Menu Expand
Treatise on Estuarine and Coastal Science

Treatise on Estuarine and Coastal Science

Donald McLusky | Eric Wolanski

(2012)

Abstract

The study of estuaries and coasts has seen enormous growth in recent years, since changes in these areas have a large effect on the food chain, as well as on the physics and chemistry of the ocean. As the coasts and river banks around the world become more densely populated, the pressure on these ecosystems intensifies, putting a new focus on environmental, socio-economic and policy issues.

Written by a team of international expert scientists, under the guidance of Chief Editors Eric Wolanski and Donald McClusky, the Treatise on Estuarine and Coastal Science examines topics in depth, and aims to provide a comprehensive scientific resource for all professionals and students in the area of estuarine and coastal science

  • Most up-to-date reference for system-based coastal and estuarine science and management, from the inland watershed to the ocean shelf
  • Chief editors have assembled a world-class team of volume editors and contributing authors
  • Approach focuses on the physical, biological, chemistry, ecosystem, human, ecological and economics processes, to show how to best use multidisciplinary science to ensure earth's sustainability
  • Provides a comprehensive scientific resource for all professionals and students in the area of estuarine and coastal science
  • Features up-to-date chapters covering a full range of topics

Table of Contents

Section Title Page Action Price
e9780123747112v1 1
Cover\r 1
Treatise On Estuarine And Coastal Science 2
Copyright 5
Contents Of Volume 1 6
Volume Editors 8
Editors-In-Chief: Biographies 10
Volume Editors: Biographies 12
Contributors Of All Volumes 22
Contents Of All Volumes 32
Preface 38
Introduction to Classification of Estuarine and Nearshore Coastal Ecosystems 42
1.01.1 Purpose and Scope of Volume 42
1.01.2 Concept and Definition of Classification 43
1.01.2.1 Emergence of Scientific Classification 43
1.01.2.2 Rationale and Need for Classification 43
1.01.2.3 Approaches and Criteria 44
1.01.3 Contents of Volume 1: Diverse Approaches to’Estuary and Nearshore Coast Classification 44
1.01.3.1 Introduction to Classification of Estuarine and’Nearshore Coastal Ecosystems – Charles Simenstad and’Tetsuo Yanagi 44
1.01.3.2 Global Variability in Estuaries and Coastal Settings \r– Gerardo M.E. Perillo and M. Cintia Piccolo (see also Chapter•1.02) 44
1.01.3.3 Tectonic and Geomorphic Evolution of Estuaries and’Coasts – David Kennedy (see also Chapter 1.03) 44
1.01.3.4 Classes of Nearshore Coasts – Megan Dethier and \rJohn Harper (see also Chapter 1.04) 45
1.01.3.5 Classification of Estuarine Circulation – Arnoldo Valle-Levinson (see also Chapter 1.05) 45
1.01.3.6 Variation among Estuarine Geochemistry and Productivity – Wally Fulweiler and M. Bartoli (see also Chapter \r1.06) 45
1.01.3.7 Ecosystem and Biotic Classifications of Estuaries and’Coasts – Alan Whitfield and Michael Elliott (see also Chapter 1.07) 45
1.01.3.8 Classifying Ecological Quality and Integrity of Estuaries – Angel Borja, Alberto Basset, Suzanne Bricker, Jean-Claude Dauvin, Mike Elliott, Trevor Harrison, Joao-Carlos Marques, Stephen B. Weisberg, and Ron West (see also Chapter 1.08) 45
1.01.3.9 Application of Estuarine and Coastal Classifications in Marine Spatial Management – Simon Pittman, David Connor, Lynda Radke, and Dawn Wright (see also Chapter 1.09) 46
1.01.3.10 Resource Base: Global Distribution and Characteristics of Estuaries and Associated Coastal Shores’– Keita Furukawa (see also Chapter 1.10) 46
1.01.4 Issues 46
1.01.4.1 Objectives of Classification 46
1.01.4.2 Limiting Factors 46
1.01.4.3 Challenges 47
1.01.5 Need to Integrate Physical, Geochemical, Ecological, Management, and Social Information 47
1.01.6 Summary 47
e9780123747112v2 270
Cover\r 270
Treatise On Estuarine And Coastal Science 271
Copyright 274
Contents Of Volume 2\r 275
Volume Editors 277
Editors-In-Chief: Biographies 279
Volume Editors: Biographies 281
Contributors Of All Volumes 291
Contents Of All Volumes 301
Preface\r 307
Water and Fine-Sediment Circulation 311
2.01.1 Introduction 311
2.01.2 Buoyancy and Its Consequences 312
2.01.3 Barotropic and Wind-Driven Motions 313
2.01.4 Coastal and Estuarine Interactions 315
2.01.5 Biological Interactions and Sediments 316
2.01.6 Measurements and Modeling 316
2.01.7 Final Remarks 317
Acknowledgments 317
References 317
Turbulence and Stratification in Estuaries and Coastal Seas 319
2.02.1 Introduction 320
2.02.2 Turbulence, Shear, and Stratification 320
2.02.3 Turbulence in Estuaries 326
2.02.4 Turbulence in River Plumes 333
2.02.5 Turbulence in Coastal Seas 337
References 343
The Dynamics of Strongly Stratified Estuaries 347
2.03.1 Introduction 347
2.03.2 Parameters Controlling Estuarine Stratification 349
2.03.3 The Two-Layer Equations 351
2.03.4 Salt Wedge Dynamics 352
2.03.5 Fjord Dynamics 356
2.03.6 Unresolved Questions and Prospects for Future’Research 359
References 361
Small-Scale Surface Fronts in Estuaries 363
2.04.1 Introduction 363
2.04.2 Plume Fronts 365
2.04.3 Axial Convergence Fronts 368
2.04.4 Tidal Intrusion Fronts 371
2.04.5 Shear Fronts 377
2.04.6 Summary and Discussion 381
2.04.7 Final Remarks 382
Acknowledgments 383
References 383
Residual Circulation, Mixing, and Dispersion 385
2.05.1 Introduction 385
2.05.2 Salt Balance 385
2.05.3 Physics of the Gravitational Circulation 390
2.05.4 Physics of Tidal Salt Flux and Dispersion 395
2.05.5 Summary and Conclusions 397
Acknowledgments 398
References 398
Free Surface Motions: Tides, Seiches, and Subtidal Variations 401
2.06.1 The Governing Equations for Estuaries and Coastal Regions 401
2.06.2 Some More Simplifications for Barotropic Motions 403
2.06.3 Tidal Oscillations or Seiche within One-dimensional Channels with Constant Width and’Depth 404
2.06.4 Importance of Rotation 406
2.06.5 Tidal Oscillations or Seiche within Two-Dimensional Channels with Constant Width and’Variable Depth 408
2.06.6 Tidal Oscillations or Seiche within Three-Dimensional Channels with Constant Width and Variable Depth 413
2.06.7 Sub-Tidal Flows – Idealized Models 415
2.06.8 Sub-Tidal Flows – Observations 420
2.06.9 Sub-Tidal Flows – Separation of Tidally-Driven and Density-Driven Flows from Observations 423
2.06.10 Effect of Channel Curvature 426
References 431
Dynamics of Hypersaline Estuaries: Laguna San Ignacio, Mexico 451
2.08.1 Introduction 451
2.08.2 Background 451
2.08.3 The Fluctuating Tide 454
2.08.4 Residual Tidal Circulation 455
2.08.5 Wind-Driven Circulation 456
2.08.6 Density-Driven Circulation 457
2.08.7 Synthesis 458
References 458
Large Estuaries (Effects of Rotation) 433
2.07.1 Introduction 433
2.07.2 Tidal Residual Flow 433
2.07.3 Wind-Driven Flow 438
2.07.4 Density-Driven Flows 441
2.07.5 Density-Driven Flows Interacting with Tidal Flows 444
2.07.6 Density-Driven Flows Interacting with Tides and’Wind 445
2.07.7 Conclusions 448
References 449
Wind Stresses on Estuaries 461
2.09.1 Introduction 461
2.09.2 The Logarithmic Layer 462
2.09.3 Local Wind Stress in an Estuary 465
2.09.4 Remote Wind Forcing 470
2.09.5 Modeling Wind Stresses in Stratified, Tidal Systems 472
2.09.6 Discussion 475
References 476
Waves in Coastal and Estuarine Waters 481
2.10.1 Introduction 481
2.10.2 Waves in Shallow Water 482
2.10.3 Observing Waves in Shallow Water 487
2.10.4 Wave Climate 488
2.10.5 Wave Modeling 490
2.10.6 Wave–Current Interaction 503
2.10.7 Coastal Engineering 512
2.10.8 Summary 517
Acknowledgments 518
References 518
Further Reading 522
Relevant Websites 522
Interactions between Estuaries and Coasts: River Plumes - Their Formation, Transport, and Dispersal 523
2.11.1 Introduction 523
2.11.2 Scaling of River Plumes 524
2.11.3 The Near Field 525
2.11.4 Plume Structure 527
2.11.5 Upwelling Winds 530
2.11.6 Downwelling Winds 536
2.11.7 Bulge Formation 536
References 544
Coastal Circulation 547
2.12.1 Introduction 548
2.12.2 Tidally Driven Circulation 551
2.12.3 Density-Driven Circulation 557
2.12.4 Wind-Driven Circulation 564
2.12.5 Topographically Driven Circulation 565
2.12.6 Case Study: Liverpool Bay 565
2.12.7 Ways Forward 570
References 575
Relevant Websites 576
Flow Over and Through Biota 577
2.13.1 Introduction: Scales of Morphology and Flow 577
2.13.2 Flow at the Scale of Individual Blades and Branches 577
2.13.3 Community-Scale: Meadows, Forests, and Reefs 580
2.13.4 Conclusions 596
Acknowledgments 596
References 596
Biological Influences on Sediment Behavior and Transport 599
2.14.1 Introduction 599
2.14.2 Effect of Microphytobenthos and Macrofauna on Sediment Erodibility 599
2.14.3 Biological Influence on Sediment Aggregation and Settling Velocity 607
2.14.4 Vegetation and Sediment Transport 611
2.14.5 Modeling of Biological Impact on Sediment Accumulation 614
2.14.6 Conclusion 617
References 617
The Physical Analyses of Muddy Sedimentation Processes 621
2.15.1 Introduction 621
2.15.2 Classification of Transport Modes 623
2.15.3 Settling and Deposition from Suspension 626
2.15.4 Hindered Settling and Consolidation 637
2.15.5 Bed Properties 642
2.15.6 Erosion 650
2.15.7 Fluid Mud Behavior 658
References 669
Measurement Technologies: Measure What, Where, Why, and How? 671
2.16.1 Introduction 672
2.16.2 In Situ Measurements 675
2.16.3 Remote Sensing 692
2.16.4 Real-Time Monitoring 699
2.16.5 Developing a Monitoring Strategy 701
Acknowledgments 702
References 702
Relevant Websites 704
Modeling of Estuarine and Coastal Waters 705
2.17.1 Introduction 706
2.17.2 The Governing Equations 706
2.17.3 Data Assimilation 709
2.17.4 Examples of Current 3D Models and Their Applications 711
2.17.5 Depth-Averaged 2D Models and Their Applications 721
2.17.6 Long Timescale Models 727
2.17.7 Final Remarks 733
Acknowledgments 734
References 734
Relevant Websites 737
e9780123747112v3 739
Cover\r 739
Treatise On Estuarine And Coastal Science 740
Copyright 743
Contents Of Volume 1 744
Volume Editors 746
Editors-In-Chief: Biographies 748
Volume Editors: Biographies 750
Contributors Of All Volumes 760
Contents Of All Volumes 770
Preface\r 776
Estuarine and Coastal Geology and Geomorphology -\r A Synthesis 780
3.01.1 Rationale 780
3.01.2 Scope 780
References 784
Geology, Morphology, and Sedimentology of Estuaries and Coasts 786
3.02.1 Introduction 786
3.02.2 Geological Constraints on Sediment Production 787
3.02.2.1 The Igneous Heritage of Sedimentary Rocks 787
3.02.2.2 Tectonic and Climatic Controls on Sediment Production 790
3.02.2.3 Modern Terrestrial Sediment Supply 790
3.02.2.4 Modern Marine Sediment Supply 792
3.02.3 Coasts 795
3.02.3.1 Coastal Classification 795
3.02.3.2 Relationships between Beach Morphodynamics, Wave Climate, and Grain Size 796
3.02.3.3 Beach Placer Deposits 798
3.02.4 Estuaries 799
3.02.4.1 Definition of an Estuary 799
3.02.4.2 Classification of Estuaries 801
3.02.4.3 Estuarine Sedimentology 803
3.02.5 Sediment Classification 805
3.02.5.1 Grain-Size Classification 805
3.02.5.2 Sedimentary Facies Descriptions 806
3.02.6 Geotechnical Sediment Properties 806
3.02.6.1 Definition of Basic Mass Physical Sediment Parameters 806
3.02.6.2 Applications of Mass Physical Sediment Parameters 810
3.02.7 Sampling Strategies 812
References 813
Sea-Level Change and Coastal Geomorphic Response 818
3.03.1 Context 819
3.03.2 Trends in Sea Level 819
3.03.2.1 Relative Sea-Level Change 819
3.03.2.2 Measuring Sea-Level Change 820
3.03.2.3 Geophysical Models of GIA 822
3.03.2.4 Identifying the Source of Sea-Level Rise (Fingerprinting) 823
3.03.2.5 How Much Has Sea Level Changed? 823
3.03.3 Drivers of Coastal Change 824
3.03.4 Coastal Environments and Their Response to Sea-Level Change 827
3.03.4.1 Tide-Dominated Environments 827
3.03.4.2 Beaches 830
3.03.4.3 Barrier Environments 833
3.03.4.4 Deltas 835
3.03.4.5 Cliffs and Shore Platforms 837
3.03.4.6 Coastal Dunes 840
3.03.4.7 Coral Atolls 841
3.03.5 Managing Coastal Change 843
References 844
Relevant Websites 851
Wave-Dominated Coasts 852
3.04.1 Introduction 853
3.04.1.1 Wave-Dominated Coasts: Definition 853
3.04.1.2 Beach and Barrier System Characteristics 854
3.04.2 Wave Characteristics, Wave Climate, and Wave Dynamics 856
3.04.2.1 Definition of Waves, Form, and Orbital Motion 856
3.04.2.2 Wave Generation and Propagation: Sea and Swell 857
3.04.2.3 Wave Climate and Global Wave Regimes 860
3.04.2.4 Wave Shoaling and Wave Refraction 861
3.04.2.5 Wave Breaking, Surf Zone, and Swash 862
3.04.3 Shelf and Surf Zone Currents and Sediment Transport 864
3.04.3.1 Wave Oscillatory Currents 864
3.04.3.2 Tide- and Wind-Generated Currents 865
3.04.3.3 Surf Zone Currents 866
3.04.3.4 Longshore Currents 869
3.04.4 Sediment Transport 869
3.04.4.1 Boundary Layers and Initiation of Motion 869
3.04.4.2 Onshore–Offshore Sediment Transport 870
3.04.4.3 Longshore Sediment Transport and Littoral Sediment Budget 871
3.04.5 Sand and Coarse Clastic Beach Systems 873
3.04.5.1 Beach and Nearshore Sediments of Sandy Systems 873
3.04.5.2 Profile Form of Sandy Beach Systems 874
3.04.5.3 Morphodynamics of Sandy Beach Systems 876
3.04.5.4 Form and Morphodynamics of Coarse Clastic Beaches 882
3.04.6 Coastal Barriers 882
3.04.6.1 Morphological and Sedimentological Characteristics of Barriers 882
3.04.6.2 Structure and Components of Barrier Systems 884
3.04.6.3 Barrier Dynamics: Overwash, Breaching, and Tidal Inlets 886
3.04.6.4 Sandy Barrier Spits and Barrier Islands 888
3.04.7 Conclusion 890
References 890
River-Dominated Coasts 896
3.05.1 Introduction 896
3.05.2 Definitions 896
3.05.3 Sediment Delivery from Rivers 897
3.05.4 The Historical Development of Delta Studies 898
3.05.5 Classification of River Mouths on the Basis of Process 902
3.05.6 Morphology of Deltas 903
3.05.7 Delta and Estuary Components 904
3.05.8 Asian Mega Deltas 906
3.05.9 River-Dominated Systems in Australia 908
3.05.10 Human Impacts 909
References 911
Tidal Flat Morphodynamics: A Synthesis 916
3.06.1 Introduction 917
3.06.1.1 Occurrence and Definition of Tidal Flats 917
3.06.1.2 Definition of Morphodynamics and Concept of’Dynamic Equilibrium 917
3.06.1.3 Tidal Asymmetry: Importance and Basic Types 918
3.06.2 Net Transport due to Spatial (Lagrangian) Asymmetries 919
3.06.2.1 Lagrangian Asymmetry, Concentration Gradients, and Lag-Induced Dispersion 919
3.06.2.2 Nature of Tide- and Wave-Induced Spatial Energy Gradients 920
3.06.2.3 Observations of Net Transport on Tidal Flats due to’Waves versus Tides 921
3.06.2.4 Observations of Net Transport on Tidal Flats due to’Other Sediment Sources or Sinks 923
3.06.3 Net Transport due to Eulerian Asymmetries 925
3.06.3.1 Definitions and Types of Eulerian Asymmetry 925
3.06.3.2 Eulerian Velocity Asymmetries Induced by’Continuity Alone 926
3.06.3.3 Eulerian Asymmetries Induced by Momentum plus Continuity 927
3.06.3.4 Observations of Eulerian Asymmetries and’Resulting Sediment Transport 928
3.06.4 Theoretical Equilibria in Response to Tides, Waves, and Sediment Supply 929
3.06.4.1 Convex-Up Profile in Response to Uniform Maximum Tidal Velocity 929
3.06.4.2 Equilibrium Shape in Response to Tidal Range and’Sediment Supply 930
3.06.4.3 Equilibrium in Response to Persistent Tidal Asymmetries 931
3.06.4.4 Concave-Up Equilibrium in Response to Waves 933
3.06.4.5 A Solution to Predict Tidal Flat Width in Response to’Waves 933
3.06.4.6 Theoretical Predictions of Equilibrium Slope under Wave Dominance 934
3.06.4.7 Predictions of Equilibria in the Presence of Waves, Tides, and Sediment Supply 934
3.06.5 Observed Morphology in Response to Tides, Waves, and Sediment Supply 935
3.06.5.1 Profile Convexity/Concavity as a Function of Tidal Range and Wave Exposure 935
3.06.5.2 Profile Width and Slope as a Function of Tidal Range and Wave Exposure 936
3.06.5.3 Depositional versus Erosional Flats 938
3.06.5.4 Combined Effects of Tides, Waves and Recent Erosion or Deposition 939
3.06.6 Extreme Timescales of Change: From Sea Level to Grain Size Patterns 941
3.06.6.1 Timescales of Change 941
3.06.6.2 Mean Grain-Size Patterns 942
3.06.6.3 Time-Varying Grain-Size Patterns 943
3.06.7 Summary and Conclusions 944
Acknowledgments 948
References 948
Cliffs and Rock Coasts 950
3.07.1 Introduction 950
3.07.2 Coastal Processes 951
3.07.2.1 Mechanical Wave Erosion 951
3.07.2.2 Weathering 956
3.07.2.3 Biological Activities 958
3.07.2.4 Mass Movement 959
3.07.3 Geology 959
3.07.4 Landforms 961
3.07.4.1 Bays, Headlands, and Related Features 961
3.07.4.2 Cliffs 962
3.07.4.3 Shore Platforms 964
3.07.5 Modeling the Coastal Evolution of Rock Shores 966
3.07.6 Inheritance 966
3.07.7 Rising Sea Level 967
3.07.8 Conclusions 968
References 968
Dune Coasts 972
3.08.1 Introduction 973
3.08.2 Types of Coastal Dunes 973
3.08.3 Why Do Dunes Form? 973
3.08.4 Where Do Sand Dunes Form? 974
3.08.5 Foredunes 975
3.08.5.1 Incipient Foredunes 976
3.08.5.2 Established Foredunes 977
3.08.6 Foredune Plains (and Beach Ridges) 979
3.08.6.1 Location 981
3.08.7 Blowouts 981
3.08.7.1 Morphologies and Types 981
3.08.7.2 Initiation 982
3.08.7.3 Flow Dynamics 982
3.08.7.4 Blowout Evolution 983
3.08.8 Parabolic Dunes 983
3.08.8.1 Location 983
3.08.8.2 Terminology and Form 984
3.08.8.3 Initiation 984
3.08.8.4 Morphology 986
3.08.8.5 Flow Dynamics 987
3.08.8.6 Evolution 987
3.08.8.7 Revegetation/Natural Stabilization 987
3.08.8.8 Rates of Advance or Migration 987
3.08.9 Transgressive Dunefields 987
3.08.9.1 Location 988
3.08.9.2 Transgressive Dunefield Types 989
3.08.9.3 Initiation and Development 989
3.08.9.4 Transgressive Dunefield Landforms 989
3.08.9.5 Development of Dune Phases 991
3.08.10 Models of Beach–Dune Interactions 991
3.08.10.1 Surfzone-Beach State 991
3.08.10.2 Beach–Backshore Width and Morphology, Fetch, and Potential Aeolian Transport 991
3.08.10.3 Aeolian Sediment Transport and Foredune Morphology 992
3.08.10.4 Foredune Ecology 992
3.08.10.5 Foredune Stability and Type, Erosion Processes, and Dunefield Development 992
3.08.10.6 The Role of Sediment Supply, Sea Level, Wind Energy and Other Factors 993
3.08.11 Conclusion 993
Acknowledgments 993
References 993
Glaciated Coasts 1002
3.09.1 Introduction 1002
3.09.1.1 Glaciated, Glacial, and Paraglacial Coasts 1003
3.09.1.2 Timescales of Paraglacial Coastal Evolution 1004
3.09.1.3 Coastal Systems in the Postglacial Context 1005
3.09.1.4 Classification of Glacial, Proglacial, and’Paraglacial Coasts 1005
3.09.2 Glacial Erosion, Sedimentation, and’Paraglacial Legacy 1006
3.09.2.1 Glacial Erosion 1006
3.09.2.2 Glacial Sedimentation 1006
3.09.2.3 Paraglacial Legacy and Sediment Cascade 1007
3.09.3 Glacial and Proglacial Coasts 1008
3.09.3.1 Ice Walls, Ice Shelves, and Tidewater Glaciers 1008
3.09.3.2 Proglacial Sediment Sources and Coastal Deposits 1009
3.09.3.3 The Proglacial–Paraglacial Continuum 1010
3.09.4 Paraglacial Coasts 1011
3.09.4.1 Fjord-Head and Other Paraglacial Deltas 1011
3.09.4.2 Paraglacial Coasts with Abundant Glacigenic Sediment Supply 1013
3.09.4.3 Embayed Coasts with Limited Glacigenic Sediment Supply 1014
3.09.4.4 Transgressive Coasts with Discrete Glacigenic Sources – Drumlin Coasts 1015
3.09.4.5 Evolutionary Sequences and Classification of’Paraglacial Barriers 1016
3.09.5 Resource and Management Considerations 1018
3.09.5.1 Ecology of Glacial Coasts 1018
3.09.5.2 Salt Marshes and Tidal Flats on Paraglacial Coasts 1018
3.09.5.3 Management Considerations for Paraglacial Gravel’Barriers 1018
3.09.6 Conclusions 1019
Acknowledgments 1019
References 1019
Polar Coasts 1024
3.10.1 Introduction 1024
3.10.1.1 Cold Coasts (Polar and Subpolar) 1024
3.10.1.2 Ice as the Distinguishing Feature of Polar and’Subpolar Coasts 1024
3.10.1.3 Relative Sea-Level Trends on Polar Coasts 1027
3.10.2 Arctic and Antarctic Coastal Geomorphology 1028
3.10.2.1 Arctic Coastal Geomorphology 1030
3.10.2.2 Antarctic Coastal Geomorphology 1035
3.10.3 Polar Shore Processes 1039
3.10.3.1 Polar Glacial Processes: Ice Sheets, Tidewater Glaciers, and Ice Shelves 1039
3.10.3.2 Polar Marine Processes: Sea Ice and Shore Ice 1039
3.10.3.3 Erosion and Sedimentation Processes on’Polar’Coasts 1046
3.10.3.4 Coastal Permafrost and Erosion of Ice-Rich Shores 1047
3.10.4 Morpho-Sedimentary Features of Polar Coasts 1049
3.10.4.1 Ice-Bound Shores 1050
3.10.4.2 Transgressive Coastal Plain Shores 1051
3.10.4.3 Polar Deltas 1051
3.10.4.4 Polar Coastal Marshes 1053
3.10.5 Summary and Conclusions 1054
Acknowledgments 1054
References 1055
Coastal Erosion Processes and Impacts: The Consequences of \rEarth' s Changing Climate and Human Modifications of the Environment 1064
3.11.1 Introduction 1064
3.11.2 Earth’s Changing Climate and Enhanced Erosion Processes 1066
3.11.2.1 Global Warming 1066
3.11.2.2 Rising Sea Levels 1067
3.11.2.3 Increasing Storm Intensities and Wave Heights 1068
3.11.3 Environmental Modifications and Coastal Impacts 1070
3.11.4 Processes-Based Models and Erosion Assessments 1078
3.11.4.1 Rising Sea Levels and Eroding Beaches 1078
3.11.4.2 Process-Based Erosion Models: Extreme Waves and Water Levels 1080
3.11.5 Responses to Erosion in a Century of Climate Change 1082
3.11.6 Summary and Discussion 1085
References 1086
e9780123747112v4 1088
Cover 1088
Treatise On Estuarine And Coastal Science 1089
Copyright 1092
Contents Of Volume 4\r 1093
Volume Editors 1095
Editors-In-Chief: Biographies 1097
Volume Editors: Biographies 1099
Contributors Of All Volumes 1109
Contents Of All Volumes 1119
Preface\r 1125
Introduction to the Geochemistry of Estuaries and Coasts 1129
4.01.1 Introduction 42
4.01.2 Sediment Record and Storage of Organic Carbon and the Nutrient Elements (N, \rP, and Si) in•Estuaries and Near-Coastal Seas (Chapter 4.02) 43
4.01.3 Tracer Studies of Benthic Communities and Biogeochemical Processes in Coastal and Estuarine Marine Environments (Chapter 4.03) 43
4.01.4 The Role of Suspended Particles in Estuarine and Coastal Biogeochemistry (Chapter 4.04) 43
4.01.5 Redox Metal Processes and Controls in’Estuaries (Chapter 4.05) 44
4.01.6 Aggregation of Colloids in Estuaries (Chapter 4.06) 44
4.01.7 Modeling Organic Compounds in the Estuarine and Coastal Environment (Chapter 4.07) 44
4.01.8 Submarine Groundwater Discharge: A Source of Nutrients, Metals, and Pollutants to the Coastal Ocean (Chapter 4.08) 44
4.01.9 Indicators of Anthropogenic Change and Biological Risk in Coastal Aquatic Environments (Chapter’4.09) 44
4.01.10 The Production of Trace Gases in the Estuarine and Coastal Environment (Chapter 4.10) 45
4.01.11 Integrated Risk Assessments for the Management of Contaminated Sediments in Estuaries’and Coastal Systems (Chapter 4.11) 45
4.01.12 The Use of Biomarkers as Simple, Rapid Cost-Effective Techniques to Aid in an Integrated Approach to Environmental Management and Risk Assessment with Particular Emphasis on Radionuclides (Chapter 4.12) 45
4.01.13 Biogeochemistry 45
References 45
Sediment Record and Storage of Organic Carbon and the Nutrient Elements (N, P, and Si) in Estuaries and Near-Coastal Seas 1137
4.02.1 Introduction 1137
4.02.2 Sources and Stable Isotopic Compositions of C,’N, P, and Si 1140
4.02.2.1 River and Groundwater Inputs 1142
4.02.2.2 Atmospheric Inputs 1144
4.02.2.3 Exchange with the Open Ocean 1144
4.02.3 C, N, P, and Si in Estuarine and Coastal Sediments 1144
4.02.3.1 Organic Carbon in Sediments 1145
4.02.3.2 Nitrogen in Sediments 1148
4.02.3.3 Phosphorus in Sediments 1149
4.02.3.4 Silicon in Sediments 1151
4.02.4 Changes in Storage: Biodiagenesis and Its Signature in the Sediment 1151
4.02.4.1 Mechanisms of Biodiagenesis 1151
4.02.4.2 Stable Isotope Signatures of Biodiagenesis 1153
4.02.4.3 Humber Estuary Case Study: Differentiating Biodiagenetic Signatures from Source Effects in Sediment Stores? 1153
4.02.5 Carbon Sequestration in Coastal Sediments 46
4.02.5.1 Carbon Burial and Greenhouse Gases 46
4.02.5.2 Storage on Centennial Scales and the Potential of Managed Realignment Sites 46
4.02.6 Other Paleorecords 46
4.02.7 Impacts by Humans: Recent Past and Future Trends 46
Acknowledgements 47
References 47
Relevant Websites 47
Global Variability in Estuaries and Coastal Settings 48
1.02.1 Introduction 48
1.02.2 Variability of Coastal Environments 50
1.02.2.1 Variability versus Change 50
1.02.3 Main Driving Factors 52
1.02.3.1 Geological Factors 52
1.02.3.2 Fluvial and Groundwater Factors 54
1.02.3.3 Wave Factors 55
1.02.3.4 Sea-Level Factors 57
1.02.3.5 Atmospheric Factors 59
1.02.3.6 Biological Factors 60
1.02.3.7 Human Factors 63
1.02.4 Coastal Settings: Typical Characteristics and \rMain Features 64
1.02.4.1 Variability and the Evolution of Coastal Classifications 64
1.02.4.2 Coastal Settings Based on the Wave–River–Tide Relationship 68
1.02.5 Climate Change and Human Impacts 73
1.02.6 Summary and Conclusions 75
Acknowledgments 75
References 75
Relevant Websites 77
Tectonic and Geomorphic Evolution of Estuaries and Coasts 78
1.03.1 Introduction 78
1.03.2 Estuaries and Sea Level 79
1.03.3 Geomorphic and Stratigraphic Definitions 79
1.03.4 Wave and Tidal Dominance of Estuaries 80
1.03.5 Models of Estuarine Infill 82
1.03.5.1 Barrier Estuaries 84
1.03.5.2 Saline Coastal Lakes 86
1.03.5.3 Fluvially Dominated Estuaries 87
1.03.5.4 Ria-Type Estuaries 88
1.03.5.5 Fjord Valley Infill 89
1.03.5.6 Macrotidal Infill 90
1.03.5.7 Complex Incised-Valley Infill 92
1.03.6 Collision Margin Coasts 92
1.03.6.1 Sediment Supply 92
1.03.6.2 Coastal Terraces 94
1.03.6.3 Estuarine Response to Vertical Land Movement 94
1.03.7 Future Change in Estuaries 96
1.03.8 Summary 97
References 97
Classes of Nearshore Coasts 102
1.04.1 Introduction 102
1.04.2 Key Parameters Differentiating Nearshore Coasts 103
1.04.2.1 Climate Zone/Biogeographic Region 103
1.04.2.2 Coastal Geomorphology 103
1.04.2.3 Water Properties 105
1.04.2.4 Coastal Processes 105
1.04.2.5 Substrate 106
1.04.2.6 Biota 107
1.04.2.7 Local-Scale Modifiers 107
1.04.3 Examples of Classification Systems 107
1.04.3.1 Cowardin et’al. Classification 108
1.04.3.2 Dethier Classification 108
1.04.3.3 Coastal and Marine Ecological Classification System 108
1.04.3.4 EUNIS/Joint Nature Conservation Committee Classification System 108
1.04.3.5 ShoreZone Classification 109
1.04.3.6 Greene Classification 111
1.04.3.7 Shipman Classification 111
1.04.4 Inventory Techniques 112
1.04.4.1 Mapping Scales 112
1.04.4.2 Data Acquisition Techniques 112
References 114
Relevant Websites 115
Classification of Estuarine Circulation 116
1.05.1 Introduction 116
1.05.2 Classification of Gravitational Circulation According to Estuarine Origin/Geomorphology 119
1.05.2.1 Coastal Plain/Drowned River Valley Estuaries 119
1.05.2.2 Tectonic Estuaries 119
1.05.2.3 Fjords 121
1.05.2.4 Bar-Built Estuaries 122
1.05.3 Classification of Gravitational Circulation According to Water Balance 122
1.05.4 Classification of Gravitational Circulation According to the Competition between Tidal Flow and River Discharge 123
1.05.5 Estuarine Circulation 124
References 127
Variation among Estuarine Geochemistry and Productivity 128
1.06.1 Introduction 128
1.06.2 Estuarine Classification by Nutrient Status 129
1.06.2.1 Limiting Nutrients in Estuaries 129
1.06.2.2 Nutrients and Primary Production 130
1.06.3 Estuarine Classification by Benthic Characteristics 131
1.06.3.1 Benthic Respiration 131
1.06.3.2 Benthic Macrofauna 133
1.06.3.3 OM Mineralization, Phosphorus and Nitrogen Cycling under Reducing Conditions 134
1.06.4 Estuarine Classification by Ecosystem Metabolism 135
1.06.5 Conclusions 136
References 136
Ecosystem and Biotic Classifications of Estuaries and Coasts 140
1.07.1 Introduction 140
1.07.2 Origins of Present-Day Estuaries and Coasts 143
1.07.3 Existing Classifications of Estuaries and Coasts 145
1.07.3.1 Definitions of Estuaries and Coasts 145
1.07.3.2 Estuarine Classifications 149
1.07.3.3 Coastal Classifications 151
1.07.4 Major Macrophyte Habitats within Coastal Ecosystems 155
1.07.4.1 Seaweeds 155
1.07.4.2 Seagrass Beds 155
1.07.4.3 Salt Marshes 156
1.07.4.4 Mangals 156
1.07.5 A Global Approach to Classifying Coastal Ecosystems 157
1.07.5.1 A Primary Coastal Classification 157
1.07.5.2 A Primary Estuarine Classification 159
1.07.5.3 Secondary Classifications of Estuaries and Coasts 160
1.07.6 Coastal Classifications and Climate Change 162
References 163
Classifying Ecological Quality and Integrity of Estuaries 166
1.08.1 Introduction 166
1.08.1.1 Estuarine Management and the Need for Classifying Ecological Quality 166
1.08.1.2 The Estuarine Quality Paradox and Environmental Homeostasis 167
1.08.2 Classifying Biological Quality Elements 170
1.08.2.1 Plankton 170
1.08.2.2 Macroalgae 174
1.08.2.3 Angiosperms 175
1.08.2.4 Macroinvertebrates 176
1.08.2.5 Fishes 180
1.08.3 Integrating Multiple Compartments of the Ecosystem in Assessing Ecological Quality 183
1.08.3.1 North America 183
1.08.3.2 Europe 186
1.08.3.3 South Africa 188
1.08.3.4 Australia 190
1.08.3.5 International Methodologies and Comparison across Geographies 192
1.08.4 Discussion 196
Acknowledgments 197
References 197
Application of Estuarine and Coastal Classifications in Marine Spatial \rManagement 204
1.09.1 Introduction 205
1.09.1.1 Importance of Spatial, Temporal, and Thematic Resolution 206
1.09.1.2 Utility of Hierarchical Classification Schemes 207
1.09.1.3 Examples of Hierarchical Classifications 207
1.09.2 Spatial Characterization Using Marine and \rCoastal Classifications 208
1.09.2.1 Classifying and Mapping Seascapes of the Scotian Shelf, Northwest Atlantic 209
1.09.2.2 Seascapes of the Baltic Sea 210
1.09.2.3 Australian Coastal Classifications 210
1.09.2.4 Marine Characterization of American Samoa 213
1.09.3 Spatial Conservation Prioritization and Evaluation 215
1.09.3.1 Identifying Priority Conservation Areas in \rthe Northwest Atlantic 216
1.09.3.2 Ecological Valuation Index for the Massachusetts Ocean Plan, USA 218
1.09.4 Ocean Zoning and MSP 219
1.09.4.1 MSP in the Baltic 219
1.09.4.2 Multiple-Use Zoning in the Irish Sea, UK 219
1.09.4.3 Massachusetts Ocean Plan 220
1.09.5 Ecosystem-Based Fisheries Management 222
1.09.5.1 Mapping EFH 222
1.09.5.2 Mapping and Classifying Fishing Effort in the UK 222
1.09.5.3 Examining Conflicts between Fishing and Conservation in the German North Sea 223
1.09.6 Optimizing Environmental Monitoring 224
1.09.7 Spatial Change Analysis 225
1.09.7.1 NOAA CoastWatch Change Analysis Program Change Detection 225
1.09.7.2 Tracking Coastal Habitat Change in New Jersey, USA 226
1.09.7.3 Tracking Coastal Habitat Change in Louisiana, USA 226
1.09.7.4 Mangrove Change Detection in Southeast Asia 227
1.09.8 Environmental Risk Assessment and Human Impacts 228
1.09.8.1 Environmental Sensitivity Index Mapping 229
1.09.8.2 Marine Sensitivity Mapping in the UK 230
1.09.8.3 USGS Coastal Hazards Maps 230
1.09.8.4 Classifying and Mapping Human Impacts in Hawaii 231
1.09.8.5 Classifying and Mapping Coastal Vulnerability to Climate Change in Australia 232
1.09.9 Classifying Water Quality 232
1.09.9.1 Australian Environmental Condition Assessment Framework 232
1.09.9.2 European Community Marine Strategy Framework Directive 234
1.09.10 Design of Restoration Strategies 234
1.09.10.1 Targeting Wetlands for Restoration in North Carolina, USA 235
1.09.10.2 Identifying and Prioritizing Restoration Sites in Puget Sound, Oregon, USA 236
1.09.11 Classifying and Mapping Socioeconomic Patterns 237
1.09.11.1 Classifying and Mapping Ecosystem Services 237
1.09.12 Future Directions and Priority Management Needs 239
1.09.12.1 Linking Patterns and Processes in Ecological Classifications 240
1.09.12.2 Understanding and Communicating Errors and Uncertainty 242
Acknowledgments 242
References 242
Relevant Websites 246
Resource Base: Global Distribution and Characteristics of Estuaries and Associated Coastal Shores 248
1.10.1 Geospatial Data Acquisition Tools 248
1.10.1.1 Topographic Maps and Bathymetry 249
1.10.1.2 Attribute Map Based on Remote Sensing 250
1.10.2 Data Management Tools 251
1.10.2.1 Database Management Systems 253
1.10.2.2 Geographical Information Systems 253
1.10.3 Example of Regional Application/Dissemination Tools 253
1.10.3.1 National Coastal Assessment and Data Synthesis 253
1.10.3.2 National Wetland Inventory 255
1.10.3.3 Research and Observation 256
1.10.3.4 Wetland Delineation Tool 257
1.10.3.5 Metadata Standards 258
1.10.3.6 Integrated Information Management System and \rCoastal Planning 258
1.10.4 Worldwide Application/Dissemination Tools 259
1.10.4.1 Worldwide GIS-Based Dissemination 259
1.10.4.2 Worldwide Thematic Dissemination 259
1.10.4.3 Worldwide Knowledge Base 263
References 268
Relevant Websites 269
Tracer Studies of Benthic Communities and Biogeochemical Processes in Coastal and Estuarine Marine Environments 1167
4.03.1 Overview 1167
4.03.2 Benthic Biogeochemical Processes in Estuarine and Coastal Environments 1167
4.03.2.1 Biogeochemical Significance of Estuaries and the Coastal Ocean 1167
4.03.2.2 Benthic Processes and Benthic–Pelagic Coupling 1168
4.03.3 Benthic Faunal Communities and Their Roles in Estuarine and Coastal Biogeochemistry 1169
4.03.3.1 Controls on Faunal Communities 1169
4.03.3.2 Faunal Roles in Sediment Biogeochemistry and Benthic–Pelagic Coupling 1173
4.03.4 Tracer Applications in the Study of Benthic Faunal Processes 1174
4.03.4.1 Tracer Studies of Faunal Feeding and Metabolic Processes 1174
4.03.4.2 The Use of Tracers in Studies of Bioturbation and Bioirrigation 190
e9780123747112v5 1483
Cover 1483
Treatise On Estuarine And Coastal Science 1484
Copyright 1487
Contents Of Volume 5\r 1488
Volume Editors 1490
Editors-In-Chief: Biographies 1492
Volume Editors: Biographies 1494
Contributors Of All Volumes 1504
Contents Of All Volumes 1514
Preface\r 1520
Biogeochemistry, An Introduction 1524
5.01.1 Introduction 1524
5.01.2 Biogeochemistry 1524
5.01.3 Early Development 1525
5.01.4 Definitions 1525
5.01.5 Biogeochemical Cycles 1526
5.01.6 Attention 1527
5.01.7 Overview of This Volume 1528
References 1528
Relevant Websites 1528
Dissolved Organic Carbon Cycling and Transformation 1530
5.02.1 Introduction 1531
5.02.2 Methods of DOC Sample Collection, Preparation, and Isolation 1532
5.02.2.1 DOC Sampling and Sample Preparation 1532
5.02.2.2 Techniques for Concentrating DOC and Removal of Interfering Salts 1534
5.02.3 DOC Quantification and Characterization 1535
5.02.3.1 Bulk Concentration Analysis 1535
5.02.3.2 DOC Characterization 1535
5.02.4 Sources and Mechanisms of DOC Input to \rEstuaries 1540
5.02.4.1 Terrestrial DOC Sources to Rivers and Estuaries 1541
5.02.4.2 The River Input Term 1543
5.02.4.3 Estuarine Sources 1544
5.02.4.4 Marine Sources to Estuaries 1546
5.02.4.5 Other Sources and Mechanisms of DOC Input 1546
5.02.5 Bulk DOC Distributions in Estuarine Waters 1548
5.02.5.1 Potential Behavior of Organic Solutes in Estuaries 1548
5.02.5.2 Conservative versus Nonconservative DOC Distributions in Different Estuaries 1548
5.02.6 Isotopic Distributions of DOC in Estuaries 1551
5.02.6.1 δ13C Signatures of Estuarine DOC 1551
5.02.6.2 Δ14C Signatures of Estuarine DOC 1552
5.02.6.3 Multiple Isotope Mass Balances for Constraining Estuarine DOC Sources and Sinks 1554
5.02.7 DOC Compound and Compound Class Distributions 1554
5.02.7.1 Carbohydrates 1555
5.02.7.2 Proteins and Amino Acids 1558
5.02.7.3 Lipids 1558
5.02.7.4 Lignin 1560
5.02.7.5 Black Carbon 1561
5.02.7.6 Chromophoric DOC 1561
5.02.7.7 Compound-Class and Compound-Specific Isotopic Analyses 1562
5.02.8 Transformation and Remineralization of DOC in Estuaries and Coastal Waters 1563
5.02.8.1 Microbial Degradation and Respiration 1564
5.02.8.2 Photochemical Degradation and Mineralization 1568
5.02.8.3 Abiotic Sorption and Desorption Processes 1569
5.02.9 Implications of DOC Transformations in Rivers and Estuaries 1570
5.02.9.1 Land–Ocean DOC Budgets 1570
5.02.9.2 Accounting for Terrestrial, Riverine, and Estuarine DOC Inputs in Coastal Ocean Carbon Models 1571
5.02.10 Summary and Future Directions in Estuarine and Coastal DOC Studies 1573
References 1577
Particulate Organic Carbon Cycling and Transformation 1592
5.03.1 Introduction 1593
5.03.2 POC Quantification and Characterization 1593
5.03.2.1 Methods for Bulk and Fraction Analyses of POC 1593
5.03.3 Sources of POC to Estuaries and Ocean Margins 1598
5.03.3.1 Terrestrially Derived Particulates and POC 1598
5.03.3.2 Estuarine Algal Production 1600
5.03.3.3 SAV and EAV 1601
5.03.4 Mechanisms and Sources of POC Input to’Estuaries and Ocean Margins 1603
5.03.4.1 River Inputs: Sediment and Suspended Load Transport 1603
5.03.4.2 Inputs and Fate of POC via Estuarine Mixing, Resuspension, and Trapping 1604
5.03.4.3 Atmospheric Inputs of POC 1605
5.03.5 Bulk POC Distributions in Estuarine and \rOcean Margin Waters 1605
5.03.5.1 Conservative versus Nonconservative Distributions in Estuaries\r 1605
5.03.6 Isotopic Distributions of POC in Estuaries and \rOcean Margins 1606
5.03.6.1 Δ14C-POC 1606
5.03.6.2 δ13C-POC 1607
5.03.7 Biochemical Composition and Chemical Biomarkers of POC 1610
5.03.7.1 Lipids 1610
5.03.7.2 Polycyclic Aromatic Hydrocarbons 1610
5.03.7.3 Fatty Acids 1611
5.03.7.4 Sterols 1613
5.03.7.5 Cutins and Suberins 1613
5.03.7.6 Carbohydrates 1614
5.03.7.7 Proteins 1615
5.03.7.8 Photosynthetic Pigments 1615
5.03.7.9 Lignin 1617
5.03.7.10 Compound-Specific Isotopic Analyses 1617
5.03.8 Transformation and Mineralization of POC in \rEstuaries and coastal Waters 1621
5.03.8.1 Microbial Degradation and Respiration 1621
5.03.8.2 Decay Models 1623
5.03.9 Implications of POC Transformation 1624
5.03.9.1 Land–Ocean POC Transport 1624
5.03.9.2 Estuarine and Coastal POC Budgets 1625
5.03.10 Summary and Future Directions in Estuarine and Coastal POC Studies 1627
5.03.10.1 Summary 1627
5.03.10.2 Future Studies 1628
References 1629
Relevant Websites 1640
Carbon Dioxide and Methane Dynamics in Estuaries 1642
5.04.1 Introduction 1642
5.04.2 Estuarine Definitions and Classifications from the Perspective of CO2 and CH4 Dynamics 1642
5.04.3 Dynamics of CO2 and Atmospheric CO2 Fluxes in Estuarine Environments 1643
5.04.3.1 Spatial and Temporal Variability of CO2 in Estuaries 1643
5.04.3.2 Drivers of the Emission of CO2 to the Atmosphere from Estuaries 1645
5.04.4 Dynamics of CH4 and Atmospheric CH4 Fluxes in Estuarine Environments 1659
5.04.4.1 Occurrence of High CH4 Concentrations in Estuarine Sediments: Combined Controls of Methanogenesis by’Organic Matter Supply and Salinity 1659
5.04.4.2 Pathways and Fluxes of CH4 from Sediment to Water and to the Atmosphere 1663
5.04.4.3 Distribution and Fate of CH4 in Estuarine Waters: Oxidation versus Degassing 1667
5.04.5 Gas Transfer Velocities of CO2 and CH4 in Estuarine Environments: Multiple Drivers and a Large Source of’Uncertainty in Flux Evaluations 1672
5.04.6 Significance of CO2 and CH4 Emission from Estuaries in the Global Carbon Cycle 1674
5.04.7 Summary and Perspectives 1678
Acknowledgments 1679
References 1679
Oxygen -\rDynamics and Biogeochemical Consequences 1686
5.05.1 Introduction 1687
5.05.2 Spatial O2 Distributions 1688
5.05.3 Temporal O2 Distributions 1690
5.05.4 Processes Controlling O2 Distributions 1692
5.05.4.1 Physical Controls on O2 Variation 1692
5.05.4.2 Biogeochemical Controls on O2 Variation 1694
5.05.4.3 Integrated O2 Budgets 1696
5.05.4.4 Modeling O2 and Biogeochemistry 1696
5.05.5 Formation of O2-Depleted Coastal Waters 1699
5.05.5.1 Time and Space Scales of O2 Depletion 1699
5.05.5.2 Eutrophication and Hypoxia 1699
5.05.5.3 Metabolic Balance and Hypoxia 1700
5.05.5.4 Ecological Consequences of Hypoxia 1701
5.05.6 O2 Effects on Coastal Biogeochemistry 1702
5.05.6.1 O2 Effects on Organic Matter Decomposition 1703
5.05.6.2 O2 Effects on Manganese and Iron Cycling 1704
5.05.6.3 O2 Effects on Sulfur Cycling 1705
5.05.6.4 O2 Effects on Phosphorus Cycling 1705
5.05.6.5 O2 Effects on Nitrogen Cycling 1707
5.05.6.6 Benthic Macrofauna Effects on Biogeochemistry 1710
5.05.6.7 Summaries of Sediment–Water Fluxes and’Water-Column Distributions 1710
5.05.7 Synthesis, Extensions, and Implications 1711
5.05.7.1 Feedbacks between O2 and Biogeochemical Processes 1711
5.05.7.2 Remediation of Eutrophication and Hypoxia 1713
5.05.7.3 Climate Change and Hypoxia 1713
5.05.8 Concluding Comments 1715
Acknowledgments 1715
References 1716
Relevant Websites 1722
Phosphorus Cycling in the Estuarine and Coastal Zones: Sources, Sinks, and Transformations 1724
5.06.1 Introduction 1724
5.06.2 Sources of Phosphorus to Estuaries and the \rNear Coastal Zone 1726
5.06.2.1 Sources of P to Rivers 1726
5.06.2.2 Processing of P in Rivers 1727
5.06.2.3 Modeling of Riverine P Processing and Export to the \rCoastal Zone 1728
5.06.2.4 Groundwater 1730
5.06.2.5 Ocean 1732
5.06.2.6 Atmosphere 1732
5.06.2.7 Direct Inputs into the Coastal Zone due to Human Activity 1733
5.06.3 Removal of Phosphorus from Estuaries and the \rCoastal Ocean 1734
5.06.3.1 Burial in Sediments: Forms of P, Methods of’Detection, and Total P Burial Flux 1734
5.06.3.2 Harvest 1735
5.06.4 Transformation and Cycling of Phosphorus 1736
5.06.4.1 Water-Column Processes 1736
5.06.4.2 Early Diagenetic Transformations 1739
5.06.4.3 Benthic–Pelagic Coupling 1741
5.06.4.4 Exchange with Vegetated Systems 1744
5.06.5 Summary and Outlook 1745
Acknowledgments 1747
References 1747
Internal Cycling of Nitrogen and Nitrogen Transformations 1754
5.07.1 Introduction 1755
5.07.2 Forms and Concentrations of Inorganic Nitrogen 1755
5.07.2.1 Assimilation 1755
5.07.2.2 Nitrification 1756
5.07.2.3 Estuarine N Cycling 1761
5.07.2.4 Co-Limitation with Nitrogen 1763
5.07.3 DON Assimilation 1763
5.07.3.1 DON Cycling 1763
5.07.3.2 Composition of DON 1763
5.07.3.3 Sources of DON 1763
5.07.3.4 DON Bioavailability 1765
5.07.4 Nitrogen Fixation in Coastal Habitats and’Estuaries 1766
5.07.4.1 General Aspects and Regulating Factors 1766
5.07.4.2 Control on Nitrogen Fixation in Estuaries Bottom Up versus Top down 1767
5.07.4.3 Benthic Nitrogen Fixation 1767
5.07.4.4 Epiphytic Nitrogen Fixation 1767
5.07.4.5 Nitrogen Fixation in Coastal Upwelling Zones and Tropical Estuaries 1768
5.07.5 Microbial Loop and Links to the Mesozooplankton 1768
5.07.5.1 Food Sources and Food Webs 1768
5.07.5.2 Groups of Organisms Sustained in the Microbial Loop 1769
5.07.5.3 Significance of Microbial Food Webs in Estuaries: The Microbial Hub Approach 1772
5.07.6 Tropical Mangrove-Dominated Coasts 1773
5.07.6.1 Nitrogen Fixation 1774
5.07.6.2 Denitrification in Mangrove Systems 1774
5.07.6.3 N2O Production in Mangroves 1775
5.07.6.4 Nitrogen Burial in Mangroves 1775
5.07.6.5 Outwelling from Mangrove Systems 1775
5.07.6.6 Role of Riverine Inputs and Eolian Deposits and’Rain on Mangroves 1775
5.07.6.7 Internal Recycling of Nitrogen 1775
5.07.6.8 Ammonification in Mangroves 1775
5.07.6.9 Nitrification 1775
5.07.6.10 Mangrove’s Nitrogen Assimilation 1776
5.07.6.11 Anthropogenic Impacts 1776
References 1776
Nitrogen Cycle -\rExternal Cycling: Losses and Gains 1784
5.08.1 Introduction 1784
5.08.2 Nitrogen Inputs 1785
5.08.2.1 Freshwater 1785
5.08.2.2 Atmospheric 1789
5.08.2.3 Exchange between Shelf Seas and the Ocean 1790
5.08.2.4 Nitrogen Fixation 1791
5.08.3 Nitrogen Loss 1791
5.08.3.1 Denitrification 1792
5.08.3.2 Anammox and Oxygen-Limited Autotrophic Nitrification–Denitrification 1793
5.08.3.3 Chemo-Denitrification 1794
5.08.3.4 Dissimilatory Nitrate Reduction to Ammonium 1794
5.08.3.5 Fisheries and Trawling 1794
5.08.4 Role of Sediments 1794
5.08.4.1 Influence of Sedimentary Type 1794
5.08.4.2 Mangroves and Salt Marshes 1795
5.08.4.3 Illustrative Budgets for Some Coastal Regions 1796
5.08.5 Environmental Linkages beyond the Nitrogen Cycle 1797
5.08.6 Conclusions 1797
References 1797
Estuarine and Coastal Sediments -\r Coupled Biogeochemical Cycling 1802
5.09.1 Introduction 1802
5.09.2 Introduction to Biogeochemical Processes in’Sediments 1803
5.09.2.1 Organic Matter Remineralization Processes 1803
5.09.2.2 Chemolithotrophic Reactions 1804
5.09.2.3 Linkages between Chemolithotrophic and Organic Matter Remineralization Processes 1806
5.09.2.4 Seasonality and Non-Steady-State Processes in’Estuarine and Coastal Sediments 1807
5.09.3 Linkages of Biogeochemical Processes and’Transport Processes and the Occurrence of Mixed Redox Conditions in Sediments 1808
5.09.4 The Classification of Estuarine and Coastal Sediments 1808
5.09.4.1 Steadily Accumulating Sediments 1810
5.09.4.2 Sediments Subject to Extensive Physical Reworking 1812
5.09.4.3 High Permeability, Sandy Sediments 1812
5.09.4.4 Bypass Zone Sediments 1814
5.09.4.5 Macrophyte-Dominated Sediments 1814
5.09.4.6 Intertidal Mudflats and Sandflats 1815
5.09.5 Sediment Oxygen Consumption 1816
5.09.6 Organotrophic Denitrification, Anammox and’Anoxic Nitrification 1816
5.09.6.1 Anammox 1818
5.09.6.2 Anoxic Nitrification 1818
5.09.6.3 Nitrogen Loss from Sediments: Closing Thoughts 1819
5.09.7 Iron and Manganese Reduction 1819
5.09.8 Sulfate Reduction and Sulfide Mineral Formation 1823
5.09.8.1 Pyrite Formation in Sediments 1824
5.09.8.2 Pyrite Burial and Sulfur Burial Efficiency 1825
5.09.9 Methanogenesis, Methane Oxidation, and’Methane Fluxes to the Atmosphere 1826
5.09.10 Trace Metal Cycling 1827
5.09.11 Concluding Remarks 1830
References 1831
Coupled C, N, P, and O Biogeochemical Cycling at the Land-\rOcean Interface 1840
5.10.1 Introduction 1840
5.10.2 General Description of the Land–Coastal Ocean Interface 1841
5.10.3 Some Physical and Biogeochemical Processes in the Receiving System of the Land–Ocean Interface 1843
5.10.3.1 Role of Nutrient Limitation in C, N, and P Cycling 1845
5.10.3.2 Coupling of Physical and Biological Processes 1846
5.10.3.3 Sources of C, N, and P 1847
5.10.4 The Coastal Ocean and the Land–Ocean Interface in a Global Context 1849
5.10.4.1 Past and Future of Riverine Transport of C, N, and P 1849
5.10.4.2 Historical Patterns of Loss of C, N, and P from Land 1850
5.10.4.3 Effects of Increasing Riverine Fluxes on C, N, P, and O in the Coastal Ocean 1852
5.10.4.4 Air–Sea Exchange of Atmospheric CO2 and Acidification of Coastal Ocean Waters 1855
5.10.5 Lessons from a Regional Estuarine System 1858
5.10.5.1 General Description of Kaneohe Bay, Hawaii, US Estuarine System 1858
5.10.5.2 Storms, Nutrients, and the CO2–Carbonic Acid System 1861
5.10.6 Conclusions 1862
References 1864
Biogeochemical Budgeting in Estuaries 1866
5.11.1 Introduction: The Budget Approach in Coastal and Estuarine Systems 1866
5.11.2 Mass-Balance Fundamentals 1868
5.11.2.1 System Boundaries 1869
5.11.2.2 Loads, Fluxes, and Concentrations 1869
5.11.3 Methods for Estimating Budget Components 1870
5.11.3.1 Global and Regional Online Databases 1870
5.11.3.2 Riverine Nutrient Fluxes 1870
5.11.3.3 Atmospheric Deposition 1871
5.11.3.4 Groundwater Sources 1871
5.11.3.5 Flux of Nutrients to and from the Sea 1871
5.11.4 Budget Methodology 1872
5.11.4.1 A Mass Balance for a Single Well-Mixed Compartment 1872
5.11.4.2 A Mass Balance for a Two-Layer System: Estuarine Circulation 1873
5.11.4.3 A Mass Balance for a Multicompartment System 1873
5.11.4.4 Some Typical Examples of Budget Calculations 1874
5.11.5 Examples of Budgets of Well-Studied Systems 1875
5.11.5.1 The Baltic Sea 1875
5.11.5.2 The Chesapeake Bay 1876
5.11.5.3 Large Chinese Estuaries 1876
5.11.6 Methods for Dealing with Data Quality, Variability, and Uncertainty Issues 1876
5.11.6.1 Uncertainty Analysis of Biogeochemical Budgets 1876
5.11.6.2 Metadata and Data Quality 1880
5.11.7 Strengths and Weaknesses of Nutrient Budgets in Coastal Research and Management 1881
5.11.8 Future Uses of Budgets in Coastal Research and Management 1882
5.11.9 Conclusion 1882
References 1882
Relevant Websites 1885
e9780123747112v6 1886
Cover\r 1886
Treatise On Estuarine And Coastal Science 1887
Copyright 1890
Contents Of Volume\r 6 1891
Volume Editors 1893
Editors-In-Chief: Biographies 1895
Volume Editors: Biographies 1897
Contributors Of All Volumes 1907
Contents Of All Volumes 1917
Preface\r 1923
Introduction to Food Webs in Coastal and Estuarine Ecosystems 1927
6.01.1 Introduction 1927
6.01.2 Food Webs in Coastal and Estuarine Ecosystems 1928
6.01.3 Conclusions 1929
References 1930
Relevant Websites 1930
Particulate Organic Detritus and Detritus Feeders in Coastal Food’Webs 1931
6.02.1 Introduction 1931
6.02.2 Phytoplankton Detritus 1932
6.02.3 Temperature Effects on Fate of Phytoplankton Detritus 1932
6.02.4 Benthic Macroalgal Detritus 1933
6.02.5 Salt Marsh, Grass, and Seagrass Detritus 1934
6.02.6 Terrestrial Organic Matter 1935
6.02.7 Mangroves 1936
6.02.8 A New Paradigm? 1936
6.02.9 Deposit Feeders at Several Scales 1937
6.02.9.1 Gut and Digestion 1937
6.02.9.2 Collection, Rejection, and Defecation of Particles 1937
6.02.9.3 Sediment Surface Micro Zone 1937
6.02.9.4 Population Level 1937
6.02.9.5 Ecosystem Level 1938
6.02.10 What Is a Deposit Feeder? 1938
6.02.11 Food of Deposit Feeders 1938
6.02.12 Ingestion Selectivity 1939
6.02.13 Microbial Digestion and Gardening 1940
6.02.13.1 Within the Gut 1940
6.02.13.2 Outside of the Gut in the Sediment 1941
6.02.14 Effects of Deposit Feeders on Sediment Structure and on Fluxes Between the Sediment and Sediment–Water’Interface 1941
6.02.15 Food Input, Limitation, and Deposit-Feeder Population Dynamics 1942
References 1943
Primary Producers: Phytoplankton Ecology and Trophic Dynamics in’Coastal Waters 1949
6.03.1 Introduction 1949
6.03.2 The Players: Phytoplankton Community Composition and Function 1950
6.03.3 Spatial and Temporal Patterns of Phytoplankton Biomass and Productivity 1953
6.03.4 Factors Controlling Phytoplankton Productivity and Community Composition 1954
6.03.4.1 Light 1954
6.03.4.2 Nutrients 1955
6.03.4.3 Temperature 1958
6.03.4.4 ‘Top Down’ Control: Herbivory 1958
6.03.5 Human and Climatic Impacts on Coastal Phytoplankton Dynamics 1959
6.03.5.1 Effects of Nutrient Overenrichment on Estuarine Phytoplankton 1959
6.03.5.2 The Roles of Climatic Variability in Eutrophication Dynamics 1959
6.03.6 Harmful Algal Blooms 1961
6.03.7 Nutrient Management of Phytoplankton Production and Composition 1962
Acknowledgments 1965
References 1965
Trophic Interactions in Coastal and Estuarine Mangrove Forest Ecosystems 1969
6.04.1 Introduction 1970
6.04.2 What Are Mangrove Forests? 1970
6.04.3 Net Primary Productivity of Mangrove Forests 1973
6.04.4 The Fate of Mangrove and Algal Organic Matter 1974
6.04.4.1 Herbivory on Mangroves 1976
6.04.4.2 Detritivory and Decomposition in Mangroves 1984
6.04.5 Predation 1994
6.04.5.1 Invertebrate Predators 1994
6.04.5.2 Vertebrate Predators 1996
6.04.6 Parasitism 2002
6.04.6.1 Mosquitoes 2002
6.04.6.2 Trematodes 2002
6.04.6.3 Pathogenic Fungi 2003
6.04.7 Provision of Substrate and 3D Structure 2003
6.04.7.1 Substrate for Fouling Communities 2003
6.04.7.2 Nursery Grounds, Refuge from Predation, or Both? 2004
6.04.8 Concluding Remarks 2007
Acknowledgements 2008
References 2008
Plankton Consumer Groups: Copepods 2021
6.05.1 Introduction 2021
6.05.2 Copepod Diversity, Species Composition, Abundance, Biomass, and Distribution 2021
6.05.3 Copepod Feeding 2026
6.05.3.1 Introduction 2026
6.05.3.2 Diet Composition 2026
6.05.3.3 Nutrition: Macronutrients 2030
6.05.3.4 Nutrition: Fatty Acids 2031
6.05.3.5 Feeding on Toxic or Unpalatable Food 2032
6.05.3.6 Cannibalism 2034
6.05.3.7 Impact of Diet on Copepod Growth and Reproduction 2034
6.05.3.8 Secondary Production 2036
6.05.4 Predation on Mesozooplankton 2037
6.05.4.1 Introduction 2037
6.05.4.2 Zooplanktivorous Fish and Fish Larvae 2038
6.05.4.3 Gelatinous Zooplankton 2040
6.05.4.4 Other Invertebrates 2043
6.05.5 Summary and Future Research Directions 2043
Acknowledgments 2046
References 2046
Gelatinous Zooplankton and Their Trophic Roles 2053
6.06.1 Introduction 2053
6.06.2 Growth 2058
6.06.3 Abundance 2063
6.06.4 Prey 2066
6.06.5 Grazing and Predation Rates 2070
6.06.6 Grazing and Predation Impact 2078
6.06.7 Competitors 2080
6.06.8 Predators 2083
6.06.9 Biological Associates 2087
6.06.10 Conclusion 2090
Acknowledgements 2090
References 2090
Meiofauna as Consumers in Coastal Food Webs 2099
6.07.1 Meiofauna: Taxonomic Composition, Density, and Biomass Heterogeneity across Coastal Ecosystems 2099
6.07.2 Trophic Interactions 2106
6.07.2.1 Food Selection and Feeding Strategies 2106
6.07.2.2 Trophic Guilds 2110
6.07.2.3 Predation on Meiofauna 2112
6.07.3 Food Webs 2113
6.07.3.1 The Role of Meiofauna in Energy Transfer 2114
6.07.3.2 Meiofaunal Trophodynamics: Ecosystem Approach 2121
6.07.4 Conclusions 2121
References 2124
High-Trophic-Level Consumers: Elasmobranchs 2129
6.08.1 Introduction 2129
6.08.2 Elasmobranchs as Prey 2130
6.08.3 Elasmobranchs as Predators 2132
6.08.3.1 Trophic Level 2132
6.08.3.2 Feeding Guilds 2132
6.08.4 Competition and Resource Partitioning 2134
6.08.5 Metabolism, Digestion, and Feeding Periodicity 2135
6.08.6 Elasmobranch Impacts on Prey and’Community Structure 2137
6.08.7 Elasmobranch Impacts on Nutrient Dynamics 2138
6.08.8 Elasmobranchs as Facilitators of Trophic Interactions 2139
6.08.9 Trophic Interactions of Elasmobranchs in’Coastal Ecosystems 2139
6.08.9.1 Coral Reefs 2139
6.08.9.2 Rocky Reefs 2140
6.08.9.3 Seagrass Beds and Mangroves 2141
6.08.9.4 Unvegetated Soft Bottom 2142
6.08.9.5 Estuaries 2143
6.08.9.6 Open Coastal Waters 2143
6.08.10 Conclusions 2144
References 2145
High-Trophic-Level Consumers: Trophic Relationships of Reptiles and’Amphibians of Coastal and Estuarine Ecosystems 2153
6.09.1 Introduction/Paleoecology 2153
6.09.2 Amphibia 2155
6.09.3 Reptiles 2156
6.09.3.1 Lizards 2156
6.09.3.2 Snakes 2159
6.09.3.3 Crocodilians 2162
6.09.3.4 Turtles 2163
6.09.4 General Conclusions 2172
Reference 2172
Ecosystem Studies: Sandy Coastal Ecosystems 2177
6.10.1 Introduction 2177
6.10.2 Primary Production and Inputs 2178
6.10.3 Secondary Production within the Ecosystem 2179
6.10.4 Predators and Export 2179
6.10.5 Effects of Predation 2181
6.10.6 Ecological Network Analysis of Sandy Shore Ecosystems 2182
6.10.7 Conclusion 2184
References 2184
Relevant Website 2185
Trophic Relationships in Salt Marshes of Coastal and Estuarine Ecosystems 2187
6.11.1 Introduction 2187
6.11.2 Primary Production 2187
6.11.2.1 Emergent Vegetation 2187
6.11.2.2 Algae 2188
6.11.3 Consumers 2188
6.11.3.1 Invertebrates 2188
6.11.3.2 Nekton 2188
6.11.4 Salt-Marsh Food Webs 2188
6.11.4.1 Interactions 2188
6.11.4.2 Cascade Studies 2189
6.11.4.3 Stable Isotopes 2189
6.11.5 Loop Model 2190
6.11.6 Abiotic Events 2193
6.11.6.1 Tides 2193
6.11.6.2 Anthropogenic Influences 2193
References 2194
Relevant Websites 2195
Whole Food-Web Studies: Mangroves 2197
6.12.1 Introduction 2197
6.12.2 Food Web 2198
6.12.2.1 Primary Food Sources 2198
6.12.2.2 Who Eats Who? – Main Energy Sources and Consumers 2200
6.12.2.3 Connections to Adjacent Ecosystems (Imports/Exports) 2204
6.12.3 Ecosystem Functioning (Whole Food-Web Studies) 2205
6.12.4 Carbon, Nitrogen, and Phosphorus Turnover of’Mangrove Systems 2209
6.12.5 Concluding Remarks 2209
References 2210
Relevant Websites 2212
Food Web of Intertidal Mussel and Oyster Beds 2213
6.13.1 Introduction 2214
6.13.1.1 General Aspects of Suspension-Feeder Communities 2214
6.13.1.2 Types of Suspension-Feeding Communities 2214
6.13.1.3 Soft-Bottom versus Hard-Bottom Suspension-Feeding Communities 2214
6.13.1.4 A Biogeographical Overview of Suspension-Feeder Food Webs 2215
6.13.2 Food-Web Components of Suspension-Feeder Assemblages 2219
6.13.2.1 Primary Producers 2219
6.13.2.2 Bacteria 2219
6.13.2.3 Herbivores 2219
6.13.2.4 Detritivores 2220
6.13.2.5 Invertebrate Predators 2220
6.13.2.6 Fishes 2221
6.13.2.7 Reptiles 2221
6.13.2.8 Birds 2221
6.13.2.9 Mammals 2221
6.13.3 Food-Web Case Studies of Mussel Beds in’the’North Sea and the Wadden Sea 2221
6.13.3.1 Ecological Carbon Transfer of Wadden Sea Mussel’Beds 2221
6.13.3.2 Trophic Analysis of Mussel Beds 2223
6.13.3.3 Structure and Magnitude of Cycling 2224
6.13.3.4 System Level Properties and System Organization 2225
6.13.4 Food-Web Case Studies of Oyster Beds at’the’French Atlantic Coast 2226
6.13.5 Food-Web Case Studies of Oyster Beds at’the’American Atlantic Coast 2226
6.13.6 Role of Suspension-Feeder Assemblages in’Coastal Food Web 2227
References 2227
e9780123747112v7 2231
Cover 2231
Treatise On Estuarine And Coastal Science 2232
Copyright 2235
Contents Of Volume 7\r 2236
Volume Editors 2238
Editors-In-Chief: Biographies 2240
Volume Editors: Biographies 2242
Contributors Of All Volumes 2252
Contents Of All Volumes 2262
Preface\r 2268
Functioning of Ecosystems at the Land-Ocean Interface 2272
7.01.1 Introduction 2272
7.01.2 Functioning of Ecosystems at the Land–Ocean Interface 2273
7.01.3 Conclusion 2274
Trends in Estuarine Phytoplankton Ecology 2276
7.02.1 Introduction 2276
7.02.2 Multi-Stressors behind Phytoplankton Development in Estuaries 2277
7.02.2.1 Hydrodynamics 2277
7.02.2.2 Hydro-Sedimentary Processes as Drivers of Light Availability 2278
7.02.2.3 Nutrients 2279
7.02.2.4 Salinity Gradient 2280
7.02.2.5 Top-Down Control 2280
7.02.3 Trends 2281
7.02.4 Conclusions and Perspectives 2282
References 2283
Functional Consequences of Invasive Species in Coastal and’Estuarine Systems 2288
7.03.1 Introduction 2289
7.03.2 Functional Roles of Invaders in Ecosystems 2289
7.03.3 Invader Impacts on Nutrient and Biogeochemical Cycling 2290
7.03.3.1 Biodeposition, Nutrient Transfer, and Benthic–Pelagic Coupling 2291
7.03.3.2 Nitrogen Fixation 2292
7.03.3.3 Bioturbation 2292
7.03.4 Invader Alteration of Trophic Interactions and’Energy Flow through Ecosystems 2293
7.03.4.1 Food-Web Effects of Invasive Vascular Plants 2293
7.03.4.2 Food-Web Effects of Invasive Macroalgae 2294
7.03.4.3 Impacts of Invasive Benthic Grazers and Filter Feeders 2295
7.03.4.4 Impacts of Invasive Higher Consumers 2295
7.03.5 Ecosystem Engineering by Invaders 2296
7.03.5.1 Abiotic Ecosystem Characteristics 2296
7.03.5.2 Engineering Processes 2296
7.03.5.3 Ecosystem Engineering by Invasive Plants and’Algae 2298
7.03.5.4 Ecosystem Engineering by Introduced Animals 2301
7.03.6 Evolutionary Impacts of Marine Invaders 2304
7.03.7 Emergent Properties of Invaded Ecosystems 2305
7.03.7.1 Productivity 2305
7.03.7.2 Habitat Structure 2306
7.03.7.3 Connectivity 2307
7.03.7.4 Succession 2307
7.03.7.5 Stability and Resilience 2307
7.03.7.6 Biodiversity 2307
7.03.8 Invaders and Ecosystem Services 2308
7.03.8.1 Aquaculture and Fisheries 2308
7.03.8.2 Maritime Devices, Facilities, and Structures 2309
7.03.8.3 Ecosystem Management 2309
7.03.8.4 Aesthetic, Cultural, and Health Impacts 2310
7.03.9 Predicting Functional Consequences of’Invasion 2310
Acknowledgments 2311
References 2316
Physical Ecosystem Engineers and the Functioning of Estuaries and’Coasts 2324
7.04.1 Introduction 2325
7.04.2 Making Sense of the Diversity: A Framework for Physical Ecosystem Engineering of Estuaries and’Coasts 2327
7.04.2.1 Framework 2327
7.04.2.2 Framework Application 2328
7.04.3 Major Ecosystem Engineers: Exemplification of’the Framework 2329
7.04.3.1 Dune Plants 2329
7.04.3.2 Tidal Marsh Plants 2331
7.04.3.3 Mangroves 2332
7.04.3.4 Seagrasses 2333
7.04.3.5 Kelp and Other Macrophytic Seaweeds 2335
7.04.3.6 Coral Reefs 2336
7.04.3.7 Reef-Forming Bivalves 2337
7.04.3.8 Burrowing Crustaceans 2339
7.04.3.9 Infauna 2340
7.04.4 Major Ecosystem Engineers in Estuaries and’Coasts: Human Impacts and Management 2342
7.04.4.1 Human Estuarine and Coastal Engineering 2342
7.04.4.2 How does Human Engineering Compare to Nature’s Engineers? 2342
7.04.4.3 Ecosystem Engineers and Ecosystem-Based Management 2344
7.04.4.4 Lessons from Nature’s Engineers: Improving Human Environmental Engineering 2344
7.04.5 Prospectus 2345
Acknowledgments 2346
References 2346
Metabolic Balance between Ecosystem Production and Consumption 2354
7.05.1 Introduction 2355
7.05.2 Concepts and Definitions 2356
7.05.3 Approaches for Estimating Ecosystem Metabolism 2357
7.05.3.1 Temporal Changes in Concentrations 2357
7.05.3.2 Budgets and Models 2361
7.05.3.3 Direct Air–Water Gas Exchange 2362
7.05.4 Factors Regulating Ecosystem Metabolism 2363
7.05.4.1 Effects of Light and Water Clarity 2363
7.05.4.2 Effects of Temperature 2364
7.05.4.3 Effects of Nutrient and Organic Matter Loading 2365
7.05.4.4 Effects of Water Residence Time 2367
7.05.4.5 Effects of Water Depth 2367
7.05.5 Spatial/Temporal Patterns and Gradients 2368
7.05.5.1 Temporal Variations in Metabolic Rates 2368
7.05.5.2 Spatial Variations in Metabolic Rates 2371
7.05.6 Applications of Ecosystem Metabolism Studies 2373
7.05.6.1 Trophic Status 2373
7.05.6.2 Metabolic Balance and Net Import/Export 2374
7.05.6.3 Partitioning Metabolism among Habitats 2374
7.05.6.4 Global Carbon Balance 2376
7.05.6.5 Metabolic Balance and Hypoxia 2377
7.05.6.6 Metabolic Balance and Food-Web Support 2378
7.05.6.7 Metabolic Response to Perturbation 2378
7.05.7 Synthesis and Future Directions 2381
7.05.7.1 Broad Patterns in Metabolic Balance 2381
7.05.7.2 Error Propagation in Upscaling and Downscaling: Reassessing Methods 2382
7.05.7.3 Responses to Human Perturbation 2382
7.05.7.4 Metabolic Responses to Climate Change and Variability 2383
Acknowledgments 2384
References 2384
Connectivity of Estuaries 2390
7.06.1 Introduction 2390
7.06.2 How Are Estuaries Connected? 2392
7.06.2.1 Models of Connectivity 2393
7.06.2.2 Genetic Connectivity 2393
7.06.2.3 Demographic Connectivity 2394
7.06.2.4 Spatial and Temporal Extent of Connectivity 2395
7.06.2.5 Ecological Consequences of Connectivity 2396
7.06.3 What Determines the Strength of These Connections? 2397
7.06.3.1 Physical Forcing Mechanisms 2397
7.06.3.2 Estuarine Circulation 2397
7.06.3.3 Estuarine Flushing/Retention Timescales 2397
7.06.3.4 Lagrangian Particle Transport – Advection and Diffusion 2398
7.06.3.5 Connectivity within Estuaries 2398
7.06.3.6 Coastal Connectivity: Circulation between Estuaries 2398
7.06.3.7 Modeling Estuarine Connectivity 2398
7.06.3.8 Connectivity between Estuaries along the Coast of’SE Australia Aided by the EAC 2399
7.06.3.9 Individual-Based Models 2400
7.06.3.10 Morphology-Driven Connectivity 2400
7.06.3.11 Distance between Estuaries 2401
7.06.4 Techniques for Assessing Connectivity 2402
7.06.4.1 Physical Tags 2402
7.06.4.2 Natural Marks 2404
7.06.4.3 Genetic Identification 2405
7.06.4.4 Chemical Marks 2405
7.06.5 Connectivity and Management Perspectives 2408
7.06.6 Conclusion 2409
References 2409
Use of Stable Isotopes to Understand Food Webs and Ecosystem Functioning in Estuaries 2414
7.07.1 Introduction 2415
7.07.2 Identification of Carbon and Nitrogen Sources in Estuaries 2415
7.07.2.1 Isotope Signatures of Potential Organic Matter Sources in Estuaries 2415
7.07.2.2 Conservative Mixing in Estuaries: Mass-Balance and Stable Isotope Considerations 2417
7.07.2.3 Organic Matter Sources in Estuarine Sediments and Suspended Matter 2418
7.07.2.4 Origin of Estuarine Dissolved Organic Matter 2419
7.07.2.5 Inorganic Carbon Cycling in Estuaries 2420
7.07.2.6 Inorganic Nitrogen Cycling in Estuaries 2422
7.07.2.7 Identifying Microbial Carbon Sources Using Stable Isotopes 2422
7.07.3 Stable Isotopes as Tracers of Food-Web Structure 2423
7.07.3.1 Introduction 2423
7.07.3.2 Food Webs in Temperate Estuaries 2423
7.07.3.3 Food Webs in Tropical Estuaries 2424
7.07.3.4 Tracking Sewage Nitrogen into Food Webs 2425
7.07.3.5 Models and Statistics 2425
7.07.3.6 Dealing with Fractionation Issues in Food Web Studies 2426
7.07.4 Stable Isotope Enrichment Experiments 2426
7.07.5 Stable Isotopes as Tracers of Animal Movement 2427
7.07.5.1 Introduction 2427
7.07.5.2 Movements in and out of Estuaries 2427
7.07.5.3 Movements among Habitats within Estuaries 2428
7.07.5.4 Demonstration of Site Fidelity 2428
7.07.5.5 Advantages of Stable Isotopes for Studying Animal Movements 2428
7.07.6 High-Resolution Stable Isotope Records: Biological Archives of Past Environmental Conditions 2429
7.07.6.1 Controls on Shell δ18O 2430
7.07.6.2 Biogenic Carbonates as Paleo-Thermometers 2431
7.07.6.3 Biogenic Carbonates as Paleo-Discharge or Salinity Indicators 2432
7.07.6.4 Using δ18Oshell Cycles to Determine Bivalve Growth 2433
7.07.6.5 Carbonate δ13C:DIC or Bivalve Metabolism? 2434
7.07.6.6 Shell Organic Matrix Stable Isotopes 2435
7.07.6.7 Nontraditional Stable Isotopes: New Potentials for’Environmental Proxies 2435
7.07.6.8 Multiproxy Approaches 2436
References 2436
Coastal Monitoring Programs 2446
7.08.1 Introduction 2447
7.08.2 Information Needs and Use of Monitoring Data 2447
7.08.3 Water-Quality Monitoring 2449
7.08.4 Phytoplankton Monitoring 2450
7.08.4.1 Hypotheses of Pressure Responses 2450
7.08.4.2 State of the Art 2451
7.08.4.3 Indicators 2451
7.08.4.4 Upcoming New Technologies 2452
7.08.4.5 Discussion 2453
7.08.5 Benthic Vegetation Monitoring 2454
7.08.5.1 Hypotheses on Pressure Responses 2455
7.08.5.2 Monitoring of Benthic Vegetation – State of the Art 2456
7.08.5.3 Indicators 2457
7.08.6 Benthic Macrofauna Monitoring 2460
7.08.6.1 Hypotheses of Pressure Responses 2460
7.08.6.2 State of the Art in Benthic Fauna Monitoring 2462
7.08.6.3 Responses 2462
7.08.6.4 Indicators 2463
7.08.6.5 Setting Boundaries for Quality Status Assessment 2463
7.08.6.6 Discussion 2464
7.08.7 Hazardous Substances Monitoring 2464
7.08.7.1 Principles in Hazardous Substances Monitoring 2465
7.08.7.2 State of the Art in Hazardous Substance Monitoring 2465
7.08.7.3 Indicators 2466
7.08.7.4 Monitoring Problems 2467
7.08.7.5 Upcoming Technology 2469
7.08.8 Planning and Design of Monitoring Programs 2470
7.08.8.1 Identification of Monitoring Objectives 2470
7.08.8.2 Statistical Design of Monitoring Programs 2471
7.08.9 Conclusion 2472
Acknowledgments 2473
References 2473
Relevant Websites 2477
e9780123747112v8 2478
Cover 2478
Treatise On Estuarine And Coastal Science 2479
Copyright 2482
Contents Of Volume 8\r 2483
Volume Editors 2485
Editors-In-Chief: Biographies 2487
Volume Editors: Biographies 2489
Contributors Of All Volumes 2499
Contents Of All Volumes 2509
Preface\r 2515
Introduction -\r Overview 2519
8.01.1 Introduction 2519
8.01.2 Driver–Pressure–State–Impact–Response Approach 2520
8.01.3 Environmental Impact Assessment 2520
8.01.4 Adverse Changes at Levels of Biological Organization 2522
8.01.4.1 The Ecosystem Approach 2522
8.01.4.2 Ecosystem Management and Indicators of Health 2523
8.01.5 Endogenic Managed Pressures and Exogenic Unmanaged Pressures 2526
8.01.5.1 Endogenic Managed Pressures: Introductions to’the’System 2526
8.01.5.2 Physical Introductions to the Systems: Large Physical Structures 2528
8.01.5.3 Physical Introductions to the Systems: Small-Sized Physical materials (Physical Particulate Pollution) 2528
8.01.5.4 Chemical Introductions to the Systems: Point’Source 2528
8.01.5.5 Chemical Introductions to the Systems: Diffuse and’Nonpoint Source Pollution from Chemicals 2528
8.01.5.6 Endogenic Managed Pressures: Removals from’the’System 2529
8.01.5.7 Exogenic Unmanaged pressures 2529
8.01.6 Discussion and Conclusions 2529
8.01.6.1 Monitoring to Management 2529
8.01.6.2 Adequacy of the Science and Significance of’Change 2529
8.01.6.3 Monitoring for Management 2530
References 2532
Estuarine and Coastal Structures: Environmental Effects, A Focus on Shore and Nearshore Structures 2535
8.02.1 Introduction 2535
8.02.2 History and Use of Shore Structures 2536
8.02.3 Types of Structures 2537
8.02.3.1 Shoreline Structures 2537
8.02.3.2 Offshore or Detached Structures 2539
8.02.3.3 Scope of Coastal Armoring 2539
8.02.4 Current State of Knowledge on Environmental Effects 2541
8.02.4.1 Alteration of Coastal Processes 2541
8.02.4.2 Ecological Impacts of Structures 2542
8.02.5 Coastal Infrastructure and Armoring as Novel Substrata for Biota 2550
8.02.6 Large-Scale Effects 2551
8.02.6.1 Effects on Adjacent Habitats 2552
8.02.7 Potential for Recovery/Resilience 2553
8.02.8 Future of Shore Structures – Climate Change and Coastal Squeeze 2554
8.02.9 A Way Forward 2554
Acknowledgments 2555
References 2555
Chemical Introductions to Estuarine and Coastal Systems: Biodegradable Organic Chemicals 2561
8.03.1 Introduction 2561
8.03.2 Biodegradable Organic Chemicals 2563
8.03.2.1 Petroleum and Derived Products 2563
8.03.2.2 PAHSs, PCBs, and Other Industrial Organic Compounds 2564
8.03.2.3 Pesticides 2565
8.03.2.4 Pharmaceuticals and Personal Care Products 2566
8.03.3 Sources 2567
8.03.3.1 Discharges from Point Sources 2567
8.03.3.2 Storm Water Runoff and Riverine Inputs 2567
8.03.3.3 Ballast Water and Other Marine Operational Discharges 2570
8.03.3.4 Accidental Spills 2570
8.03.4 Fate and Transport within Estuaries and Coastal Regions 2570
8.03.4.1 Advective and Dispersive Transport 2570
8.03.4.2 Sorption onto Particulate Matter 2571
8.03.4.3 Dissolution and Volatilization 2571
8.03.4.4 Deposition and Resuspension 2572
8.03.4.5 Bioaccumulation, Bioconcentration, and Biomagnification 2572
8.03.4.6 Abiotic Degradation 2572
8.03.4.7 Biodegradation 2573
8.03.4.8 Presence of Biodegradable Organic Compounds in the Environment 2573
8.03.5 Biotic and Habitat Impacts 2574
8.03.5.1 Biomarkers 2574
8.03.5.2 Examples of Toxicant Effects 2575
8.03.5.3 Case Study: The Golden Horn Estuary 2578
8.03.5.4 Case Study: The Chesapeake Bay 2579
8.03.6 Summary 2580
References 2580
Chemical Introductions to the Systems: Point Source Pollution’(Persistent Chemicals) 2589
8.04.1 Historical and Disciplinary Context 2590
8.04.2 Point-Source Pollution and Magnitude of the Problem 2591
8.04.3 What Are Persistent Pollutants? 2591
8.04.3.1 Mineral Persistent Pollutants 2592
8.04.3.2 Persistent Organic Compounds and Halogenated Hydrocarbons 2598
8.04.3.3 Detergents, Surfactants, and Plastifiers 2602
8.04.3.4 Pharmaceuticals and Personal Care Products 2603
8.04.3.5 Engineered Nanoparticles 2606
8.04.3.6 Radionuclides 2608
8.04.4 Indicators of Biological and Ecological Effects 2610
8.04.4.1 Manifestations of Effects at Individual Level 2610
8.04.4.2 Manifestation of Effects at Ecosystem Level 2612
8.04.5 Consequence for the Management of Coasts and Estuaries 2616
8.04.5.1 Loss of Ecosystem Services 2616
8.04.5.2 Cost of Reducing Pollution 2617
8.04.5.3 Resistance and Resilience 2617
8.04.5.4 The Seine Estuary (France) Case Study 2618
8.04.6 Hazard Ranking, Water Quality Guidelines, Monitoring, and Conservation Goals 2620
8.04.6.1 Mechanisms 2620
8.04.6.2 Monitoring and Influence on Conservation Goals 2621
8.04.7 Gaps in the Understanding and Need for Future Research 2622
References 2624
Relevant Websites 2629
Chemical Introductions to the Systems: Diffuse and Nonpoint Source Pollution from Chemicals (Nutrients: Eutrophication) 2631
8.05.1 Introduction 2631
8.05.2 Nutrient Enrichment 2634
8.05.2.1 Nutrient Forms and Concentrations 2634
8.05.2.2 Nutrient Sources 2639
8.05.2.3 Nutrient Forcing 2640
8.05.3 Biotic Responses 2642
8.05.3.1 Phytoplankton and Microphytobenthos 2642
8.05.3.2 Macroalgae 2643
8.05.3.3 Seagrasses 2645
8.05.4 Organic Carbon Enrichment 2645
8.05.4.1 Organic Carbon Sources 2645
8.05.4.2 Hypoxia/Anoxia 2647
8.05.5 Eutrophic Indicators 2648
8.05.6 Nutrient Management and Impact Remediation 2650
8.05.7 Case Studies 2652
8.05.7.1 Mid-Atlantic Coastal Lagoons 2652
8.05.7.2 Barnegat Bay–Little Egg Harbor Estuary (US) 2652
8.05.7.3 Northern Gulf of Mexico (US) 2653
8.05.7.4 Danish Coastal Waters (Denmark) 2655
8.05.7.5 The Wadden Sea and Ems Estuary (The Netherlands and Denmark) 2657
8.05.7.6 Shenzhen Bay, South China Sea (China) 2659
8.05.7.7 Peel-Harvey Estuary (Australia) 2659
8.05.7.8 Ghana Coastal Lagoons (Africa) 2660
8.05.8 Summary and Conclusions 2660
References 2661
Relevant Websites 2666
Biological Introductions to the Systems: Macroorganisms 2667
8.06.1 Introduction 2667
8.06.2 Biogeography of Nonnative Estuarine and’Coastal Biota 2669
8.06.3 Distribution Patterns of Estuarine and Coastal Nonnative Biota 2670
8.06.3.1 Salinity Gradient and NIS Distributions 2670
8.06.3.2 Vulnerability of Estuarine Habitats to Biological Introductions 2672
8.06.3.3 Seasonal Variability in Estuaries and Biological Introductions 2674
8.06.3.4 Climate and Changes to NIS Distributions 2675
8.06.4 Main Pathways and Vectors of NIS Introductions to Estuarine and Coastal Environments 2678
8.06.4.1 General Overview of Biological Introductions into’Estuarine Environments 2678
8.06.4.2 Ships and Floating Structures 2678
8.06.4.3 Marine and Inland Canals and Waterways 2682
8.06.4.4 Wild Fisheries 2683
8.06.4.5 Culture Activities 2684
8.06.4.6 Aquarium and Live Food Trade 2687
8.06.4.7 Leisure Activities 2688
8.06.4.8 Research and Education (Including Pilot Projects) 2688
8.06.4.9 Biological Control 2688
8.06.4.10 Other Pathways 2688
8.06.5 Level of Certainty in Relation to Biological Introductions 2688
8.06.6 Life-History Stages of Nonnative Biota and Opportunities for Spread via Different Pathways 2689
8.06.7 Invasive Species and Environmental Quality of Estuarine and Coastal Environments 2689
8.06.7.1 Bioinvasion Impacts at Different Levels of’Biological’Organization 2689
8.06.7.2 The Concept of Biological Pollution and Environmental Quality of Estuaries 2693
8.06.7.3 Bioinvasion Impact Assessment 2693
8.06.7.4 Temporal and Spatial Scales for Bioinvasion Impact Assessments 2694
8.06.7.5 Other Indicators of Biological Introductions 2695
8.06.8 Monitoring of Nonnative Estuarine and Coastal Biota 2695
8.06.9 Concluding Remarks 2696
Acknowledgments 2696
References 2697
Removal of Physical Materials from Systems: Loss of Space, Area, and Habitats 2703
8.07.1 Introduction 2704
8.07.1.1 Current Wetland Global Extent and Loss 2705
8.07.1.2 Human Impacts on Wetland Area 2706
8.07.2 Restoration and Rehabilitation: Why Semantics Matter When Addressing Loss of Area and Habitat in’Wetland’Ecosystems 2708
8.07.3 Case Studies 2710
8.07.3.1 Mississippi River Delta, Louisiana, USA 2710
8.07.3.2 GMU Delta Region, Tabasco–Campeche, Mexico 2715
8.07.3.3 The Netherlands 2718
8.07.3.4 Puerto Rico Island 2721
8.07.3.5 Everglades, South Florida, USA 2724
8.07.4 Summary and Final Comments 2727
References 2730
Removals of the Physical Resources from the Systems: Harvesting’Energy 2735
8.08.1 Introduction 2736
8.08.2 Renewable Energy Resources 2737
8.08.3 Lessons from Our Past 2739
8.08.4 What Is Renewable Energy in the Coast and Estuaries? 2740
8.08.4.1 Tidal Barrages 2741
8.08.4.2 Tidal Lagoons 2741
8.08.4.3 Tidal Fences 2741
8.08.4.4 Ocean Thermal Energy Conversion 2741
8.08.4.5 Saline Osmosis 2741
8.08.4.6 Algal Biofuel 2741
8.08.5 How Is the Renewable Energy Harvested? 2741
8.08.6 Environmental Footprint 2741
8.08.7 What Environmental Considerations Are There? 2748
8.08.8 What Are the Causes of the Potential Issues (or’the Opportunity)? 2749
8.08.8.1 Survey and Development 2750
8.08.8.2 Construction 2750
8.08.8.3 Operation 2753
8.08.8.4 Decommissioning 2759
8.08.8.5 Tidal Barrages and the Environment 2760
8.08.8.6 Biological Communities 2761
8.08.8.7 Indirect Ecological Effects 2761
8.08.8.8 Determining Ecological Impacts 2762
8.08.9 Summing Up – Problem or Opportunity 2764
8.08.10 Mitigation of Any Environmental Impact 2765
8.08.11 Gaps in Knowledge 2766
8.08.12 Going Forward 2767
Acknowledgments 2767
References 2767
Relevant Websites 2770
Removals (Wild Harvesting) of the Biological Resources from Systems 2771
8.09.1 Introduction 2772
8.09.2 Fishing Sectors 2773
8.09.3 Types of Fisheries 2774
8.09.3.1 The Diversity of Fishing Gears 2774
8.09.3.2 Estuarine Fisheries 2776
8.09.4 Productivity 2779
8.09.5 Effects of Fishing in Estuaries 2781
8.09.5.1 Target Organisms 2781
8.09.5.2 Nontarget Organisms 2782
8.09.5.3 Nursery Functions 2784
8.09.5.4 Trophic Effects of Fishing 2785
8.09.5.5 Habitat Modification and Destruction by Fishing 2785
8.09.5.6 Reductions in Water Quality 2786
8.09.5.7 Human Environment 2787
8.09.5.8 Extinctions 2788
8.09.6 The Importance of Fishing in Estuaries 2788
8.09.6.1 Fishing and Conservation 2788
8.09.6.2 Economic Issues 2789
8.09.6.3 Management 2789
References 2790
The Culture of Aquatic Species: Approaches, Effects, and Future Developments 2795
8.10.1 Introduction 2796
8.10.1.1 The Growing Importance of Aquaculture 2796
8.10.1.2 Levels of Intervention in Aquaculture 2797
8.10.2 Approaches to the Culture of Aquatic Species 2797
8.10.2.1 Marine Finfish Farming 2797
8.10.2.2 Crustacean Farming 2799
8.10.2.3 Bivalve Farming 2799
8.10.2.4 Seaweed Farming 2800
8.10.3 Effects of Aquaculture 2800
8.10.3.1 System Inputs from Aquaculture 2801
8.10.3.2 Changes in the Balance of Species 2806
8.10.3.3 Farm-Scale Effects 2806
8.10.3.4 Water Body-Scale Effects 2807
8.10.4 Sustainability of Future Aquaculture 2809
8.10.4.1 Management of Aquaculture 2809
8.10.4.2 Future Developments 2812
8.10.5 Conclusion 2816
References 2817
Climate Change: Effects, Causes, Consequences: Physical, Hydromorphological, Ecophysiological, and Biogeographical Changes 2821
8.11.1 Introduction 2821
8.11.2 Global Climate Change: Past Trends, Future Predictions, and System Impacts 2822
8.11.2.1 Temperature 2822
8.11.2.2 The Effects of Increased Temperature on Coastal Vegetation 2822
8.11.2.3 Sea-Level Rise 2822
8.11.2.4 The Response of Coastal Wetlands to Accelerated Sea-level Rise 2824
8.11.2.5 Measuring Processes That Affect Wetland Elevation 2826
8.11.2.6 Types of Models 2826
8.11.3 The Impacts of Changes in Freshwater Input on Coastal Ecosystems 2828
8.11.4 Changes in Tropical Storm Intensity and \rFrequency 2829
8.11.5 Human Activity and Coastal Management 2830
References 2830
e9780123747112v9 2835
Cover\r 2835
Treatise On Estuarine And Coastal Science 2836
Copyright 2839
Contents Of Volume 9\r 2840
Volume Editors 2842
Editors-In-Chief: Biographies 2844
Volume Editors: Biographies 2846
Contributors Of All Volumes 2856
Contents Of All Volumes 2866
Preface\r 2872
Estuarine and Coastal Ecosystem Modeling: A Synthesis 2876
9.01.1 General Synthesis 2876
References 2878
Contemporary Concepts and Models of Biodiversity and Ecosystem Function: Systems-Based Approaches for Exploring Landscape-Scale Relationships 2880
9.02.1 The Ecosystem Approach and Ecosystem Services 2880
9.02.2 Exploring Biodiversity–Ecosystem Function Relationships 2881
9.02.3 Natural Capital and Ecosystem Services 2885
9.02.4 The Stocks-and-Flows Approach 2887
9.02.4.1 The Ythan Estuary 2888
9.02.4.2 The Data Sets 2890
9.02.4.3 Biomasses in the Two Periods 2892
9.02.4.4 How Did Changes in Biodiversity Affect Network Characteristics and System Indices? 2893
9.02.5 Implications for Understanding Biodiversity and Ecological Functioning 2894
References 2895
Relevant Websites 2896
Ecological Modeling in Environmental Management: History and’Applications 2898
9.03.1 Ecological Modeling History to Present 2898
9.03.1.1 Ecological Modelling Journal 2900
9.03.1.2 International Society of Ecological Modelling 2900
9.03.2 Model Building 2901
9.03.2.1 Why Models? 2901
9.03.2.2 Procedure, Process, and Parts 2901
9.03.2.3 Defining the System 2902
9.03.2.4 Modeling Tradeoffs 2902
9.03.3 Ecological Models and Environmental Management 2903
9.03.3.1 Water-Quality Models 2903
9.03.3.2 Fisheries and Aquaculture 2904
9.03.3.3 Forest Models 2905
9.03.3.4 Integrated Models 2905
9.03.4 Conclusions and Next Steps 2906
Acknowledgment 2906
References 2906
Quantitative Methods for Ecological Network Analysis and Its Application to Coastal Ecosystems*\r 2910
9.04.1 An Alternative to Mechanism 2910
9.04.2 Requirements 2911
9.04.3 Issues Needing Attention 2913
9.04.4 Input–Output Analysis 2913
9.04.5 Trophic Analysis 2916
9.04.6 Analysis of Cycling 2918
9.04.7 Whole System Status 2921
9.04.8 Higher Dimensional Considerations 2928
9.04.9 Summary and Conclusions 2929
Acknowledgment 2930
References 2931
Spatial and Temporal Models of Energy and Material Dynamics in’Flow Networks of Estuarine and Coastal Ecosystems 2934
9.05.1 Introduction 2934
9.05.2 Material and Methods 2935
9.05.2.1 General Concepts and Methods in Model Construction 2935
9.05.2.2 Ecological Network Analysis 2938
9.05.3 Comparison of Ecosystem Function over’Spatial Scales 2940
9.05.3.1 Assessments of Network Models of Whole Systems 2940
9.05.3.2 Assessments of Inter- and Subtidal Subsystems on Spatial Scales 2945
9.05.4 Comparison of Estuaries with Variable Freshwater Inflows 2949
9.05.5 Comparison of Ecosystems over Temporal Scales 2951
9.05.5.1 St. Marks National Wildlife Refuge, FL, USA:’Comparison of Ecosystem Function over Months 2951
9.05.5.2 The Neuse River estuary, NC, USA: Comparison of’Ecosystem Function during a Season 2951
9.05.5.3 The Mesohaline Chesapeake Bay, USA: Comparison of Ecosystem Function over Seasons 2953
9.05.5.4 The Kromme River estuary, Eastern Cape, South Africa: Comparison of Ecosystem Function over Decades 2954
9.05.6 Predictive Modeling of Ecosystem Flow Networks 2957
9.05.7 Modeling the Dynamics of Carbon, Nitrogen, and Phosphorus in Selective Coastal Ecosystems 2961
9.05.8 Concluding Remarks 2964
References 2964
Relevant Websites 2966
Ecopath Theory, Modeling, and Application to Coastal Ecosystems 2968
9.06.1 Introduction to Ecosystem Modeling 2968
9.06.2 Methodology 2969
9.06.2.1 NETWRK and EcoNetwrk 2969
9.06.2.2 EwE and Ecospace 2969
9.06.3 Case Studies of EwE Used in Coastal Ecosystems 2970
9.06.3.1 Application and Contribution to ENA 2971
9.06.3.2 Application and Contribution to Management 2976
9.06.4 Meta-Analysis of Ecosystem Indicators 2976
9.06.4.1 General Model Classifications 2977
9.06.4.2 Keystone/MTI Analysis 2977
9.06.4.3 ENA and Exploitation Indicators 2978
9.06.5 Conclusions 2984
References 2986
Relevant Websites 2988
Inverse Modeling in Modern Ecology and Application to Coastal Ecosystems 2990
9.07.1 Introduction 2990
9.07.2 Brief History of LIM 2991
9.07.3 Methodology for LIM: The Four Steps of’the’LIM-MN Method 2992
9.07.3.1 Step 1: The A Priori Model 2992
9.07.3.2 Step 2: The Set of Equalities 2994
9.07.3.3 Step 3: The Set of Inequalities 2995
9.07.3.4 Step 4: The Choice of a Single Vector of Flows 2995
9.07.4 Recent Advances in the LIM Methodology 2996
9.07.4.1 New Methods for Step 4: Generating Solutions Using Monte Carlo Techniques 2996
9.07.4.2 Taking into Account Spatial and Temporal Variability 2997
9.07.4.3 Constraining the Flows Using Tracers 2998
9.07.5 Analyzing the Results from LIM 2998
9.07.5.1 Sensitivity Analysis 2999
9.07.5.2 Ecological Network Analysis 2999
9.07.6 Guidelines on Methodological Choices for the Use of LIM in Coastal Ecology 2999
9.07.7 An Example of Application: A Comparison of’Plankton Models in the Bay of Biscay during the’Late’Winter/Spring’Succession Period 3001
9.07.8 Conclusion 3006
Acknowledgments 3006
References 3006
The LOICZ Biogeochemical Modeling Protocol and its Application to’Estuarine Ecosystems 3010
9.08.1 Introduction 3011
9.08.2 Budget Methodology 3011
9.08.2.1 The Problem of Estimating Carbon Metabolism Directly from Carbon Fluxes 3011
9.08.2.2 Biogeochemical and Other Assumptions 3012
9.08.2.2.1 Organic metabolism and NEM 3012
9.08.2.3 The Choice of System Boundaries and Compartmental Divisions 3013
9.08.2.4 The Algebra of Mass Balances for a Single Compartment 3014
9.08.2.5 Mass Balances for a Two-Layer Compartment (Estuarine Flow) 3017
9.08.2.6 Mass Balances for Multiple Compartments: Spatially Extensive Systems over a Series of Reaches 3018
9.08.2.7 Other Derived Variables in LOICZ Budgets 3019
9.08.3 Some Budget Examples 3020
9.08.3.1 Single Compartment, Single-Layer System: The S’Ena Arrubia Lagoon, Sardinia, Italy (39.83°’N, 8.57° E) 3020
9.08.3.2 Single Compartment, Layered System: Tien River Estuary, Vietnam (9.81°’N, 106.56° E) 3020
9.08.3.3 Multiple Compartment, Single-Layer System: Laguna Larga, Cuba (22.54°’N, 78.37° E) 3021
9.08.4 Resources, Outcomes, and Conclusions of’the’Analyses 3024
9.08.4.1 The LOICZ Budget Website 3024
9.08.4.2 Regional and Global Patterns from the LOICZ Budget Data Set 3024
9.08.5 Strengths and Weaknesses of the Approach 3026
9.08.5.1 Space, Time, and Box Models 3026
9.08.5.2 Stoichiometry and Ecosystem Metabolism 3028
9.08.5.3 Data Limitations and Budget Quality 3028
9.08.6 Applications and Future Directions (as’of’This’Writing) 3029
9.08.6.1 Nutrient Budgets and Management of Coastal Waters in New Zealand 3030
9.08.6.2 Hypoxia and Fisheries 3030
9.08.6.3 Whither LOICZ Budgets? 3031
9.08.7 Conclusions 3032
Acknowlegments 3033
References 3033
Relevant Websites 3034
Artificial Neural Network Modeling of Phytoplankton Blooms and its Application to Sampling Sites within the Same Estuary 3036
9.09.1 Introduction 3036
9.09.1.1 What Are ANNs? 3036
9.09.1.2 Training and Testing of an ANN Model 3037
9.09.1.3 ANN Models for Predicting and Understanding Harmful Algal Blooms 3038
9.09.2 Materials and Methods 3038
9.09.2.1 Source Data 3038
9.09.2.2 ANN Modeling 3039
9.09.2.3 Sensitivity Analysis 3039
9.09.3 Results 3039
9.09.3.1 Modeling Chlorophyll Concentration 3039
9.09.3.2 Sensitivity Analysis 3041
9.09.3.3 Applying ANN Models to Other Estuary Sites 3044
9.09.3.4 Comparison of ANN Models with Linear Fitting Models 3044
9.09.4 Discussion 3044
9.09.4.1 Input Data and Prediction Potential 3044
9.09.4.2 Complexity of the ANN Model 3045
9.09.4.3 Sensitivity Analysis 3045
9.09.4.4 Application of Optimized ANN Models to Adjacent Sampling Sites 3046
9.09.4.5 Relevance of This Study to Other Phytoplankton Modeling Studies 3046
9.09.5 Conclusions 3046
Acknowledgment 3046
References 3046
Relevant Websites 3047
Integration of Bayesian Inference Techniques with Mathematical Modeling 3048
9.10.1 Evaluation of the Current State of Aquatic Biogeochemical Modeling: Where Are We? 3048
9.10.2 Why Bayesian Calibration? 3052
9.10.3 A Case Study: Eutrophication Risk Assessment in Hamilton Harbour 3054
9.10.3.1 Model Description 3055
9.10.3.2 Bayesian Framework 3058
9.10.3.3 Model Results and Prediction of the Frequency of Water-Quality Standard Violations 3059
9.10.4 Conclusions and Future Perspectives 3064
Acknowledgments 3065
References 3065
Relevant Websites 3067
Hypoxia in Waters of the Coastal Zone: Causes, Effects, and Modeling Approaches& 3068
9.11.1 Introduction 3068
9.11.2 Drivers of Hypoxia 3068
9.11.3 Effects of Hypoxia on Biota 3072
9.11.4 Mitigation of Hypoxia 3073
9.11.5 Assessment of Mitigation 3073
9.11.6 Modeling Approaches 3074
9.11.7 The Edge of Ockham’s Razor: Building a’Hypoxia Model 3076
9.11.7.1 A Modeling Framework 3079
9.11.7.2 The Surface Mixed Layer 3079
9.11.7.3 The Plankton Community 3080
9.11.7.4 Vertical Flux of Organic Matter 3082
9.11.7.5 Dissolved Organic Matter 3083
9.11.7.6 Geochemical Processes 3083
9.11.7.7 Gas Exchanges and Physical Circulation 3083
9.11.8 Model Validation and Simulation Analysis 3084
9.11.9 Future Hypoxia Models 3086
References 3087
Forecasting and Modeling of Harmful Algal Blooms in the Coastal Zone: A Prospectus 3092
9.12.1 Introduction 3093
9.12.2 Phytoplankton Physiology 3099
9.12.3 Background 3099
9.12.4 Conventional HAB Wisdom 3101
9.12.5 Eutrophication 3101
9.12.5.1 Hong Kong Coastal Waters 3102
9.12.5.2 Northern GOM Coastal Waters 3102
9.12.5.3 Egyptian Coastal Waters 3103
9.12.6 Oligotrophication 3104
9.12.7 Eutrophication, Oligotrophication, and’Overfishing 3104
9.12.7.1 Nutrient Loadings 3104
9.12.7.2 Nutrient Relaxations 3104
9.12.7.3 Temperature Constraints 3105
9.12.7.4 Trophic Cascades Down the Food Web 3105
9.12.7.5 HAB Responses 3107
9.12.8 Potential Future Management Plans 3107
9.12.8.1 A Numerical Rosetta Stone 3108
9.12.8.2 The Modern Rosetta Stone Context for Future HAB Auguries 3109
9.12.8.3 Experimental Enigmas 3112
9.12.8.4 Silicon Dynamics 3114
9.12.8.5 Top-Down Grazing Controls 3115
9.12.8.6 Spatial Constraints of Satellite Validation Data 3120
9.12.8.7 Poison Response of HABs to Nutrient Limitation 3125
9.12.9 Poorly Posed Assumptions 3128
9.12.9.1 HAB Domains of N-Limited Ecosystems 3130
9.12.9.2 Confounding Anoxia 3131
9.12.10 Related Economic Costs 3132
9.12.11 Historical Context 3133
9.12.11.1 Early Biological Warfare? 3133
9.12.11.2 Divergent Ecological Consequences 3134
9.12.12 The Poison Gambit 3135
9.12.12.1 Toxic Niche Distinctions 3136
9.12.12.2 Diazotroph Lacunae 3138
9.12.13 Rules of Phytoplankton Engagement 3139
9.12.14 Circulation Submodels 3140
9.12.15 One-Dimensional Simulation Results 3142
9.12.16 HAB Estuarine Influxes to the Northern GOM 3146
9.12.16.1 Tampa Bay 3146
9.12.16.2 Galveston Bay 3149
9.12.16.3 GOM Export 3150
9.12.17 Three-Dimensional Simulation Results 3152
9.12.18 Satellite and In Situ Estimates of Diazotroph Precursors of Karenia Red Tides 3158
9.12.18.1 Western MS 3158
9.12.18.2 Eastern MS 3166
9.12.18.3 GOM Sedimentary Mirror Image of the MS Biomarker Tracers 3171
9.12.18.4 Additional Satellite Validation Imagery of the Red and Arabian Seas 3172
9.12.19 Satellite Data Assimilation 3174
9.12.19.1 In Situ Biological Sensors – a 2009 Case Study 3176
9.12.19.2 HABs in Winter: Another Clupeid Harvest on the WFS? 3179
9.12.20 Paradigm Shift 3182
9.12.21 Prospectus 3183
Acknowledgments 3185
References 3185
Relevant Websites 3205
Ecosystem Modeling in Small Subtropical Estuaries and’Embayments 3207
9.13.1 Introduction 3207
9.13.2 Background 3209
9.13.2.1 Watershed Attributes 3209
9.13.2.2 Hydrodynamics 3210
9.13.2.3 Factors and Responses 3210
9.13.3 Modeling Examples 3211
9.13.3.1 Tidal Creek Ecosystems 3211
9.13.3.2 St. Lucie Estuary and Indian River Lagoon 3213
9.13.3.3 Texas Coastal Bays 3218
9.13.4 Summary and Synthesis 3223
Acknowledgments 3226
References 3226
Material Exchange Processes between Sediment and Water in Coastal Ecosystems and Their Modeling 3230
9.14.1 Introduction 3230
9.14.1.1 Fundamentals of Exchange Processes 3230
9.14.2 Material Fluxes in Coastal Waters 3231
9.14.2.1 Tropical Waters 3231
9.14.2.2 Temperate Waters 3236
9.14.2.3 Arctic Systems 3240
9.14.3 Modeling Approach 3241
9.14.4 Case Study: The Sylt–Rømø Bight 3242
9.14.4.1 Exchange of Carbon of Different Intertidal Communities 3242
9.14.4.2 Exchange of Nitrogen 3245
9.14.4.3 Exchange of Phosphorus 3247
9.14.4.4 Benthic Habitats as Sinks and Sources 3248
9.14.4.5 Physical Factors and Material Exchange 3249
9.14.5 Comparisons between Systems 3250
9.14.5.1 Exchange Processes and Nutrient Fluxes within Communities 3251
9.14.5.2 Exchange Processes and Nutrient Fluxes between Communities 3251
9.14.6 Food Webs and Exchange Processes 3252
9.14.7 Habitat Diversity and Exchange Processes 3252
9.14.8 Biodiversity and Material Exchange 3253
9.14.9 Future Perspectives 3253
References 3254
Understanding the Nitrogen Cycle through Network Models in Coastal Ecosystems 3258
9.15.1 Introduction 3258
9.15.2 Importance of N and N Cycling in Coastal Ecosystems 3259
9.15.3 Physicochemical Factors That Impact Nitrogen Cycling 3260
9.15.3.1 Transport and Residence 3260
9.15.3.2 Oxygen 3260
9.15.3.3 Salinity and Associated Gradients 3261
9.15.4 Network Models of N Cycling 3261
9.15.4.1 Networks and Selected Analyses 3261
9.15.5 Biogeochemical Networks 3263
9.15.5.1 Coastal Wetland Models 3263
9.15.5.2 Models of Coastal Aquatic Ecosystems 3263
9.15.5.2.1 Simple biogeochemical networks 3263
9.15.5.2.2 Time series of biogeochemical networks 3264
9.15.6 Food-Web-Based Models 3266
9.15.7 N Cycle and Its Network Representation 3267
9.15.8 Conclusions from Network Studies and Future’Needs 3268
Acknowledgments 3269
References 3269
Analytical Characterization of Selective Benthic Flux Components in’Estuarine and Coastal Waters 3272
9.16.1 Introduction 3272
9.16.1.1 Brief Review of Selected Benthic Flux Forcing Mechanisms 3273
9.16.1.2 Brief Review of Selected SGD Observational Techniques 3274
9.16.2 Generalized Component-Based Conceptual Model 3275
9.16.3 Surface Gravity Waves over a Plane Bed 3276
9.16.3.1 Boundary-Value Problem 3276
9.16.3.2 Solution to the Boundary-Value Problem 3277
9.16.3.3 Discussion 3277
9.16.3.4 Application to the Indian River Lagoon, Florida 3280
9.16.3.5 Application to the South Atlantic Bight in South Carolina and Portions of North Carolina 3282
9.16.4 Surface Gravity Wave Setup 3284
9.16.4.1 Application to the South Atlantic Bight in South Carolina and Portions of North Carolina 3284
9.16.5 Groundwater Tidal Prism 3284
9.16.5.1 Model for a Tidally Forced, Phreatic Surface 3285
9.16.5.2 Model for the Benthic Flux Component Associated with the Groundwater Tidal Prism 3285
9.16.5.3 Model for the Groundwater Tidal Prism 3287
9.16.5.4 Discussion 3287
9.16.5.5 Application to the South Atlantic Bight in South Carolina and portions of North Carolina 3288
9.16.6 Terrestrial Hydraulic Gradient 3289
9.16.6.1 Bokuniewicz’s Benthic Discharge Model 3289
9.16.6.2 Reformulated Benthic Discharge Model 3290
9.16.6.3 Comparison of Benthic Discharge Models by Bokuniewicz and King 3292
9.16.6.4 Application to Great South Bay, New York 3292
9.16.7 Future Work 3294
9.16.8 Summary and Conclusions 3295
References 3296
Effects of Some Ecohydrological Thresholds on the Stability of’Aquatic Fine-Sediment Beds 3300
9.17.1 Introduction 3300
9.17.2 Stability Controlling Factors 3300
9.17.3 Effects of Fluid Chemistry 3303
9.17.4 Effects of Biological Factors 3305
9.17.5 Effects of Flow Field 3307
9.17.5.1 Depth Threshold 3307
9.17.5.2 Instability due to Bed Yield 3307
9.17.5.3 Bed Destabilization and Turbidity Generation 3311
9.17.5.4 Hydrodynamic Transition 3312
9.17.6 Concluding Observations 3312
Acknowledgments 3313
References 3314
Linking Ecology, Modeling, and Management in Coastal Systems 3316
9.18.1 Introduction 3316
9.18.2 Estuarine and Coastal Systems – Threats, Management, and Time Frames 3317
9.18.3 Management Paradigms 3318
9.18.4 The Functions of Models in the Management Paradigm 3319
9.18.5 Model Types and Their Application 3320
9.18.5.1 Ecosystem Models 3320
9.18.5.2 Hydrodynamic and Transport Models 3321
9.18.5.3 Integrated Hydrodynamics, Transport, and Ecosystem Model 3321
9.18.5.4 Data and Calibration: Recognizing Uncertainty 3322
9.18.5.5 Bayesian Network Models – a Framework for Decision Making 3322
9.18.6 The Players – Ecologists, Modelers, Managers, Decision Makers, and Stakeholders 3322
9.18.7 Investigation and Management Process 3323
9.18.7.1 Initial Desktop Study – Describing the Problem 3323
9.18.7.2 A Graphical Model of the System 3323
9.18.7.3 Spatial and Temporal Scales 3324
9.18.7.4 The System Network Model’s Role in the Management Process 3324
9.18.8 Setting and Structuring Management Objectives 3325
9.18.9 Measures of Objectives Success 3326
9.18.10 Multicriteria Decision Making 3326
9.18.11 Determining Possible Strategic Activities to Target Objectives 3327
9.18.12 Modeling for Management 3328
9.18.12.1 Presentation of Predicted Objective Outcomes 3330
9.18.13 Achieving Effective Linkage between Ecologists, Modelers, and Managers 3330
9.18.13.1 Guidelines for Ecologists in Management Investigations of Coastal Systems 3331
9.18.13.2 Guidelines for Modelers in Management Investigations 3331
9.18.13.3 The Manager’s Responsibilities in Coastal System Management 3331
9.18.14 Summary 3331
References 3332
e9780123747112v10 3334
Cover 3334
Treatise On Estuarine And Coastal Science 3335
Copyright 3338
Contents Of Volume 10\r 3339
Volume Editors 3341
Editors-In-Chief: Biographies 3343
Volume Editors: Biographies 3345
Contributors Of All Volumes 3355
Contents Of All Volumes 3365
Preface\r 3371
Introduction to Ecohydrology and Restoration of Estuaries and’Coastal Ecosystems 3375
10.01.1 Introduction 3375
10.01.2 The Watershed as an Ecosystem 3375
10.01.3 Estuarine and Coastal Water Ecohydrology 3377
References 3379
Hydrology and Biota Interactions as Driving Forces for Ecosystem Functioning 3381
10.02.1 Introduction 3381
10.02.2 Hydrologic Regulation of Microbes in’Estuarine and Nearshore Coastal Ecosystems 3383
10.02.2.1 Phytoplankton 3383
10.02.2.2 Heterotrophic Bacterioplankton 3389
10.02.3 Hydrologic Regulation of Metazoans in’Estuarine and Nearshore Coastal Ecosystems 3393
10.02.3.1 Metazooplankton 3393
10.02.3.2 Benthos 3400
10.02.3.3 Nekton 3404
10.02.4 Biologic Regulation of Estuarine and’Nearshore Hydrology 3406
10.02.4.1 Biologic Control of Dissolved Gases 3407
10.02.4.2 Biologic Control of Dissolved Inorganic Nutrients 3407
10.02.4.3 Biologic Control of Dissolved Organic Matter 3408
10.02.4.4 Biologic Control of Biological Contaminants 3409
10.02.4.5 Biologic Control of Bioactive Compounds 3411
10.02.4.6 Biologic Control of Water Flow, Turbidity, and’Habitat Structure 3411
10.02.5 Conclusions 3412
Acknowledgments 3413
References 3413
Quantification of Coastal Ecosystem Resilience 3423
10.03.1 Introduction 3424
10.03.2 State of Coastal Ecosystems 3424
10.03.2.1 Definition of Disturbance, Perturbation, Stress, and Stressor 3424
10.03.2.2 From Single to Multiple Affectors 3427
10.03.2.3 A More Complex Scenario 3427
10.03.2.4 Ecosystem Development and the Role of Affectors 3427
10.03.2.5 The Role of Invasive Species 3428
10.03.3 Definition of Resilience in Ecology 3428
10.03.4 An Overview of Some Concepts Connected with Resilience 3429
10.03.5 The Most Notorious Cases of Resilience Loss and Abrupt Shift in Marine Ecosystems 3431
10.03.5.1 Coral Reefs 3432
10.03.5.2 Kelp Forests 3432
10.03.5.3 Seagrass Meadows 3432
10.03.5.3.1 The case of the Mediterranean seagrass Posidonia oceanica 3433
10.03.5.4 The Case of the North Sea 3434
10.03.5.5 The Case of the North Pacific and the North Atlantic 3435
10.03.6 Measuring Ecosystem Resilience 3435
10.03.6.1 Resilience Indices 3436
10.03.6.2 Return Time 3436
10.03.6.3 Variance 3437
10.03.6.4 Biodiversity and Functional Diversity 3437
10.03.6.5 Productivity 3438
10.03.6.6 A Landscape Approach 3438
10.03.6.7 Synthetic Ecological Indices 3438
10.03.7 Final Remarks 3440
Acknowledgements 3443
References 3443
Integration of Social and Cultural Aspects in Designing Ecohydrology and Restoration Solutions 3445
10.04.1 Introduction 3445
10.04.2 The Role of the Biophysical Sciences 3447
10.04.3 The Role of the Social Sciences 3447
10.04.4 Integration of the Biophysical and Social Sciences 3448
10.04.5 Leadership and Political Will 3448
10.04.6 Engaging Communities in Setting Goals for’Restoration 3449
10.04.7 The Value of Peer-to-Peer Exchanges 3450
10.04.8 The Complex Human Management Issues for’Managing the Great Barrier Reef 3452
10.04.9 Bridging Science to Policy Development and’Implementation 3453
Acknowledgments 3453
References 3453
River-Coast Connectivity, Estuarine Nursery Function and Coastal Fisheries 3455
10.05.1 Introduction 3455
10.05.2 Overview of Estuarine Fish Assemblage Structure 3455
10.05.3 Influence of Freshwater Flow in Estuarine Fish Assemblages 3459
10.05.4 Estuarine Nursery Function and Habitat-Use Patterns 3463
10.05.5 Links between Estuarine Nurseries and’Coastal Stocks 3468
10.05.6 Importance of Estuaries for Coastal Fisheries Sustainability: Managing and Preserving Estuarine Function 3472
Reference 3477
Interaction of River Basins and Coastal Waters -\r An Integrated Ecohydrological View 3483
10.06.1 Introduction 3483
10.06.1.1 Motivation 3483
10.06.1.2 Riverine Impacts on Coastal Zones: Past, Present, and Future 3484
10.06.2 The Interaction between Riverine and Coastal Ecosystems 3486
10.06.3 Land-Use Changes in River Basins and Coast Lines 3488
10.06.4 Pressures and Impacts on the Dynamic Equilibrium between Riverine and Coastal Ecosystems 3491
10.06.4.1 Land Use in the River Basin and Its Impact on \rCoastal Zones 3491
10.06.4.2 Impact of Land Use along the Coast 3509
10.06.4.3 Impact of Dams and Hydraulic Constructions 3511
10.06.5 Ecohydrological Management Strategies for’the Interaction between River and Coast 3512
10.06.5.1 Management Strategies within the River Basins 3512
10.06.5.2 Management Strategies within the Coastal Ecosystem Including Reservoirs and Hydraulic Structures 3514
10.06.6 Conclusions 3517
References 3519
Restoration of Seagrass Community to Reverse Eutrophication in’Estuaries 3525
10.07.1 Introduction 3525
10.07.2 Case Studies 3529
10.07.2.1 Hysteresis in the Response to a Management Program Implemented to Reduce the Loading of Nutrients and Promote the Restoration of the Seagrass Community in the Mondego Estuary (Portugal) 3529
10.07.2.2 A Pilot Study about the Factors Affecting the Restoration of Seagrass Community in the Shallow Microtidal Roskilde Fjord (Denmark) 3533
10.07.3 Final Remarks 3536
Acknowledgments 3537
References 3537
Restoring Coastal Ecosystems from Fisheries and Aquaculture \rImpacts 3539
10.08.1 Introduction 3539
10.08.2 Main Impacts of Fisheries and Aquaculture on’Coastal Ecosystems 3540
10.08.2.1 Fisheries 3540
10.08.2.2 Aquaculture 3543
10.08.3 Mitigation Measures 3545
10.08.3.1 Fisheries 3545
10.08.3.2 Aquaculture 3546
10.08.4 Restoration of Coastal Ecosystems 3548
10.08.4.1 Ecosystem Restoration Initiatives 3548
10.08.4.2 Marine Protected Areas 3552
10.08.5 Major Findings and Conclusions 3553
References 3554
Restoration Strategies for Intertidal Salt Marshes 3563
10.09.1 Introduction 3564
10.09.2 Reasons for Salt Marsh Degradation and Loss 3564
10.09.2.1 Climate Change and Sea-Level Rise 3564
10.09.2.2 Other Natural Events 3566
10.09.2.3 Direct Anthropogenic Impacts 3567
10.09.2.4 Hydrodynamic Aspects of Sea-Level Rise 3567
10.09.3 Consequences of Salt Marsh Degradation and’Loss 3568
10.09.3.1 Loss of Salt Marsh Biodiversity 3568
10.09.3.2 Loss of Salt Marsh Biological Productivity 3568
10.09.3.3 Changes to Salt Marsh Fluxes 3569
10.09.3.4 Damage to Adjacent Habitats/Communities 3570
10.09.4 Changes in Groundwater Fluxes 3570
10.09.4.1 Impacts of Pollution 3571
10.09.4.2 Salt Marsh Loss and Coastal Protection 3572
10.09.5 Tackling Salt Marsh Restoration 3572
10.09.5.1 Salt Marsh Regeneration 3572
10.09.5.2 Salt Marsh Creation 3573
10.09.5.3 Benefits of Salt Marsh Creation 3573
10.09.5.4 Site Assessment 3574
10.09.5.5 Ecological Properties 3575
10.09.5.6 Hydrological Properties 3575
10.09.5.7 Elevation Levels 3576
10.09.5.8 Tidal Management 3576
10.09.5.9 Accretion Rates and Available Sediment Supplies 3576
10.09.5.10 Introduction of Fresh Sediment 3577
10.09.5.11 Soil Conditions 3578
10.09.5.12 Sediment Consolidation and Drainage Requirements 3579
10.09.5.13 Sources of Seeds and Other Propagules 3579
10.09.5.14 Seed Germination and Plant Establishment 3579
10.09.5.15 Implications of Marsh Creation 3580
10.09.6 Salt Marsh Creation – The Next Steps 3580
10.09.6.1 The Way Ahead – Making a Start 3580
10.09.6.2 The Importance of Monitoring 3582
10.09.6.3 New Salt Marshes – Criteria for Success 3582
10.09.6.4 The Long-Term Monitoring and Management of’Created Marshes 3583
10.09.7 Examples and Case Studies of Salt Marsh Creation 3584
10.09.7.1 Introduction 3584
10.09.7.2 Salt Marsh Creation at Tollesbury, Essex, UK 3584
10.09.7.3 Salt Marsh Creation at Freiston, Lincolnshire, UK 3585
10.09.7.4 Salt Marsh Creation at Wallasea Island, Essex, UK 3585
10.09.7.5 Salt Marsh Creation at Paull Holm Strays, Humber,’UK 3585
10.09.7.6 Salt Marsh Creation in the Scheldt Estuary, The \rNetherlands 3586
10.09.8 Future Prospects for Salt Marsh Creation 3586
References 3587
The Pressing Challenges of Mangrove Rehabilitation: Pond Reversion and Coastal Protection 3591
10.10.1 Introduction 3591
10.10.2 The Philippine Experience: A Microcosm of the Global Situation? 3592
10.10.3 Rehabilitation at the Seafront 3595
10.10.3.1 Species Selection 3595
10.10.3.2 Planting Materials: Seeds or Propagules, Nursery Seedlings, and Wildings 3597
10.10.3.3 Nursery Protocols 3598
10.10.3.4 Tidal Inundation and Soil Elevation 3602
10.10.3.5 Outplanting 3604
10.10.3.6 Threats 3606
10.10.3.7 Maintenance and Monitoring 3608
10.10.3.8 Community Engagement 3609
10.10.4 Reversion of Abandoned Ponds and Mangrove-Friendly Aquaculture 3609
10.10.4.1 Ecology of Pond–Mangrove Reversion 3610
10.10.4.2 Governance Aspects and the FLA System 3613
10.10.4.3 The Community-Based Mangrove Rehabilitation Project 3614
10.10.5 Conclusions and Recommendations 3614
Acknowledgments 3615
References 3616
Relevant Websites 3618
Restoration of Groundwater Quality to Sustain Coastal Ecosystems Productivity 3619
10.11.1 Groundwater and Coastal Ecosystem Productivity 3619
10.11.2 The Source and Fate of Nutrients in Groundwater 3620
10.11.2.1 Sources 3620
10.11.2.2 Fate of Nitrogen 3621
10.11.2.3 Fate of Phosphorus 3621
10.11.3 Restoration and Preservation of Groundwater Quality Regarding Nutrients 3621
10.11.3.1 General Overview 3621
10.11.3.2 Reducing the Nutrient Load from Agriculture on Groundwater 3621
10.11.4 Final Considerations 3634
References 3634
Aquatic Ecosystems, Human Health, and Ecohydrology 3637
10.12.1 Introduction 3638
10.12.1.1 Integration of Disciplines and of Basin-Based, Transboundary Health Systems 3638
10.12.2 Main Water-Borne Diseases: Links to Water Management 3640
10.12.2.1 Protozoal Infections 3640
10.12.2.2 Parasitic Infections (Kingdom Animalia) 3641
10.12.2.3 Bacterial Infections 3646
10.12.2.4 Diseases of Chemical Origin 3649
10.12.2.5 Diseases Produced by Viral Infections 3652
10.12.3 Effects of Increasing Water and Land Use’–’and Scarcity – on Human Health: Some Examples from’Aquaculture,’Megacities, Dams, and Intensive Agriculture 3654
10.12.3.1 Aquaculture: Shrimp, Vibriosis, and Mutations 3654
10.12.3.2 Megacities: Contemporary Trends in Diarrheal Diseases and Lessons from History 3655
10.12.3.3 Dams and Diverse Effects on Water-Borne Diseases 3657
10.12.3.4 Intensive Agriculture: Man-Made Ecotones and Fragmented Aquatic Ecosystems 3660
10.12.4 Surveillance and Control of Water-Borne Diseases: the Need of a New Synthesis of Ecohydrology, Biomedical’Sciences, and Resource Management 3661
10.12.4.1 The Need of Ecotone Surveillance 3661
10.12.4.2 Changes in Hydrological Cycles: Global Surveillance Systems and Interdisciplinarity 3662
10.12.4.3 Water Management, Ecohydrology, and Vector Control of Water-Borne Diseases 3663
10.12.5 Conclusions 3667
10.12.5.1 Some Reflections on Dams, Water Scarcity, Ecohydrology, and Health 3667
10.12.5.2 Conflicts and Challenges in Water Management Policies 3667
References 3668
Ecohydrology Modeling: Tools for Management 3675
10.13.1 Introduction 3676
10.13.2 Approaches to EH Modeling 3677
10.13.2.1 Knowledge-Driven Approach (Mechanistic) Models 3677
10.13.2.2 Data-Driven Approach to Modeling 3678
10.13.2.3 Hybrid Modeling Approach 3679
10.13.3 Case Studies 3682
10.13.3.1 An EH Model of the GBR 3682
10.13.3.2 EH Model of the Guadiana Estuary Ecosystem Health 3684
10.13.3.3 Estuarine Phytoplankton Succession Control (Bottom-Up Control) 3686
10.13.3.4 Estuarine Phytoplankton Succession Control (Top-Down Control) 3690
10.13.3.5 Modeling the Phytoplankton Dynamics in North Adriatic with ML Tools 3693
10.13.3.6 Modeling Algal Biomass in the Lagoon of Venice with ML Tools: Decision Trees, Equation Discovery, and Hybrid Approach 3697
10.13.4 Conclusion 3700
References 3701
e9780123747112v11 3703
Cover\r 3703
Treatise On Estuarine And Coastal Science 3704
Copyright 3707
Contents Of Volume 11\r 3708
Volume Editors\r 3710
Editors-In-Chief: Biographies\r 3712
Volume Editors: Biographies\r 3714
Contributors Of All Volumes\r 3724
Contents Of All Volumes\r 3734
Preface\r 3740
Integrated Management of Coasts in Times of Global Change - A Social-Ecological System Perspective -\r Introduction and•Volume Synthesis 3744
References 3746
The Social Dimension of Social-\rEcological Management 3748
11.02.1 Background and Aims 3749
11.02.2 “The Social” Dimension of Human–Nature Relations 3750
11.02.2.1 “The Social” and Social Change 3750
11.02.2.2 Shortcomings in Defining ‘the Social’ 3750
11.02.2.3 ‘The Social’ in Social–Ecological Relations 3750
11.02.2.4 Quality Criteria for the Social Dimension 3751
11.02.3 Components of the Social Dimension (SD) in’SES Management 3753
11.02.3.1 Points of Departure 3753
11.02.3.2 Toward a Conceptual Framework 3757
11.02.4 Operationalizing ‘the Social’ via Indicator Systems 3758
11.02.4.1 Ecocentric Indicator Systems 3758
11.02.4.2 Anthropocentric Indicator Systems 3759
11.02.4.3 Interdisciplinary Indicator Systems 3759
11.02.4.4 System-Based Indicator Systems 3760
11.02.5 Case Study: Mangrove Management in’Brazil’– The Social Dimension 3761
11.02.5.1 Stakeholder Analysis and Selection 3761
11.02.5.2 Participatory Indicator Development and Selection 3762
11.02.5.3 Implementation 3764
11.02.6 Integrating the Social Side 3765
11.02.6.1 A Critical Evaluation 3765
11.02.6.2 Outlook 3768
References 3769
Relevant Websites 3773
Management Case Study: Tampa Bay, Florida 3774
11.03.1 Introduction 3775
11.03.1.1 Background 3775
11.03.1.2 Tampa Bay Management – History and Approach 3778
11.03.2 Water Quality 3781
11.03.2.1 Background 3781
11.03.2.2 Factors Affecting Bay Trophic State 3783
11.03.2.3 Availability of Long-Term Monitoring Data 3783
11.03.2.4 Temporal Changes in Nutrient Sources and Loads 3784
11.03.2.5 Bay Responses to Fluctuating Rainfall and \rTN Inputs 3786
11.03.3 Living Resources and Habitats 3788
11.03.3.1 Background 3788
11.03.3.2 Initial Seagrass-Based Management Goals 3788
11.03.3.3 Refining the Seagrass Management Approach 3791
11.03.3.4 Goals for Other Key Habitat Types 3793
11.03.3.5 Management Issues in Tidal Tributaries 3795
11.03.4 Sediment Contaminants and Benthic Habitat Quality 3798
11.03.4.1 Background 3798
11.03.4.2 Contaminant Concentrations and Distribution 3800
11.03.4.3 Identification of Contaminants of Concern 3802
11.03.4.4 Risk-Based Assessment of Contaminant Concentrations 3803
11.03.4.5 COC Sources and Estimated Inputs 3804
11.03.4.6 Sediment-Quality Management Strategy 3805
11.03.4.7 Benthic Diversity and Abundance 3806
11.03.4.8 Next Steps and Anticipated Challenges 3808
11.03.5 Other Bay Management Goals 3810
11.03.6 Lessons Learned 3815
Acknowledgments 3816
References 3816
Management Case Study: Mississippi River 3820
11.04.1 Introduction 3820
11.04.2 Eutrophication and Hypoxia 3821
11.04.3 Northern Gulf of Mexico Hypoxia and Linkages’with the Mississippi River 3821
11.04.3.1 Changes in Hypoxia Over Time and in Relationship’with Nutrient Loads 3821
11.04.3.2 Historical Dissolved Oxygen Data 3825
11.04.3.3 Coherence with Other Hypoxic Areas 3826
11.04.3.4 Nagging Issues 3826
11.04.4 Sources of Nutrients 3827
11.04.4.1 Nitrogen and Phosphorus Sources and Loads 3827
11.04.5 Transition of Research-Generated Information to Management Applications 3827
11.04.5.1 Scientific Evidence 3827
11.04.5.2 Public Interest 3829
11.04.5.3 Assessment and Action 3829
11.04.5.4 2001 Action Plan 3830
11.04.5.5 Nutrient Reduction Strategies 3831
11.04.5.6 Adaptive Management 3831
11.04.6 The Orphan River 3833
11.04.6.1 Initial National Research Committee 3833
11.04.6.2 Second National Research Committee 3834
11.04.6.3 Ongoing National Research Committee Challenges 3834
11.04.7 Complications 3835
11.04.7.1 View from the NRC 3835
11.04.7.2 Biofuels 3836
11.04.7.3 Farm Policies 3836
11.04.7.4 Climate Change 3837
11.04.8 Urgency for Action 3838
11.04.9 Progress on the Horizon? 3839
11.04.9.1 EPA to Set Enforceable Nutrient Limits in Florida 3839
11.04.9.2 Current Developments in Chesapeake Bay 3840
11.04.9.3 Mississippi River Basin Initiative 3840
11.04.9.4 Great Lakes Restoration Initiative 3841
11.04.9.5 Why Not the Mississippi River Watershed? 3841
11.04.10 Summary 3841
Acknowledgments 3842
References 3842
Relevant Websites 3844
Management Case Study: Boston Harbor/Massachusetts Bay, Massachusetts 3846
11.05.1 Overview 3846
11.05.2 Background: Physical Description 3847
11.05.3 Recovery of the Harbor 3849
11.05.3.1 The Court Cases 3849
11.05.3.2 How Sewage Pollution Damages a Coastal Ecosystem 3850
11.05.3.3 Improvements to the System 3851
11.05.3.4 Effluent Monitoring 3854
11.05.3.5 Boston Harbor Monitoring: The Need to Demonstrate Improvement 3854
11.05.4 Boston Harbor Monitoring Results 3856
11.05.4.1 Sediments 3856
11.05.4.2 Beaches 3857
11.05.4.3 Water Quality 3858
11.05.4.4 Winter Flounder 3859
11.05.5 Protection of the Bay 3860
11.05.5.1 Siting an Offshore Outfall 3860
11.05.6 Massachusetts Bay Monitoring: The Need to Demonstrate No Impact 3863
11.05.7 Massachusetts Bay Monitoring Results 3866
11.05.8 Lessons Learned 3868
11.05.9 The Future for Environmental Management of Boston Harbor/Massachusetts Bay 3870
References 3870
Relevant Websites 3872
Practitioner Reflections on Integrated Coastal Management Experience in Europe, South Africa, and Ecuador 3874
11.06.1 Introduction 3875
11.06.2 The Coastal Domain 3875
11.06.2.1 Coastal Systems and Global Change 3876
11.06.2.2 Implications for ICM 3876
11.06.3 Background to the Development of’the’Concept of ICM 3877
11.06.4 The Adaptation of US Coastal Management Concepts and Principles by Other Nations 3877
11.06.4.1 The Evaluation of Progress toward Developing a’Robust ICM Process 3878
11.06.5 The Adoption of ICM in Europe 3880
11.06.5.1 The Role of the EU in Developing ICM 3881
11.06.5.2 Evaluation of Progress in Developing ICM in’Europe 3882
11.06.5.3 Factors That Have Influenced the Success of ICM Initiatives in Europe 3883
11.06.5.3.1 Coordination 3883
11.06.5.4 Elements of Good Practice in the European ICM Demonstration Projects 3884
11.06.5.5 Future Directions for ICM in Europe 3885
11.06.6 ICM in South Africa: An Evolving Journey 3886
11.06.6.1 The South African Coastal Setting 3886
11.06.6.2 Evolution of Coastal Management in South Africa 3887
11.06.7 A Generation of ICM in Ecuador: 1981–2000 3892
11.06.7.1 The Importance of Ecuador’s Coastal Region 3892
11.06.7.2 The Evolution of Ecuador’s ICM Program 3893
11.06.7.3 A Two-Track Strategy for Building the Enabling Conditions 3893
11.06.7.4 An Incremental, Learning-Based Approach 3894
11.06.7.5 The Transition to a New Funder and New Administrative Structure 3895
11.06.7.6 Some Lessons from the First-Generation Program 3896
11.06.7.7 The Second Generation of Ecuador’s Coastal Program 3896
11.06.8 Conclusions 3897
11.06.8.1 Europe 3897
11.06.8.2 South Africa 3897
11.06.8.3 Ecuador 3898
References 3899
ICZM and the Wadden Sea: Management across Boundaries 3902
11.07.1 Introduction 3902
11.07.2 The Wadden Sea 3903
11.07.3 The Trilateral Wadden Sea Cooperation 3903
11.07.3.1 Political Basis and Structure 3903
11.07.3.2 Structure of the TWSC 3905
11.07.3.3 International Agreements 3906
11.07.4 Trilateral Policy and Management 3907
11.07.4.1 Wadden Sea Plan 3907
11.07.4.2 Trilateral Targets 3908
11.07.4.3 Trilateral Monitoring and Assessment 3909
11.07.5 Developments in a Historical Perspective 3912
11.07.5.1 The 1970s: Politics and The Environment 3912
11.07.5.2 The 1980s: Sectoral Approaches 3912
11.07.5.3 The 1990s: Integration of Policies 3912
11.07.5.4 The 2000s: Sustainable Development and Integrated Ecosystem Management 3913
11.07.6 The TWSC and Integrated Ecosystem Management 3913
11.07.6.1 The Ecosystem Approach 3913
11.07.7 The TWSC and EC Directives 3914
11.07.7.1 EC Directives for Nature and Environment Protection 3914
11.07.7.2 EC Directives and the Ecosystem Approach 3916
11.07.7.3 The Trilateral Target Concept 3917
11.07.8 The TWSC and ICZM 3917
11.07.8.1 ICZM Recommendation 3917
11.07.8.2 The Wadden Sea Forum 3918
11.07.8.3 Lessons Learned 3919
11.07.9 Conclusions and Outlook 3920
References 3921
Relevant Websites 3921
Management of the Sustainable Development of Deltas 3922
11.08.1 Introduction 3923
11.08.1.1 Objective and Scope of the Chapter 3923
11.08.1.2 Setup of the Chapter 3924
11.08.2 Functions and Values of Deltas 3924
11.08.2.1 Processes Shaping the Delta 3924
11.08.2.2 Functions and Values for Mankind 3924
11.08.2.3 Functions and Values of Nature and Natural Processes 3925
11.08.2.4 Status and Trends in Values of Delta Ecosystems 3926
11.08.3 Trends and Issues in the Development of’Deltas 3927
11.08.3.1 Deltas: Melting Pot of Drivers and Trends 3927
11.08.3.2 Issues at Stake in Deltas 3927
11.08.3.3 Importance of Issues in Some Deltas Worldwide 3927
11.08.3.4 Delta Management: A Major Challenge 3929
11.08.4 Management and Restoration of Natural Systems 3929
11.08.4.1 Introduction 3929
11.08.4.2 Natural Coastal Protection and Wetland Restoration 3930
11.08.4.3 Integrity of Ecosystems: Environmental Flows 3930
11.08.4.4 Room for Rivers 3932
11.08.4.5 Multiple Use of Wetlands 3933
11.08.5 Extension and Revitalization of Infrastructure 3934
11.08.5.1 Role of Infrastructure in Delta Development 3934
11.08.5.2 Dealing with Pressure on Available Space 3935
11.08.5.3 From Building against Nature to Building with Nature 3936
11.08.5.4 Toward More Robust Infrastructure 3936
11.08.6 Development and Adaptation of Land and’Water Use 3937
11.08.6.1 Options in Adaptation of Land and Water Use 3937
11.08.6.2 Spatial Planning and Zoning 3938
11.08.6.3 Urban (Re)development 3938
11.08.6.4 Adaptation to Climate Change 3938
11.08.7 Governance of Delta Development and’Management 3939
11.08.7.1 Role of Governance in Delta Development 3939
11.08.7.2 Cooperation between Levels and Sectors of’Government 3940
11.08.7.3 Cooperation between Government and Private Sector 3942
11.08.7.4 Involvement of Stakeholders and Citizens 3942
11.08.7.5 Approaches for Dealing with Risks and’Uncertainties 3943
11.08.8 Way Forward? 3943
11.08.8.1 Two Conflicting Perspectives on Development of’Deltas 3943
11.08.8.2 Enabling the Sustainable Development of Deltas 3945
Relieving the pressure on available space 3945
Improving resilience of delta areas 3923
Securing freshwater supplies 3923
Upgrading of aging infrastructure 3924
Coastal erosion management 3924
Biodiversity protection 3924
11.08.8.3 Delta Vision: A Shared View on Delta Development 3946
11.08.8.4 Best Practices for Delta Issues 3946
References 3946
Integrated Management in the Seto Inland Sea, Japan 3948
11.09.1 Introduction 3948
11.09.2 Changes in the Environment 3948
11.09.2.1 Population 3948
11.09.2.2 Industry 3949
11.09.2.3 Coastline 3950
11.09.3 Status 3950
11.09.3.1 Water Quality 3950
11.09.3.2 Sediment Quality 3950
11.09.3.3 Red Tide 3955
11.09.3.4 Seagrass Beds and Tidal Flats 3956
11.09.3.5 Fish Catch 3957
11.09.4 Responses 3959
11.09.4.1 Special Law 3959
11.09.4.2 Loads 3959
11.09.4.3 Reclamation 3963
11.09.4.4 New Environmental Policies 3963
11.09.5 Future Tasks 3969
References 3969
Integrated Coastal and Estuarine Management in South and’Southeast Asia 3970
11.10.1 South Asia 3971
11.10.1.1 Bangladesh 3972
11.10.1.2 India 3977
11.10.1.3 Maldives 3982
11.10.1.4 Pakistan 3983
11.10.1.5 Sri Lanka 3984
11.10.1.6 Summary of Coastal Zone Issues in South Asia 3987
11.10.2 Southeast Asia 3987
11.10.2.1 Brunei 3987
11.10.2.2 Cambodia 3989
11.10.2.3 Timor Leste (East Timor) 3991
11.10.2.4 Indonesia 3992
11.10.2.5 Malaysia 3993
11.10.2.6 Myanmar 3994
11.10.2.7 Philippines 3996
11.10.2.8 Singapore 3997
11.10.2.9 Thailand 3998
11.10.2.10 Vietnam 4000
11.10.3 Summary 4001
11.10.3.1 What Does the Future Hold for ICZM in South Asia and South East Asia? 4004
References 4004
Relevant Websites 4006
Integrated Coastal and Estuarine Management in Arctic Coastal Systems 4008
11.11.1 Introduction 4008
11.11.2 Physical and Ecological Changes on Arctic Coasts 4010
11.11.2.1 Changes in the Atmosphere 4010
11.11.2.2 Changes in the Oceans: Sea Ice 4012
11.11.2.3 Changes in Biodiversity 4014
11.11.3 Socioeconomic and Cultural Changes on’Arctic Coasts 4014
11.11.3.1 Socioeconomic and Industrial Development 4014
11.11.3.2 Hydrocarbon Development 4015
11.11.3.3 Shipping, Navigation, and Tourism 4016
11.11.3.4 Fisheries and Natural Resources 4018
11.11.4 Integrated Management and Governance 4018
11.11.4.1 From Government to Governance: The Rise of Integrated Approaches to Management 4018
11.11.4.2 The Concept of Governance 4019
11.11.5 Case Studies of Arctic Governance 4021
11.11.5.1 A Pan-Arctic View: Recent Changes and Trends in’International Governance 4021
11.11.5.2 A National View: Integrated Management Policies 4022
11.11.6 What Are the Elements of an Integrated Management Model in the Arctic? 4027
11.11.6.1 Social–Ecological Thinking, Resilience, and Scale 4027
11.11.6.2 Integrating the Sciences, Policy, and Traditional Knowledge 4028
11.11.7 Conclusions 4029
References 4030
Relevant Websites 4031
Assessing Major Environmental Issues in the Caribbean and Pacific Coasts of Colombia, South America: An Overview of Fluvial Fluxes, Coral Reef Degradation, and Mangrove Ecosystems Impacted by River Diversion 4032
11.12.1 Fluvial Fluxes from the Andean Rivers of’Colombia 4033
11.12.2 Catchment–Coast Continuum in a Major Caribbean Basin: The Magdalena River 4040
11.12.2.1 Human-Induced Factors in the Magdalena Catchment 4041
11.12.2.2 Water Discharge and Sediment Load into’the’Caribbean Sea 4041
11.12.2.3 Impacts of Terrestrial Runoff on the Ecology of’Coral Reef Ecosystems 4042
11.12.2.4 Temporal Variability Coral Reef Health in’the’Rosario Islands 4043
11.12.2.5 Major Anthropogenic Impacts on Coral Reefs in the Rosario Islands with Focus on Continental Nutrient Load 4045
11.12.2.6 Final Remarks on Human-Induced Activities in the Coral Reefs of the Rosario Islands and Suggested Research and Management Activities 4046
11.12.3 Distributary Channel Diversion in the Patía River Delta, Pacific Colombia 4050
11.12.3.1 Discharge Diversion and Its Environmental Impact 4050
11.12.3.2 Deforestation along the Western Andes of Colombia and Its Environmental Implications for Coastal Resources 4052
11.12.4 Final Remarks 4055
References 4055
The Coastal and Marine Environment of Western and Eastern Africa: Challenges to Sustainable Management and Socioeconomic Development 4058
11.13.1 Introduction 4059
11.13.2 Main Features and Broad Ecological Characteristics 4059
11.13.2.1 Western Africa 4059
11.13.2.2 Eastern Africa 4060
11.13.3 Endowments and Opportunities 4060
11.13.3.1 Fisheries Resources 4060
11.13.3.2 Recreational Endowments and Tourism 4064
11.13.3.3 Mineral Resources and Extraction 4065
11.13.3.4 Transportation 4065
11.13.4 Challenges Faced in Realizing Development Opportunities 4065
11.13.4.1 Overexploitation of Fisheries 4066
11.13.4.2 Habitat Destruction through Local Population Pressures 4067
11.13.4.3 Habitat Destruction Associated with Minerals and Oil and Gas Extraction 4068
11.13.4.4 Habitat Degradation through Catchment Land-Use Change 4069
11.13.4.5 Physical Shoreline Change 4070
11.13.4.6 Loss of Biodiversity 4071
11.13.4.7 Climate Change 4071
11.13.5 What Has Been Achieved So Far? 4072
11.13.6 Linking Institutional Responses from the National to the Regional Level 4073
11.13.7 Policy Options for Addressing the Regional Challenges 4074
11.13.7.1 Enhancing Institutional Mechanisms for Regional-Scale Ecosystem-Based (LME-wide) Management 4074
11.13.7.2 The Application of More Integrated Planning Approaches 4074
11.13.7.3 More Focus on Proactive and Cooperative Actions as Opposed to Corrective Measures 4075
11.13.7.4 The Use of Economic Instruments, such as Payment for Ecosystem Services, the Polluter-Pays Principle, and Subsidies and Tax Cuts 4075
11.13.7.5 The Application of Spatial Planning Approaches 4075
11.13.7.6 Enhanced Stakeholder Awareness and Public Awareness 4075
11.13.7.7 Strengthening National Institutional Capacity and’Policy and Regulatory Frameworks 4075
11.13.7.8 The Establishment of Financial Mechanisms 4075
11.13.7.9 The Establishment of Mechanisms for Targeted Research, Monitoring, and Knowledge Management 4075
11.13.8 Conclusion 4075
Acknowledgments 4076
References 4076
e9780123747112v12 4080
Cover\r 4080
Treatise On Estuarine And Coastal Science 4081
Copyright 4084
Contents Of Volume 12\r 4085
Volume Editors 4087
Editors-In-Chief: Biographies\r 4089
Volume Editors: Biographies\r 4091
Contributors Of All Volumes\r 4101
Contents Of All Volumes\r 4111
Preface\r 4117
Ecological Economics of Estuaries and Coasts 4121
12.01.1 Introduction of Ecological Economics of’Estuaries and Coasts 4121
12.01.2 Ecosystem Services 4124
12.01.3 EE History and Perspective 4126
12.01.3.1 Full World and the Growth Paradigm 4126
12.01.3.2 Transdisciplinarity 4127
12.01.3.3 History and an Evolving EE 4127
12.01.3.4 Vision and Normative Goals 4129
12.01.3.5 Decision Making 4131
12.01.3.6 Integration and Scale 4131
12.01.4 Outlook for EE on Estuaries and Coasts 4133
12.01.4.1 Conclusion 4133
References 4133
Relevant Websites 4134
What Are Ecosystem Services?\r 4135
12.02.1 Introduction 4135
12.02.2 Definition(s) and Characteristics of’Ecosystem Services 4136
12.02.2.1 Defining Ecosystem Services 4136
12.02.2.2 The Role of Biodiversity in Ecosystem-Service Provision 4136
12.02.2.3 Ecosystem Condition and Sustainable Use 4137
12.02.2.4 Linking Ecosystem Services to Human Well-Being 4141
12.02.3 Classification of Ecosystem Services 4142
12.02.3.1 Generic Frameworks and Typology of Ecosystem Services 4142
12.02.3.2 Brief Description of the Four Main Service Categories 4142
12.02.3.3 Brief Overview of Coastal Ecosystem Services 4144
12.02.4 Measuring Ecosystem Services: Quantifying the Capacity and Importance of Ecosystems to’Provide’Goods’and’Services 4144
12.02.4.1 Indicators to Measure the Capacity to Provide Ecosystem Services 4146
12.02.4.2 Indicators to Measure the Importance (Value) of’Ecosystem Services 4148
12.02.5 Some Remaining Challenges 4150
References 4152
Relevant Websites 4154
Valuation of Coastal Ecosystem Services 4155
12.03.1 Introduction 4155
12.03.2 Valuation and Its Function in a Market System 4156
12.03.2.1 Price versus Value 4156
12.03.2.2 Why ESs Are Not Part of Market System 4157
12.03.3 Valuation Techniques to Use When People Perceive the Value of ESs 4160
12.03.3.1 Theoretical Underpinning for Neoclassical Valuation Approach 4160
12.03.3.2 Neoclassical Methods for Valuing ESs 4162
12.03.3.3 Limitations of Neoclassical ES Valuation Techniques 4165
12.03.4 When People Do Not Perceive the Benefits of ESs 4166
12.03.4.1 Ecological Indicators 4167
12.03.4.2 Participation and Stakeholder Involvement in Policymaking 4167
12.03.4.3 Knowledge Integration 4168
12.03.4.4 Multicriteria Analysis 4169
12.03.4.5 Scenarios 4169
12.03.4.6 Mapping and Modeling 4170
12.03.4.7 Payments for ESs 4170
12.03.5 Conclusion 4171
References 4172
Environmental Benefit Transfers of Ecosystem Service Valuation 4175
12.04.1 Introduction 4176
12.04.2 Concepts and Methods 4176
12.04.2.1 Benefit Transfer Defined 4176
12.04.2.2 Transfer Techniques and Recent Trends 4177
12.04.2.3 Transfer Databases 4179
12.04.2.4 A Literature Survey of Ecosystem Service Transfer’Studies 4180
12.04.3 Transfer Errors and Validity Test 4181
12.04.3.1 Transfer Errors 4181
12.04.3.2 Validity Tests 4183
12.04.4 Case Studies 4184
12.04.4.1 A GIS-Supported Point Transfer in Valuing the US State of New Jersey’s Ecosystem Services and’Natural’Capital 4184
12.04.4.2 A Meta-Analysis of Contingent Valuation Studies in’Valuing Ecosystem Services of Coastal and Nearshore Marine Ecosystems 4189
12.04.5 Conclusion 4195
References 4195
Relevant Websites 4197
Integrated Modeling of Coastal and Estuarine Ecosystem Services 4199
12.05.1 Introduction 4199
12.05.2 Modeling and Participation in Estuarine and’Coastal Management 4200
12.05.2.1 IM for Estuarine and Coastal Management 4200
12.05.2.2 The Emergence of Participation in Environmental Decision Making 4201
12.05.3 Participatory Modeling with System Dynamics 4202
12.05.3.1 The Role of Modeling and Computer Simulation 4202
12.05.3.2 The MM Approach 4205
12.05.4 Multiscale IM Framework for Sustainable Adaptive Systems 4207
12.05.5 MM Experiences to Support Planning and Management in Coastal and Estuarine Systems 4208
12.05.5.1 Scoping River Basin Sustainability Issues in the Baixo Guadiana Estuary 4210
12.05.5.2 Supporting Planning in Coastal Wetlands: The Ria Formosa MM Experiences 4214
12.05.6 IM and Ecosystem Services Valuation: GUMBO and MIMES 4219
12.05.6.1 The GUMBO Model: Global Unified Model of the BiOsphere 4220
12.05.6.2 The MIMES Model: Multiscale Integrated Model on’Ecosystem Services 4221
12.05.6.3 Economic Evaluations with GUMBO and MIMES 4222
12.05.7 Lessons and Avenues for Future Research in’IM of Coastal and Estuarine Ecosystem Services 4223
12.05.7.1 The Role of IM in Supporting Public and Stakeholder Participation in Coastal and Estuarine Decisions 4223
12.05.7.2 Mediated Models and the Underlying Collaborative Processes Give Positive Indications toward Supporting Estuarine and Coastal Planning and Management 4224
12.05.7.3 Developing Integrated Deliberative Decision-Making Processes Supported by a Mix of Participatory Methods’and Tools 4225
12.05.7.4 Multiscale IM Reveals Potential to Support Adaptive Management Programs in Estuaries and \rCoastal Areas 4225
12.05.8 Conclusions 4225
Acknowledgments 4226
References 4226
Relevant Websites 4228
Estuarine and Coastal Ecosystems and Their Services 4229
12.06.1 Introduction 4229
12.06.2 Definitions of Services and Values of ECE 4230
12.06.3 Descriptions of Services and Values of ECEs 4231
12.06.3.1 Nearshore Reefs 4231
12.06.3.2 Seagrass Beds 4234
12.06.3.3 Salt Marshes 4235
12.06.3.4 Mangroves 4237
12.06.3.5 Sand Beaches and Dunes 4239
12.06.4 Nonlinearity of ECE Services and Values 4241
12.06.5 Synergistic Characteristics of ECE Services and Values 4243
12.06.6 Management Implications of Ecosystem Services and Values 4244
References 4244
Ecosystem Services Provided by Estuarine and Coastal Ecosystems: Storm Protection as a Service from Estuarine and Coastal Ecosystems 4249
12.07.1 The Impact of Natural Disasters on Human Societies 4249
12.07.2 The Coast: Where Humans, Natural Ecosystems, and Windstorms Meet 4253
12.07.2.1 Humans 4253
12.07.2.2 Hazard Exposure and Damage 4254
12.07.3 The Need to Thrive: Storm Protection as’a’Service Provided by Natural Ecosystems 4255
12.07.4 The Evidence: Do Natural Ecosystems Protect? 4257
12.07.5 Storm Protection from the Perspective of’Ecological Economics 4262
12.07.6 Conclusions 4264
References 4265
The Forgotten Service: Food as an Ecosystem Service from Estuarine and Coastal Zones 4267
12.08.1 Introduction 4268
12.08.1.1 Background 4268
12.08.1.2 Definitions and Concepts 4268
12.08.2 Food from Estuarine and Coastal Areas 4269
12.08.2.1 Food as Part of a Larger Set of Ecosystem Services 4269
12.08.2.2 Contribution of Coastal Ecosystems to Global Food’Production 4270
12.08.2.3 Indirect Uses for Fish as Food: Support for Livelihood of Coastal Populations 4282
12.08.3 Threats To Coastal Ecosystems’ Food Production Function 4285
12.08.3.1 Negative Effects 4285
12.08.3.2 Positive Effects 4290
12.08.3.3 Ecosystem Services Tradeoffs 4290
12.08.4 Managing Coastal Zones for Food Production 4293
12.08.4.1 Fisheries 4293
12.08.4.2 Ecosystem-Based Management 4294
12.08.4.3 Improving aquaculture management 4294
12.08.5 Future of Food From Estuarine and Coastal Ecosystems 4295
12.08.5.1 Driver of Changes 4296
12.08.5.2 Fish Production 4297
12.08.6 Conclusion 4298
References 4298
Nutrient Recycling and Waste Treatment as a Service from’Estuarine and Coastal Ecosystems 4301
12.09.1 Introduction 4301
12.09.2 A Framework for Assessing Values of NWT 4302
12.09.3 A Brief Survey of Direct and Indirect Valuation Studies of Coastal Zone NWT 4304
12.09.3.1 Direct Valuation Studies of NWT by Wetlands 4304
12.09.3.2 Indirect Valuation Studies of Eutrophication Mitigation 4305
12.09.3.3 Comparison of Results 4306
12.09.4 Valuation of Coastal Zone Nutrient Treatment in the Baltic Sea 4307
12.09.4.1 Brief Presentation of the Optimization Model 4307
12.09.4.2 Estimated Values of NWT by Coastal Zones 4309
12.09.5 Management of NWT by Coastal Zones 4310
12.09.5.1 Measures Improving NWT in Coastal Areas 4310
12.09.5.2 Choice of Policies 4312
12.09.6 Management of Cleaning Services in Practice 4314
12.09.6.1 Water-Quality Management in Europe 4314
12.09.6.2 Nutrient Trading Markets in the United States 4315
12.09.7 Conclusions 4316
Acknowledgments 4316
References 4317
Climate Regulation as a Service from Estuarine and Coastal Ecosystems 4319
12.10.1 Introduction 4320
12.10.1.1 Definition and Global Occurrence 4320
12.10.1.2 Climate Regulation Services 4321
12.10.1.3 Anthropogenic Impacts on Climate Regulation Services from Estuaries and Coasts 4321
12.10.2 Climate Regulation Services of Coastal Habitats 4322
12.10.2.1 Salt Marshes 4323
12.10.2.2 Mangroves 4324
12.10.2.3 Seagrass Meadows 4325
12.10.2.4 Kelp Forests 4326
12.10.2.5 Coral Reefs 4327
12.10.2.6 Estuaries 4327
12.10.2.7 Continental Shelf Seas 4328
12.10.3 Coastal Anthropogenic Impacts and Changes in GHG Dynamics 4329
12.10.3.1 Coastal Modification and Use 4329
12.10.3.2 Impacts of Climate Change 4330
12.10.4 Maintaining ES and Mitigating GHGs in’Coastal Zones 4330
12.10.4.1 Adaptation and Mitigation Potential 4330
12.10.5 Conclusions 4332
References 4333
Recreational, Cultural, and Aesthetic Services from Estuarine and’Coastal Ecosystems 4337
12.11.1 Introduction 4337
12.11.2 A Framework for the Classification of Recreational, Cultural, and Aesthetic Ecosystem Services 4338
12.11.3 Methods for the Valuation of Ecosystem Services 4338
12.11.4 The Empirical Evidence from an Ecosystem Service Perspective: Recreational, Aesthetic, and Cultural Values 4340
12.11.4.1 Recreational Fishing 4341
12.11.4.2 Nonconsumptive Recreation 4342
12.11.4.3 Cultural and Aesthetic Services 4344
12.11.5 The Empirical Evidence from a Management Perspective: Coral Reefs, MPAs, and SIDS 4346
12.11.5.1 Coral Reefs 4346
12.11.5.2 Marine Protected Areas 4348
12.11.5.3 Small Island Developing States 4349
12.11.6 Scaling Up Coastal Recreation Values 4351
12.11.7 Conclusions 4354
Acknowledgment 4355
References 4355
Relevant Websites 4357
New Sustainable Governance Institutions for Estuaries and Coasts 4359
12.12.1 Introduction 4359
12.12.2 What Is Sustainable Governance for Estuaries and Coastal Ecosystems? 4360
12.12.2.1 Sustainable Governance in General 4360
12.12.2.2 Specific Sustainable Governance Goals for Estuaries and Coastal Zones 4362
12.12.2.3 Sustainable Governance for Estuary and Coastal Ecosystems 4367
12.12.3 The Foundational Principles of Sustainable Governance 4368
12.12.3.1 The Polluter Pays Principle 4368
12.12.3.2 The Use of Best Available Science 4370
12.12.3.3 The Precautionary Principle 4371
12.12.3.4 Intergenerational Sustainability 4372
12.12.3.5 Transnational Sustainability 4373
12.12.3.6 Accounting for Ecosystem Services 4374
12.12.3.7 Integrated Decision Making 4375
12.12.3.8 Adaptive Management 4375
12.12.3.9 Citizen Participation 4376
12.12.4 Institutional Approaches 4377
12.12.4.1 Conventional Models 4377
12.12.4.2 Sustainability Models 4379
12.12.5 Conclusion 4387
References 4387
Enhancing the Resilience of Coastal Communities: Dealing with’Immediate and Long-Term Impacts of Natural Hazards 4391
12.13.1 Introduction 4391
12.13.2 Resilience 4393
12.13.3 Hazards, Risks, and Vulnerability 4394
12.13.4 Sustainability and Resilience 4395
12.13.5 Building Sustainable Communities: Mitigation and Adaptation 4396
12.13.6 Coastal Community Resilience: Determined to’Stay Despite the Risks 4397
12.13.7 Resilient Communities: Linking Natural, Social, and Economic Capital 4399
12.13.8 Strategies for Coastal Community Resilience 4400
12.13.9 Measuring Community Resilience 4402
12.13.10 Community Engagement and Resilience 4404
12.13.11 Conclusions 4406
References 4407
Scenarios for Coastal Vulnerability Assessment 4409
12.14.1 Introduction 4409
12.14.2 Scenarios, Coastal Scenarios, and the SRES Story Lines 4410
12.14.3 Climate and Sea-Level Scenarios 4412
12.14.4 Environment and Socioeconomic Scenarios 4414
12.14.5 Adaptation Considerations 4417
12.14.6 Discussion 4418
12.14.7 Conclusions 4419
Acknowledgments 4419
References 4419
A Scenario Analysis of Climate Change and Ecosystem Services for’the Great Barrier Reef 4425
12.15.1 Introduction 4426
12.15.2 Methods 4427
12.15.2.1 Scenario Planning and Analysis 4427
12.15.2.2 GBR Study Site 4429
12.15.2.3 Development of GBR Scenarios 4430
12.15.2.4 Evaluation of Implications for Marine and Terrestrial Ecosystems 4432
12.15.2.5 Indicator Selection 4433
12.15.3 Results 4435
12.15.3.1 Scenario Narratives 4435
12.15.3.2 Implications for Marine and Terrestrial Ecosystems 4435
12.15.3.3 Implications for four capitals 4435
12.15.4 Discussion 4439
12.15.4.1 Analysis of Scenarios 4439
12.15.4.2 Implications for Management of GBR 4442
12.15.5 Conclusion 4444
Acknowledgments 4444
References 4445
Subject Index 4447
Permission Acknowledgments 4603