Menu Expand
Modern Embedded Computing

Modern Embedded Computing

Peter Barry | Patrick Crowley

(2012)

Additional Information

Abstract

Modern Embedded Computing: Designing Connected, Pervasive, Media-Rich Systems provides a thorough understanding of the platform architecture of modern embedded computing systems that drive mobile devices. The book offers a comprehensive view of developing a framework for embedded systems-on-chips. Examples feature the Intel Atom processor, which is used in high-end mobile devices such as e-readers, Internet-enabled TVs, tablets, and net books.

This is a unique book in terms of its approach – moving towards consumer. It teaches readers how to design embedded processors for systems that support gaming, in-vehicle infotainment, medical records retrieval, point-of-sale purchasing, networking, digital storage, and many more retail, consumer and industrial applications. Beginning with a discussion of embedded platform architecture and Intel Atom-specific architecture, modular chapters cover system boot-up, operating systems, power optimization, graphics and multi-media, connectivity, and platform tuning. Companion lab materials complement the chapters, offering hands-on embedded design experience.

This text will appeal not only to professional embedded system designers but also to students in computer architecture, electrical engineering, and embedded system design.

  • Learn embedded systems design with the Intel Atom Processor, based on the dominant PC chip architecture. Examples use Atom and offer comparisons to other platforms
  • Design embedded processors for systems that support gaming, in-vehicle infotainment, medical records retrieval, point-of-sale purchasing, networking, digital storage, and many more retail, consumer and industrial applications
  • Explore companion lab materials online that offer hands-on embedded design experience

There is need for a good, comprehensive book on embedded design and the lab-based approach using the Intel Architecture is very good and practical.

Tilman Wolf, Associate Professor, Department of Electrical and Computer Engineering, University of Massachusetts, Amherst