and Offshore Wind Farms | 1580 | ||
A High Resolution Numerical Wind Energy Model for On- and Offshore Forecasting Using Ensemble Predictions | 1580 | ||
Wind Energy Mapping Using Synthetic Aperture Radar | 1580 | ||
Wind Farms | 1580 | ||
Advanced Management and Surveillance of Wind Farms | 1580 | ||
Efficient Development of Offshore Wind Farms | 1580 | ||
Condition Monitoring for Offshore Wind Farms | 1580 | ||
Integration of Wind Power | 1580 | ||
Wind Energy Network | 1580 | ||
Towards High Penetration and Firm Power from Wind Energy | 1581 | ||
More Advanced Control Advice for Secure Operation of Isolated Power Systems with Increased Renewable Energy Penetration andStorage | 1581 | ||
Wind Power Integration in a Liberalized Electricity Market | 1581 | ||
Cluster Pilot Project for the Integration of RES Into European Energy Sectors Using Hydrogen | 1581 | ||
Solar and Wind Technology Excellence, Knowledge Exchange and Twinning Actions Romanian Centre | 1581 | ||
Appendix B Wind Energy Projects Funded by FP6 (2002–06) | 1581 | ||
Next generation design tool for optimization of wind farm topology and operation | 1581 | ||
European Wind Integration Study | 1581 | ||
South-East Europe Wind Energy Exploitation – Research and Demonstration of Wind Energy Utilization in Complex Terrain and Under Specific Local Wind Systems | 1582 | ||
Wind Energy Technology Platform Secretariat | 1582 | ||
Action Plan for High-Priority Renewable Energy Initiatives in Southern and Eastern Mediterranean Area | 1582 | ||
Self Installing Wind Turbine | 1582 | ||
Wind on the Grid: An Integrated Approach | 1582 | ||
Decision Support for Large Scale Integration of Wind Power | 1583 | ||
Development of a New Principle 3MW Direct Drive Generator and Wind Turbine | 1583 | ||
Grid Architecture for Wind Power Production with Energy Storage through Load Shifting in Refrigerated Warehouses | 1583 | ||
Integrated Wind Turbine Design | 1583 | ||
Prediction of Waves, Wakes and Offshore Wind | 1583 | ||
Dissemination Strategy on Electricity Balancing for large Scale Integration of Renewable Energy | 1584 | ||
Distant Offshore Wind Farms with No Visual Impact in Deepwater | 1584 | ||
Standardization of Ice Forces on Offshore Structures Design | 1584 | ||
Hogsara Island Demonstration Project | 1584 | ||
Appendix C Wind Energy Projects Funded by FP7 (Since 2007) | 1584 | ||
Off-Shore Renewable Energy Conversion Platforms – Coordination Action | 1584 | ||
Marine Renewable Integrated Application Platform | 1585 | ||
Multi-Scale Data Assimilation, Advanced Wind Modeling and Forecasting with Emphasis to Extreme Weather Situations foraSecure Large-Scale Wind Power Integration | 1585 | ||
Pilot Demonstration of Eleven 7MW-Class WEC at Estinnes in Belgium | 1585 | ||
Northern Seas Wind Index Database | 1585 | ||
PROcedures for TESTing and Measuring Wind Energy Systems | 1585 | ||
Reliability Focused Research on Optimizing Wind Energy Systems Design, Operation and Maintenance: Tools, Proof of Concepts, Guidelines & Methodologies for a New Generation | 1586 | ||
Future Deep Sea Wind Turbine Technologies | 1586 | ||
High Altitude Wind Energy | 1586 | ||
High Power, High Reliability Offshore Wind Technology | 1586 | ||
References | 1586 | ||
Further Reading | 1589 | ||
Relevant Websites | 1590 | ||
Special Wind Power Applications | 1591 | ||
2.22.1 Introduction – The Water Demand Problem | 1592 | ||
2.22.2 Desalination Processes and Plants | 1592 | ||
2.22.2.1 General Considerations | 1592 | ||
2.22.2.2 Membrane/RO Desalination Processes | 1594 | ||
2.22.3 Energy Requirements of Desalination Processes | 1595 | ||
2.22.3.1 General Issues | 1595 | ||
2.22.3.2 Utilizing RESs in Desalination | 1596 | ||
2.22.4 Integrated Systems of RES with Desalination Plants | 1598 | ||
2.22.5 RO–Wind Desalination | 1598 | ||
2.22.5.1 Basic Characteristics | 1598 | ||
2.22.5.2 Design Issues | 1599 | ||
2.22.5.3 Operational Issues – Technical Difficulties | 1600 | ||
2.22.6 Wind–RO Configuration Possibilities | 1600 | ||
2.22.6.1 Systems with Backup (Diesel/Grid) | 1600 | ||
2.22.6.2 Systems without Backup | 1600 | ||
2.22.6.3 Near-Constant Operating Conditions | 1600 | ||
2.22.6.4 Storage Devices | 1600 | ||
2.22.6.5 RO Unit Switching | 1600 | ||
2.22.6.6 Wind Turbine Derating | 1601 | ||
2.22.6.7 Variable Operating Conditions | 1601 | ||
2.22.7 Implementation of Projects | 1601 | ||
2.22.8 Implementation of Projects with Hybrid Energy Systems | 1601 | ||
2.22.9 Economic Considerations in RES-Based Desalination | 1602 | ||
2.22.9.1 Introductory Comments | 1602 | ||
2.22.9.2 Parameters Affecting Economics of Desalination | 1602 | ||
2.22.10 Examples of Wind-Based Desalination Applications – Case Studies | 1604 | ||
2.22.10.1 General Issues for the Case Studies Analysis | 1604 | ||
2.22.10.2 Libya | 1605 | ||
2.22.10.3 Morocco | 1605 | ||
2.22.10.4 Spain | 1605 | ||
2.22.10.5 Milos Island, Greece | 1605 | ||
2.22.11 Technological Developments and Future Trends in Hybrid Desalination Systems | 1606 | ||
2.22.12 Telecommunication Stations | 1606 | ||
2.22.12.1 General Considerations | 1606 | ||
2.22.13 The Wind Power-Based T/C Station | 1607 | ||
2.22.13.1 Configuration Options Overview | 1608 | ||
2.22.14 Applications of Wind Energy in T/C Stations | 1608 | ||
2.22.15 Wind Water Pumping Systems | 1608 | ||
2.22.16 Water Pumping System Applications | 1610 | ||
References | 1611 | ||
Further Reading | 1612 | ||
e9780080878720v3 | 1613 | ||
Cover\r | 1613 | ||
Comprehensive Renewable Energy \r | 1614 | ||
Copyright | 1617 | ||
Editor-In-Chief\r | 1618 | ||
Volume Editors | 1620 | ||
Contributors For All Volumes | 1624 | ||
Preface | 1632 | ||
Contents | 1636 | ||
Solar Thermal Systems: Components and Applications - Introduction | 1644 | ||
3.01.1 The Sun | 1645 | ||
3.01.2 Energy-Related Environmental Problems | 1646 | ||
3.01.2.1 Acid Rain | 1647 | ||
3.01.2.2 Ozone Layer Depletion | 1647 | ||
3.01.2.3 Global Climate Change | 1648 | ||
3.01.2.4 Renewable Energy Technologies | 1648 | ||
3.01.2.4.1 Social and economic development | 1649 | ||
3.01.2.4.2 Land restoration | 1649 | ||
3.01.2.4.3 Reduced air pollution | 1649 | ||
3.01.2.4.4 Abatement of global warming | 1649 | ||
3.01.2.4.5 Fuel supply diversity | 1649 | ||
3.01.2.4.6 Reducing the risks of nuclear weapons proliferation | 1649 | ||
3.01.3 Environmental Characteristics of Solar Energy | 1650 | ||
3.01.3.1 Equation of Time | 1651 | ||
3.01.3.2 Longitude Correction | 1651 | ||
3.01.3.3 Solar Angles | 1651 | ||
3.01.3.3.1 Declination angle, δ | 1653 | ||
3.01.3.3.2 Hour angle, h | 1654 | ||
3.01.3.3.3 Solar altitude angle, α | 1654 | ||
3.01.3.3.4 Solar azimuth angle, z | 1655 | ||
3.01.3.3.5 Sun rise and set times and day length | 1655 | ||
3.01.3.3.6 Incidence angle, θ | 1655 | ||
3.01.3.4 The Incidence Angle for Moving Surfaces | 1656 | ||
3.01.3.4.1 Full tracking | 1657 | ||
3.01.3.4.2 N–S axis tilted/tilt daily adjusted | 1657 | ||
3.01.3.4.3 N–S axis polar/E–W tracking | 1657 | ||
3.01.3.4.4 E–W axis horizontal/N–S tracking | 1659 | ||
3.01.3.4.5 N–S axis horizontal/E–W tracking | 1660 | ||
3.01.3.4.5(i) Comparison | 1660 | ||
3.01.3.5 Sun Path Diagrams | 1660 | ||
3.01.4 Solar Radiation | 1661 | ||
3.01.4.1 Thermal Radiation | 1661 | ||
3.01.4.2 Transparent Plates | 1664 | ||
3.01.5 The Solar Resource | 1665 | ||
3.01.5.1 Typical Meteorological Year | 1665 | ||
3.01.5.2 Typical Meteorological Year – Second Generation | 1666 | ||
References | 1667 | ||
The Solar Resource | 1670 | ||
3.02.1 Introduction | 1671 | ||
3.02.2 Sun–Earth Astronomical Relations | 1672 | ||
3.02.3 Solar Constant | 1675 | ||
3.02.4 Solar Spectrum | 1676 | ||
3.02.4.1 Planck’s Law | 1676 | ||
3.02.4.2 Wien’s Displacement Law | 1676 | ||
3.02.4.3 Stefan–Boltzmann Law | 1677 | ||
3.02.5 Interference of Solar Radiation with the Earth’s Atmosphere | 1677 | ||
3.02.5.1 The Earth’s Atmosphere | 1677 | ||
3.02.5.2 Optical Air Mass | 1678 | ||
3.02.5.3 Attenuation of Solar Direct Radiation | 1679 | ||
3.02.5.4 Rayleigh and Mie Scattering, Reflection, and Absorption | 1679 | ||
3.02.6 Models of Broadband Solar Radiation on Horizontal and Tilted Surfaces | 1682 | ||
3.02.6.1 Calculation of Solar Radiation on a Horizontal Plane | 1683 | ||
3.02.6.2 The Meteorological Radiation Model | 1686 | ||
3.02.6.3 Calculation of Solar Radiation on a Tilted Surface | 1688 | ||
3.02.6.4 Quality Control of Solar Radiation Values | 1692 | ||
3.02.7 Evaluation of Models | 1692 | ||
3.02.7.1 The Standard Deviation | 1693 | ||
3.02.7.2 The Root Mean Square Error | 1693 | ||
3.02.7.3 The Mean Bias Error | 1694 | ||
3.02.7.4 The Mean Absolute Bias Error | 1694 | ||
3.02.7.5 The t-test | 1694 | ||
3.02.7.6 The Index of Agreement (d) | 1695 | ||
3.02.7.7 The Coefficient of Determination (R2) | 1695 | ||
3.02.8 Models of Solar Spectral Radiation | 1697 | ||
3.02.9 Net Solar Radiation | 1697 | ||
3.02.10 Networks of Solar Radiation Stations – Solar Atlases | 1701 | ||
3.02.11 Utility Tools for Solar Radiation Calculations | 1705 | ||
3.02.12 Instruments for Measuring Solar Radiation | 1707 | ||
3.02.12.1 Solar Radiometers | 1707 | ||
3.02.12.2 The World Radiometric Reference | 1710 | ||
3.02.12.3 Calibration of Solar Radiometers | 1710 | ||
3.02.12.4 Uncertainty of Solar Radiometers | 1710 | ||
3.02.12.5 Correction of Common Solar Radiometer Errors | 1710 | ||
Appendix A: Spectral Distribution of Solar Radiation | 1710 | ||
Appendix B: Radiometric Terminology | 1721 | ||
Appendix C: The Sun as a Blackbody | 1722 | ||
Appendix D: Physical Constants and Conversion Factors | 1723 | ||
References | 1723 | ||
History of Solar Energy | 1728 | ||
3.03.1 Introduction | 1728 | ||
3.03.1.1 The Sun | 1729 | ||
3.03.2 The Early Times | 1729 | ||
3.03.3 The Middle Ages | 1730 | ||
3.03.4 The Twentieth Century | 1734 | ||
3.03.4.1 Solar Engines – Solar Collectors | 1734 | ||
3.03.4.2 The Development of Flat-Plate Collectors | 1736 | ||
3.03.4.3 The Development of Selective Surfaces | 1736 | ||
3.03.4.4 Space Heating and Cooling with Solar Collectors | 1737 | ||
3.03.4.5 Concentrating System for Power Production | 1738 | ||
3.03.5 The First Scientific Solar Energy Meetings | 1739 | ||
3.03.6 Evacuated-Tube Collectors | 1739 | ||
3.03.7 Heat Pipes | 1740 | ||
3.03.8 Desalination with Solar Energy | 1740 | ||
3.03.8.1 Solar Distillation | 1740 | ||
3.03.8.2 Solar-Assisted Desalination | 1743 | ||
References | 1744 | ||
Further Reading | 1745 | ||
Low Temperature Stationary Collectors | 1746 | ||
3.04.1 Introduction | 1746 | ||
3.04.1.1 Flat-Plate Collectors | 1746 | ||
3.04.1.2 Absorbers for Liquid FPCs | 1747 | ||
3.04.1.2.1 Stamped absorbers | 1747 | ||
3.04.1.2.2 Tube absorbers | 1747 | ||
3.04.1.2.3 Roll-bond absorbers | 1749 | ||
3.04.1.2.4 Organic absorbers | 1750 | ||
3.04.1.3 Absorbers for Air FPCs | 1751 | ||
3.04.1.4 Absorber Coating | 1751 | ||
3.04.1.5 Cover Material for FPCs | 1754 | ||
3.04.1.6 Back and Side Insulation for FPCs | 1756 | ||
3.04.1.7 Enclosure or Casing for FPCs | 1756 | ||
3.04.1.8 Evacuated Tube Collectors | 1759 | ||
3.04.2 Optical Analysis | 1763 | ||
3.04.2.1 Reflection and Transmission of Radiation | 1763 | ||
3.04.2.2 Antireflective Coatings | 1768 | ||
3.04.2.3 Absorption of Solar Radiation | 1769 | ||
3.04.2.4 Transmittance–Absorptance Product | 1770 | ||
3.04.2.5 Absorbed Solar Energy | 1771 | ||
3.04.3 Thermal Analysis | 1772 | ||
3.04.3.1 Steady-State Energy Balance of FPC | 1772 | ||
3.04.3.1.1 Radiation exchange between glazing and sky hrc−a | 1773 | ||
3.04.3.1.2 Convection exchange between glazing and ambient hcc−a | 1774 | ||
3.04.3.1.3 Radiation exchange between absorber and glazing hrp−c | 1775 | ||
3.04.3.1.4 Convection exchange between absorber and cover hcp−c | 1775 | ||
3.04.3.1.5 Conduction back and edge exchange between absorber and ambient | 1775 | ||
3.04.3.1.6 Overall thermal loss determination qloss | 1776 | ||
3.04.3.2 Solar Collector Top Heat Loss Coefficient Ut | 1777 | ||
3.04.3.3 Useful Energy Transferred to the Working Fluid | 1777 | ||
3.04.3.4 Collector Heat-Removal Factor | 1781 | ||
3.04.4 Collector Performance Determination | 1784 | ||
3.04.4.1 Collector Efficiency | 1784 | ||
3.04.4.2 Incident Angle Modifier | 1786 | ||
3.04.4.3 Determination of Effective Thermal Capacity | 1788 | ||
References | 1789 | ||
Low Concentration Ratio Solar Collectors | 1792 | ||
3.05.1 Introduction | 1793 | ||
3.05.1.1 Maximum Concentration Ratio | 1793 | ||
3.05.2 Flat-Plate Collectors with Diffuse Reflectors | 1794 | ||
3.05.3 Reverse Flat-Plate Collectors | 1795 | ||
3.05.4 Compound Parabolic Collectors (CPC) | 1796 | ||
3.05.4.1 Optical and Thermal Analysis of CPCs | 1797 | ||
3.05.5 Concentrating Evacuated Tube Collectors | 1801 | ||
3.05.6 Integrated Collector Storage Systems | 1802 | ||
References | 1805 | ||
High Concentration Solar Collectors | 1808 | ||
3.06.1 Introduction | 1810 | ||
3.06.2 General Considerations of High-Concentration Solar Collectors | 1810 | ||
3.06.2.1 Basic Characteristics | 1810 | ||
3.06.2.1.1 Components | 1810 | ||
3.06.2.1.2 Characteristics | 1810 | ||
3.06.2.1.2(i) Specular reflectivity | 1810 | ||
3.06.2.1.2(ii) Shape accuracy | 1810 | ||
3.06.2.2 Types | 1811 | ||
3.06.2.2.1 Application | 1811 | ||
3.06.2.2.2 Control | 1811 | ||
3.06.2.3 System Determination of Performance | 1811 | ||
3.06.2.3.1 Definition of efficiencies | 1811 | ||
3.06.2.3.2 Sunshape | 1811 | ||
3.06.2.4 Optical and Thermal Analysis of High-Concentration Solar Collector Systems | 1812 | ||
3.06.2.4.1 Structure | 1812 | ||
3.06.2.4.1(i) Geometry | 1812 | ||
3.06.2.4.1(ii) Tracking accuracy | 1812 | ||
3.06.2.4.2 Reflector | 1812 | ||
3.06.2.4.2(i) Photogrammetry | 1812 | ||
3.06.2.4.2(ii) Deflectometry | 1813 | ||
3.06.2.4.2(iii) Reflectivity measurement | 1813 | ||
3.06.2.4.2(iv) Laser | 1814 | ||
3.06.2.4.2(v) Abrasion test | 1814 | ||
3.06.2.4.3 Linear receiver | 1815 | ||
3.06.2.4.3(i) Infrared light | 1815 | ||
3.06.2.4.3(ii) Receiver reflection method | 1815 | ||
3.06.2.4.3(iii) ParaScan | 1815 | ||
3.06.2.4.3(iv) Vacuum hydrogen absorption | 1816 | ||
3.06.2.4.3(iv)(a) Thermocouples | 1816 | ||
3.06.2.4.3(v) Mass flow measurements | 1816 | ||
3.06.2.4.3(vi) Further thermal tests (heat transport, pressure) | 1816 | ||
3.06.2.4.4 Area receiver | 1816 | ||
3.06.2.4.4(i) Luminance | 1816 | ||
3.06.2.4.4(ii) Thermography | 1816 | ||
3.06.2.4.4(iii) Infrared light | 1817 | ||
3.06.2.4.4(iv) Absorber tests | 1817 | ||
3.06.2.4.4(v) Moving bar, TCs | 1817 | ||
3.06.2.4.4(vi) Mass flow measurements and thermal tests | 1817 | ||
3.06.2.5 Operation and Maintenance | 1817 | ||
3.06.2.5.1 Cleaning | 1817 | ||
3.06.3 Parabolic Trough Collectors | 1817 | ||
3.06.3.1 Introduction | 1817 | ||
3.06.3.2 Basic Characteristics | 1817 | ||
3.06.3.2.1 Structure | 1817 | ||
3.06.3.2.2 Components | 1818 | ||
3.06.3.2.3 Specific characteristics | 1818 | ||
3.06.3.3 Types | 1819 | ||
3.06.3.3.1 Size | 1819 | ||
3.06.3.3.2 Material | 1819 | ||
3.06.3.3.3 Heat transfer fluid | 1819 | ||
3.06.3.3.4 Specific control components | 1820 | ||
3.06.3.3.5 Drives | 1820 | ||
3.06.3.3.6 Tracking system | 1820 | ||
3.06.3.3.7 Diverse | 1820 | ||
3.06.3.4 Construction and Installation | 1821 | ||
3.06.3.4.1 Prefabrication | 1821 | ||
3.06.3.4.2 In situ assembly | 1821 | ||
3.06.3.4.3 Adjustment | 1821 | ||
3.06.3.5 System-Specific Determination of Performance | 1821 | ||
3.06.3.5.1 Definition of efficiencies | 1821 | ||
3.06.3.5.2 Error sources | 1821 | ||
3.06.3.6 Models of Collectors and Their Construction Details | 1821 | ||
3.06.3.6.1 LS-1, LS-2, and LS-3 | 1821 | ||
3.06.3.6.2 EuroTrough | 1822 | ||
3.06.3.6.3 Solargenix collector | 1823 | ||
3.06.3.6.4 HelioTrough | 1824 | ||
3.06.3.6.5 Ultimate Trough collector | 1824 | ||
3.06.3.6.6 PT-1 | 1825 | ||
3.06.3.6.7 SkyTrough | 1825 | ||
3.06.3.6.8 SenerTrough | 1826 | ||
3.06.3.6.9 Research | 1826 | ||
3.06.3.7 Solar Absorbers for PTCs | 1826 | ||
3.06.3.7.1 The solar absorber of SCHOTT Solar | 1826 | ||
3.06.3.7.2 The solar absorber of Siemens | 1827 | ||
3.06.3.8 Operation and Maintenance | 1827 | ||
3.06.3.8.1 Cleaning techniques | 1827 | ||
3.06.3.8.2 Maintenance of HTF quality | 1828 | ||
3.06.3.8.3 Replacement of parts | 1828 | ||
3.06.3.8.4 Adjustment | 1828 | ||
3.06.4 Central Receiver Systems | 1828 | ||
3.06.4.1 Introduction | 1828 | ||
3.06.4.2 Basic Characteristics | 1828 | ||
3.06.4.2.1 Structure | 1828 | ||
3.06.4.2.2 Components | 1829 | ||
3.06.4.2.3 Specific characteristics | 1829 | ||
3.06.4.3 Types | 1829 | ||
3.06.4.3.1 Geometry of receiver aperture | 1829 | ||
3.06.4.3.2 Heat transfer medium | 1829 | ||
3.06.4.3.3 Receiver | 1830 | ||
3.06.4.3.4 Tower construction | 1830 | ||
3.06.4.3.5 Heliostat drives, kinematics, coupling, facets, mirror material, and foundation | 1830 | ||
3.06.4.3.6 Specific control components | 1830 | ||
3.06.4.3.7 Aim-point strategy | 1830 | ||
3.06.4.4 System-Specific Determination of Performance | 1830 | ||
3.06.4.4.1 Receiver efficiency and optical and thermal losses | 1830 | ||
3.06.4.4.2 Heliostat loss mechanisms, tracking accuracy, and beam error | 1831 | ||
3.06.4.5 Secondary Optics | 1832 | ||
3.06.4.5.1 Tower reflector | 1832 | ||
3.06.4.5.2 Secondary concentrators | 1832 | ||
3.06.4.6 Models of Heliostats and Their Construction Details | 1833 | ||
3.06.4.7 Receiver Types on the Market | 1835 | ||
3.06.4.8 Operation and Maintenance | 1838 | ||
3.06.4.8.1 Cleaning techniques | 1838 | ||
3.06.4.8.2 Replacement of parts | 1838 | ||
3.06.4.8.3 Adjustment | 1838 | ||
3.06.5 Linear Fresnel Collectors | 1838 | ||
3.06.5.1 Introduction | 1838 | ||
3.06.5.2 Basic Characteristics | 1838 | ||
3.06.5.2.1 Structure | 1838 | ||
3.06.5.2.2 Components | 1838 | ||
3.06.5.2.3 Specific characteristics | 1838 | ||
3.06.5.3 Types | 1839 | ||
3.06.5.3.1 Size | 1839 | ||
3.06.5.3.2 Material | 1839 | ||
3.06.5.3.3 Heat transfer fluid | 1839 | ||
3.06.5.3.4 Specific operation control components | 1839 | ||
3.06.5.3.5 Drives | 1839 | ||
3.06.5.3.6 Tracking system | 1839 | ||
3.06.5.4 System-Specific Determination of Performance | 1839 | ||
3.06.5.4.1 Definition of efficiencies | 1839 | ||
3.06.5.4.2 Error sources | 1840 | ||
3.06.5.5 Models of Collectors and Their Construction Details | 1840 | ||
3.06.5.5.1 Solar Power Group | 1840 | ||
3.06.5.5.2 Solarmundo | 1841 | ||
3.06.5.5.3 Ausra/Areva | 1841 | ||
3.06.5.5.4 NOVATEC BioSol | 1841 | ||
3.06.5.5.5 Mirroxx | 1842 | ||
3.06.5.5.6 Research | 1842 | ||
3.06.5.6 Operation and Maintenance | 1842 | ||
3.06.5.6.1 Cleaning techniques | 1842 | ||
3.06.5.6.2 Replacement of parts | 1842 | ||
3.06.6 Solar Dish | 1842 | ||
3.06.6.1 Introduction | 1842 | ||
3.06.6.2 Basic Characteristics | 1843 | ||
3.06.6.2.1 Structure | 1843 | ||
3.06.6.2.2 Components | 1843 | ||
3.06.6.2.3 Specific characteristics | 1843 | ||
3.06.6.3 Types | 1844 | ||
3.06.6.3.1 Geometry, material use, and surface characteristics of the concentrator | 1844 | ||
3.06.6.3.2 Geometry of receiver aperture with Stirling device | 1844 | ||
3.06.6.3.3 Characteristics of Stirling or Brayton engine | 1844 | ||
3.06.6.3.4 Working gas | 1845 | ||
3.06.6.4 System-Specific Determination of Performance | 1845 | ||
3.06.6.4.1 Definition of efficiencies | 1845 | ||
3.06.6.4.2 Error sources | 1846 | ||
3.06.6.5 Models of Solar Dishes and Their Construction Details | 1846 | ||
3.06.6.5.1 First models | 1846 | ||
3.06.6.5.2 EuroDish | 1846 | ||
3.06.6.5.3 Stirling Energy Systems | 1847 | ||
3.06.6.5.4 SAIC and STM | 1847 | ||
3.06.6.5.5 Infinia Solar System | 1847 | ||
3.06.6.5.6 Others | 1847 | ||
3.06.6.5.7 Research | 1847 | ||
3.06.6.6 Operation and Maintenance | 1848 | ||
3.06.6.6.1 Control system/diverse | 1848 | ||
3.06.7 Criteria for the Choice of Technology | 1848 | ||
3.06.7.1 Location | 1848 | ||
3.06.7.2 Grid Capacity and Net System | 1849 | ||
3.06.7.3 Local Cost Structure | 1849 | ||
3.06.7.4 Country-Specific Subsidies, Feed-in Tariffs, and Environmental Laws | 1849 | ||
References | 1850 | ||
Thermal Energy Storage | 1854 | ||
3.07.1 Introduction | 1855 | ||
3.07.1.1 Definition of Thermal Energy Storage | 1855 | ||
3.07.1.2 TES and Solar Energy | 1856 | ||
3.07.1.3 Design of Storages | 1856 | ||
3.07.1.4 Integration of Storages into Systems | 1857 | ||
3.07.2 Methods for TES | 1857 | ||
3.07.2.1 Sensible Heat | 1857 | ||
3.07.2.1.1 Definition | 1857 | ||
3.07.2.1.2 Air | 1858 | ||
3.07.2.1.2.1 Thermal analysis of air systems | 1859 | ||
3.07.2.1.3 Water | 1859 | ||
3.07.2.1.3.1 Thermal analysis of water storage systems | 1862 | ||
3.07.2.1.4 Other materials | 1862 | ||
3.07.2.1.5 Underground thermal energy storage | 1862 | ||
3.07.2.2 Latent Heat | 1864 | ||
3.07.2.2.1 Definition | 1864 | ||
3.07.2.2.2 Exergy analysis of a latent storage system | 1865 | ||
3.07.2.3 Thermochemical Heat | 1867 | ||
3.07.2.3.1 Definition | 1867 | ||
3.07.2.3.2 Chemical reactions | 1867 | ||
3.07.2.3.3 Sorption systems | 1867 | ||
3.07.2.4 Comparison of Thermal Storage System Types | 1870 | ||
3.07.3 Economics of TES | 1870 | ||
3.07.3.1 TES and Energy Savings | 1870 | ||
3.07.3.2 Thermoeconomics of TES | 1871 | ||
3.07.4 Case Studies | 1875 | ||
3.07.4.1 Combisystems | 1875 | ||
3.07.4.2 BTES in a UK Office Building | 1880 | ||
3.07.4.3 Molten Salts in High-Temperature Solar Power Plants | 1882 | ||
3.07.4.4 Concrete and Other Solid Materials in High-Temperature Solar Power Plants | 1885 | ||
3.07.4.5 PCM in Buildings as Passive Energy System | 1886 | ||
3.07.4.6 PCM in Buildings as Active Energy System | 1890 | ||
3.07.4.7 Seasonal Storage of Solar Energy | 1891 | ||
3.07.4.8 Open Absorption Systems for Air Conditioning | 1893 | ||
References | 1896 | ||
Photovoltaic/Thermal Solar Collectors | 1898 | ||
3.08.1 Introduction | 1899 | ||
3.08.1.1 The Origins of PV/T Solar Energy Collectors | 1899 | ||
3.08.1.2 Categorization of PV/T Collectors | 1899 | ||
3.08.1.3 History of PV/T Collectors | 1901 | ||
3.08.1.3.1 Early work on PV/T collectors | 1901 | ||
3.08.1.3.2 The development of PV/T collectors | 1901 | ||
3.08.2 Aspects of PV/T Collectors | 1902 | ||
3.08.2.1 Electrical and Thermal Conversion of the Absorbed Solar Radiation | 1902 | ||
3.08.2.2 The Effect of Illumination and Temperature to the Electrical Performance of Cells | 1904 | ||
3.08.2.3 Design Principles of Flat-Plate PV/T Collectors | 1906 | ||
3.08.2.4 Concentrating PV/T Collectors | 1908 | ||
3.08.2.5 Aspects for CPVs | 1910 | ||
3.08.2.6 Application Aspects of PV/T Collectors | 1911 | ||
3.08.2.7 Economical and Environmental Aspects of PV/T Collectors | 1912 | ||
3.08.3 PV/T Collector Performance | 1912 | ||
3.08.3.1 PV/T Collector Analysis Principles | 1912 | ||
3.08.3.2 Flat-Plate PV/T Collectors with Liquid Heat Recovery | 1913 | ||
3.08.3.2.1 PV/T-water collector energy balance equations | 1913 | ||
3.08.3.2.2 PV/T collector thermal losses | 1914 | ||
3.08.3.2.3 The electrical part of the PV/T collector | 1914 | ||
3.08.3.2.4 Thermal energy of PV/T collector | 1914 | ||
3.08.3.2.5 Thermal energy of PV/T collector | 1914 | ||
3.08.3.3 Flat-Plate PV/T Collectors with Air Heat Recovery | 1914 | ||
3.08.3.3.1 PV/T-air collector energy balance equations | 1915 | ||
3.08.3.3.2 Pressure drop | 1915 | ||
3.08.3.3.3 Influence of geometrical and operational parameters | 1916 | ||
3.08.3.4 PV/T-Air Collector in Natural Airflow | 1917 | ||
3.08.3.4.1 Analysis of airflow rate | 1917 | ||
3.08.3.4.2 Estimation of heat transfer coefficient, hc,and friction factor, f | 1918 | ||
3.08.3.5 Design of Modified PV/T Systems | 1919 | ||
3.08.3.6 Hybrid PV/T System Design Considerations | 1920 | ||
3.08.3.6.1 PV/T collector efficiency test results | 1921 | ||
3.08.3.7 Thermosiphonic PV/T Solar Water Heaters | 1922 | ||
3.08.4 Application of PV/T Collectors | 1923 | ||
3.08.4.1 Building Application Aspects | 1923 | ||
3.08.4.1.1 PV/T collectors in the built environment | 1923 | ||
3.08.4.1.2 The booster diffuse reflector concept | 1924 | ||
3.08.4.2 PV/T Collectors Applied to Buildings | 1925 | ||
3.08.4.2.1 PV/T-water collectors | 1925 | ||
3.08.4.2.2 PV/T-air collectors | 1928 | ||
3.08.4.3 The PVT/DUAL System Concept | 1929 | ||
3.08.4.3.1 Modified PVT/DUAL systems | 1929 | ||
3.08.4.4 PV/T–STC Combined Systems | 1930 | ||
3.08.4.5 FRESNEL/PVT System for Solar Control of Buildings | 1932 | ||
3.08.4.6 CPC/PVT Collector New Designs | 1934 | ||
3.08.4.7 PV/T Collectors in Industry and Agriculture | 1935 | ||
3.08.4.7.1 PV/T collectors in industry | 1935 | ||
3.08.4.7.2 PV/T in agriculture | 1937 | ||
3.08.4.7.3 PV/T collectors combined with other renewable energy sources | 1938 | ||
3.08.4.7.4 Commercial PV/T collectors | 1938 | ||
3.08.5 Epilog | 1939 | ||
References | 1939 | ||
Solar Selective Coatings | 1944 | ||
3.09.1 Introduction | 1944 | ||
3.09.1.1 Introductory Remarks and Definitions | 1945 | ||
3.09.1.2 Definitions of Some Key Optical Properties | 1946 | ||
3.09.2 Classes of Selective Absorbers | 1947 | ||
3.09.2.1 Intrinsic Materials or Mass Absorbers – A Single Material Is Used Exhibiting the Desired Selectivity | 1947 | ||
3.09.2.2 Tandem Stacks or Inverse Tandem Stacks of a Reflecting Surface and a Semiconductor on Top of It | 1948 | ||
3.09.2.2.1 Some simple methods for the preparation of ‘tandem stacks’ | 1948 | ||
3.09.2.2.2 Silicon and/or germanium on proper base surfaces | 1949 | ||
3.09.2.2.3 Inverse tandem stacks | 1949 | ||
3.09.2.3 Multilayer Stacks (Interference Stacks) | 1949 | ||
3.09.2.4 Metal Particles in a Dielectric or Metal Matrix (Cermets) | 1950 | ||
3.09.2.5 Surface Roughness | 1951 | ||
3.09.2.6 Quantum Size Effects | 1952 | ||
3.09.3 Characterization of Selective Surfaces | 1952 | ||
References | 1953 | ||
Further Reading | 1955 | ||
Glazings and Coatings | 1956 | ||
3.10.1 Introduction | 1958 | ||
3.10.1.1 Summary | 1958 | ||
3.10.1.2 Historical Development of Glass Manufacture | 1958 | ||
3.10.1.3 Modern Windows | 1959 | ||
3.10.1.4 Emerging Technologies | 1959 | ||
3.10.2 Thermal and Optical Properties of Glazing and Coatings | 1959 | ||
3.10.2.1 General Considerations | 1959 | ||
3.10.2.1.1 Solar irradiation | 1959 | ||
3.10.2.1.2 Optical properties of a glazing | 1960 | ||
3.10.2.1.3 Definitions of useful terms | 1960 | ||
3.10.2.1.4 Basic laws for solar and thermal radiation | 1961 | ||
3.10.2.2 Optical Analysis of Glazing and Coatings | 1962 | ||
3.10.2.2.1 Basic laws for the refraction and transmission of radiation | 1962 | ||
3.10.2.2.2 Combined absorption and reflection for total transmittance | 1963 | ||
3.10.2.3 Thermal Properties | 1964 | ||
3.10.2.3.1 Theoretical background | 1964 | ||
3.10.2.3.2 Practical considerations | 1965 | ||
3.10.2.3.3 Other useful terms | 1965 | ||
3.10.3 Low-Emittance Coatings | 1966 | ||
3.10.3.1 General Considerations | 1966 | ||
3.10.3.2 Solar Control Versus Thermal Insulation | 1966 | ||
3.10.3.3 Deposition Methods | 1967 | ||
3.10.3.3.1 Thermal evaporation | 1967 | ||
3.10.3.3.2 Electron beam gun evaporation | 1967 | ||
3.10.3.3.3 Sputtering | 1967 | ||
3.10.3.3.4 Chemical methods | 1967 | ||
3.10.3.4 Types of Coatings | 1968 | ||
3.10.3.4.1 Doped metal oxides | 1968 | ||
3.10.3.4.2 Coatings with metal layers | 1968 | ||
3.10.3.4.3 Use of interface layers | 1970 | ||
3.10.3.4.4 Application of a chemically and mechanically resistant top layer | 1970 | ||
3.10.3.4.5 Development of asymmetrical coatings | 1970 | ||
3.10.3.4.6 Development of Ag-based coatings resistant to high temperatures | 1970 | ||
3.10.3.4.7 Development of coatings with double Ag layers | 1970 | ||
3.10.3.5 Conclusions – Resumé | 1970 | ||
3.10.4 Glass and Windows | 1970 | ||
3.10.4.1 Float Glass | 1970 | ||
3.10.4.1.1 Manufacture | 1971 | ||
3.10.4.2 Toughened Glass | 1971 | ||
3.10.4.2.1 Manufacture and properties | 1972 | ||
3.10.4.3 Use of Glass in Solar Collectors | 1972 | ||
3.10.4.3.1 Light admittance | 1972 | ||
3.10.4.3.2 Weather protection and heat loss suppression | 1973 | ||
3.10.4.4 Windows in the Built Environment | 1973 | ||
3.10.4.5 Single-Glazed Windows | 1974 | ||
3.10.4.5.1 Clear single glazing | 1974 | ||
3.10.4.5.2 Tinted single glazing | 1974 | ||
3.10.4.5.3 Reflective single glazing | 1974 | ||
3.10.4.5.4 Low-emittance single glazing | 1974 | ||
3.10.4.5.5 Self-cleaning single glazing | 1974 | ||
3.10.4.6 Multiple-Glazed Windows | 1975 | ||
3.10.4.6.1 Double glazing | 1975 | ||
3.10.4.6.2 Triple and quadruple glazing for ultrahigh thermal insulation | 1976 | ||
3.10.4.7 Window Frames | 1976 | ||
3.10.4.7.1 Aluminum | 1976 | ||
3.10.4.7.2 Wood and wood composites | 1976 | ||
3.10.4.7.3 Plastics (vinyl, fiberglass, thermoplastics) | 1977 | ||
3.10.4.7.4 Hybrid | 1977 | ||
3.10.4.7.5 Effect of frames on the window thermal properties | 1977 | ||
3.10.4.8 Spacers and Sealants | 1978 | ||
3.10.4.9 Emerging Technologies | 1979 | ||
3.10.4.10 Conclusions – Epilogue | 1979 | ||
3.10.5 Evacuated Glazing | 1979 | ||
3.10.5.1 Operating Principles | 1979 | ||
3.10.5.2 Technology and Related Problems | 1979 | ||
3.10.5.3 The State of the Art | 1980 | ||
3.10.5.4 Comparison with Conventional Glazing | 1981 | ||
3.10.5.5 Electrochromic Evacuated Glazing | 1981 | ||
3.10.5.6 Conclusions | 1982 | ||
3.10.6 Transparent Insulation | 1982 | ||
3.10.6.1 Historical Background | 1982 | ||
3.10.6.2 Optical and Thermal Properties | 1982 | ||
3.10.6.3 Types of Available Materials | 1983 | ||
3.10.6.3.1 Granular aerogels | 1983 | ||
3.10.6.3.2 Monolithic silica aerogel | 1984 | ||
3.10.6.3.3 Glass capillary structures | 1984 | ||
3.10.6.4 Conclusions | 1985 | ||
3.10.7 Chromogenic Materials and Devices | 1985 | ||
3.10.7.1 Introduction | 1985 | ||
3.10.7.2 Electrochromics | 1985 | ||
3.10.7.3 Electrochromic Devices: Principles of Operation and Coloration Mechanisms | 1986 | ||
3.10.7.4 Materials for Electrochromic Devices | 1987 | ||
3.10.7.4.1 Transparent electrical conductors | 1987 | ||
3.10.7.4.2 Active electrochromic film | 1987 | ||
3.10.7.4.2(i) Tungsten oxide | 1987 | ||
3.10.7.4.2(ii) Molybdenum oxide | 1988 | ||
3.10.7.4.2(iii) Prussian blue | 1988 | ||
3.10.7.4.3 Ion storage and protective layers | 1988 | ||
3.10.7.4.3(i) Vanadium pentoxide | 1988 | ||
3.10.7.4.3(ii) Other IS materials | 1989 | ||
3.10.7.4.4 Protective layers – magnesium fluoride | 1989 | ||
3.10.7.5 Performance of a Typical EC Device | 1989 | ||
3.10.7.6 Photoelectrochromics | 1989 | ||
3.10.7.7 Gasochromics | 1993 | ||
3.10.7.8 Thermochromics | 1993 | ||
3.10.7.9 Metal Hydride Switchable Mirrors | 1993 | ||
3.10.7.10 Other Switching Devices | 1993 | ||
3.10.7.10.1 Suspended particle devices | 1994 | ||
3.10.7.10.2 Polymer-dispersed liquid crystal devices | 1994 | ||
3.10.7.10.3 Micro-blinds | 1994 | ||
3.10.7.11 Conclusions – Epilogue | 1994 | ||
References | 1994 | ||
Further Reading | 1997 | ||
Relevant Websites | 1997 | ||
Modeling and Simulation of Passive and Active Solar Thermal Systems | 2000 | ||
3.11.1 Introduction | 2002 | ||
3.11.2 Passive Solar Design Techniques and Systems | 2002 | ||
3.11.2.1 Direct-Gain Modeling | 2004 | ||
3.11.2.1.1 Transient heat conduction and steady-periodic (frequency domain) solution | 2005 | ||
3.11.2.1.1(i) Admittance transfer functions for walls | 2007 | ||
3.11.2.1.1(i)(a) Analysis | 2009 | ||
3.11.2.1.2 Building transient response analysis | 2010 | ||
3.11.2.1.3 Simplified analytical direct-gain room model and solution (passive) | 2012 | ||
3.11.2.1.3(i) Important design approximation | 2016 | ||
3.11.2.1.3(ii) Source models | 2016 | ||
3.11.2.1.3(iii) Periodic solution | 2017 | ||
3.11.2.1.3(iv) Approximate design method for temperature swings | 2017 | ||
3.11.2.1.3(v) Detailed frequency domain zone model and building transfer functions | 2018 | ||
3.11.2.1.3(vi) Analysis of building transfer functions | 2020 | ||
3.11.2.1.3(vi)(a) Results | 2020 | ||
3.11.2.1.3(vii) Heating/cooling load and room temperature calculation | 2021 | ||
3.11.2.1.3(viii) Discrete Fourier series method for simulation | 2022 | ||
3.11.3 PV/T Systems and Building-Integrated Photovoltaic/Thermal (BIPV/T) Systems | 2022 | ||
3.11.3.1 Integration of Solar Technologies into the Building Envelope and BIPV/T | 2022 | ||
3.11.3.2 A Simplified Open-Loop PV/T Model | 2024 | ||
3.11.3.3 Transient and Steady-State Models for Open-Loop Air-Based BIPV/T Systems | 2024 | ||
3.11.3.3.1 Air temperature variation within the control volume | 2026 | ||
3.11.3.3.2 Radiative heat transfer | 2026 | ||
3.11.3.3.3 Inlet air temperature effects | 2026 | ||
3.11.3.3.3(i) Electrical efficiency modeling | 2027 | ||
3.11.3.4 Heat Removal Factor and Thermal Efficiency for Open-Loop BIPV/T Systems | 2031 | ||
3.11.4 Near-Optimal Design of Low-Energy Solar Homes | 2032 | ||
3.11.4.1 Envelope and Passive Solar Design | 2033 | ||
3.11.4.1.1 HVAC and renewable energy systems | 2034 | ||
3.11.4.2 Overview of the Design of Two Net-Zero Energy Solar Homes | 2037 | ||
3.11.5 Active Solar Systems | 2039 | ||
3.11.6 The f-Chart Method | 2039 | ||
3.11.6.1 Performance and Design of Liquid-Based Solar Heating Systems | 2043 | ||
3.11.6.1.1 Storage capacity correction | 2044 | ||
3.11.6.1.2 Collector flow rate correction | 2044 | ||
3.11.6.1.3 Load heat exchanger size correction | 2044 | ||
3.11.6.2 Performance and Design of Air-Based Solar Heating Systems | 2045 | ||
3.11.6.2.1 Pebble-bed storage size correction | 2045 | ||
3.11.6.2.2 Airflow rate correction | 2045 | ||
3.11.6.3 Performance and Design of Solar Service Water Systems | 2046 | ||
3.11.6.4 General Remarks | 2046 | ||
3.11.7 Utilizability Method | 2047 | ||
3.11.7.1 Hourly Utilizability | 2047 | ||
3.11.7.2 Daily Utilizability | 2049 | ||
3.11.7.3 Design of Active Systems with Utilizability Methods | 2050 | ||
3.11.7.3.1 Hourly utilizability | 2050 | ||
3.11.7.3.2 Daily utilizability | 2051 | ||
3.11.8 The Φ¯, f-Chart Method | 2051 | ||
3.11.8.1 Storage Tank Losses Correction | 2053 | ||
3.11.8.2 Heat Exchanger Correction | 2053 | ||
3.11.9 Modeling and Simulation of Solar Energy Systems | 2053 | ||
3.11.9.1 The F-Chart Program | 2054 | ||
3.11.9.2 The TRNSYS Simulation Program | 2054 | ||
3.11.9.3 WATSUN Simulation Program | 2056 | ||
3.11.10 Limitations of Simulations | 2058 | ||
References | 2058 | ||
Solar Hot Water Heating Systems | 2062 | ||
3.12.1 Toward a Sustainable Energy System | 2062 | ||
3.12.1.1 Solar Heat – Renewable Energy Source with High Potential | 2062 | ||
3.12.1.2 Solar Water Heating | 2063 | ||
3.12.1.3 Solar Energy for Developing Countries | 2065 | ||
3.12.1.4 Market Introduction and Market Deployment of Solar Thermal Systems | 2065 | ||
3.12.1.5 Solar Heat Worldwide | 2066 | ||
3.12.1.5.1 Distribution by application | 2066 | ||
3.12.2 Technologies for Solar Hot Water Systems | 2068 | ||
3.12.2.1 Components and Concepts | 2069 | ||
3.12.2.1.1 Solar DHW systems with natural circulation | 2069 | ||
3.12.2.1.2 Solar DHW systems with forced circulation | 2069 | ||
3.12.2.2 Solar Thermal Collectors | 2069 | ||
3.12.2.2.1 High-performance flat-plate collectors | 2072 | ||
3.12.2.2.2 Properties of collectors | 2073 | ||
3.12.2.2.3 Integration of solar collectors | 2073 | ||
3.12.2.2.4 New developments in the collector sector | 2074 | ||
3.12.2.3 The Collector Circuit | 2074 | ||
3.12.2.3.1 Drain-back system | 2076 | ||
3.12.2.4 Thermal Storage | 2077 | ||
3.12.2.4.1 Water storage technology | 2077 | ||
3.12.2.4.2 Advanced heat storage technologies | 2078 | ||
3.12.2.5 Decentralized and Centralized Solar Thermal Systems | 2078 | ||
3.12.2.6 Auxiliary Heat Sources | 2079 | ||
3.12.2.7 Hygienic Aspects of Solar Hot Water Heaters | 2080 | ||
3.12.3 Design Principles of Solar Thermal Systems | 2081 | ||
3.12.3.1 Meteorological Conditions and Simulation Tools | 2081 | ||
3.12.3.2 The Solar System | 2083 | ||
3.12.3.3 Collector Orientation and Inclination | 2084 | ||
3.12.3.4 Solar DHW Systems for Households and Single-Family Houses | 2085 | ||
3.12.3.5 Solar DHW Systems for Apartment Houses | 2086 | ||
3.12.3.6 Solar-Combined Heating Systems | 2087 | ||
3.12.4 Summary and Conclusion | 2088 | ||
References | 2089 | ||
Solar Space Heating and Cooling Systems | 2092 | ||
3.13.1 Active Systems | 2092 | ||
3.13.1.1 Direct Circulation Systems | 2092 | ||
3.13.1.2 Indirect Water Heating Systems | 2093 | ||
3.13.1.3 Air--Water Heating Systems | 2095 | ||
3.13.2 Space Heating and Service Hot Water | 2096 | ||
3.13.2.1 Air Systems | 2098 | ||
3.13.2.2 Water Systems | 2099 | ||
3.13.2.3 Location of Auxiliary Source | 2101 | ||
3.13.2.4 Heat Pump Systems | 2102 | ||
3.13.3 Solar Cooling | 2103 | ||
3.13.3.1 Solar Sorption Cooling | 2104 | ||
3.13.3.2 Solar-Mechanical Systems | 2105 | ||
3.13.3.3 Solar-Related Air Conditioning | 2105 | ||
3.13.3.4 Adsorption Units | 2106 | ||
3.13.3.5 Absorption Units | 2107 | ||
3.13.3.6 Lithium–Water Absorption Systems | 2108 | ||
3.13.3.6.1 Thermodynamic analysis | 2109 | ||
3.13.3.6.2 Design of single-effect LiBr–H2O absorption systems | 2113 | ||
3.13.3.7 Ammonia–Water Absorption Systems | 2114 | ||
3.13.3.8 Solar Cooling with Absorption Refrigeration | 2115 | ||
3.13.4 Heat Storage Systems | 2116 | ||
3.13.4.1 Air Systems Thermal Storage | 2117 | ||
3.13.4.2 Liquid Systems Thermal Storage | 2117 | ||
3.13.5 Module and Array Design | 2118 | ||
3.13.5.1 Module Design | 2118 | ||
3.13.5.2 Array Design | 2118 | ||
3.13.5.3 Heat Exchangers | 2120 | ||
3.13.6 Differential Temperature Controller | 2121 | ||
References | 2122 | ||
Solar Cooling and Refrigeration Systems | 2124 | ||
3.14.1 Introduction | 2124 | ||
3.14.2 Solar-Powered Cooling | 2124 | ||
3.14.3 Need for Solar-Powered Cooling | 2124 | ||
3.14.4 Solar-Powered Cooling Technologies | 2125 | ||
3.14.4.1 Desiccant Cooling System | 2125 | ||
3.14.4.2 Solid Desiccant | 2126 | ||
3.14.4.3 Liquid Desiccant | 2126 | ||
3.14.4.4 Absorption Systems | 2127 | ||
3.14.4.5 Adsorption Systems | 2129 | ||
3.14.4.6 Ejector Systems | 2132 | ||
3.14.4.7 Photovoltaic–Compression Systems | 2132 | ||
3.14.5 Relative Comparison of Solar Cooling Technologies | 2133 | ||
3.14.5.1 Solar Coefficient of Performance | 2133 | ||
5.14.5.2 Capital Cost Comparison | 2134 | ||
5.14.5.3 Life-Cycle Cost Comparison | 2134 | ||
3.14.6 Application of Solar Cooling System | 2135 | ||
3.14.7 Integration with Solar Hot Water and Solar Tthermal Systems for Cost-Effectiveness | 2135 | ||
5.14.8 Conclusions | 2136 | ||
References | 2136 | ||
Solar-Assisted Heat Pumps | 2138 | ||
3.15.1 Introduction to the Concept of Solar-Assisted Heat Pumps | 2138 | ||
3.15.2 Heat Pump Fundamentals | 2138 | ||
3.15.2.1 Principles of Heat Pump Operation | 2138 | ||
3.15.2.2 Thermodynamic Cycles | 2140 | ||
3.15.2.3 Classification of Heat Pumps | 2144 | ||
3.15.2.4 Renewable Heat Sources | 2145 | ||
3.15.3 Solar-Assisted Heat Pump System | 2149 | ||
3.15.3.1 Classification, Configurations, and Functions | 2149 | ||
3.15.3.2 Direct Solar-Assisted Heat Pump Systems | 2150 | ||
3.15.3.3 Series Solar-Assisted Heat Pump Systems | 2151 | ||
3.15.3.4 Parallel Solar-Assisted Heat Pump | 2154 | ||
3.15.3.5 Dual-Source Solar-Assisted Heat Pump | 2159 | ||
3.15.3.6 Other Configurations | 2160 | ||
3.15.4 Solar-Assisted Heat Pump System with Seasonal Storage | 2162 | ||
3.15.4.1 Fundamental Options of Seasonal Energy Storage | 2162 | ||
3.15.4.2 Classification and Evaluation of Seasonal Ground Storage | 2164 | ||
3.15.4.3 Heat and Mass Transfer in the Ground Store, General Consideration | 2167 | ||
3.15.4.4 Applications | 2168 | ||
References | 2170 | ||
Solar Desalination | 2172 | ||
3.16.1 Introduction | 2172 | ||
3.16.2 Solar Thermal Desalination Systems | 2173 | ||
3.16.3 Photovoltaics-Driven Desalination Systems | 2179 | ||
3.16.4 Solar Stills | 2184 | ||
3.16.5 Solar Humidification–Dehumidification | 2185 | ||
3.16.6 Solar Membrane Distillation | 2186 | ||
3.16.7 Technologies Selection Guidelines | 2189 | ||
3.16.8 Solar Desalination Applications | 2190 | ||
3.16.8.1 Solar Thermal MES Plant for Seawater Desalination, Abu Dhabi, UAE | 2190 | ||
3.16.8.2 Solar Thermal MED Plant for Seawater Desalination, Almeria, Spain | 2192 | ||
3.16.8.3 PV–RO Plant for Seawater Desalination, Lampedusa Island, Italy | 2196 | ||
3.16.8.4 PV–RO Plant for Brackish Water Desalination, Ceara, Brazil | 2199 | ||
3.16.8.5 PV–RO Plant for Seawater Desalination, Pozo Izquierdo, Gran Canaria Island | 2201 | ||
3.16.8.6 PV Water Pumping RO for Brackish Water Desalination, Saudi Arabia | 2201 | ||
3.16.8.7 PV–RO Brackish Water Desalination, Aqaba, Jordan | 2203 | ||
3.16.9 Lessons Learned | 2206 | ||
3.16.10 Economics | 2207 | ||
3.16.11 Market | 2207 | ||
3.16.12 Conclusions | 2207 | ||
References | 2208 | ||
Industrial and Agricultural Applications of Solar Heat | 2210 | ||
3.17.1 Introduction | 2211 | ||
3.17.2 Characteristics of Industrial and Agricultural Energy Use | 2211 | ||
3.17.2.1 Application Temperatures | 2211 | ||
3.17.2.2 Economics | 2212 | ||
3.17.3 Selection of Appropriate Solar Collector and Energy Storage Technologies | 2212 | ||
3.17.3.1 Collector Types | 2212 | ||
3.17.3.2 Aperture Cover Materials | 2213 | ||
3.17.3.3 Flat-Plate Absorbers | 2214 | ||
3.17.3.4 Line-Axis Collectors | 2214 | ||
3.17.3.5 Nonconvecting Solar Panels | 2215 | ||
3.17.4 System Component Layouts | 2216 | ||
3.17.4.1 Components | 2216 | ||
3.17.4.2 Generic Solar Industrial Process Heat System Layouts | 2216 | ||
3.17.4.3 Real Solar Industrial Process Heat Systems | 2218 | ||
3.17.4.4 Operational Limits | 2219 | ||
3.17.5 Solar Hot Water Industrial and Agricultural Process Heat System Design | 2220 | ||
3.17.5.1 Conceptual Distinctions | 2220 | ||
3.17.5.2 Design Methodologies | 2221 | ||
3.17.6 Solar Drying Technologies | 2222 | ||
3.17.6.1 Solar Drying Processes | 2222 | ||
3.17.6.2 Solar Dryer Types | 2223 | ||
3.17.6.3 Practical Issues in the Use of Solar Dryers | 2225 | ||
3.17.6.3.1 Analysis of solar dryers | 2225 | ||
3.17.7 Solar Furnaces | 2228 | ||
3.17.8 Greenhouses | 2229 | ||
3.17.8.1 Achieving a Desired Interior Microclimate | 2229 | ||
3.17.8.2 Greenhouse Heating and Cooling | 2229 | ||
3.17.9 Heating and Ventilation of Industrial and Agricultural Buildings | 2230 | ||
3.17.9.1 Solar Air Heating | 2230 | ||
3.17.9.2 Direct Solar Gain and Thermal Mass | 2230 | ||
3.17.10 Solar Cooking | 2231 | ||
3.17.10.1 Types of Solar Cooker | 2231 | ||
3.17.10.2 Analysis of Solar Cookers | 2232 | ||
3.17.11 Solar Desalination | 2232 | ||
3.17.11.1 Solar Desalination Systems | 2232 | ||
3.17.11.2 Passive Basin Stills | 2234 | ||
3.17.12 Solar Refrigeration | 2235 | ||
3.17.12.1 Types of Solar Refrigeration | 2235 | ||
3.17.12.2 Uses of Solar Refrigeration | 2235 | ||
Acknowledgments | 2235 | ||
References | 2236 | ||
Concentrating Solar Power | 2238 | ||
3.18.1 Introduction | 2239 | ||
3.18.2 General Principles of Concentrating Systems | 2239 | ||
3.18.2.1 Concentration Effect | 2239 | ||
3.18.2.2 Energy and Mass Balance | 2240 | ||
3.18.2.3 Grid-Connected or Island Systems | 2240 | ||
3.18.2.4 Recooling | 2240 | ||
3.18.2.4.1 Closed-circuit recooling systems | 2240 | ||
3.18.2.4.2 Wet cooling systems | 2240 | ||
3.18.2.4.3 Mechanical draft cooling systems | 2241 | ||
3.18.2.4.4 Natural draft cooling towers | 2241 | ||
3.18.2.4.5 Hybrid cooling towers | 2242 | ||
3.18.2.4.6 Fan-assisted natural draft cooling towers | 2243 | ||
3.18.2.4.7 Air-driven condensers | 2243 | ||
3.18.3 Power Conversion Systems | 2243 | ||
3.18.3.1 Solar Only | 2243 | ||
3.18.3.1.1 Steam cycles | 2243 | ||
3.18.3.1.2 Organic Rankine cycles | 2246 | ||
3.18.3.1.3 Gas turbines | 2247 | ||
3.18.3.1.4 Solar dishes | 2248 | ||
3.18.3.2 Increase in Operational Hours | 2248 | ||
3.18.3.2.1 Hybridization | 2248 | ||
3.18.3.2.1(i) Integrated solar combined cycle system | 2249 | ||
3.18.3.2.1(i)(a) Preheating for fossil power plants | 2250 | ||
3.18.3.2.1(i)(b) Gas engine | 2250 | ||
3.18.3.2.1(i)(c) Burner | 2250 | ||
3.18.3.2.1(i)(d) Gas turbine | 2251 | ||
3.18.3.2.2 Storage | 2252 | ||
3.18.3.2.2(i) Solid media | 2252 | ||
3.18.3.2.2(ii) Organic media | 2252 | ||
3.18.3.2.2(iii) Phase-change materials | 2252 | ||
3.18.3.2.2(iv) Adiabatic pressurized air storage | 2253 | ||
3.18.3.2.2(v) Others | 2254 | ||
3.18.4 Cogeneration | 2254 | ||
3.18.4.1 Solar Cooling | 2254 | ||
3.18.4.1.1 Principles and technologies of solar cooling | 2255 | ||
3.18.4.1.2 Thermally driven cooling systems | 2255 | ||
3.18.4.1.3 Absorption chillers | 2255 | ||
3.18.4.1.4 Adsorption chillers | 2256 | ||
3.18.4.1.5 Best-practice examples for solar cooling | 2256 | ||
3.18.4.1.6 State of the art of solar cooling | 2257 | ||
3.18.4.1.7 Market expectations for solar cooling | 2257 | ||
3.18.4.2 Desalination | 2257 | ||
3.18.4.3 Off-Heat Usage | 2258 | ||
3.18.5 Examples | 2258 | ||
3.18.5.1 Commercial | 2258 | ||
3.18.5.1.1 SEGS | 2258 | ||
3.18.5.1.2 Andasol 1–3 | 2259 | ||
3.18.5.1.3 PS10, PS20 | 2260 | ||
3.18.5.1.4 STJ | 2262 | ||
3.18.5.1.5 Nevada Solar One | 2263 | ||
3.18.5.1.6 Sierra SunTower | 2263 | ||
3.18.5.1.7 Dish farm California | 2265 | ||
3.18.5.1.8 PE 1 | 2265 | ||
3.18.5.1.9 AORA | 2265 | ||
3.18.5.1.10 Kimberlina solar thermal power plant | 2266 | ||
3.18.5.1.11 Others/under construction | 2266 | ||
3.18.5.1.11(i) Gemasolar | 2266 | ||
3.18.5.2 Research | 2267 | ||
3.18.5.2.1 Solar One | 2267 | ||
3.18.5.2.2 Solar Two | 2268 | ||
3.18.5.2.3 CESA-1 | 2269 | ||
3.18.5.2.4 DISS | 2269 | ||
3.18.5.2.5 STJ | 2270 | ||
3.18.5.2.6 SSPS | 2270 | ||
3.18.5.2.7 Others | 2270 | ||
3.18.5.2.7(i) Themis | 2270 | ||
3.18.5.2.7(ii) Solar Research Facility Unit | 2271 | ||
3.18.5.2.7(iii) EURELIOS | 2271 | ||
3.18.5.2.7(iv) SEDC | 2271 | ||
3.18.5.2.7(vi) CSIRO | 2271 | ||
3.18.5.2.7(vii) Sunshine | 2272 | ||
3.18.5.2.7(viii) SPP-5 | 2272 | ||
3.18.5.3 Studies | 2272 | ||
3.18.5.3.1 GAST | 2272 | ||
3.18.5.3.2 PHOEBUS | 2272 | ||
3.18.6 Economical Aspects | 2272 | ||
3.18.7 Environmental Aspects | 2273 | ||
3.18.7.1 Emission | 2273 | ||
3.18.7.2 Impact on Flora and Fauna | 2273 | ||
3.18.7.3 Life Cycle Assessment | 2273 | ||
3.18.8 Future Potential | 2274 | ||
3.18.8.1 Desertec | 2274 | ||
3.18.8.2 United States and Europe | 2274 | ||
3.18.8.3 MENA Region | 2277 | ||
3.18.8.4 Future Research Fields | 2277 | ||
References | 2277 | ||
Passive Solar Architecture | 2280 | ||
3.19.1 Introduction | 2280 | ||
3.19.1.1 Energy and Urbanization | 2280 | ||
3.19.1.2 Solar Architecture – History and Concepts | 2281 | ||
3.19.1.3 Solar Architecture – Comprehensive Design and Operation | 2282 | ||
3.19.1.3.1 Passive solar heating | 2282 | ||
3.19.1.3.2 Passive cooling | 2285 | ||
3.19.2 Role of Solar Architecture in Urban Buildings | 2287 | ||
3.19.2.1 Development of Cool-Colored Materials | 2287 | ||
3.19.2.2 Use of Phase Change Materials to Enhance the Performance of Cool-Colored Coatings | 2289 | ||
3.19.2.3 Development of Thermochromic Coatings | 2291 | ||
3.19.2.4 Development and Testing of Colored Thin-Film Layers of Asphalt | 2291 | ||
3.19.2.5 Green Spaces for Urban Buildings | 2294 | ||
3.19.2.6 Discussion | 2296 | ||
3.19.3 Control Systems for Solar Architecture | 2297 | ||
3.19.3.1 Controlled Parameters and Control Variables in Passive Solar Architecture | 2298 | ||
3.19.3.2 Control Strategies in Solar Architecture | 2299 | ||
3.19.3.2.1 Conventional control for solar architecture | 2299 | ||
3.19.3.2.2 Advanced control | 2300 | ||
3.19.3.2.3 Intelligent systems | 2302 | ||
3.19.4 Conclusion and Future Prospects | 2306 | ||
References | 2306 | ||
e9780080878720v4 | 2311 | ||
Cover\r | 2311 | ||
Comprehensive Renewable Energy \r | 2312 | ||
Copyright | 2315 | ||
Editor-In-Chief \r | 2316 | ||
Volume Editors\r | 2318 | ||
Contributors For All Volumes | 2322 | ||
Preface | 2330 | ||
Contents | 2334 | ||
Fuel Cells and Hydrogen Technology - Introduction | 2342 | ||
4.01.1 Introduction | 32 | ||
4.01.2 Volume Introduction | 34 | ||
4.01.3 Introduction to Basic Electrochemistry | 34 | ||
4.01.4 Conclusions | 35 | ||
References | 35 | ||
Current Perspective on Hydrogen and Fuel Cells | 2354 | ||
4.02.1 Space Applications of Hydrogen | 2354 | ||
4.02.1.1 Space Propulsion | 2354 | ||
4.02.1.2 Space Battery Power and Energy Storage – NiH2 Batteries | 39 | ||
4.02.1.3 Astronaut Environmental Control and Life Support | 39 | ||
4.02.1.4 Scientific Instrument Cooling | 41 | ||
4.02.2 Space Applications of Fuel Cells | 56 | ||
4.02.2.1 Gemini | 57 | ||
4.02.2.2 Apollo | 57 | ||
4.02.2.3 Space Shuttle | 57 | ||
4.02.3 Other Current Uses of Hydrogen and Fuel Cells | 57 | ||
4.02.3.1 Current Uses of Hydrogen | 57 | ||
4.02.3.2 Current Uses of Fuel Cells | 61 | ||
References | 98 | ||
Hydrogen Economics and Policy | 2386 | ||
4.03.1 Introduction | 2387 | ||
4.03.2 The Hydrogen Energy Chain – Technological Characterizations and Economic Challenges | 1490 | ||
4.03.2.1 Production | 2389 | ||
4.03.2.2 Infrastructure | 2393 | ||
4.03.2.3 Storage | 2396 | ||
4.03.2.4 End-Use Technologies and Applications | 2399 | ||
4.03.2.5 Conclusions on Economics | 2405 | ||
4.03.3 Hydrogen within the Whole-Energy-System Context | 2406 | ||
4.03.3.1 Effects of Transport Decarbonization on Low-Carbon Energy Resources | 2406 | ||
4.03.3.2 Decarbonization of the Electricity Grid – Opportunities for Hydrogen | 2407 | ||
4.03.3.3 Summary on Whole System Interactions | 99 | ||
4.03.4 Developing Policies to Support Hydrogen | 100 | ||
4.03.4.1 Policies in the Transport Sector | 100 | ||
4.03.4.2 Policies in the Electricity Sector | 101 | ||
4.03.4.3 Policies Relating to Fundamental Scientific Research | 128 | ||
4.03.5 Conclusion | 128 | ||
References | 129 | ||
Further Reading | 130 | ||
Relevant Websites | 132 | ||
Hydrogen Safety Engineering: The State-of-the-Art and Future Progress | 2418 | ||
4.04.1 Introduction | 2419 | ||
4.04.2 Hazards Related to Hydrogen Properties | 2422 | ||
4.04.3 Regulations, Codes, and Standards and Hydrogen Safety Engineering | 2423 | ||
4.04.4 Unignited Releases of Hydrogen | 2427 | ||
4.04.4.1 Momentum-Controlled Jets | 2427 | ||
4.04.4.2 The Underexpanded Jet Theory | 2430 | ||
4.04.4.3 Transition from Momentum- to Buoyancy-Controlled Flow within a Jet | 2431 | ||
4.04.5 Hydrogen Fires | 2432 | ||
4.04.5.1 Dimensional Flame Length Correlation | 2432 | ||
4.04.5.2 The Nomogram for Flame Length Calculation | 2365 | ||
4.04.5.3 Dimensionless Flame Length Correlation | 2433 | ||
4.04.5.4 Separation Distance: Jet Flame Tip Location Compared to Lower Flammability Limit Location | 2435 | ||
4.04.6 Pressure Effects of Hydrogen Unscheduled Releases | 2436 | ||
4.04.6.1 Unignited Release in a Garage-Like Enclosure | 2436 | ||
4.04.6.2 Delayed Ignition of Nonpremixed Turbulent Jets | 2438 | ||
4.04.7 Deflagrations and Detonations | 1242 | ||
4.04.8 Safety Strategies and Accident Mitigation Techniques | 2442 | ||
4.04.8.1 Inherently Safer Design of Fuel Cell Systems | 2442 | ||
4.04.8.2 Mitigation of Release Consequences | 2443 | ||
4.04.8.3 Reduction of Separation Distances Informed by the Hydrogen Safety Engineering | 2443 | ||
4.04.8.4 Mitigation by Barriers | 2443 | ||
4.04.8.5 Mitigation of Deflagration-to-Detonation Transition | 2444 | ||
4.04.8.6 Prevention of Deflagration-to-Detonation Transition within a Fuel Cell | 2444 | ||
4.04.8.7 Detection and Hydrogen Sensors | 2444 | ||
4.04.9 Future Progress and Development | 2445 | ||
4.04.9.1 Release Phenomena | 2445 | ||
4.04.9.2 Ignition Phenomena | 2445 | ||
4.04.9.3 Hydrogen Fires | 2445 | ||
4.04.9.4 Deflagrations and Detonations | 2446 | ||
4.04.9.5 Storage | 2446 | ||
4.04.9.6 High-Pressure Electrolyzers | 2446 | ||
4.04.9.7 Hazard and Risk Identification and Analysis for Early Markets | 2446 | ||
4.04.10 Conclusions | 2446 | ||
Acknowledgments | 2448 | ||
References | 2448 | ||
Hydrogen Storage: Compressed Gas | 2452 | ||
4.05.1 Introduction | 2452 | ||
4.05.2 Containment Vessels | 2452 | ||
4.05.3 Theory and Principles of Design | 2453 | ||
4.05.3.1 Steel Vessels | 2453 | ||
4.05.3.2 Composite Vessels | 2457 | ||
4.05.4 Codes and Standards and Best Practices | 2457 | ||
4.05.4.1 Storage Tanks | 2458 | ||
4.05.4.2 Connectors – Joints and Fittings for Hydrogen | 2243 | ||
4.05.4.3 Auxiliary Equipment | 2464 | ||
4.05.4.4 Basic Safety Requirements When Installing Hydrogen Systems | 2465 | ||
4.05.4.5 Codes and Standards | 2468 | ||
4.05.4.6 Case Studies | 2469 | ||
References | 2476 | ||
Hydrogen Storage: Liquid and Chemical | 2478 | ||
4.06.1 Introduction | 2478 | ||
4.06.2 Physical Hydrogen Storage | 2478 | ||
4.06.3 Metal Hydrides | 2480 | ||
4.06.4 Chemical Hydrides | 2480 | ||
4.06.4.1 Ammonia Borane | 246 | ||
4.06.4.2 Amidoboranes and Derivatives | 1307 | ||
4.06.5 Complex Hydrides | 2488 | ||
4.06.5.1 Borohydrides | 2488 | ||
4.06.5.2 Amide–Hydride Systems | 2490 | ||
4.06.6 Pending Issues | 201 | ||
References | 2495 | ||
Alkaline Fuel Cells: Theory and Application | 2500 | ||
4.07.1 Introduction | 2501 | ||
4.07.2 General Principles and Fundamentals of Alkaline Cells | 2501 | ||
4.07.2.1 Cathode Catalyst Materials | 2503 | ||
4.07.2.2 Platinum Group Metal Catalysts | 2503 | ||
4.07.2.3 Non-Platinum Group Metal Catalysts | 2504 | ||
4.07.2.4 Cathodes Performance | 2504 | ||
4.07.2.5 Anode Catalyst Materials | 2504 | ||
4.07.3 Alkaline Fuel Cells Developed with Liquid Electrolytes | 2506 | ||
4.07.3.1 Gas Diffusion Electrode for AFC | 2506 | ||
4.07.3.2 Stack and System Design | 2511 | ||
4.07.3.3 System Achievements | 2513 | ||
4.07.4 Alkaline Fuel Cell Based on Anion Exchange Membranes | 2516 | ||
4.07.4.1 Anion Exchange Membrane Chemistry and Challenges | 2516 | ||
4.07.4.2 Review of the Main Classes of AEMs | 2518 | ||
4.07.4.3 Ionomer Development/Membrane Electrode Assembly Fabrication | 2519 | ||
4.07.4.4 Alkaline Anion Exchange Membrane Fuel Cells Performance | 2519 | ||
4.07.5 Conclusions | 2522 | ||
References | 2522 | ||
PEM Fuel Cells: Applications | 2524 | ||
4.08.1 Introduction | 2525 | ||
4.08.2 Features of the PEMFC | 2526 | ||
4.08.2.1 Proton-Conducting Membranes | 2526 | ||
4.08.2.2 Modified PFSA Membranes | 2529 | ||
4.08.2.3 Alternative Sulfonated Membrane Materials | 2529 | ||
4.08.2.4 Acid–Base Complex Membranes | 2530 | ||
4.08.2.5 Ionic Liquid Membranes | 2530 | ||
4.08.2.6 High-Temperature Proton Conductors | 2530 | ||
4.08.3 Electrodes and Catalysts | 2531 | ||
4.08.3.1 Anode Materials | 2531 | ||
4.08.3.2 Cathode Materials | 1961 | ||
4.08.3.3 Preparation and Physical Structure of the Catalyst Layers | 2532 | ||
4.08.3.4 Gas Diffusion Layers and Stack Construction | 2533 | ||
4.08.4 Humidification and Water Management | 2535 | ||
4.08.4.1 Overview of the Problem | 2535 | ||
4.08.4.2 Running PEMFCs without Extra Humidification (Air-Breathing Stacks) | 2535 | ||
4.08.4.3 External Humidification | 2536 | ||
4.08.5 Pressurized versus Air-Breathing Stacks | 2538 | ||
4.08.5.1 Influence of Pressure on Cell Voltage | 2538 | ||
4.08.5.2 Other Factors Affecting Choice of Pressure – Balance of Plant and System Design | 365 | ||
4.08.6 Operating Temperature and Stack Cooling | 405 | ||
4.08.6.1 Air-Breathing Systems | 2540 | ||
4.6.06.2 Separate Reactant and Air or Water Cooling | 2540 | ||
4.08.7 Applications for Small-Scale Portable Power Generation Markets (500W–5kW) | 2541 | ||
4.08.7.1 Market Segment | 2541 | ||
4.08.7.2 The Technologies | 2546 | ||
4.08.8 Applications for Stationary Power and Cogeneration | 129 | ||
4.08.8.1 Prospects for Stationary Fuel Cell Power Systems | 2549 | ||
4.08.8.2 Technology Developers | 130 | ||
4.08.8.3 System Design | 2550 | ||
4.08.8.4 Cogeneration and Large-Scale Power Generation | 133 | ||
4.08.9 Applications for Transport | 134 | ||
4.08.9.1 The Outlook for Road Vehicles | 134 | ||
4.08.9.2 Hybrids | 134 | ||
4.08.9.3 PEMFCs and Alternative Fuels | 136 | ||
4.08.9.4 Buses | 137 | ||
4.08.9.5 Fuel Cell Road Vehicle Manufacturers | 137 | ||
4.08.9.6 Planes, Boats, and Trains | 228 | ||
4.08.10 Hydrogen Energy Storage for Renewable Energy Systems and the Role of PEMFCs | 228 | ||
References | 228 | ||
Further Reading | 268 | ||
Relevant Websites | 268 | ||
Prediction of Solar Irradiance and Photovoltaic Power | 270 | ||
1.13.1 Introduction | 271 | ||
1.13.2 Applications of Irradiance and PV Power Forecasts | 272 | ||
1.13.2.1 Grid Integration of PV Power | 272 | ||
1.13.2.2 Stand-Alone Systems and Small Networks | 274 | ||
1.13.2.3 Other Applications | 274 | ||
1.13.3 Models for the Prediction of Solar Irradiance and PV Power | 274 | ||
1.13.3.1 Basic Steps in a Power Prediction System | 275 | ||
1.13.3.2 Irradiance Forecasting | 277 | ||
1.13.3.3 PV Power Forecasting | 291 | ||
1.13.4 Concepts for Evaluation of Irradiance and Power Forecasts | 296 | ||
1.13.4.1 Specification of Test Case | 296 | ||
1.13.4.2 Graphical Analysis | 296 | ||
1.13.4.3 Statistical Error Measures | 297 | ||
1.13.4.4 Selection of Data for Evaluation and Normalization | 298 | ||
1.13.4.5 Reference Forecasts | 299 | ||
1.13.4.6 Skill Scores and Improvement Scores | 300 | ||
1.13.4.7 Evaluation of Forecast Accuracy in Dependence on Meteorological and Climatological Conditions | 300 | ||
1.13.4.8 Uncertainty Information | 301 | ||
1.13.5 Evaluation and Comparison of Different Approaches for Irradiance Forecasting | 302 | ||
1.13.5.1 Measurement Data | 302 | ||
1.13.5.2 NWP-Based Forecasts | 302 | ||
1.13.5.3 Results for NWP-Based Forecasting Approaches | 304 | ||
1.13.5.4 Comparison of Satellite-Based Irradiance Forecasts with NWP-Based Forecasts | 306 | ||
1.13.5.5 Summary and Outlook | 308 | ||
1.13.6 Example of a Regional PV Power Prediction System | 308 | ||
1.13.6.1 Measurement Data | 310 | ||
1.13.6.2 Overview of the Power Prediction Scheme | 311 | ||
1.13.6.3 Irradiance Forecasts | 311 | ||
1.13.6.4 Power Forecasts | 312 | ||
1.13.7 Summary and Outlook | 319 | ||
Molten Carbonate Fuel Cells: Theory and Application | 2568 | ||
4.09.1 Introduction | 2568 | ||
4.09.2 Carbonate Fuel Cell Chemistry and System Configuration | 2569 | ||
4.09.3 Cell Stack and Power Plant Design | 2570 | ||
4.09.4 Advantages of MCFC Power Plants | 2572 | ||
4.09.5 Applications of MCFC Power Plants | 2573 | ||
4.09.5.1 Self-Generation Applications | 1648 | ||
4.09.5.2 Grid Support Applications | 2574 | ||
4.09.5.3 Renewable MCFC Power Plant Applications | 2576 | ||
4.09.6 Future Advanced MCFC Applications | 2579 | ||
4.09.6.1 Hydrogen Production – DFC-H2 Concept | 2579 | ||
4.09.6.2 Carbon Separation | 2579 | ||
4.09.7 Conclusions | 2580 | ||
References | 2580 | ||
Solid Oxide Fuel Cells: Theory and Materials | 2582 | ||
4.10.1 Introduction | 2582 | ||
4.10.1.1 Fuel Cells | 2583 | ||
4.10.1.2 Thermodynamics | 2095 | ||
4.10.1.3 The Nernst Equation | 2586 | ||
4.10.1.4 The SOFC | 2587 | ||
4.10.1.5 SOFC Components | 2587 | ||
4.10.1.5.1 Electrolyte | 2587 | ||
4.10.1.5.2 Cathode | 2588 | ||
4.10.1.5.3 Anode | 2588 | ||
4.10.1.5.4 Interconnect | 2589 | ||
4.10.1.6 Example Systems | 555 | ||
4.10.2 Conclusion | 2595 | ||
Acknowledgment | 2596 | ||
References | 2596 | ||
Biological and Microbial Fuel Cells | 2598 | ||
4.11.1 Introduction | 2598 | ||
4.11.2 Fuel Cells and Biological Fuel Cells | 2599 | ||
4.11.2.1 Conventional Fuel Cells | 2599 | ||
4.11.2.2 Biological Fuel Cells | 2600 | ||
4.11.2.3 Enzymatic Fuel Cells | 2600 | ||
4.11.2.4 Types of Biofuel Cells and Enzymes | 2601 | ||
4.11.3 Microbial Fuel Cells | 2365 | ||
4.11.3.1 Development of MFC | 2606 | ||
4.11.3.2 Electricity Generation Mechanism in MFC | 2606 | ||
4.11.3.3 Working Principles of MFC | 2607 | ||
4.11.3.4 Mediatorless MFC | 2608 | ||
4.11.3.5 Organic Matter Removal in MFC | 2608 | ||
4.11.3.6 MFC Operating Conditions and Material Aspects | 2609 | ||
4.11.3.7 Microbial Electrolysis | 2614 | ||
4.11.4 Conclusions | 2615 | ||
Acknowledgment | 2616 | ||
References | 2616 | ||
Hydrogen and Fuel Cells in Transport | 2622 | ||
4.12.1 Introduction | 2622 | ||
4.12.2 Choice of Fuel Cell Technology | 2343 | ||
4.12.3 Hydrogen Production, Usage, and Infrastructure | 2624 | ||
4.12.4 Hydrogen Vehicles | 2625 | ||
4.12.4.1 Forklifts | 2625 | ||
4.12.4.2 Other Early Markets | 2626 | ||
4.12.4.3 Buses | 2627 | ||
4.12.4.4 Cars | 2628 | ||
4.12.4.5 Ships | 2630 | ||
4.12.4.6 Aircraft | 2631 | ||
4.12.5 Legislation | 2632 | ||
4.12.6 Conclusions | 2633 | ||
References | 2633 | ||
H2 and Fuel Cells as Controlled Renewables: FC Power Electronics | 2636 | ||
4.13.1 Terrestrial Applications | 2637 | ||
4.13.1.1 Low Carbon Energy Conversion | 2637 | ||
4.13.2 Traditional Inverter Safe Operating Area | 2638 | ||
4.13.2.1 General Approach | 2638 | ||
4.13.2.2 Extending the Inverter SOA | 2638 | ||
4.13.3 Enabling Poor Voltage Regulation Systems | 2640 | ||
4.13.3.1 Multiswitch Voltage Source Inverter | 2640 | ||
4.13.4 Analysis for 250kW Grid-Connected Fuel Cell | 2641 | ||
4.13.4.1 A 250kW Grid-Connected Solid Oxide Fuel Cell | 2641 | ||
4.13.4.2 Inverter Power Loss Analysis | 2641 | ||
4.13.4.3 Buck Converter Power Loss Analysis | 2642 | ||
4.13.4.4 Operating Point Power Loss Analysis | 2643 | ||
4.13.5 Experimental Study of a Two-Switch MS-VSI | 2644 | ||
4.13.5.1 Static Voltage Balancing | 2644 | ||
4.13.5.2 Dynamic Voltage Balancing | 2644 | ||
4.13.5.3 Laboratory Test Environment | 2644 | ||
4.13.5.4 Implementation of Switch Voltage Balance and Gate-Drive Circuitry | 2645 | ||
4.13.5.5 Commission of Voltage Balance Circuit | 2646 | ||
4.13.5.6 H-Bridge Operation | 2646 | ||
4.13.6 Summary | 2646 | ||
4.13.7 Test Characterization of a H2 PEM Fuel Cell for Road Vehicle Applications | 2648 | ||
4.13.7.1 Introduction | 2648 | ||
4.13.7.2 MES-DEA PEMFCs | 2649 | ||
4.13.7.3 Fuel Cell Test Facility | 2651 | ||
4.13.7.4 Fuel Cell Test Characterization | 2652 | ||
4.13.8 Summary | 2656 | ||
4.13.9 A H2 PEM Fuel Cell and High Energy Dense Battery Hybrid Energy Source for an Urban Electric Vehicle | 2658 | ||
4.13.9.1 Introduction | 2658 | ||
4.13.9.2 Vehicle Energy and Power Requirements | 2659 | ||
4.13.9.3 Fuel Cells for Transportation | 2661 | ||
4.13.9.4 Fuel Cell Modeling | 2661 | ||
4.13.9.5 Vehicle Traction Battery | 2663 | ||
4.13.9.6 Vehicle Performance Evaluation | 2665 | ||
4.13.10 Summary | 2666 | ||
Appendix I Model Data and Component Specifications | 2666 | ||
Appendix II Zebra Equivalent Circuit Model | 2668 | ||
Acknowledgments | 2669 | ||
References | 2669 | ||
Future Perspective on Hydrogen and Fuel Cells | 2672 | ||
4.14.1 Overview | 2672 | ||
4.14.2 Why Hydrogen? | 2673 | ||
4.14.3 Hydrogen for Transport | 2674 | ||
4.14.4 Stationary Power | 2675 | ||
4.14.5 The Efficiency Debate | 2676 | ||
4.14.5.1 A Holistic Approach | 2676 | ||
4.14.6 From Here to There | 2678 | ||
4.14.7 Conclusions | 2680 | ||
References | 2680 | ||
Further Reading | 428 | ||
Preface and Context to Hydrogen and Fuel Cells | 2682 | ||
4.01.1 Introduction | 2682 | ||
4.01.2 An Overview of This Volume | 2685 | ||
4.01.2.1 Chapter 4.01: Introduction | 2686 | ||
4.01.2.2 Chapter 4.02: Current Perspective on Hydrogen and Fuel Cells | 2688 | ||
4.01.2.3 Chapter 4.03: Hydrogen Economics and Policy | 2688 | ||
4.01.2.4 Chapter 4.04: Hydrogen Safety Engineering: The State-of-the-Art and Future Progress | 2688 | ||
4.01.2.5 Chapter 4.05: Hydrogen Storage: Compressed Gas | 2688 | ||
4.01.2.6 Chapter 4.06: Hydrogen Storage: Liquid and Chemical | 2688 | ||
4.01.2.7 Chapter 4.07: Alkaline Fuel Cells: Theory and Application | 2688 | ||
4.01.2.8 Chapter 4.08: PEM Fuel Cells: Applications | 2688 | ||
4.01.2.9 Chapter 4.09: Molten Carbonate Fuel Cells: Theory and Application | 1311 | ||
4.01.2.10 Chapter 4.10: Solid Oxide Fuel Cells: Theory and Materials | 2689 | ||
4.01.2.11 Chapter 4.11: Biological and Microbial Fuel Cells | 2689 | ||
4.01.2.12 Chapter 4.12: Hydrogen and Fuel Cells in Transport | 2689 | ||
4.01.2.13 Chapter 4.13: H2 and Fuel Cells as Controlled Renewables: FC Power Electronics | 2689 | ||
4.01.2.14 Chapter 4.14: Future Perspective on Hydrogen and Fuel Cells | 2689 | ||
4.01.3 Hydrogen and Fuel Cell Technology – Supplementary Material | 2689 | ||
4.01.3.1 Flow Cells or Regenerative Fuel Cells | 2689 | ||
4.01.3.2 Hydrogen Production – Electrolysis | 2691 | ||
4.01.3.3 Hydrogen Demonstration Units – State of the Art | 2692 | ||
4.01.4 Introduction to Basic Electrochemistry | 2698 | ||
4.01.4.1 Redox Reactions | 2699 | ||
e9780080878720v5 | 2702 | ||
Cover\r | 2702 | ||
Comprehensive Renewable Energy \r | 2703 | ||
Copyright | 2706 | ||
Editor-In-Chief | 2707 | ||
Volume Editors | 2709 | ||
Contributors For All Volumes | 2713 | ||
Preface\r | 2721 | ||
Contents\r | 2725 | ||
Biomass and Biofuels -\r Introduction | 2733 | ||
5.01.1 Background | 2733 | ||
5.01.2 Basic Technology | 2734 | ||
5.01.3 Widespread Deployment of Biomass and Biofuels | 2735 | ||
5.01.3.1 Biodiesel | 2735 | ||
5.01.3.2 Other Biofuels | 2736 | ||
5.01.4 Issues, Constraints, and Limitations | 2736 | ||
5.01.5 Technology Solutions – New Processes | 2737 | ||
5.01.5.1 Anaerobic Digestion | 2737 | ||
5.01.5.2 Advanced Biofuel Processes | 2738 | ||
5.01.6 Technology Solutions – New Feedstocks | 2738 | ||
5.01.6.1 Algae | 2738 | ||
5.01.6.2 Other Options for Increasing Feedstock Availability | 2739 | ||
5.01.7 Expanding the Envelope | 2739 | ||
5.01.8 Recent Developments | 2740 | ||
5.01.9 The Way Forward for Biomass and Biofuels | 2741 | ||
References | 2741 | ||
Historical Perspectives on Biofuels | 2743 | ||
5.02.1 Introduction | 2743 | ||
5.02.2 Early Engine Developments | 2743 | ||
5.02.3 Ethanol | 2743 | ||
5.02.4 Vegetable Oil-Based Fuels | 2744 | ||
Conclusion | 2745 | ||
References | 2746 | ||
Bioethanol Development in Brazil | 2747 | ||
5.03.1 Background | 2747 | ||
5.03.1.1 Ethanol from Sugarcane: A Brief History | 2747 | ||
5.03.1.2 The Brazilian Sugarcane Industry: An Overview | 2748 | ||
5.03.1.3 Sugarcane Ethanol in Brazil | 2748 | ||
5.03.1.4 Foreign Presence | 2749 | ||
5.03.2 Continuing Industry Growth | 2749 | ||
5.03.2.1 Key Drivers: Flex-Fuel Vehicles and Mandatory Blending | 2749 | ||
5.03.2.2 Best Agricultural and Environmental Practices | 2750 | ||
5.03.2.3 Additional Uses of Bioethanol | 2750 | ||
5.03.2.4 Brazilian Ethanol: A Low-Carbon Solution | 2751 | ||
5.03.2.5 Sugar Production and Sugar Trade | 2751 | ||
5.03.2.6 Bioelectricity: From Self-Sufficiency to New Product | 2752 | ||
5.03.2.7 A Clean Energy Matrix | 2752 | ||
5.03.3 Social and Environmental Responsibility | 2753 | ||
5.03.3.1 Competitive Advantages | 2753 | ||
5.03.3.2 Sugarcane in the Amazon and Other Myths | 2753 | ||
5.03.3.3 ‘Food versus Fuel’ in Brazil | 2754 | ||
5.03.3.4 The ‘Green Protocol’ to End Sugarcane Burning | 2754 | ||
5.03.3.5 Ensuring Employability of Displaced Workers | 2754 | ||
5.03.3.6 Work Conditions and Social Responsibility | 2755 | ||
5.03.3.7 The ‘National Commitment’ on Labor Practices | 2755 | ||
5.03.4 Looking to the Future | 2756 | ||
5.03.4.1 About UNICA | 2757 | ||
5.03.4.2 Mission | 2757 | ||
5.03.4.3 Priorities | 2757 | ||
5.03.4.4 Strategies | 2758 | ||
References | 2758 | ||
Biomass Power Generation | 2759 | ||
5.04.1 Why Is There a Trend to Build Stand-Alone Biomass Power Plants? | 2760 | ||
5.04.2 Is Biomass Power Generation Sustainable? | 2760 | ||
5.04.3 Life-Cycle Analysis | 2761 | ||
5.04.4 How Does Biomass Power Generation Pay? | 2761 | ||
5.04.5 Legislation and Regulation | 2763 | ||
5.04.5.1 Emission Limits | 2763 | ||
5.04.6 What Technology Choices Are Available? | 2764 | ||
5.04.6.1 Technology Development | 2764 | ||
5.04.6.2 Fixed and Moving Grates | 2765 | ||
5.04.6.3 Suspension Firing | 2765 | ||
5.04.6.4 Fluidized Beds | 2766 | ||
5.04.6.5 Gasification | 2769 | ||
5.04.7 Potential Biofuels | 2769 | ||
5.04.7.1 Solid Biofuels | 2769 | ||
5.04.7.2 Liquid Biofuels for Power Generation/Combined Heat and Power | 2771 | ||
5.04.8 Health and Safety | 2772 | ||
5.04.8.1 Personnel Issues | 2772 | ||
5.04.8.2 Process Safety | 2773 | ||
5.04.9 Material Handling and Fuel Processing | 2775 | ||
5.04.9.1 Bulk Density | 2775 | ||
5.04.9.2 Storing Biomass | 2775 | ||
5.04.9.3 Fuel Preparation | 2776 | ||
5.04.10 Combustion | 2779 | ||
5.04.10.1 Principles of Combustion | 2779 | ||
5.04.10.2 Practicalities | 2779 | ||
5.04.10.3 Unburnt Carbon and Carbon Monoxide | 2781 | ||
5.04.10.4 Impact of Biomass Combustion | 2781 | ||
5.04.11 Environmental Impact | 2783 | ||
5.04.11.1 Gaseous Emissions | 2783 | ||
5.04.11.2 Solid Residuals | 2783 | ||
5.04.12 Conclusions | 2784 | ||
References | 2784 | ||
Biomass Co-Firing | 2787 | ||
5.05.1 Introduction | 2788 | ||
5.05.1.1 Global Trend | 2788 | ||
5.05.1.2 Challenges Facing the Power Industry | 2789 | ||
5.05.2 Available Biomass Materials | 2789 | ||
5.05.2.1 Wood-Based Fuels | 2789 | ||
5.05.2.2 Energy Crops | 2789 | ||
5.05.2.3 Agricultural Residues | 2790 | ||
5.05.2.4 Processed Wood (Wood Pellets and Torrefied Wood) | 2791 | ||
5.05.2.5 Liquid Biomass | 2792 | ||
5.05.2.6 Gaseous Biomass | 2793 | ||
5.05.3 Combustion Technology | 2793 | ||
5.05.3.1 Pulverized Coal Combustion | 2793 | ||
5.05.3.2 Fluidized Bed Combustion | 2793 | ||
5.05.3.3 Stoker Combustion | 2793 | ||
5.05.3.4 Cyclone Boilers | 2794 | ||
5.05.3.5 Gasification | 2794 | ||
5.05.3.6 Gasification Techniques | 2794 | ||
5.05.4 Co-firing Methods | 2795 | ||
5.05.4.1 Direct Co-firing | 2795 | ||
5.05.4.2 Parallel Co-firing | 2796 | ||
5.05.4.3 Indirect Co-firing | 2796 | ||
5.05.5 Global Overview of Biomass Co-firing Plant | 2796 | ||
5.05.5.1 United States | 2796 | ||
5.05.5.2 Netherlands | 2797 | ||
5.05.5.3 United Kingdom | 2798 | ||
5.05.6 Health and Safety Issues Associated with Co-firing | 2800 | ||
5.05.6.1 Spontaneous Fires | 2800 | ||
5.05.6.2 Exposure to Biomass and Coal Dust | 2801 | ||
5.05.7 Technical Issues regarding Biomass Co-firing | 2801 | ||
5.05.7.1 Fuel Delivery, Storage, and Preparation | 2802 | ||
5.05.7.2 Supply of Biomass | 2802 | ||
5.05.7.3 Properties of Biomass and Their Effects on Plant Operations | 2802 | ||
5.05.8 Conclusions | 2804 | ||
References | 2804 | ||
Further Reading | 2805 | ||
A Global Bioenergy Market | 2807 | ||
5.06.1 Bioenergy | 2807 | ||
5.06.1.1 A Note on Bioenergy Policy Measures | 2807 | ||
5.06.2 Biofuels, Biomass, and Bioenergy: Definitions | 2808 | ||
5.06.3 Limitations | 2808 | ||
5.06.4 Bioenergy Markets and Trade | 2809 | ||
5.06.4.1 Wood Fuels | 2809 | ||
5.06.4.2 Liquid Biofuels | 2811 | ||
5.06.5 A Global Bioenergy Market? The Extent of Bioenergy Markets | 2811 | ||
5.06.5.1 Energy Market Integration in General | 2812 | ||
5.06.5.2 Bioenergy Market Integration | 2813 | ||
5.06.6 Barriers to Bioenergy Trade | 2813 | ||
5.06.6.1 Import Tariffs, Export Subsidies, and the Like | 2813 | ||
5.06.6.2 Nonexplicit Trade Barriers | 2814 | ||
5.06.7 Discussion: The Future of Bioenergy Trade | 2814 | ||
References | 2815 | ||
Biomass CHP Energy Systems: A Critical Assessment | 2819 | ||
5.07.1 Introduction | 2819 | ||
5.07.2 Biomass CHP Options | 2820 | ||
5.07.2.1 Combustion | 2821 | ||
5.07.2.2 Gasification | 2821 | ||
5.07.2.3 Summary of Technology Properties | 2822 | ||
5.07.3 Bioenergy System Aspects | 2822 | ||
5.07.3.1 Biomass Markets and CO2 Effects | 2823 | ||
5.07.3.2 Biomass Competition between Sectors | 2824 | ||
5.07.4 Biomass CHP Technology System Aspects | 2825 | ||
5.07.4.1 Competitiveness of Biomass CHP Options | 2826 | ||
5.07.4.2 Scale Effects of Biomass CHP | 2827 | ||
5.07.5 Concluding Remarks | 2828 | ||
References | 2829 | ||
Relevant Websites | 2829 | ||
Ethics of Biofuel Production | 2831 | ||
5.08.1 Introduction | 2831 | ||
5.08.2 A Model for Sustainability Management Systems | 2831 | ||
5.08.3 RTFO | 2835 | ||
5.08.4 RED | 2835 | ||
5.08.5 ISCC | 2836 | ||
5.08.6 RSB | 2836 | ||
5.08.7 RSPO | 2836 | ||
5.08.8 RTRS | 2837 | ||
5.08.9 CEN Standard on Biomass for Transport Biofuels | 2837 | ||
5.08.10 ISO Standard on Biomass for Energy | 2837 | ||
5.08.11 Various Standards in the Retail Sector | 2838 | ||
5.08.12 International Labor Laws | 2838 | ||
5.08.13 Indirect Land Use Change | 2839 | ||
5.08.14 Conclusions | 2839 | ||
References | 2839 | ||
Life Cycle Analysis Perspective on Greenhouse Gas Savings | 2841 | ||
5.09.1 Biofuel Potential | 2841 | ||
5.09.2 Life Cycle Assessment | 2842 | ||
5.09.3 Net Energy Balances for Biofuels | 2846 | ||
5.09.4 Greenhouse Gas Emissions Results | 2847 | ||
5.09.5 Land Use Change | 2849 | ||
5.09.6 Direct Land Use Change | 2849 | ||
5.09.7 Indirect Land Use Change | 2852 | ||
5.09.8 Soil Nitrous Oxide Emissions | 2853 | ||
5.09.9 Sources of Processing Energy | 2855 | ||
5.09.10 Coproducts | 2858 | ||
5.09.11 Future Biofuel Technologies | 2859 | ||
5.09.12 Conclusions and Recommendations | 2862 | ||
References | 2862 | ||
Biomass Gasification and Pyrolysis | 2865 | ||
5.10.1 Introduction | 2866 | ||
5.10.2 Historical Development | 2866 | ||
5.10.3 Basic Gasification Technology | 2867 | ||
5.10.4 Gasifier Designs | 2868 | ||
5.10.4.1 Fixed Bed | 2868 | ||
5.10.4.2 Fluidized Bed | 2869 | ||
5.10.4.3 Entrained Flow | 2870 | ||
5.10.4.4 Plasma | 2871 | ||
5.10.4.5 Choice of Oxidant | 2871 | ||
5.10.5 Gasifier Feedstock Supply | 2871 | ||
5.10.5.1 Waste Biomass Feedstocks | 2872 | ||
5.10.5.2 Virgin Biomass Feedstocks | 2873 | ||
5.10.5.3 Typical Fuel Characteristics and Key Contaminants | 2873 | ||
5.10.5.4 Feedstock Reception and Handling | 2874 | ||
5.10.6 Gas Processing | 2874 | ||
5.10.6.1 Contaminants and Their Impacts | 2874 | ||
5.10.6.2 Gas Cleaning Technologies | 2877 | ||
5.10.7 Overview of Gasification Technology Options | 2879 | ||
5.10.8 Pyrolysis | 2880 | ||
5.10.9 Case Studies | 2881 | ||
5.10.9.1 Entrained Flow Gasifier | 2881 | ||
5.10.9.2 Fluidized Bed Gasifiers | 2881 | ||
5.10.9.3 Fixed Bed | 2882 | ||
5.10.9.4 Plasma | 2883 | ||
5.10.10 Recent and Future Developments | 2883 | ||
5.10.11 Further Reading | 2884 | ||
References | 2884 | ||
Biomass to Liquids Technology | 2887 | ||
5.11.1 Introduction | 2888 | ||
5.11.1.1 Biofuels Drivers and Issues | 2889 | ||
5.11.2 The BtL Process | 2891 | ||
5.11.3 A Brief History of FT | 2892 | ||
5.11.4 Steps in Biomass Conversion to Liquids via FT | 2894 | ||
5.11.4.1 Feedstock Preparation and Pretreatment | 2894 | ||
5.11.4.2 Gasifiers for FT | 2900 | ||
5.11.4.3 Syngas Cleanup for FT | 2904 | ||
5.11.4.4 Syngas Conditioning for FT | 2909 | ||
5.11.4.5 FT Process | 2909 | ||
5.11.5 Alternative BtL Fuel Options | 2915 | ||
5.11.5.1 Methanol | 2915 | ||
5.11.5.2 Dimethyl Ether | 2916 | ||
5.11.5.3 Gasoline | 2917 | ||
5.11.5.4 Mixed Alcohols (via Catalysts) | 2917 | ||
5.11.5.5 Alcohols (via Fermentation) | 2918 | ||
5.11.5.6 Hydrogen and BioSNG | 2918 | ||
5.11.5.7 Summary | 2919 | ||
5.11.6 Timescales and Development of BtL Processes | 2919 | ||
5.11.7 BtL Implementation Progress | 2920 | ||
5.11.7.1 BioMCN | 2921 | ||
5.11.7.2 Enerkem | 2922 | ||
5.11.7.3 Choren | 2922 | ||
5.11.7.4 Range Fuels | 2922 | ||
5.11.7.5 INEOS Bio | 2922 | ||
5.11.7.6 NSE Biofuels | 2923 | ||
5.11.7.7 Chemrec | 2923 | ||
5.11.7.8 Summary | 2923 | ||
5.11.8 Outline of BtL Economics | 2923 | ||
5.11.8.1 Capital Costs | 2923 | ||
5.11.8.2 Feedstock Cost Analysis | 2926 | ||
5.11.8.3 Economies of Scale | 2928 | ||
5.11.8.4 Summary | 2928 | ||
5.11.9 Environmental Issues | 2929 | ||
5.11.9.1 GHG Savings | 2929 | ||
5.11.9.2 Comparative Technology GHG Saving Effectiveness | 2932 | ||
5.11.9.3 Comparative Land Use Effectiveness | 2932 | ||
5.11.9.4 Summary | 2933 | ||
5.11.10 Summary and Outlook | 2935 | ||
References | 2936 | ||
Further Reading | 2936 | ||
Relevant Websites | 2936 | ||
Intensification of Biofuel Production | 2937 | ||
5.12.1 Biodiesel | 2937 | ||
5.12.1.1 Introduction: The Biodiesel Reaction | 2937 | ||
5.12.1.2 A Generic Biodiesel Flowsheet | 2938 | ||
5.12.1.3 Reactors | 2938 | ||
5.12.1.4 GRP/BRP Separation | 2941 | ||
5.12.1.5 Other Downstream Processing Steps | 2941 | ||
5.12.2 Bioethanol | 2942 | ||
5.12.2.1 Ethanol Dehydration | 2942 | ||
5.12.2.2 Integrating Alcohol Removal with Fermentation | 2944 | ||
References | 2946 | ||
Biofuels from Waste Materials | 2949 | ||
5.13.1 Introduction | 2950 | ||
5.13.2 Biodiesel Production from WVO | 2950 | ||
5.13.2.1 The Significance of Producing Biodiesel from WVO | 2950 | ||
5.13.2.2 Challenges Facing Biodiesel Production from WVO | 2951 | ||
5.13.2.3 Quality of WVO-Based Biodiesel | 2957 | ||
5.13.3 Summary: Biodiesel from Waste | 2960 | ||
5.13.4 Bioethanol Production from LCWs | 2960 | ||
5.13.4.1 Significance of Producing Bioethanol from LCWs | 2960 | ||
5.13.4.2 Sources of LC Biomass | 2963 | ||
5.13.4.3 LC Biomass Recalcitrance | 2963 | ||
5.13.4.4 Factors Limiting LC Biomass Digestibility | 2964 | ||
5.13.4.5 Production of Ethanol from LCWs | 2965 | ||
5.13.4.6 Challenges to Bioethanol Production from Lignocellulose | 2966 | ||
5.13.4.7 Pretreatment Processes | 2966 | ||
5.13.4.8 Saccharification and Fermentation | 2980 | ||
5.13.4.9 Consolidated Bioprocessing | 2982 | ||
5.13.5 Summary: Bioethanol from Waste | 2982 | ||
References | 2982 | ||
Woody Biomass | 2995 | ||
5.14.1 Introduction | 2996 | ||
5.14.2 Novel Short-Rotation Woody Crops/Short-Rotation Forestry for Bioenergy Applications | 2996 | ||
5.14.2.1 Woody Coppice Production and Harvesting | 2996 | ||
5.14.2.2 Single-Stem Hardwoods | 3000 | ||
5.14.2.3 Single-Stem Softwoods | 3006 | ||
5.14.2.4 Single-Stem Harvest and Handling | 3008 | ||
5.14.2.5 Comparison of Production Inputs and Costs for Poplar, Pine, Eucalypts, and Willow Biomass | 3009 | ||
5.14.2.6 Projections of Energy Crop Supply: A Methodology and US Results | 3010 | ||
5.14.2.7 Sustainability of Short-Rotation Woody Crops/Short-Rotation Forestry | 3013 | ||
5.14.3 Forestland-Derived Resources | 3014 | ||
5.14.3.1 Primary Forest Residues | 3015 | ||
5.14.3.2 Fuelwood | 3018 | ||
5.14.3.3 Wood Processing Residues | 3018 | ||
5.14.3.4 Urban Wood Residues | 3018 | ||
5.14.4 Conclusions | 3019 | ||
References | 3020 | ||
Further Reading | 3023 | ||
Relevant Websites | 3023 | ||
Potential for Yield Improvement | 3025 | ||
5.15.1 Introduction | 3025 | ||
5.15.2 History of Oilseed Rape Production | 3025 | ||
5.15.3 Yield Potential | 3028 | ||
5.15.4 Genetic Constraint to Yield Improvement | 3031 | ||
5.15.5 Crop Management Constraint to Yield Improvement | 3031 | ||
5.15.6 Genetic Approaches | 3032 | ||
5.15.7 Conclusions | 3033 | ||
References | 3034 | ||
Further Reading | 3035 | ||
Renewable Fuels: An Automotive Perspective | 3037 | ||
5.16.1 Introduction | 3037 | ||
5.16.1.1 Causes for Concern | 3037 | ||
5.16.1.2 What Are the Options? | 3039 | ||
5.16.2 Competing Transport Energy Carriers | 3040 | ||
5.16.2.1 Electrification of the Vehicle Fleet | 3040 | ||
5.16.2.2 Hydrogen | 3042 | ||
5.16.2.3 Biofuels | 3045 | ||
5.16.3 Alcohol as Fuels for ICEs | 3048 | ||
5.16.3.1 Physicochemical Properties | 3049 | ||
5.16.3.2 Low-Carbon-Number Alcohols as Fuels for SI Engines | 3051 | ||
5.16.3.3 Low-Carbon-Number Alcohols as Fuels for Compression-Ignition Engines | 3054 | ||
5.16.3.4 Safety Aspects of Alcohol Fuels | 3055 | ||
5.16.4 The Biomass Limit and Beyond | 3059 | ||
5.16.4.1 The Biomass Limit | 3059 | ||
5.16.4.2 Beyond the Biomass Limit – Electrofuels | 3060 | ||
5.16.5 Technologies to Increase the Use of Alcohols in the Vehicle Fleet | 3064 | ||
5.16.5.1 Tri-Flex-Fuel Vehicles | 3064 | ||
5.16.5.2 Ternary Blends to Extend the Displacement of Gasoline by Alcohols | 3065 | ||
5.16.6 Sustainable Organic Fuels for Transport | 3067 | ||
5.16.7 Conclusions | 3070 | ||
References | 3070 | ||
Further Reading | 3074 | ||
Use of Biofuels in a Range of Engine Configurations | 3075 | ||
5.17.1 Introduction | 3075 | ||
5.17.2 Biofuel Blends with Fossil Fuels for Transport Use | 3075 | ||
5.17.2.1 Ethanol–Diesel Blends | 3076 | ||
5.17.3 Engine Modifications for Biofuel Operation | 3078 | ||
5.17.3.1 Petrol (Gasoline) Engines | 3078 | ||
5.17.3.2 Diesel Engines | 3079 | ||
5.17.4 Biofuels and Bio-Oils in Stationary Engines | 3080 | ||
5.17.4.1 Biodiesel/Fossil Diesel Blends | 3080 | ||
5.17.4.2 Straight Vegetable Oils | 3081 | ||
5.17.5 Dual Fuel Operation | 3081 | ||
5.17.5.1 Fuels and Fuel Properties | 3082 | ||
5.17.5.2 The Dual Fuel Combustion Process | 3082 | ||
5.17.5.3 Reported Operational Experience on Dual Fuel Stationary Engines | 3082 | ||
5.17.5.4 Combustion Improvement in Dual Fuel Engines Running on Straight Vegetable Oil | 3083 | ||
5.17.5.5 Utilization of Biomass-Derived Gaseous Fuels in Stationary Engines | 3083 | ||
5.17.6 Conclusions | 3086 | ||
References | 3086 | ||
Biochar | 3089 | ||
5.18.1 Introduction | 3089 | ||
5.18.2 Archaeology and Soil Fertility Beginnings | 3090 | ||
5.18.2.1 Soil Organic Matter | 3090 | ||
5.18.2.2 Terra Preta | 3091 | ||
5.18.3 A New Focus: Carbon Sequestration | 3092 | ||
5.18.3.1 The Global Carbon Cycle | 3094 | ||
5.18.3.2 Black Carbons | 3094 | ||
5.18.3.3 Carbon Sequestration Potential of Biochar | 3096 | ||
5.18.3.4 Half-Life of Biochar in Soils | 3096 | ||
5.18.3.5 Efforts to Encourage the Adoption of Biochar into Agricultural Practices | 3097 | ||
5.18.4 Biochar Sources | 3098 | ||
5.18.4.1 Slow Pyrolysis and Traditional Charcoal Making | 3098 | ||
5.18.4.2 Torrefaction and Feedstock Pretreatment | 3100 | ||
5.18.4.3 Fast Pyrolysis and Bio-Oil | 3100 | ||
5.18.4.4 Flash Pyrolysis and the Effects of Pressure | 3102 | ||
5.18.4.5 Gasification and Syngas | 3103 | ||
5.18.4.6 Biochar as a Coproduct | 3103 | ||
5.18.5 Biochar Properties | 3104 | ||
5.18.5.1 Biochar Composition | 3104 | ||
5.18.5.2 Physical Properties | 3105 | ||
5.18.5.3 Chemical Properties | 3106 | ||
5.18.5.4 Biochar Engineering | 3109 | ||
5.18.6 Promising Biochar Scenarios and Synergies | 3110 | ||
5.18.6.1 Bioenergy and Biochar Coproduction | 3111 | ||
5.18.6.2 Farming Impacts | 3111 | ||
5.18.6.3 Site Remediation | 3112 | ||
5.18.6.4 Developing Countries | 3112 | ||
5.18.7 Challenges to Applying Biochar | 3114 | ||
5.18.7.1 Economics of Alternative Uses | 3114 | ||
5.18.7.2 Handling | 3114 | ||
5.18.7.3 Potential Soil/Crop Drawbacks | 3115 | ||
5.18.8 Future Progress and Development | 3116 | ||
References | 3116 | ||
Further Reading | 3116 | ||
Relevant Websites | 3116 | ||
Extracting Additional Value from Biomass | 3117 | ||
5.19.1 Introduction | 3117 | ||
5.19.2 The Current Position | 3119 | ||
5.19.3 Future Development – Background | 3121 | ||
5.19.4 The Future: Extending the Envelope by Exploiting Higher Value Metabolites | 3122 | ||
5.19.5 Conclusion | 3124 | ||
References | 3125 | ||
Further Reading | 3125 | ||
Relevant Website | 3125 | ||
Biomass to Chemicals | 3127 | ||
5.20.1 Introduction | 3127 | ||
5.20.2 Biodiesel: Conversion of Glycerine Coproduct and Other Side Streams | 3128 | ||
5.20.2.1 Introduction | 3128 | ||
5.20.2.2 Biodiesel Production without the By-Product Glycerol | 3128 | ||
5.20.2.3 Increasing the Value of Glycerol | 3128 | ||
5.20.2.4 Chemicals from Glycerol | 3130 | ||
5.20.3 Fuels from Fermentation Processes: Use of Biomass Raw Material, Fuel Production Intermediates, andCoproducts for Chemical Production | 3132 | ||
5.20.3.1 Lignocellulosic Feedstocks for Chemical Production | 3132 | ||
5.20.3.2 Lignin: Depolymerization or Direct Use? | 3133 | ||
5.20.4 Use of Bio-Alcohols as Chemicals and Chemical Intermediates | 3136 | ||
5.20.4.1 Ethyl Acetate | 3137 | ||
5.20.4.2 Single-Walled Carbon Nanotubes | 3137 | ||
5.20.4.3 Hydrogen | 3138 | ||
5.20.4.4 Ethanol Fuel Cells | 3138 | ||
5.20.5 Biochar (Solid Biofuel): Chemicals from Pyrolysis Oil | 3138 | ||
5.20.5.1 Comparison of Major Techniques | 3138 | ||
5.20.5.2 Polycyclic Aromatic Hydrocarbons | 3139 | ||
5.20.5.3 Fabricated Microwave Pyrolysis | 3139 | ||
5.20.6 Conclusions and Future Prospects | 3140 | ||
References | 3141 | ||
Bioenergy Policy Development | 3143 | ||
5.21.1 Introduction | 3144 | ||
5.21.1.1 Greenhouse Gas Reductions: A Complicated Policy Driver | 3144 | ||
5.21.1.2 Bioenergy Potential | 3145 | ||
5.21.1.3 Unique Attributes of Biomass and Supply Chains | 3146 | ||
5.21.2 Bioenergy Policy Development | 3147 | ||
5.21.2.1 Achieving GHG Reductions with Biomass: A Key Policy Objective | 3147 | ||
5.21.2.2 Achieving Sustainable Development with Bioenergy: Key Policy Objectives | 3148 | ||
5.21.2.3 The Role of Energy Markets | 3150 | ||
5.21.2.4 Correcting Market Failures | 3150 | ||
5.21.2.5 Environmental Policy Options | 3151 | ||
5.21.2.6 The Role of Markets in Ensuring Economic Efficiency | 3156 | ||
5.21.2.7 Scale of Impacts and Nonfinancial Barriers | 3156 | ||
5.21.3 Application of Environmental Policy Options to Bioenergy | 3158 | ||
5.21.3.1 Historical Bioenergy Policy Development | 3158 | ||
5.21.3.2 A Multidimensional Problem | 3159 | ||
5.21.3.3 Attempts to Address the Problem | 3159 | ||
5.21.4 A Way Forward | 3159 | ||
5.21.4.1 The Need for a Holistic Approach | 3159 | ||
5.21.4.2 Land-Use Challenges | 3160 | ||
5.21.4.3 Biomass Action Plans | 3160 | ||
5.21.5 Conclusions | 3160 | ||
References | 3161 | ||
Further Reading | 3161 | ||
e9780080878720v6 | 3163 | ||
Cover\r | 3163 | ||
Comprehensive Renewable Energy\r | 3164 | ||
Copyright | 3167 | ||
Editor-In-Chief \r | 3168 | ||
Volume Editors | 3170 | ||
Contributors For All Volumes | 3174 | ||
Preface | 3182 | ||
Contents | 3186 | ||
Hydro Power -\r Introduction | 3194 | ||
6.01.1 Introduction | 3194 | ||
6.01.2 Hydroelectricity Progress and Development | 3197 | ||
6.01.2.1 Key Features of Hydroelectric Power | 3199 | ||
6.01.2.2 Hydropower Development | 3202 | ||
6.01.3 Volume Presentation | 3205 | ||
6.01.3.1 Contributions and Authors, Affiliations of Volume 6 | 3207 | ||
References | 3207 | ||
Hydro Power: A Multi Benefit Solution for Renewable Energy | 3208 | ||
6.02.1 Introduction | 3209 | ||
6.02.2 How Hydropower Works | 3209 | ||
6.02.2.1 Characteristics of Hydropower Plants | 3209 | ||
6.02.2.2 Types of Turbines | 3217 | ||
6.02.2.3 Types of Dams | 3221 | ||
6.02.3 History of Hydropower | 3224 | ||
6.02.3.1 Historical Background | 3224 | ||
6.02.3.2 Hydro Energy and Other Primary Energies | 3226 | ||
6.02.3.3 World Examples | 3226 | ||
6.02.4 Hydropower Development in a Multipurpose Setting | 3231 | ||
6.02.4.1 Benefits of Hydropower | 3231 | ||
6.02.5 Negative Attributes of Hydropower Project | 3234 | ||
6.02.6 Renewable Electricity Production | 3235 | ||
6.02.6.1 Recall | 3235 | ||
6.02.6.2 Sources of Renewable Electricity Energy | 3235 | ||
6.02.6.3 Characteristics of Renewable Energy Sources | 3235 | ||
6.02.6.4 Distribution per Region of the Percentage of Hydroelectricity and Renewable Non-Hydroelectricity Generation intheWorld | 3236 | ||
6.02.6.5 Findings about Renewable Electricity Production | 3237 | ||
6.02.7 Conclusion | 3238 | ||
Further Reading | 3239 | ||
Management of Hydropower Impacts through Construction andOperation | 3242 | ||
6.03.1 Introduction | 3243 | ||
6.03.1.1 Background | 3243 | ||
6.03.1.2 Upstream Impacts | 3246 | ||
6.03.1.3 Downstream Impacts | 3249 | ||
6.03.2 Reservoir Water Quality | 3251 | ||
6.03.2.1 Introduction | 3251 | ||
6.03.2.2 General Characteristics of Reservoirs | 3252 | ||
6.03.2.3 Water Quality Processes – Eutrophication and Oxygenation | 3254 | ||
6.03.2.4 Water Quality Parameters | 3257 | ||
6.03.2.5 Nutrient Dynamics | 3259 | ||
6.03.2.6 Overview of Water Quality Models of a Reservoir | 3260 | ||
6.03.2.7 Lake Stability | 3261 | ||
6.03.2.8 Water Quality Models | 3263 | ||
6.03.2.9 Final Remarks | 3266 | ||
6.03.3 Management of the Impact of Hydraulic Processes in Hydropower Operation | 3266 | ||
6.03.3.1 Introduction | 3266 | ||
6.03.3.2 Reduction of Gas-Supersaturated Water | 3268 | ||
6.03.3.3 Control of Floating Debris | 3272 | ||
6.03.3.4 Hydropower Operating Strategies | 3276 | ||
6.03.3.5 Mitigation Measures | 3280 | ||
References | 3283 | ||
Large Hydropower Plants of Brazil | 3286 | ||
6.04.1 Introduction and Background | 3286 | ||
6.04.1.1 Historical Evolution of the Electric Sector in Brazil | 3287 | ||
6.04.1.2 Main Hydroelectric Projects | 3289 | ||
6.04.2 The 14000MW Itaipu Hydroelectric Project | 3289 | ||
6.04.2.1 General Description of the Project | 3289 | ||
6.04.2.2 The Dam | 3291 | ||
6.04.2.3 The Spillway | 3292 | ||
6.04.2.4 The Power Plant | 3292 | ||
6.04.3 The 8125MW Tucurui Hydroelectric Project | 3294 | ||
6.04.4 The 6450MW Madeira Hydroelectric Complex | 3297 | ||
6.04.4.1 The Santo Antonio Project | 3298 | ||
6.04.4.2 The Jirau Project | 3299 | ||
6.04.5 The Iguaçu River Projects | 3301 | ||
6.04.5.1 The Foz do Areia Project | 3301 | ||
6.04.5.2 The Segredo Project | 3303 | ||
6.04.5.3 The Salto Santiago Project | 3304 | ||
6.04.5.4 The Salto Osorio Project | 3307 | ||
6.04.5.5 The Salto Caxias Project | 3309 | ||
6.04.6 The Uruguay River Projects | 3312 | ||
6.04.6.1 The Machadinho Project | 3312 | ||
6.04.6.2 The Itá Project | 3314 | ||
6.04.6.3 The Campos Novos Project | 3316 | ||
6.04.6.4 The Barra Grande Project | 3317 | ||
6.04.7 The Belo Monte Project | 3318 | ||
References | 3320 | ||
Overview of Institutional Structure Reform of the Cameroon Power Sector and Assessments | 3322 | ||
6.05.1 Introduction | 3322 | ||
6.05.2 Hydro Potential | 3323 | ||
6.05.2.1 The River System | 3323 | ||
6.05.2.2 Existing Hydro Plants | 3324 | ||
6.05.2.2.1 Production and transportation of electricity | 3325 | ||
6.05.3 Dams | 3327 | ||
6.05.3.1 Storage Dams Under Operation | 3327 | ||
6.05.3.2 Hydrology | 3328 | ||
6.05.4 Mid-Term Development Plan for Hydro Plants in Cameroon | 3328 | ||
6.05.4.1 Objectives | 3328 | ||
6.05.4.2 Context of the Development Plan | 3330 | ||
6.05.4.3 Future Outlook | 3330 | ||
6.05.4.4 Memve’Elé | 3332 | ||
6.05.4.5 Mekin Hydropower Project | 3334 | ||
6.05.4.6 Bini Warak Project | 3338 | ||
6.05.4.7 Colomines Project | 3338 | ||
6.05.4.8 Ngassona Falls 210 Project | 3339 | ||
6.05.4.9 Overview of Institutional Structure Reform | 3340 | ||
6.05.4.10 Weaknesses of Institutions | 3342 | ||
6.05.4.11 Investing in the Electric Power Sector | 3342 | ||
6.05.5 Conclusion | 3343 | ||
References | 3343 | ||
Relevant Websites | 3344 | ||
Recent Hydropower Solutions in Canada | 3346 | ||
6.06.1 Introduction | 3346 | ||
6.06.2 Hydroelectric Power in Canada | 3346 | ||
6.06.2.1 Hydroelectric History in Canada | 3346 | ||
6.06.2.2 Hydroelectric Opportunities in Canada | 3347 | ||
6.06.3 Recent Hydropower Solutions in Manitoba | 3349 | ||
6.06.3.1 General | 3349 | ||
6.06.3.2 Wuskwatim Generating Station Project | 3352 | ||
6.06.4 Recent Hydropower Solutions in Quebec | 3354 | ||
6.06.4.1 Existing Hydropower Solutions | 3354 | ||
6.06.4.2 More Recent Hydropower Solutions | 3354 | ||
6.06.4.3 Hydropower Plants Under Construction | 3356 | ||
6.06.5 Recent Hydropower Implementations in British Columbia | 3366 | ||
6.06.5.1 General | 3366 | ||
6.06.5.2 Revelstoke Complex | 3368 | ||
6.06.6 Conclusion | 3370 | ||
References | 3370 | ||
The Three Gorges Project in China | 3372 | ||
6.07.1 Introduction | 3373 | ||
6.07.1.1 Location and Natural Condition | 3373 | ||
6.07.1.2 Project Scale and Main Objectives | 3375 | ||
6.07.2 Hydraulic Complex Structures | 3376 | ||
6.07.2.1 Dam | 3377 | ||
6.07.2.2 Powerhouse | 3381 | ||
6.07.2.3 Navigation Structures | 3386 | ||
6.07.2.4 Maopingxi Dam | 3393 | ||
6.07.3 Project Construction | 3393 | ||
6.07.3.1 Demonstration and Construction | 3393 | ||
6.07.3.2 Construction by Stages | 3394 | ||
6.07.3.3 Construction Management | 3401 | ||
6.07.4 Challenges and Achievements | 3403 | ||
6.07.4.1 Resettlements | 3403 | ||
6.07.4.2 Sediment | 3405 | ||
6.07.4.3 Protection of Ecosystem and Environment | 3406 | ||
6.07.4.4 Prevention and Control of Geological Hazards | 3409 | ||
6.07.4.5 Protection of Cultural Relics | 3410 | ||
6.07.4.6 Analysis of Dam Break | 3412 | ||
6.07.4.7 Benefits | 3413 | ||
6.07.4.8 Technical Advancement | 3414 | ||
References | 3419 | ||
Further Reading | 3419 | ||
Relevant Websites | 3419 | ||
The Recent Trend in Development of Hydro Plants in India | 3420 | ||
6.08.1 Present Status and Future Planning | 3420 | ||
6.08.1.1 World Bank Comments | 3422 | ||
6.08.2 Hydrology and Climate Change | 3423 | ||
6.08.3 Environment Study | 3427 | ||
6.08.4 Reservoir and Downstream Flow | 3430 | ||
6.08.5 Rehabilitation and Resettlement | 3432 | ||
6.08.6 Project Planning and Implementation | 3433 | ||
6.08.7 Storage and ROR Hydroelectric Projects | 3435 | ||
6.08.8 Sediment Transport and Related Issues | 3437 | ||
6.08.9 Socioeconomic Development and Hydropower in the Himalaya Northeast Region | 3444 | ||
6.08.10 Conclusion | 3445 | ||
References | 3445 | ||
Hydropower Development in Iran: Vision and Strategy | 3446 | ||
6.09.1 Introduction | 3446 | ||
6.09.2 Energy Generation in Iran | 3446 | ||
6.09.2.1 Energy Flow in Iran | 3446 | ||
6.09.2.2 Electricity Generation in Iran | 3447 | ||
6.09.3 Considerations and Requirements for Hydropower Developments | 3449 | ||
6.09.3.1 Requirements | 3449 | ||
6.09.3.2 Restrictions and Limitations | 3449 | ||
6.09.4 Potentiality of Hydropower Projects | 3450 | ||
6.09.4.1 Under Operation Projects | 3450 | ||
6.09.4.2 Under Construction Projects | 3451 | ||
6.09.4.3 Under Study Projects | 3451 | ||
References | 3456 | ||
Hydropower Development in Japan | 3458 | ||
6.10.1 Outline of the History of Hydropower Development in Japan | 3458 | ||
6.10.1.1 The Start of Hydropower Production | 3459 | ||
6.10.1.2 The Start of Long-Distance Transmission of Electric Power and Large Hydropower Dams | 3459 | ||
6.10.1.3 The Development of Dams and Conduit-Type High-Capacity Hydropower Production | 3460 | ||
6.10.1.4 The Increased Use of River Water as an Energy Source | 3461 | ||
6.10.1.5 Electric Power Shortages and the Postwar Reorganization of Electric Power | 3462 | ||
6.10.1.6 Development of Large-Scale Dam-Type Hydropower Plants | 3463 | ||
6.10.1.7 Hydropower Dams from the Rapid Economic Growth Period to the Stable Growth Period | 3463 | ||
6.10.2 Current State of Hydropower in Japan | 3467 | ||
6.10.2.1 Primary Energy in Japan | 3467 | ||
6.10.2.2 Development of Hydroelectric Power in Japan | 3469 | ||
6.10.2.3 Hydroelectric Power Development | 3469 | ||
6.10.2.4 Development of Pumped-Storage Power Plant | 3470 | ||
6.10.3 Hydropower in Japan and Future Challenges | 3473 | ||
6.10.3.1 Energy Situation in Japan and Hydropower | 3473 | ||
6.10.3.2 Hydropower in Japan and Future Challenges | 3473 | ||
6.10.4 Successful Efforts in Japan | 3474 | ||
6.10.4.1 Large-Scale Pumped-Storage Power Plants in Tokyo Electric Power Company | 3474 | ||
6.10.4.2 Sediment Flushing of Reservoir by Large-Scale Flashing Facilities in the Kansai Electric Power Company | 3481 | ||
6.10.4.3 Reservoir Bypass of Sediment and Turbid Water during Flood in the Kansai Electric Power Company | 3487 | ||
6.10.4.4 Measures for Ecosystems | 3491 | ||
Relevant Websites | 3500 | ||
Evolution of Hydropower in Spain | 3502 | ||
6.11.1 Hydroelectric Power in Spain | 3502 | ||
6.11.1.1 Electric Power and Hydroelectric Power | 3502 | ||
6.11.1.2 The Strategic Importance of Hydroelectric Power | 3503 | ||
6.11.1.3 Hydrology, River Network, and Hydroelectric Development | 3504 | ||
6.11.1.4 Power Plants and Main Developments | 3506 | ||
6.11.1.5 Producing Companies | 3508 | ||
6.11.2 Evolution of Schemes and First Developments | 3508 | ||
6.11.2.1 Periods in the Evolution of Development | 3508 | ||
6.11.2.2 The 1890–1940 Period | 3510 | ||
6.11.2.3 The 1940–60 Period | 3516 | ||
6.11.2.4 The 1960–75 Period | 3520 | ||
6.11.2.5 The Last Three Decades | 3526 | ||
6.11.3 A Representative Case: The Duero System and Its Evolution | 3529 | ||
6.11.4 The Future of Hydroelectric Power in Spain | 3532 | ||
References | 3534 | ||
Hydropower in Switzerland | 3536 | ||
6.12.1 Short Recall of Switzerland’s Characteristics | 3536 | ||
6.12.2 The Drainage Basins of Switzerland | 3536 | ||
6.12.3 Electricity Production in Switzerland | 3536 | ||
6.12.3.1 In General | 3536 | ||
6.12.3.2 Large-Scale Hydropower Plants | 3538 | ||
6.12.3.3 Small-Scale Hydropower Plants | 3539 | ||
6.12.3.4 Dams | 3539 | ||
6.12.4 List of the Dams in Switzerland | 3540 | ||
6.12.5 New Developments | 3542 | ||
6.12.6 Dixence, Grande-Dixence, and Cleuson-Dixence Schemes as an Example of Capacity Increase | 3543 | ||
6.12.6.1 In General | 3543 | ||
6.12.6.2 First Stage: The Dixence Scheme | 3543 | ||
6.12.6.3 Second Stage: The Grande-Dixence Scheme | 3543 | ||
6.12.6.4 Third Stage: The Cleuson-Dixence Scheme | 3544 | ||
6.12.7 New Hydroelectric Schemes Presently under Construction in Switzerland | 3545 | ||
6.12.7.1 The Nant de Dranse Scheme | 3545 | ||
6.12.7.2 The Linthal 2015 Project | 3546 | ||
6.12.7.3 The Hongrin-Léman Plus Project | 3547 | ||
Relevant Websites | 3547 | ||
Long-Term Sediment Management for Sustainable Hydropower | 3548 | ||
6.13.1 Introduction | 3548 | ||
6.13.1.1 General | 3548 | ||
6.13.1.2 The DPSIR Framework | 3550 | ||
6.13.2 Driving Forces | 3550 | ||
6.13.3 Pressures | 3550 | ||
6.13.3.1 Variability in Pressures | 3551 | ||
6.13.3.2 Measurement Techniques | 3553 | ||
6.13.4 State | 3555 | ||
6.13.4.1 Capacity Loss | 3555 | ||
6.13.4.2 Sedimentation Pattern | 3555 | ||
6.13.5 Impact | 3556 | ||
6.13.6 Responses | 3558 | ||
6.13.6.1 Measures Addressing Driving Forces | 3558 | ||
6.13.6.2 Measures Addressing Pressures | 3558 | ||
6.13.6.3 Measures Addressing the State | 3559 | ||
6.13.6.4 Measures Addressing Impacts | 3560 | ||
6.13.6.5 Numerical Modeling for Sustainable Sediment Management | 3560 | ||
6.13.6.6 Assessing Sustainability of Hydropower Projects | 3563 | ||
6.13.7 Conclusion | 3569 | ||
References | 3569 | ||
Durability Design of Concrete Hydropower Structures | 3570 | ||
6.14.1 Introduction | 3571 | ||
6.14.1.1 General | 3571 | ||
6.14.2 Early Cracking | 3573 | ||
6.14.2.1 General | 3573 | ||
6.14.2.2 Definition of Early Cracking | 3573 | ||
6.14.2.3 The Causes of Early Cracking | 3573 | ||
6.14.2.4 Controlling the Cracking of Concrete Hydropower Structures | 3575 | ||
6.14.2.5 State-of-the-Art Joints | 3575 | ||
6.14.3 Durability Problems | 3578 | ||
6.14.3.1 General | 3578 | ||
6.14.3.2 How Concrete Hydropower Structures Become Damaged | 3579 | ||
6.14.3.3 Carbonation and Reinforcement Corrosion | 3579 | ||
6.14.3.4 Freezing and Thawing | 3580 | ||
6.14.3.5 Concrete Expansion and Contraction | 3580 | ||
6.14.3.6 Chloride and Sulfate Attack | 3581 | ||
6.14.3.7 Alkali–Aggregate Reaction | 3582 | ||
6.14.3.8 Seepage Scouring | 3583 | ||
6.14.3.9 Abrasion and Cavitation | 3583 | ||
6.14.3.10 Other Less Important Factors | 3584 | ||
6.14.4 Durability Design | 3585 | ||
6.14.4.1 Performance-Based Durability Design | 3585 | ||
6.14.4.2 Expert System | 3585 | ||
6.14.4.3 The Direction of Future Research | 3585 | ||
6.14.5 How to Maintain a Durable Concrete | 3586 | ||
6.14.5.1 Material Selection | 3586 | ||
6.14.5.2 Design | 3588 | ||
6.14.5.3 Construction | 3589 | ||
6.14.5.4 Inspection and Assessment | 3590 | ||
6.14.5.5 Rehabilitation | 3590 | ||
6.14.6 Case Histories for Durable Concrete | 3592 | ||
6.14.6.1 Shi Lianghe Key Project in China | 3592 | ||
6.14.6.2 Fengman Hydropower Structure in China | 3592 | ||
6.14.6.3 Haikou Key Project in China | 3592 | ||
6.14.6.4 Butgenbach Dam in Belgium | 3593 | ||
6.14.6.5 Baoying Key Project in China | 3594 | ||
6.14.7 Conclusion | 3596 | ||
References | 3596 | ||
Pumped Storage Hydropower Developments | 3598 | ||
6.15.1 Inroduction | 3599 | ||
6.15.2 Electrical Energy Storage | 3599 | ||
6.15.2.1 General Issues | 3599 | ||
6.15.2.2 Applications | 3600 | ||
6.15.2.3 Storage Technologies | 3603 | ||
6.15.3 Pumped Storage Hydropower Plant | 3605 | ||
6.15.3.1 Characteristics | 3605 | ||
6.15.3.2 History | 3605 | ||
6.15.3.3 Characteristics of Pump–Turbines | 3606 | ||
6.15.4 Examples of Remarkable Pumped Storage Power Plants | 3611 | ||
6.15.4.1 Okinawa Seawater Pumped Storage Power Plant | 3611 | ||
6.15.4.2 Goldisthal Pumped Storage Power Plant | 3619 | ||
6.15.4.3 Tianhuangping Pumped Storage Power Plant | 3622 | ||
6.15.4.4 Coo-Trois Ponts Pumped Storage Power Plant | 3624 | ||
References | 3627 | ||
Simplified Generic Axial-Flow Microhydro Turbines | 3628 | ||
6.16.1 Introduction and Context | 3629 | ||
6.16.1.1 What Is a Simplified Generic Axial-Flow Microhydro Turbine? | 3629 | ||
6.16.1.2 Who Would Use Such a Turbine? | 3631 | ||
6.16.1.3 Representative Designs | 3631 | ||
6.16.1.4 Energy Alternatives and Unconventional Economics | 3635 | ||
6.16.1.5 What Is Specific Speed? | 3635 | ||
6.16.2 Component-Level Design Methods | 3636 | ||
6.16.2.1 Water Supply | 3637 | ||
6.16.2.2 Volute | 3642 | ||
6.16.2.3 Runner | 3646 | ||
6.16.2.4 Draft Tube | 3649 | ||
6.16.3 Turbine Selection from an Existing Range | 3653 | ||
6.16.4 Direct Sizing | 3656 | ||
6.16.5 Conclusions | 3658 | ||
Further Reading | 3658 | ||
References | 3659 | ||
Development of a Small Hydroelectric Scheme at Horseshoe Bend, Teviot River, Central Otago, New Zealand | 3660 | ||
6.17.1 Introduction | 3660 | ||
6.17.2 Background | 3661 | ||
6.17.3 Scheme Layout and Specifications | 3661 | ||
6.17.4 Project Development and Processes | 3663 | ||
6.17.5 Land Tenure | 3663 | ||
6.17.6 Resource Consents | 3663 | ||
6.17.7 Project Management | 3665 | ||
6.17.8 Contract Framework | 3665 | ||
6.17.9 Interesting Features of Design and Construction | 3666 | ||
6.17.9.1 Control Valve Positioned at the Tunnel Outlet | 3666 | ||
6.17.10 RCC Dam Design and Construction | 3666 | ||
6.17.10.1 Geological and Hydrological Setting | 3666 | ||
6.17.10.2 Site Layout | 3667 | ||
6.17.10.3 RCC Mix Design and Handling Characteristics | 3668 | ||
6.17.10.4 GIN Foundation Grouting Method | 3670 | ||
6.17.10.5 Commissioning/Performance Monitoring | 3673 | ||
6.17.11 Conclusions | 3675 | ||
References | 3676 | ||
Recent Achievements in Hydraulic Research in China | 3678 | ||
6.18.1 Introduction | 3678 | ||
6.18.2 Energy Dissipation | 3680 | ||
6.18.2.1 Slit Bucket | 3680 | ||
6.18.2.2 Flaring Pier Gate | 3682 | ||
6.18.2.3 Jet Flows Collision with Plunge Pool in High-Arch Dams | 3685 | ||
6.18.2.4 Orifice Spillway Tunnel | 3687 | ||
6.18.2.5 Vortex Shaft Spillway Tunnel | 3688 | ||
6.18.3 Aeration and Cavitation Mitigation Measures | 3690 | ||
6.18.4 Flow-Induced Vibration | 3692 | ||
6.18.5 Discharge Spraying by Jet Flow | 3692 | ||
6.18.6 Hydraulic Field Observations | 3695 | ||
References | 3697 | ||
e9780080878720v7 | 3700 | ||
Cover | 3700 | ||
Comprehensive Renewable Energy | 3701 | ||
Copyright | 3704 | ||
Editor-In-Chief | 3705 | ||
Volume Editors | 3707 | ||
Contributors For All Volumes | 3711 | ||
Preface | 3719 | ||
Contents | 3723 | ||
7.02.1 Introduction | 32 | ||
7.02.2 Geothermal Systems | 34 | ||
7.02.3 Geothermal System Properties and Processes | 34 | ||
7.02.4 Pressure Diffusion and Fluid Flow | 35 | ||
7.02.5 Heat Transfer | 35 | ||
7.02.5.1 Porous Layer Model | 38 | ||
7.02.5.2 Horizontal Fracture Model | 38 | ||
7.02.5.3 Porous Model with Cold Recharge | 39 | ||
7.02.6 Two-Phase Regions or Systems | 39 | ||
7.02.7 Geothermal Wells | 39 | ||
7.02.8 Utilization Response of Geothermal Systems | 41 | ||
7.02.9 Monitoring | 42 | ||
7.02.10 Modelling of Geothermal Systems – Overview | 42 | ||
7.02.11 Static Modeling (Volumetric Assessment) | 56 | ||
7.02.12 Dynamic Modeling | 57 | ||
7.02.13 Geothermal Resource Management | 57 | ||
7.02.14 Reinjection | 57 | ||
7.02.15 Renewability of Geothermal Resources | 57 | ||
7.02.16 Sustainable Geothermal Utilization | 58 | ||
7.02.17 Conclusions | 92 | ||
References | 59 | ||
Further Reading | 61 | ||
History of Photovoltaics | 62 | ||
1.04.1 Harnessing Solar Energy – A New Invention? | 62 | ||
1.04.2 What Was the Catalyst for Photovoltaic Development? | 64 | ||
1.04.3 A Photovoltaic Modern Historical Timeline | 68 | ||
1.04.4 Current Photovoltaic Technologies | 72 | ||
1.04.5 Photovoltaics – Where We Are Now? | 74 | ||
References | 75 | ||
Historical and Future Cost Dynamics of Photovoltaic Technology | 78 | ||
1.05.1 Introduction: Observed Reductions in the Cost of Photovoltaics | 78 | ||
1.05.2 What Caused the 700× Reduction in the Cost of PV? | 79 | ||
1.05.2.1 Identifying Drivers of Change | 80 | ||
1.05.2.2 R&D and Efficiency Improvements | 80 | ||
1.05.2.3 Sequential Niche Markets | 80 | ||
1.05.2.4 Expectations about Future Demand | 81 | ||
1.05.2.5 Learning by Doing | 82 | ||
1.05.2.6 Intertechnology Spillovers | 82 | ||
1.05.2.7 Materials | 82 | ||
1.05.2.8 Drivers Related to Supply and Demand | 83 | ||
1.05.2.9 Quality and Product Attributes | 84 | ||
1.05.2.10 Interactions between R&D and Experience in Production | 85 | ||
1.05.3 Using Learning Curves to Predict Costs | 85 | ||
1.05.3.1 Use of Experience Curves in Modeling and Policy | 85 | ||
1.05.3.2 Problems with Using Experience Curves | 86 | ||
1.05.3.3 How Reliable Are Experience Curve Predictions? | 88 | ||
1.05.4 Nonincremental Cost-Reducing Developments | 92 | ||
1.05.4.1 Identifying Breakthroughs | 92 | ||
1.05.4.2 Results: Combining Expert Opinion and Patent Analysis | 96 | ||
1.05.5 Modeling Nonincremental Changes in PV | 98 | ||
1.05.5.1 An Approach to Modeling Nonincremental Technological Change | 98 | ||
1.05.5.2 Results for Nonincremental Technological Change | 99 | ||
1.05.5.3 Summary of Nonincremental Modeling | 100 | ||
1.05.6 Future Progress and Development | 100 | ||
References | 101 | ||
Feed-In Tariffs and Other Support Mechanisms for Solar PV Promotion | 104 | ||
1.06.1 Introduction | 105 | ||
1.06.2 Overview of Support Mechanisms for Renewable Electricity | 106 | ||
1.06.2.1 Quota-Based Support (TGC and RPS) | 107 | ||
1.06.2.2 Tender Systems | 108 | ||
1.06.2.3 Net Metering | 108 | ||
1.06.2.4 Feed-In Tariffs | 108 | ||
1.06.2.5 Tax and Investment Incentives | 109 | ||
1.06.2.6 Assessment of Support Mechanisms (Effectiveness and Efficiency) | 109 | ||
1.06.3 Singapore | 110 | ||
1.06.3.1 Introduction | 110 | ||
1.06.3.2 Existing Support Schemes | 110 | ||
1.06.3.3 Challenges and Prospects for the Future | 113 | ||
1.06.4 United States | 114 | ||
1.06.4.1 Introduction | 114 | ||
1.06.4.2 Existing Support Schemes | 115 | ||
1.06.4.3 Challenges and Prospects for the Future | 120 | ||
1.06.5 European Union (Germany and Spain) | 121 | ||
1.06.5.1 Introduction: Europe | 121 | ||
1.06.5.2 Support Mechanisms | 122 | ||
1.06.5.3 Germany | 122 | ||
1.06.5.4 Spain | 122 | ||
1.06.6 Common Features of Best Practice Promotion Schemes | 124 | ||
1.06.6.1 Eligible Producers | 125 | ||
1.06.6.2 Purchase Obligations | 125 | ||
1.06.6.3 Tariff Calculation Methodology | 125 | ||
1.06.6.4 Duration of Tariff Payment | 128 | ||
1.06.6.5 Financing Mechanism | 128 | ||
1.06.6.6 Progress Report | 129 | ||
1.06.6.7 Tariff Differentiation According to Plant Size | 129 | ||
1.06.6.8 Tariff Differentiation According to Plant Type (Location) | 130 | ||
1.06.6.9 Tariff Degression | 130 | ||
1.06.6.10 Inflation Indexation | 132 | ||
1.06.6.11 Design Options for Better Market Integration | 133 | ||
1.06.6.12 Challenges and Prospects for the Future | 134 | ||
1.06.7 Conclusion and Outlook | 134 | ||
1.06.7.1 Leveling the Playing Field | 136 | ||
1.06.7.2 Investment Structure and Actor Groups on Future Electricity Markets | 137 | ||
References | 137 | ||
Finance Mechanisms and Incentives for Photovoltaic Technologies in Developing Countries | 142 | ||
1.07.1 Background: Photovoltaics, Rural Electrification, and Millennium Development Goals | 142 | ||
1.07.1.1 Development Assistance for Renewables in Developing Countries | 144 | ||
1.07.1.2 Analytical Framework for Support Mechanism of PV in Rural Areas | 145 | ||
1.07.2 PV in Developing Countries: Current Situation | 145 | ||
1.07.2.1 Evolution of Grid-Connected/Off-Grid PV Systems | 145 | ||
1.07.2.2 Evolution of Electrification Rates and Off-Grid PV Systems for Rural Areas | 145 | ||
1.07.2.3 Energy Technology Options for Rural Areas | 146 | ||
1.07.3 Current Costs of PV in Developing Countries | 147 | ||
1.07.4 Ownership, Organization, and Local Participation | 150 | ||
1.07.4.1 Community-Based Model | 151 | ||
1.07.4.2 Private Ownership/Private Operator | 151 | ||
1.07.4.3 Rural Energy Service Company Model | 151 | ||
1.07.5 Financing Channels for PV in Rural Renewable Energy | 151 | ||
1.07.5.1 Consumer Finance | 152 | ||
1.07.5.2 Market Development Finance | 154 | ||
1.07.5.3 Public Sector Finance (Poverty Alleviation) | 155 | ||
1.07.6 PV Tariff Setting and Incentives for Rural Electrification | 155 | ||
1.07.6.1 Procedure for Annual Revision | 156 | ||
1.07.7 Finance Instruments to Promote PV Systems in Rural Areas in Developing Countries | 156 | ||
1.07.7.1 Capital Subsidies, Consumer Grants, and Guarantees | 156 | ||
1.07.7.2 Renewable Energy Service Companies | 157 | ||
1.07.7.3 Leasing or Hire Purchase Model | 157 | ||
1.07.7.4 Renewable Portfolio Standards | 158 | ||
1.07.7.5 Small Power Producer Regulation | 158 | ||
1.07.7.6 Tender System | 159 | ||
1.07.7.7 Fiscal Incentives: Reduction in VAT and Import Duty Reduction | 159 | ||
1.07.7.8 Public Finance Pools | 159 | ||
1.07.7.9 Bank Financing: Low Interest and Soft Loans | 159 | ||
1.07.7.10 Carbon Financing | 160 | ||
1.07.7.11 Transitions from Off-Grid to On-Grid Generation Systems | 161 | ||
1.07.8 Innovative Financing Mechanisms for Rural Renewable Energy | 161 | ||
1.07.8.1 Renewable Energy Premium Tariff | 161 | ||
1.07.8.2 GET FiTs for Developing Countries | 165 | ||
1.07.9 Financial Risk Management | 166 | ||
1.07.9.1 Risk Characterization | 167 | ||
1.07.10 Conclusions | 168 | ||
Acknowledgments | 170 | ||
References | 170 | ||
Environmental Impacts of Photovoltaic Life Cycles | 174 | ||
1.08.1 Introduction | 175 | ||
1.08.2 Background | 175 | ||
1.08.3 Life Cycle of Photovoltaics | 175 | ||
1.08.4 Life-Cycle Inventory | 177 | ||
1.08.4.1 Modules | 177 | ||
1.08.4.2 Balance of System | 178 | ||
1.08.5 Energy Payback Times and Greenhouse Gas Emissions | 178 | ||
1.08.5.1 Energy Payback Time | 178 | ||
1.08.5.2 Greenhouse Gas Emissions | 179 | ||
1.08.6 Criteria Pollutant and Heavy Metal Emissions | 181 | ||
1.08.6.1 Criteria Pollutant Emissions | 181 | ||
1.08.6.2 Heavy Metal Emissions | 182 | ||
1.08.7 Life-Cycle Risk Analysis | 184 | ||
1.08.7.1 Risk Classification | 184 | ||
1.08.7.2 Risks of Accidents in the Photovoltaic Life Cycle | 184 | ||
1.08.7.3 Comparison with Other Energy Technologies | 186 | ||
1.08.7.4 Limitation of the Study | 188 | ||
1.08.8 Conclusion | 188 | ||
Acknowledgement | 189 | ||
References | 189 | ||
Overview of the Global PV Industry | 192 | ||
1.09.1 Introduction | 193 | ||
1.09.2 Development of the Photovoltaic Industry | 195 | ||
1.09.3 The Photovoltaic Industry in 2010 | 198 | ||
1.09.3.1 Technology Mix | 199 | ||
1.09.3.2 Solar Cell Production Companies | 200 | ||
1.09.3.3 Polysilicon Supply | 204 | ||
1.09.3.4 Polysilicon Manufacturers | 204 | ||
1.09.4 Outlook | 206 | ||
References | 208 | ||
Vision for Photovoltaics in the Future | 210 | ||
1.10.1 Photovoltaics Today | 211 | ||
1.10.1.1 Markets | 211 | ||
1.10.1.2 Technologies | 212 | ||
1.10.1.3 Competitiveness | 212 | ||
1.10.1.4 Electricity Prices | 212 | ||
1.10.1.5 Policy Support | 213 | ||
1.10.2 Future Market Development | 214 | ||
1.10.2.1 PV as a Mainstream Power Source in Europe by 2020 and Beyond | 214 | ||
1.10.2.2 US and Canadian Markets Slowly Taking Off | 215 | ||
1.10.2.3 Japan Has a Moderately Ambitious PV Target for 2020 | 215 | ||
1.10.2.4 The Rise of Sunbelt Countries | 215 | ||
1.10.2.5 Global PV Installed Capacity Could Reach More Than 4500GW by 2050 | 216 | ||
1.10.3 The EPIA Vision for 2050 | 217 | ||
1.10.3.1 Introduction | 217 | ||
1.10.3.2 A Dynamic Vision on PV Competitiveness and Grid Development | 218 | ||
1.10.3.3 Necessary Steps to Unlocking PV Potential | 218 | ||
1.10.3.4 Policy Recommendations for a Bright 2050 Future | 219 | ||
1.10.4 Future Changes in Electricity Systems | 220 | ||
1.10.4.1 Managing Variability | 220 | ||
1.10.4.2 From Centralized to Decentralized Energy Generation | 220 | ||
1.10.4.3 Peak Load Shaving | 221 | ||
1.10.4.4 Super Smart Grid | 221 | ||
1.10.4.5 Decentralized Storage | 222 | ||
1.10.4.6 DSM | 222 | ||
1.10.5 Future Market Segmentation | 222 | ||
1.10.6 Future Share of On-Grid/Off-Grid Applications | 223 | ||
1.10.6.1 Extending the National Grid | 223 | ||
1.10.6.2 Providing Off-Grid Solutions | 223 | ||
1.10.6.3 Coupling Mini-Grids with Hybrid Power | 223 | ||
1.10.7 Future Technological Trends | 223 | ||
1.10.7.1 The Evolution of PV Module and System Prices | 224 | ||
1.10.7.2 Cost of Electricity Generation | 226 | ||
1.10.8 Recommendations | 227 | ||
1.10.8.1 Policy Recommendations | 227 | ||
1.10.8.2 Investments in Technology and in PV Projects | 227 | ||
1.10.8.3 Grid Infrastructures Adaptations | 228 | ||
1.10.9 Conclusion | 228 | ||
References | 229 | ||
Storage Options for Photovoltaics | 230 | ||
1.11.1 Introduction | 230 | ||
1.11.2 Grid Flexibility and Reliability | 230 | ||
1.11.3 Energy Storage and Conventional Power Systems | 231 | ||
1.11.4 Solar Electricity and Energy Storage | 232 | ||
1.11.4.1 Impact on the Grid of Solar and Wind Electricity Penetration | 232 | ||
1.11.4.2 Solar, Wind, and Energy Storage: Integration Applications | 234 | ||
1.11.5 Energy Storage Technologies | 235 | ||
1.11.6 Power Quality Storage Technologies | 236 | ||
1.11.6.1 Superconducting Magnetic Energy Storage | 236 | ||
1.11.6.2 Electric Double-Layer Capacitors | 236 | ||
1.11.6.3 Flywheels | 236 | ||
1.11.7 Bridging Power Storage Technologies: Batteries | 237 | ||
1.11.7.1 Lead–Acid Batteries | 237 | ||
1.11.7.2 Lithium-Ion Batteries | 238 | ||
1.11.7.3 Flow Batteries | 239 | ||
1.11.8 Energy Management Storage Technologies | 239 | ||
1.11.8.1 Pumped Hydro Energy Storage | 239 | ||
1.11.8.2 Compressed Air Energy Storage | 241 | ||
1.11.9 Conclusions | 242 | ||
References | 242 | ||
Solar Radiation Resource Assessment for Renewable Energy Conversion | 244 | ||
1.12.1 Introduction | 245 | ||
1.12.1.1 The Sun as Star | 245 | ||
1.12.1.2 The Earth and the Sun | 246 | ||
1.12.2 Fundamentals of Solar Radiation | 246 | ||
1.12.2.1 Solar Geometry | 246 | ||
1.12.2.2 The Atmospheric Filter | 247 | ||
1.12.2.3 Spectral Considerations | 247 | ||
1.12.3 Fuel for Solar Energy Collectors | 248 | ||
1.12.3.1 Photovoltaic and Solar Thermal Flat Panels | 249 | ||
1.12.3.2 Solar Thermal Systems | 250 | ||
1.12.3.3 Sustainable Applications | 250 | ||
1.12.4 Measuring Solar Radiation | 250 | ||
1.12.4.1 Solar Radiometers and Detectors | 250 | ||
1.12.4.2 Radiometer Calibration | 252 | ||
1.12.4.3 World Radiometric Reference: the Calibration Reference | 252 | ||
1.12.4.4 Traceability | 253 | ||
1.12.4.5 Pyrheliometer Calibrations | 254 | ||
1.12.4.6 Pyranometer Calibrations | 254 | ||
1.12.4.7 Radiometric Uncertainty and Performance | 255 | ||
1.12.5 Modeling Solar Radiation | 256 | ||
1.12.5.1 Physics-Based Models | 256 | ||
1.12.5.2 Empirical Models | 256 | ||
1.12.5.3 Satellite-Based Models | 256 | ||
1.12.5.4 Geographical Information System Models | 257 | ||
1.12.6 Converting Solar Radiation Data to Application-Specific Data | 257 | ||
1.12.6.1 Estimating Hemispherical Radiation on a Tilt | 257 | ||
1.12.6.2 Estimating Direct Beam (DNI) from Global Horizontal Radiation | 257 | ||
1.12.6.3 Estimating Diffuse Hemispherical Radiation from Global or DNI | 258 | ||
1.12.7 Measured and Model Data Set Properties | 258 | ||
1.12.7.1 Period of Record | 258 | ||
1.12.7.2 Temporal Resolution | 259 | ||
1.12.7.3 Spatial Coverage | 259 | ||
1.12.7.4 Modeled Data Sets | 259 | ||
1.12.8 Model Estimate Uncertainties | 260 | ||
1.12.9 Developing Solar Radiation Resource Databases | 260 | ||
1.12.9.1 Developing the NSRDB | 260 | ||
1.12.9.2 Sources of Solar Radiation and Meteorological Data | 261 | ||
1.12.10 Applications: Calculating Solar Radiation for Flat-Plate and Concentrating Collectors | 263 | ||
1.12.11 Future Directions | 265 | ||
References | 267 | ||
7.03.3.2 Gas Fluxes | 2872 | ||
7.03.4.5 Multiple Mineral Equilibria Approach | 92 | ||
7.03.4.6 Example of Application | 61 | ||
7.03.5 Geophysical Methods | 93 | ||
7.03.5.1 Resistivity Methods | 93 | ||
7.03.5.2 Resistivity of Rocks | 128 | ||
7.03.5.3 Seismic Methods | 134 | ||
7.03.5.4 Thermal Methods | 229 | ||
References | 312 | ||
7.04.3 Characterization of Solids | 2761 | ||
7.05.7.3 Greenhouse Heating in Hungary | 154 | ||
7.06.3.2 Further Types: Energy Piles, Geothermal Baskets | 516 | ||
7.06.5 Site Investigations for Dimensioning | 591 | ||
7.07.2 Scope of the Section | 3289 | ||
7.07.4 Binary Plants | 2538 | ||
7.08.3.1 Uniform Corrosion | 621 | ||
7.08.3.7 Hydrogen Embrittlement | 968 | ||
7.08.4 Variables and Corrosive Species That Affect Corrosion Rates | 629 | ||
7.08.4.12 Other Factors | 1392 | ||
7.08.6 Scaling in Geothermal Environments | 206 | ||
7.09.1 Introduction | 2888 | ||
7.10.6.3 Toward SED? | 3342 | ||
7.10.7.4 Goal 4: Reduce Child Mortality Rate | 312 | ||
7.10.7.5 Goal 5: Improve Maternal Health | 312 | ||
7.10.7.6 Goal 6: Combat HIV/AIDs, Malaria, and Other Diseases | 314 | ||
7.10.7.7 Goal 7: Ensure Environmental Sustainability | 315 | ||
7.10.7.8 Goal 8: Develop a Global Partnership for Development | 316 | ||
7.10.7.9 Summary | 316 | ||
7.10.8 Climate Change, CDM, and Geothermal Energy | 317 | ||
7.10.8.1 The Potential of Geothermal Power to Mitigate GHG Emissions | 317 | ||
7.10.8.2 CDM and Geothermal Energy | 317 | ||
7.10.9 Toward SED Using Geothermal Power | 318 | ||
7.10.10 Conclusion | 319 | ||
References | 320 | ||
Principles of Solar Energy Conversion | 324 | ||
1.14.1 Introduction | 325 | ||
1.14.2 The PV Effect | 325 | ||
1.14.3 Solar Cells in Circuits | 325 | ||
1.14.4 Solar Resource | 326 | ||
1.14.4.1 Blackbody Radiation | 326 | ||
1.14.5 Absorption Profile of a Solar Cell | 327 | ||
1.14.6 Semiconductors | 328 | ||
1.14.6.1 Energy Band Structure | 328 | ||
1.14.6.2 Carrier Populations in Semiconductor Materials | 329 | ||
1.14.6.3 Doping | 331 | ||
1.14.6.4 Pn Junction | 332 | ||
1.14.7 Generation and Recombination | 332 | ||
1.14.7.1 Thermal Generation and Recombination | 333 | ||
1.14.7.2 Radiative Generation and Recombination | 333 | ||
1.14.7.3 Carrier–Carrier Generation and Recombination | 334 | ||
1.14.7.4 Impurity and Surface Generation and Recombination | 334 | ||
1.14.8 Thermal Energy into Chemical Energy | 335 | ||
1.14.8.1 Current Extraction | 336 | ||
1.14.9 Generalized Planck | 336 | ||
1.14.9.1 Density of Photon States | 337 | ||
1.14.9.2 Geometrical Factor | 337 | ||
1.14.9.3 Occupation of Photon States | 338 | ||
1.14.10 Detailed Balance | 339 | ||
1.14.10.1 Shockley–Queisser Limiting Efficiency | 339 | ||
1.14.10.2 Real-World Devices | 340 | ||
1.14.11 Intrinsic Loss Mechanisms in Solar Cells | 340 | ||
1.14.11.1 Below Eg Loss | 341 | ||
1.14.11.2 Emission Loss | 342 | ||
1.14.11.3 Thermalization | 342 | ||
1.14.11.4 Carnot Loss | 342 | ||
1.14.11.5 Boltzmann Loss | 342 | ||
1.14.12 Exceeding the Shockley–Queisser Limiting Efficiency | 343 | ||
1.14.13 Summary | 343 | ||
References | 344 | ||
Thermodynamics of Photovoltaics | 346 | ||
1.15.1 Introduction | 347 | ||
1.15.2 Thermodynamics of Thermal Radiation | 347 | ||
1.15.2.1 Photon Gas | 347 | ||
1.15.2.2 The Continuous Spectrum Approximation | 348 | ||
1.15.2.3 Fluxes of Photon Properties | 349 | ||
1.15.2.4 Spectral Property Radiances for Blackbodies and Bandgap Materials | 349 | ||
1.15.2.5 Geometrical Factor of Radiation Sources | 350 | ||
1.15.2.6 Diluted Thermal Radiation | 353 | ||
1.15.3 Concentration of Solar Radiation | 356 | ||
1.15.3.1 The Étendue of Beam Radiation | 356 | ||
1.15.3.2 Upper Bounds on Beam Solar Radiation Concentration | 357 | ||
1.15.3.3 Upper Bounds on Scattered Solar Radiation Concentration | 358 | ||
1.15.4 Upper Bounds for Thermal Radiation Energy Conversion | 359 | ||
1.15.4.1 Available Work of Enclosed Thermal Radiation | 359 | ||
1.15.4.2 Available Work of Free Thermal Radiation | 361 | ||
1.15.4.3 Available Work of Blackbody Radiation as a Particular Case | 363 | ||
1.15.4.4 Discussion | 364 | ||
1.15.5 Models of Monogap Solar PV Converters | 365 | ||
1.15.5.1 Modeling Absorption and Recombination Processes | 365 | ||
1.15.5.2 Modeling Multiple Impact Ionization | 370 | ||
1.15.6 Models of Omnicolor Solar Converters | 376 | ||
1.15.6.1 Omnicolor PT Converters | 376 | ||
1.15.6.2 Omnicolor PV Converters | 378 | ||
1.15.6.3 Unified Model of Omnicolor Converters | 380 | ||
1.15.6.4 Discussion | 380 | ||
1.15.7 Conclusions | 381 | ||
References | 381 | ||
Further Reading | 382 | ||
Crystalline Silicon Solar Cells: State-of-the-Art and Future Developments | 384 | ||
1.16.1 General Introduction | 384 | ||
1.16.1.1 Photovoltaic Market | 384 | ||
1.16.1.2 Historical Development of Cell Efficiency | 385 | ||
1.16.1.3 Maximum Achievable Efficiency | 385 | ||
1.16.2 Current Status of Silicon Solar Cell Technology | 386 | ||
1.16.2.1 Basic Structure of a Silicon Solar Cell | 386 | ||
1.16.2.2 Physical Structure of an Industrial Silicon Solar Cell | 386 | ||
1.16.2.3 Process Sequence | 389 | ||
1.16.3 Influence of Basic Parameters | 394 | ||
1.16.4 Strategies for Improvement | 395 | ||
1.16.4.1 Dielectric Surface Passivation | 395 | ||
1.16.4.2 Metallization | 397 | ||
1.16.4.3 Bulk Properties | 399 | ||
1.16.5 High-Efficiency Cell Structures on p-type Silicon | 402 | ||
1.16.5.1 Main Approaches for High Efficiencies in p-type Devices | 402 | ||
1.16.5.2 Passivated Emitter and Rear Cell | 402 | ||
1.16.5.3 Metal Wrap-Through Solar Cells | 403 | ||
1.16.5.4 MWT-PERC | 404 | ||
1.16.5.5 Emitter Wrap-Through Solar Cells | 405 | ||
1.16.6 High-Efficiency Structures on n-type Silicon | 406 | ||
1.16.6.1 Aluminum-Alloyed Back Junction | 406 | ||
1.16.6.2 n-Type Cells with Boron-Diffused Front Emitter | 407 | ||
1.16.6.3 Back-Contact Solar Cells with Boron-Diffused Back Junction | 408 | ||
1.16.6.4 Heterojunction Solar Cells | 410 | ||
1.16.6.5 Alternative Emitters | 411 | ||
1.16.7 Conclusion | 412 | ||
References | 412 | ||
Thin-Film Silicon PV Technology | 420 | ||
1.17.1 Introduction | 420 | ||
1.17.2 Thin-Film Silicon Solar Cell Structures | 420 | ||
1.17.2.1 Amorphous Silicon | 420 | ||
1.17.2.2 Microcrystalline Silicon | 422 | ||
1.17.2.3 Multijunction Solar Cell | 423 | ||
1.17.2.4 Light Trapping | 424 | ||
1.17.2.5 Heterojunction a-Si/c-Si Solar Cells | 424 | ||
1.17.3 Challenges of Thin-Film Si PV Technology | 425 | ||
1.17.4 Fabrication of Thin-Film Si Modules | 426 | ||
1.17.5 Applications | 427 | ||
1.17.6 Conclusions | 428 | ||
References | 428 | ||
Chalcopyrite Thin-Film Materials and Solar Cells | 430 | ||
1.18.1 Introduction | 430 | ||
1.18.2 Material Properties | 431 | ||
1.18.2.1 Structure | 431 | ||
1.18.2.2 Optical Properties | 432 | ||
1.18.2.3 Electrical Properties | 434 | ||
1.18.3 Deposition Methods | 437 | ||
1.18.3.1 Single-Step Deposition | 438 | ||
1.18.3.2 Sequential Deposition | 439 | ||
1.18.3.3 General Considerations | 441 | ||
1.18.4 Device Structure | 441 | ||
1.18.4.1 Substrate | 441 | ||
1.18.4.2 Barrier Layers | 443 | ||
1.18.4.3 Back Contact | 443 | ||
1.18.4.4 Buffer Layer | 443 | ||
1.18.4.5 Front Contact | 445 | ||
1.18.5 Device Properties | 445 | ||
1.18.6 Outlook | 448 | ||
References | 449 | ||
Cadmium Telluride Photovoltaic Thin Film: CdTe | 454 | ||
1.19.1 Introduction | 454 | ||
1.19.2 Brief History of CdTe PV Devices | 454 | ||
1.19.3 Attempts Toward Initial Commercial Modules | 455 | ||
1.19.4 Review of Present Commercial Industry/Device Designs | 455 | ||
1.19.5 General CdTe Material Properties | 457 | ||
1.19.6 Layer-Specific Process Description for Superstrate CdTe Devices | 458 | ||
1.19.6.1 Superstrate Materials | 458 | ||
1.19.6.2 TCO Layer | 459 | ||
1.19.6.3 Buffer Layer | 459 | ||
1.19.6.4 CdS Layer | 460 | ||
1.19.6.5 CdTe Layer | 461 | ||
1.19.6.6 CdCl2 Activation | 462 | ||
1.19.6.7 Back Contact | 463 | ||
1.19.7 Where Is the Junction? | 465 | ||
1.19.8 Considerations for Large-Scale Deployment | 465 | ||
1.19.8.1 Reliability | 466 | ||
1.19.8.2 Mineral Availability | 467 | ||
1.19.8.3 Environmental | 467 | ||
1.19.8.4 Energy-Payback Time | 467 | ||
1.19.9 Conclusion | 468 | ||
Acknowledgments | 468 | ||
References | 468 | ||
Plastic Solar Cells | 470 | ||
1.20.1 Introduction | 471 | ||
1.20.1.1 Why Solar Cells? | 471 | ||
1.20.1.2 Why OSCs? | 472 | ||
1.20.2 Fundamentals | 473 | ||
1.20.2.1 Comparison of Inorganic Solar Cells and OSCs | 473 | ||
1.20.2.2 Solar Cell Device Architectures | 479 | ||
1.20.2.3 Characteristic Values of a Solar Cell | 480 | ||
1.20.3 Materials for OSCs | 481 | ||
1.20.3.1 Active Materials for OSCs | 481 | ||
1.20.3.2 Interfacial Materials | 484 | ||
1.20.3.3 Electrode Materials | 487 | ||
1.20.4 Driving Efficiency | 488 | ||
1.20.4.1 Preferable Properties of the Donor Molecule | 488 | ||
1.20.4.2 Impact of Morphology | 488 | ||
1.20.4.3 Improved Material Properties for Efficiency Increase | 492 | ||
1.20.4.4 Effect of Interference in the Device | 494 | ||
1.20.4.5 Solar Cell Architectures for Enhanced Device Performance | 494 | ||
1.20.5 Stability of OSCs | 496 | ||
1.20.5.1 Encapsulation | 496 | ||
1.20.5.2 Electrodes | 497 | ||
1.20.5.3 Interfacial Layers | 498 | ||
1.20.5.4 Active Materials | 499 | ||
1.20.5.5 Testing the Lifetime | 500 | ||
1.20.6 Production Methods | 501 | ||
1.20.6.1 Layer Deposition for Single Devices | 501 | ||
1.20.6.2 Large-Scale Production Methods | 503 | ||
1.20.7 Summary and Outlook | 504 | ||
References | 505 | ||
Further Reading | 511 | ||
Mesoporous Dye-Sensitized Solar Cells | 512 | ||
1.21.1 Introduction | 512 | ||
1.21.2 Mesoporous Dye-Sensitized Solar Cells | 513 | ||
1.21.2.1 Overview of Current Status and Operational Principles | 513 | ||
1.21.2.2 The Kinetic Model – Electron-Transfer Processes | 515 | ||
1.21.2.3 Basic Characterization of DSC Devices | 518 | ||
1.21.2.4 Development of Material Components and Devices | 521 | ||
1.21.3 Future Outlook | 525 | ||
References | 525 | ||
Multiple Junction Solar Cells | 528 | ||
1.22.1 Introduction | 528 | ||
1.22.2 Key Issues for Realizing High-Efficiency MJ Solar Cells | 529 | ||
1.22.2.1 Selection of Cell Materials and Improving Quality | 529 | ||
1.22.2.2 Lattice Matching Between Cell Materials and Substrates | 531 | ||
1.22.2.3 Effectiveness of Wide Bandgap Back-Surface-Field Layer | 532 | ||
1.22.2.4 Low-Loss Tunnel Junction for Intercell Connection and Preventing Impurity Diffusion from Tunnel Junction | 533 | ||
1.22.3 High-Efficiency InGaP/GaAs/Ge 3-Junction Solar Cells and their Space Applications | 534 | ||
1.22.3.1 Development of High-Efficiency InGaP/GaAs/Ge 3-Junction Solar Cells | 534 | ||
1.22.3.2 Radiation Resistance of InGaP-Based MJ Solar Cells | 536 | ||
1.22.3.3 Space Applications of InGaP/GaAs/Ge 3-Junction Solar Cells | 537 | ||
1.22.4 Low-Cost Potential of Concentrator MJ Solar Cell Modules and High-Efficiency Concentrator InGaP/GaAs/Ge3-Junction Solar Cell Modules and Terrestrial Applications | 537 | ||
1.22.5 Most Recent Results of MJ Cells | 540 | ||
1.22.6 Future Directions | 540 | ||
Acknowledgments | 544 | ||
References | 545 | ||
Application of Micro- and Nanotechnology in Photovoltaics | 546 | ||
1.23.1 Introduction | 546 | ||
1.23.2 Application of Micro and Nanotechnologies to Conventional PV | 548 | ||
1.23.2.1 Improved Performance | 549 | ||
1.23.2.2 Process Improvements | 552 | ||
1.23.3 Nanoarchitectures | 554 | ||
1.23.3.1 Nanocomposites | 554 | ||
1.23.3.2 Nano/Microwires | 555 | ||
1.23.4 Quantum Structures | 556 | ||
1.23.4.1 Multi-Exciton Generation | 556 | ||
1.23.4.2 Hot Carriers | 557 | ||
1.23.4.3 Intermediate Bands | 558 | ||
1.23.4.4 Plasmonics | 558 | ||
1.23.5 Outlook | 559 | ||
1.23.6 Conclusions | 560 | ||
References | 560 | ||
Upconversion | 564 | ||
1.24.1 Introduction | 564 | ||
1.24.2 Single Threshold Solar Cells | 565 | ||
1.24.3 Upconversion-Assisted Solar Cells: Equivalent Circuits | 566 | ||
1.24.4 Solar Concentration | 569 | ||
1.24.5 Definition of Upconversion Efficiency | 569 | ||
1.24.5.1 Monochromatic Optical Efficiency | 570 | ||
1.24.5.2 Photoelectrical Efficiency | 571 | ||
1.24.6 Practical Implementation | 571 | ||
1.24.6.1 Rare Earths | 571 | ||
1.24.6.2 Upconversion with Organic Molecules | 572 | ||
1.24.6.3 Comparison between Organics and Rare Earths | 577 | ||
1.24.7 Prospects | 577 | ||
References | 578 | ||
Further Reading | 579 | ||
Downconversion | 580 | ||
1.25.1 Introduction | 580 | ||
1.25.2 Equivalent Circuits | 581 | ||
1.25.3 Practical Applications | 585 | ||
1.25.3.1 QC in Rare-Earth Materials | 586 | ||
1.25.3.2 MEG in Semiconductor Nanostructures | 588 | ||
1.25.3.3 SF in Organic Materials | 590 | ||
1.25.4 Prospects | 591 | ||
References | 591 | ||
Down-Shifting of the Incident Light for Photovoltaic Applications | 594 | ||
1.26.1 Introduction | 594 | ||
1.26.2 The Down-Shifting Concept | 596 | ||
1.26.3 Luminescent Down-Shifters Applied for Solar Cells | 598 | ||
1.26.3.1 Silicon-Based Solar Cells | 598 | ||
1.26.3.2 Gallium Arsenide-Based Devices | 599 | ||
1.26.3.3 Cadmium-Based Solar Cells | 599 | ||
1.26.3.4 Organic-Based Solar Cells | 600 | ||
1.26.3.5 Critical Parameters | 600 | ||
1.26.4 Simulation Approach – Modeling of the Spectral Response | 602 | ||
1.26.4.1 Limit for the Efficiency | 602 | ||
1.26.4.2 Modeling of the Spectral Response | 603 | ||
1.26.5 Rare Earth-Based Down-Shifting Layers | 604 | ||
1.26.5.1 Radiative and Nonradiative Transitions | 605 | ||
1.26.5.2 Energy Transfer | 605 | ||
1.26.5.3 Efficiency of Rare Earth Ions in Down-Shifting Layers | 605 | ||
1.26.6 Quantum Dots-Based Down-Shifting Layers | 606 | ||
1.26.6.1 Quantum Size Effects | 607 | ||
1.26.6.2 Efficiency of Quantum Dots in Down-Shifting Layers | 607 | ||
1.26.7 Organic Dyes-Based Down-Shifting Layers | 609 | ||
1.26.7.1 Optical Properties | 609 | ||
1.26.7.2 Efficiency of Organic Dyes in Down-Shifting Layers | 610 | ||
1.26.8 Commercial Applications and Patents | 611 | ||
1.26.8.1 Patents and Down-Shifting Technology | 611 | ||
1.26.8.2 Commercial Applications | 612 | ||
1.26.9 Conclusions | 613 | ||
Acknowledgment | 614 | ||
References | 614 | ||
Luminescent Solar Concentrator | 618 | ||
1.27.1 Introduction | 618 | ||
1.27.2 Theory of Luminescent Solar Concentrators | 619 | ||
1.27.2.1 The Factors that Determine the Efficiency of Luminescent Concentrator Systems | 619 | ||
1.27.2.2 Thermodynamic Efficiency Limits | 620 | ||
1.27.2.3 Thermodynamic Models of the Luminescent Concentrator | 621 | ||
1.27.2.4 Ray Tracing Simulations of Luminescent Concentrators | 623 | ||
1.27.3 Materials for Luminescent Solar Concentrators | 624 | ||
1.27.3.1 Organic Dyes | 624 | ||
1.27.3.2 Inorganic Luminescent Materials | 625 | ||
1.27.4 Luminescent Solar Concentrator System Designs and Achieved Results | 625 | ||
1.27.4.1 System Designs | 625 | ||
1.27.4.2 Achieved System Efficiencies | 626 | ||
1.27.5 The Future Development of Luminescent Solar Concentrators | 627 | ||
1.27.5.1 Extending the Used Spectral Range into the IR | 627 | ||
1.27.5.2 Controlling Escape Cone Losses | 627 | ||
1.27.6 Conclusion | 630 | ||
Acknowledgments | 630 | ||
References | 630 | ||
Thermophotovoltaics | 634 | ||
1.28.1 Introduction | 634 | ||
1.28.2 Thermophotovoltaic System | 635 | ||
1.28.2.1 Heat Source | 636 | ||
1.28.2.2 Selective Emitter | 636 | ||
1.28.2.3 Filter | 638 | ||
1.28.2.4 Thermophotovoltaic Cells | 639 | ||
1.28.3 TPV Cells | 639 | ||
1.28.3.1 Introduction | 639 | ||
1.28.3.2 Possible Materials | 639 | ||
1.28.3.3 TPV Cells Based on GaSb | 639 | ||
1.28.3.4 TPV Cells Based on InGaAs/InP | 641 | ||
1.28.3.5 TPV Cells on InGaSb Substrates | 641 | ||
1.28.3.6 Low-Band Gap TPV Cells Based on InAsSbP | 642 | ||
1.28.3.7 Germanium-Based Cells | 642 | ||
1.28.4 TPV Concepts | 643 | ||
1.28.4.1 Solar Thermophotovoltaic | 643 | ||
1.28.4.2 Micron-Gap ThermoPhotoVoltaics | 644 | ||
1.28.4.3 Radioisotope Thermophotovoltaics | 644 | ||
1.28.5 TPV Systems | 645 | ||
1.28.5.1 Introduction | 645 | ||
1.28.5.2 Midnight Sun | 645 | ||
1.28.5.3 TPV Prototype System Built by PSI | 646 | ||
1.28.6 TPV Market Potential | 647 | ||
1.28.7 Summary and Outlook | 647 | ||
References | 648 | ||
Intermediate Band Solar Cells | 650 | ||
1.29.1 Introduction | 650 | ||
1.29.2 Theoretical Model of the Intermediate Band Solar Cell | 650 | ||
1.29.3 The Impurity-Based Approach or ‘Bulk IBSC’ | 655 | ||
1.29.4 The QD-IBSC | 659 | ||
1.29.4.1 The Use of QDs for Implementing an IBSC | 659 | ||
1.29.4.2 QD-IBSC Prototypes | 661 | ||
1.29.4.3 Proof of the Concept | 662 | ||
1.29.4.4 Strategies to Boost the Efficiency of the QD-IBSC | 663 | ||
1.29.5 Summary | 666 | ||
Acknowledgments | 668 | ||
References | 668 | ||
Plasmonics for Photovoltaics | 672 | ||
1.30.1 Introduction | 672 | ||
1.30.2 Background | 673 | ||
1.30.3 Surface Plasmons | 673 | ||
1.30.3.1 General | 673 | ||
1.30.3.2 Scattering Mechanism | 675 | ||
1.30.3.3 Effect of Size | 675 | ||
1.30.3.4 Effect of Shape | 676 | ||
1.30.3.5 Effect of Material Properties | 677 | ||
1.30.3.6 Effect of Dielectric Medium | 677 | ||
1.30.3.7 Effect of Surface Coverage | 678 | ||
1.30.3.8 Nanoparticle Location | 679 | ||
1.30.4 Nanoparticle Fabrication | 682 | ||
1.30.5 Applications of Plasmonics in PV | 683 | ||
1.30.6 Potential of Plasmonics for Third-Generation Solar Cells | 684 | ||
1.30.7 Future Outlook | 685 | ||
1.30.8 Conclusion | 686 | ||
Acknowledgments | 686 | ||
References | 686 | ||
Artificial Leaves: Towards Bio-Inspired Solar Energy Converters | 688 | ||
1.31.1 The Design of Natural Photosynthesis | 688 | ||
1.31.1.1 Photosynthetic Light-Harvesting Antennae | 689 | ||
1.31.1.2 Photosynthetic RCs | 690 | ||
1.31.1.3 Supramolecular Organization | 691 | ||
1.31.2 Design Principles of Natural Photosynthesis | 694 | ||
1.31.2.1 Photon Absorption, Excitation Energy Transfer, and Electron Transfer | 694 | ||
1.31.2.2 Photochemical Thermodynamics of Energy Storage | 695 | ||
1.31.3 The Design of an Artificial Leaf | 697 | ||
1.31.3.1 Interfacing Proteins onto Solid-State Surfaces | 697 | ||
1.31.3.2 Protein Maquettes for Artificial Photosynthesis | 698 | ||
1.31.3.3 Bio-Inspired Self-assembled Artificial Antennae | 700 | ||
1.31.3.4 Bio-Inspired DA Constructs | 701 | ||
1.31.4 Outlook: The Construction of a Fuel-Producing Solar Cell | 705 | ||
References | 706 | ||
Further reading | 708 | ||
Design and Components of Photovoltaic Systems | 710 | ||
1.32.1 Introduction | 710 | ||
1.32.2 PV Cells and Modules | 711 | ||
1.32.2.1 Solar Cells | 711 | ||
1.32.3 Balance of System | 716 | ||
1.32.3.1 Inverters | 716 | ||
1.32.3.2 Mounting Structures | 717 | ||
1.32.3.3 Batteries | 718 | ||
1.32.3.4 Charge Regulators | 718 | ||
1.32.4 PV System Design | 718 | ||
1.32.4.1 Hybrid Solar–Diesel System for Mandhoo Island | 718 | ||
1.32.4.2 100MW PV Plant in Abu Dhabi Desert Area | 721 | ||
1.32.5 Conclusions | 725 | ||
References | 726 | ||
BIPV in Architecture and Urban Planning | 728 | ||
1.33.1 Introduction | 728 | ||
1.33.1.1 Building Integration of Photovoltaics Will Be the Future | 728 | ||
1.33.1.2 Definition of Building Integration | 729 | ||
1.33.2 Photovoltaics in the Urban Planning Process | 730 | ||
1.33.2.1 Planning for Renewables | 730 | ||
1.33.2.2 Site Layout and Solar Access | 730 | ||
1.33.2.3 Successful Implementation | 730 | ||
1.33.2.4 Long-Term Operation | 730 | ||
1.33.3 Steps in the Design Process with BIPV | 731 | ||
1.33.3.1 Urban Planning – Related Design Aspects | 731 | ||
1.33.3.2 Practical Rules for Integration | 732 | ||
1.33.3.3 Step-by-Step Design | 733 | ||
1.33.3.4 Design Process: Strategic Planning | 733 | ||
1.33.4 BIPV in Architecture | 734 | ||
1.33.4.1 Architectural Functions of PV Modules | 734 | ||
1.33.4.2 PV Integrated as Roofing Louvres, Façades, and Shading Devices | 736 | ||
1.33.4.3 Architectural Criteria for Well-Integrated Systems | 736 | ||
1.33.4.4 Integration of PV Modules in Architecture | 737 | ||
1.33.5 Concluding Remarks | 737 | ||
References | 738 | ||
Further Reading | 738 | ||
Product-Integrated Photovoltaics | 740 | ||
1.34.1 Introduction | 740 | ||
1.34.1.1 What Is PIPV? | 740 | ||
1.34.1.2 The Structure of This Chapter | 742 | ||
1.34.2 Overview of Existing PIPV | 742 | ||
1.34.2.1 The Early Days of PIPV | 742 | ||
1.34.2.2 Lighting Products with Integrated PV | 743 | ||
1.34.2.3 Business-to-Business Applications with Integrated PV | 743 | ||
1.34.2.4 Recreational Products with Integrated PV | 744 | ||
1.34.2.5 Vehicles and Transportation | 745 | ||
1.34.2.6 Arts | 745 | ||
1.34.3 Designing Products with Integrated PV | 747 | ||
1.34.3.1 Area Constraints in Design | 747 | ||
1.34.3.2 Design Processes and PIPV | 747 | ||
1.34.4 Technical Aspects of PIPV | 748 | ||
1.34.4.1 PV Cells | 748 | ||
1.34.4.2 Irradiance and Solar Cell Performance | 751 | ||
1.34.4.3 Rechargeable Batteries | 753 | ||
1.34.5 System Design and Energy Balance | 754 | ||
1.34.5.1 Irradiance | 755 | ||
1.34.5.2 PV Power Conversion | 755 | ||
1.34.5.3 Electronic Conversions | 755 | ||
1.34.5.4 Efficiency of the Storage Device | 755 | ||
1.34.5.5 Power Consumption | 755 | ||
1.34.6 Costs of PIPV | 756 | ||
1.34.7 Environmental Aspects of PIPV | 756 | ||
1.34.8 Human Factors of PIPV | 758 | ||
1.34.9 Design and Manufacturing of PIPV | 759 | ||
1.34.10 Outlook on PIPV and Conclusions | 761 | ||
References | 761 | ||
Further Reading | 763 | ||
Very Large-Scale Photovoltaic Systems | 764 | ||
1.35.1 What is Very Large-Scale Photovoltaic System? | 764 | ||
1.35.1.1 Definition of Very Large-Scale Photovoltaic | 764 | ||
1.35.1.2 Multibenefit Approach | 764 | ||
1.35.1.3 Deployment Strategies | 765 | ||
1.35.2 Evaluation of the VLS-PV from Various Aspects | 765 | ||
1.35.2.1 Energy Potential | 765 | ||
1.35.2.2 Economics of VLS-PV | 767 | ||
1.35.2.3 Technologies for VLS-PV | 768 | ||
1.35.2.4 Environmental Aspects | 768 | ||
1.35.3 Progress in VLS-PV | 770 | ||
1.35.3.1 VLS-PV as a Dream | 770 | ||
1.35.3.2 Dream to Reality | 770 | ||
1.35.3.3 Emerging New Initiatives in MENA Regions | 770 | ||
1.35.4 Future for the VLS-PV | 772 | ||
1.35.4.1 Sustainability Issues | 772 | ||
1.35.4.2 VLS-PV Visions and Roadmap | 774 | ||
1.35.5 Conclusion | 774 | ||
References | 775 | ||
Concentration Photovoltaics | 776 | ||
1.36.1 Introduction | 776 | ||
1.36.1.1 Cells | 777 | ||
1.36.1.2 Thermal Management | 778 | ||
1.36.1.3 Optics | 778 | ||
1.36.1.4 Modules | 779 | ||
1.36.1.5 Tracking Systems | 779 | ||
1.36.2 Historical Review | 780 | ||
1.36.3 Standardization of CPV Systems and Components | 780 | ||
1.36.4 ISFOC CPV Demonstration Power Plants | 781 | ||
1.36.4.1 Puertollano – La Nava | 781 | ||
1.36.4.2 Concentrix – El Villar | 782 | ||
1.36.4.3 SolFocus – Almoguera | 782 | ||
1.36.4.4 Regulatory Framework | 782 | ||
1.36.4.5 Engineering, Construction, and Commissioning of CPV Plants | 784 | ||
1.36.5 CPV Characterization and Rating | 785 | ||
1.36.5.1 Procedure | 786 | ||
1.36.5.2 Standard Test Conditions | 786 | ||
1.36.5.3 DC Rating Procedure | 786 | ||
1.36.5.4 AC Rating Procedure | 789 | ||
1.36.5.5 Status and Results | 790 | ||
1.36.6 Production Results | 791 | ||
1.36.6.1 Performance | 791 | ||
1.36.6.2 Operation and Maintenance | 793 | ||
1.36.7 Outlook | 794 | ||
References | 795 | ||
Further Reading | 796 | ||
Relevant Websites | 796 | ||
Solar Power Satellites | 798 | ||
1.37.1 Background and Historical Development | 798 | ||
1.37.2 Power-Beaming Fundamentals | 799 | ||
1.37.2.1 Efficiency of Microwave Transmission | 799 | ||
1.37.2.2 Spot Diameter | 799 | ||
1.37.2.3 Minimum Power Level for Microwave Beaming | 800 | ||
1.37.2.4 Can a Large Aperture Be Synthesized from Many Small Transmitters? | 801 | ||
1.37.2.5 Power Transmission by Laser Beaming | 801 | ||
1.37.3 Why Put Solar in Space? | 801 | ||
1.37.3.1 Continuous Sunlight | 802 | ||
1.37.3.2 Sun Pointing | 802 | ||
1.37.3.3 No Atmosphere | 802 | ||
1.37.3.4 Summation: How Much More Power Do You Get by Putting the Cells in Space? | 802 | ||
1.37.3.5 Future Evolution | 802 | ||
1.37.4 Is Geosynchronous the Right Orbit? | 803 | ||
1.37.5 The Economic Case | 803 | ||
1.37.5.1 Quick and Dirty Economics | 803 | ||
1.37.6 Beaming Power to Space: A First Step to SPS? | 804 | ||
1.37.7 Summary Points to Ponder | 805 | ||
References | 805 | ||
Performance Monitoring | 806 | ||
1.38.1 Introduction | 806 | ||
1.38.2 Defining Photovoltaic Performance | 807 | ||
1.38.2.1 System Efficiency | 807 | ||
1.38.2.2 System Yield | 807 | ||
1.38.2.3 Performance Ratio | 808 | ||
1.38.2.4 Performance of Stand-Alone Systems | 808 | ||
1.38.3 Module Energy Prediction | 809 | ||
1.38.4 PV Systems – Performance Prediction | 812 | ||
1.38.5 PV Module Performance Monitoring in Practice | 812 | ||
1.38.6 PV System Performance Monitoring in Practice | 814 | ||
1.38.6.1 Measurements and Sensors | 814 | ||
1.38.6.2 Monitoring in Practice | 815 | ||
1.38.7 Summary | 816 | ||
References | 816 | ||
Standards in Photovoltaic Technology | 818 | ||
1.39.1 History | 818 | ||
1.39.1.1 The Early PV Development in the United States | 818 | ||
1.39.1.2 Establishment of IEC TC82 | 819 | ||
1.39.1.3 The European Commission’s Joint Research Centre | 819 | ||
1.39.1.4 The Early IEC Standards | 819 | ||
1.39.1.5 The Working Groups | 820 | ||
1.39.2 Standards for Performance Determination of PV Devices | 820 | ||
1.39.2.1 Introduction | 820 | ||
1.39.2.2 Performance Determination of PV Devices | 820 | ||
1.39.2.3 Existing IEC Standards | 821 | ||
1.39.2.4 Discussion and Conclusion | 823 | ||
1.39.3 Reliability Testing of PV Modules | 824 | ||
1.39.3.1 Introduction | 824 | ||
1.39.3.2 The Beginning of an International Standard for Type Approval Testing | 824 | ||
1.39.3.3 Weathering Test or Dedicated Stress to Identify Failure Mechanisms | 824 | ||
1.39.3.4 Type Approval Testing | 824 | ||
1.39.3.5 Pass/Fail Criteria | 824 | ||
1.39.3.6 Environmental Testing | 825 | ||
1.39.3.7 Correlation of Reliability Testing with Lifetime | 826 | ||
1.39.4 Energy Performance and Energy Rating | 826 | ||
1.39.5 Concentrating PV Standards | 828 | ||
1.39.5.1 CPV Design Qualification IEC 62108 | 828 | ||
1.39.5.2 Other Standards in Preparation | 829 | ||
1.39.6 Outlook | 830 | ||
1.39.6.1 New Technologies | 830 | ||
1.39.6.2 Major Markets | 830 | ||
1.39.6.3 TC82 Priorities | 830 | ||
1.39.7 Conclusion | 830 | ||
Appendix | 831 | ||
Past Chairmen of TC82 | 831 | ||
References | 833 | ||
e9780080878720v8 | 4029 | ||
Cover\r | 4029 | ||
Comprehensive Renewable Energy | 4030 | ||
Copyright | 4033 | ||
Editor-In-Chief | 4034 | ||
Volume Editors | 4036 | ||
Contributors For All Volumes | 4040 | ||
Preface | 4048 | ||
Contents | 4052 | ||
Generating Electrical Power from Ocean Resources | 4060 | ||
8.01.1 Introduction | 4060 | ||
8.01.2 Wave Energy Conversion | 4060 | ||
8.01.3 Marine Current Energy Conversion | 4061 | ||
8.01.4 Technology Development Assessment | 4062 | ||
8.01.5 Prototype Device Development and Commercial Farms | 4063 | ||
8.01.6 Future Prospects | 4064 | ||
Acknowledgments | 4065 | ||
References | 4065 | ||
Historical Aspects of Wave Energy Conversion | 4066 | ||
8.02.1 Introduction | 4066 | ||
8.02.2 The Wave Energy Resource | 4067 | ||
8.02.3 Wave Energy Technologies | 4067 | ||
8.02.4 Conclusion | 4068 | ||
References | 4068 | ||
Resource Assessment for Wave Energy | 4070 | ||
8.03.1 Introduction | 4071 | ||
8.03.2 Mathematical Description of Ocean Waves | 4071 | ||
8.03.2.1 Regular Waves | 4071 | ||
8.03.2.2 Irregular Waves | 4072 | ||
8.03.3 Estimating WEC Power | 4079 | ||
8.03.4 Wave Measurements and Modeling | 4082 | ||
8.03.4.1 Wave Measurements from Moored Buoys | 4082 | ||
8.03.4.2 Wave Measurements from Satellite Altimeters | 4090 | ||
8.03.4.3 Numerical Wave Models | 4104 | ||
8.03.5 Variability and Predictability of WEC Yield | 4109 | ||
8.03.5.1 Sampling Variability | 4110 | ||
8.03.5.2 Synoptic and Seasonal Variability | 4110 | ||
8.03.5.3 Interannual and Climatic Variability | 4110 | ||
8.03.6 Estimation of Extremes | 4111 | ||
8.03.6.1 Introduction | 4111 | ||
8.03.6.2 Short-Term Distributions of Wave and Crest Heights | 4111 | ||
8.03.6.3 Long-Term Distributions of Extreme Sea States | 4113 | ||
8.03.6.4 Combining Long-Term and Short-Term Distributions | 4129 | ||
References | 4132 | ||
Development of Wave Devices from Initial Conception to Commercial Demonstration | 4138 | ||
8.04.1 A Structured Program to Mitigate Risk – The TRL Approach | 4139 | ||
8.04.2 Funding Opportunities | 4141 | ||
8.04.2.1 Funding for Device Development | 4141 | ||
8.04.2.2 Further Support | 4142 | ||
8.04.3 Physical Model Testing and Similarity | 4143 | ||
8.04.3.1 Introduction | 4143 | ||
8.04.3.2 Similarity between Physical Model and Full-Scale Prototype | 4144 | ||
8.04.3.3 Design and Testing of Physical Scale Models in the Laboratory | 4147 | ||
8.04.4 Sea Trials of Large-Scale Prototypes | 4155 | ||
8.04.4.1 Introduction | 4155 | ||
8.04.4.2 Sea Trials with Scale Models | 4156 | ||
8.04.4.3 Sea Trials with Full-Scale Prototypes | 4156 | ||
8.04.4.4 Sea Trials with WECs in an Array | 4160 | ||
8.04.5 Frequency versus Time Domain | 4163 | ||
8.04.5.1 Introduction | 4163 | ||
8.04.5.2 Frequency Domain | 4163 | ||
8.04.5.3 Time Domain | 4167 | ||
References | 4168 | ||
Air Turbines | 4170 | ||
8.05.1 Introduction | 4170 | ||
8.05.2 Basic Equations | 4171 | ||
8.05.3 Two-Dimensional Cascade Flow Analysis of Axial-Flow Turbines | 4172 | ||
8.05.3.1 Wells Turbine | 4173 | ||
8.05.3.2 Self-Rectifying Impulse Turbine | 4179 | ||
8.05.3.3 Wells Turbine versus Impulse Turbine | 4181 | ||
8.05.4 Three-Dimensional Flow Analysis of Axial-Flow Turbines | 4182 | ||
8.05.5 Model Testing of Air Turbines | 4183 | ||
8.05.5.2 Test Rigs | 4184 | ||
8.05.6 Wells Turbine Performance | 4185 | ||
8.05.6.1 Advanced Wells Turbine Configurations | 4187 | ||
8.05.7 Performance of Self-Rectifying Axial-Flow Impulse Turbine | 4190 | ||
8.05.8 Other Air Turbines for Bidirectional Flows | 4191 | ||
8.05.8.1 Denniss-Auld Turbine | 4191 | ||
8.05.8.2 Radial-Flow Self-Rectifying Impulse Turbine | 4195 | ||
8.05.8.3 Twin Unidirectional Impulse Turbine Topology | 4196 | ||
8.05.9 Some Air Turbine Prototypes | 4198 | ||
8.05.10 Turbine Integration into OWC Plant | 4200 | ||
8.05.10.1 Hydrodynamics of OWC | 4200 | ||
8.05.10.2 Linear Turbine | 4201 | ||
8.05.10.3 Nonlinear Turbine | 4204 | ||
8.05.10.4 Valve-Controlled Air Flow | 4205 | ||
8.05.10.5 Noise | 4205 | ||
8.05.11 Conclusions | 4205 | ||
References | 4206 | ||
Economics of Ocean Energy | 4210 | ||
8.06.1 Introduction | 4210 | ||
8.06.2 Cost Estimates of Wave and Tidal Stream Systems | 4211 | ||
8.06.3 The Capital Investment Decision | 4212 | ||
8.06.3.1 Discounting: Present Value | 4212 | ||
8.06.3.2 Net Present Value | 4213 | ||
8.06.3.3 Discounted COE | 4213 | ||
8.06.3.4 Discount Rates | 4214 | ||
8.06.3.5 Strategy | 4214 | ||
8.06.4 Capital Costs | 4214 | ||
8.06.4.1 Preliminary Works | 4215 | ||
8.06.4.2 Marine Energy Devices | 4215 | ||
8.06.4.3 Civil Engineering Infrastructure | 4215 | ||
8.06.4.4 Electrical Infrastructure | 4216 | ||
8.06.4.5 Site to Grid Transmission | 4216 | ||
8.06.4.6 Deployment | 4217 | ||
8.06.4.7 Decommissioning | 4217 | ||
8.06.5 Operating Costs | 4217 | ||
8.06.5.1 Periodic Expenditures | 4218 | ||
8.06.5.2 Planned Maintenance | 4218 | ||
8.06.5.3 Unplanned Maintenance | 4218 | ||
8.06.6 Vessels for Offshore Work | 4219 | ||
8.06.6.1 Vessel Type and Unit Cost | 4219 | ||
8.06.6.2 Duration of Offshore Vessel Use | 4219 | ||
8.06.6.3 Vessel Cost Summary | 4221 | ||
8.06.7 Revenue | 4221 | ||
8.06.7.1 Energy Production | 4221 | ||
8.06.7.2 Value of a Unit of Electricity | 4222 | ||
8.06.8 Future Prospects | 4223 | ||
8.06.8.1 Evolution of Costs in the Marine Sector | 4223 | ||
8.06.8.2 Mechanisms for Cost Evolution | 4225 | ||
8.06.8.3 Summary | 4227 | ||
References | 4227 | ||
Further Reading | 4228 | ||
Index\r | 4230 | ||
Permission Acknowledgments | 4384 |