Menu Expand
Comprehensive Natural Products II

Comprehensive Natural Products II

Lewis Mander | Hung-Wen Liu

(2010)

Additional Information

Book Details

Abstract

This work presents a definitive interpretation of the current status of and future trends in natural products—a dynamic field at the intersection of chemistry and biology concerned with isolation, identification, structure elucidation, and chemical characteristics of naturally occurring compounds such as pheromones, carbohydrates, nucleic acids, and enzymes. With more than 1,800 color figures, Comprehensive Natural Products II features 100% new material and complements rather than replaces the original work (©1999).

  • Reviews the accumulated efforts of chemical and biological research to understand living organisms and their distinctive effects on health and medicine
  • Stimulates new ideas among the established natural products research community—which includes chemists, biochemists, biologists, botanists, and pharmacologists
  • Informs and inspires students and newcomers to the field with accessible content in a range of delivery formats
  • Includes 100% new content, with more than 6,000 figures (1/3 of these in color) and 40,000 references to the primary literature, for a thorough examination of the field
  • Highlights new research and innovations concerning living organisms and their distinctive role in our understanding and improvement of human health, genomics, ecology/environment, and more
  • Adds to the rich body of work that is the first edition, which will be available for the first time in a convenient online format giving researchers complete access to authoritative Natural Products content

Advanced praise for Comprehensive Natural Products II: Writing in the preface, renowned natural products chemist Koji Nakanishi praises “Lew Mander and Hung-Wen (Ben) Liu for having assembled an extraordinary team of editors for the nine volumes, who in turn have brought together top natural products scientists to review the respective topics…CONAP II should not be regarded merely as a reference source. Instead, one can take it from the bookshelf, flip through the pages, and go through some sections for one’s entertainment and knowledge enhancement.

Reviews of the first edition: "A marvelous and monumental piece of work." --Journal of the American Chemical Society

"This work is essential for libraries at institutions where natural product research is seriously pursued or contemplated." --Choice

Table of Contents

Section Title Page Action Price
e9780080453811v1 1
Cover 1
Title Page 4
Copyright Page 5
Contents 6
Contributors 8
Preface 12
Introduction 14
Editors in Chief 18
Volume Editors 20
1.01 Overview and Introduction 26
1.02 Unsaturated Fatty Acids 30
1.02.1 Introduction 30
1.02.2 Monounsaturated Fatty Acids 32
1.02.3 Methylene-Interrupted Polyunsaturated Fatty Acids 45
1.02.4 Unusual Unsaturated Fatty Acids 49
1.02.5 Summary and Future Prospects 53
Abbreviations 53
References 54
1.03 Prostaglandin Endoperoxide Synthases: Structure, Function, and Synthesis of Novel Lipid Signaling Molecules 60
1.03.1 Introduction 61
1.03.2 Physiological Functions and Regulation of PGHS Isoforms 62
1.03.3 Structural Determinants for Arachidonic Acid Metabolism by PGHS 66
1.03.4 Role of PGHS in the Biosynthesis of Novel Acidic Eicosanoids 72
1.03.5 Biosynthesis, Degradation, and Pharmacology of Prostaglandin-Glycerylesters 78
1.03.6 Biosynthesis, Degradation, and Pharmacology of Prostaglandin-Ethanolamides 80
1.03.7 Metabolism of Other Arachidonoyl Amides by PGHS 81
1.03.8 Conclusions 81
Abbreviations 81
References 82
1.04 Mycolic Acid/Cyclopropane Fatty Acid/Fatty Acid Biosynthesis and Health Relations 90
1.04.1 Introduction 91
1.04.2 Structural Variation, Biosynthesis, and Function of the Core Cell Envelope Mycolic Acids 92
1.04.3 Trehalose-Based Glycolipids 107
1.04.4 Phthiocerol-Based Glycolipids 126
1.04.5 Lipoarabinomannan and Phosphatidylinositides 133
1.04.6 Exotic Glycolipids and Glycopeptidolipids 137
1.04.7 Conclusions and Outlook 156
Abbreviations 156
References 158
1.05 Microbial Type III Polyketide Synthases 172
1.05.1 Introduction 172
1.05.2 Plant Type III PKSs 174
1.05.3 Type III PKSs from Actinobacteria 176
1.05.4 Type III PKSs from Proteobacteria 184
1.05.5 Type III PKSs from Eukaryotic Microbes 188
1.05.6 Conclusions and Future Perspectives 190
Abbreviations 192
References 193
1.06 Plant Type III PKS 196
1.06.1 Introduction 196
1.06.2 Functional Diversity and Catalytic Potential 199
1.06.3 Enzyme Structure and Site-Directed Mutagenesis 230
1.06.4 Protein Engineering 239
1.06.5 Combinational Biosynthesis 240
1.06.6 Conclusions 245
Acknowledgments 245
Abbreviations 245
References 246
1.07 Type II PKS 252
1.07.1 Introduction 253
1.07.2 Enzymes of Type II PKS-Derived Natural Products 253
1.07.3 Natural Structural Diversity 264
1.07.4 Artificial Structural Diversity through Combinatorial Biosynthesis 295
1.07.5 Conclusions 317
Acknowledgments 317
Glossary 317
References 318
1.08 Structural Enzymology of Polyketide Synthase: The Structure–Sequence–Function Correlation 330
1.08.1 Introduction 330
1.08.2 Fatty Acid Biosynthesis and Fatty Acid Synthase 332
1.08.3 The Type II PKS 335
1.08.4 Structural Enzymology of Individual Type II PKS Enzymes 339
1.08.5 Protein–Protein Interactions and Transport of Polyketide Intermediates between Enzymes 364
1.08.6 Summary and Future Prospects 365
Acknowledgments 365
Glossary 366
Abbreviations 366
Nomenclature 367
References 367
1.09 Fungal Type I Polyketides 372
1.09.1 Introduction 372
1.09.2 Diversity of Fungal Polyketides 373
1.09.3 Biosynthesis of Fungal Polyketides 379
1.09.4 Mixed Polyketide/Nonribosomal Peptides 397
1.09.5 Meroterpenoids 399
1.09.6 Post-PKS Reactions in Fungi 401
1.09.7 Conclusions 403
References 405
1.10 Type I Modular PKS 410
1.10.1 Introduction to Polyketides 411
1.10.2 Fatty Acid Biosynthesis – Reactions and Enzymes 413
1.10.3 Polyketide Biosynthesis – Reactions and Enzymes 417
1.10.4 Mechanism and Structural Specificity of Precursor Loading within the Modules of the DEBS 424
1.10.5 Experimental Investigation of Stereospecificity of the Reactions of the DEBS Chain-Extension Cycles 428
1.10.6 Studies of the Quaternary Structure of the Type I FAS 434
1.10.7 Studies of the Structure of the DEBS Modules 440
1.10.8 Current Proposals for the Topology of the DEBS Modules and Multienzymes 443
1.10.9 Other Polyketide Synthases 448
1.10.10 Commercial Applications of Genetic Engineering of Modular Polyketide Synthases 463
1.10.11 Future Perspectives 469
Abbreviations 471
Nomenclature 472
References 472
1.11 NRPS/PKS Hybrid Enzymes and Their Natural Products 478
1.11.1 Introduction 479
1.11.2 Medicinally Important PK/NRP Natural Products and Pathways 483
1.11.3 Trans-AT Domain Pathways – a Rich Source of Unusual Biochemistry 492
1.11.4 Engineering, Technology Development, and Other Future Directions for Hybrid PK/NRP Systems 506
1.11.5 Conclusions 508
Acknowledgment 509
Abbreviations 509
References 510
1.12 Mevalonate Pathway in Bacteria and Archaea 518
1.12.1 Introduction 518
1.12.2 Overview of the Mevalonate Pathway 519
1.12.3 Two Classes of HMG-CoA Reductase 522
1.12.4 Two Types of IPP Isomerase 527
1.12.5 Biosynthetic Gene Clusters of Secondary Metabolites from Actinomycetes 535
1.12.6 Mevalonate Fermentation 536
1.12.7 Conclusions 537
Abbreviations 537
Nomenclature 537
References 538
1.13 Methylerythritol Phosphate Pathway 542
1.13.1 Introduction 543
1.13.2 Identification of the Genes and the Enzymes 547
1.13.3 Distribution of the MEP Pathway 567
1.13.4 Openings and Further Developments 569
Acknowledgments 573
Abbreviations 573
References 574
1.14 Prenyltransferase 582
1.14.1 Introduction 582
1.14.2 (E)-Prenyltransferases 586
1.14.3 (Z)-Prenyl Diphosphate Synthases 594
1.14.4 Conclusions 604
Glossary 605
References 605
1.15 Advances in the Enzymology of Monoterpene Cyclization Reactions 610
1.15.1 Introduction 610
1.15.2 Cyclization Chemistry 613
1.15.3 Structural Studies 620
1.15.4 Conclusions 630
Acknowledgments 630
References 631
1.16 Sesquiterpenes 634
1.16.1 Introduction 634
1.16.2 Classification of Sesquiterpenes 635
1.16.3 Decorating the Sesquiterpene Scaffolds 655
1.16.4 Future Challenges 660
Glossary 661
References 663
1.17 Diterpenes 668
1.17.1 Introduction 668
1.17.2 Labdane-Type Diterpenes 669
1.17.3 Clerodane- and Halimane-Type Diterpenes 685
1.17.4 Other types of Diterpenes 687
1.17.5 Summary and Future Prospects 693
Abbreviations 694
References 694
1.18 Triterpenes 698
1.18.1 Introduction 698
1.18.2 Cyclization Mechanism 699
1.18.3 Lanosterol/Cycloartenol Synthases 701
1.18.4 Plant Triterpene Synthases 709
1.18.5 Triterpene Tailoring Steps 726
1.18.6 Summary and Future Perspectives 729
Abbreviations 730
References 730
1.19 Bacterial Squalene Cyclase 734
1.19.1 Introduction 734
1.19.2 The Reaction Mechanism 736
1.19.3 The Enzyme Structure 737
1.19.4 Site-Directed Mutagenesis 741
1.19.5 Substrate Recognition and Catalytic Potential 744
1.19.6 Conclusions 754
Acknowledgments 755
Abbreviations 755
References 755
1.20 Carotenoids 758
1.20.1 Introduction 758
1.20.2 Biosynthesis of Basic Structures of Carotenoids 759
1.20.3 Biosynthesis of C30 Carotenoids 761
1.20.4 Biosynthesis of C40 Carotenoids 761
1.20.5 Pathway Engineering for Useful Carotenoid Formation in Escherichia coli 770
1.20.6 Pathway Engineering for Useful Carotenoid Formation in Higher Plants 771
1.20.7 Conclusion 775
Acknowledgment 775
Nomenclature 775
References 775
1.21 Sterol and Steroid Biosynthesis and Metabolism in Plants and Microorganisms 780
1.21.1 Introduction 780
1.21.2 Sterol and Steroid Biosynthetic Pathways 781
1.21.3 Sterol and Steroid Conjugates 799
1.21.4 Sterol Degradation 801
1.21.5 Transport 801
1.21.6 Molecular Regulation of Sterol Biosynthesis 802
1.21.7 Functions of Steroids 803
Abbreviations 804
References 805
1.22 Isoprenoid in Actinomycetes 814
1.22.1 Introduction 814
1.22.2 Cyclic Isoprenoids 815
1.22.3 Hybrid Isoprenoids 826
Abbreviations 836
References 836
1.23 Lignans (Neolignans) and Allyl/Propenyl Phenols: Biogenesis, Structural Biology, and Biological/Human Health Considerations 840
1.23.1 Introduction 842
1.23.2 Definition and Nomenclature 843
1.23.3 Chemotaxonomical Diversity: Evolutionary Considerations 846
1.23.4 Lignan Early Biosynthetic Steps: 8–89 Phenylpropanoid Coupling 872
1.23.5 Downstream Lignan Metabolism 881
1.23.6 Other Phenylpropanoid Coupling Modes: 8–29, 8–39 (8–59), and 8–O–49-Linked Lignans 903
1.23.7 Allylic (Phenylpropenal) Double Bond Reductases and Phenylcoumaran Benzylic Ether Reductases 905
1.23.8 Norlignan Biosynthesis 914
1.23.9 Allyl-/Propenylphenol Biosynthesis 917
1.23.10 Biological Properties in Planta and in Human Usage 931
Acknowledgments 941
References 941
1.24 Plant Phenolics: Phenylpropanoids 954
1.24.1 Introduction 954
1.24.2 New Enzyme Functions in Phenylpropanoid Metabolism 956
1.24.3 Flavonoids 962
1.24.4 Functional Genomics and Evolution of Phenylpropanoid/Flavonoid Biosynthesis 991
References 993
1.25 Alkaloids 1002
1.25.1 What Is an Alkaloid? 1002
1.25.2 Classes of Alkaloids 1002
1.25.3 Function and Diversity of Alkaloids 1003
1.25.4 Strategies for Elucidating Alkaloid Biosynthesis 1007
1.25.5 Benzylisoquinoline Alkaloid Biosynthesis 1012
1.25.6 Monoterpene Indole Alkaloid Biosynthesis 1017
1.25.7 Tropane Alkaloid Biosynthesis 1024
1.25.8 Purine Alkaloid Biosynthesis 1026
1.25.9 Conclusions and Outlook 1026
Glossary 1028
References 1028
e9780080453811v2 1034
Cover 1034
Title page 1037
Copyright page\r 1038
Contents 1039
Contributors 1041
Preface 1045
Introduction 1047
Editors-In-Chief 1051
Volume Editors 1053
2.01 Overview and Introduction 1059
2.02 Terrestrial Plants as a Source of Novel Pharmaceutical Agents 1063
2.02.1 Introduction 1064
2.02.2 Plants as a Source of Bioactive Compounds 1064
2.02.3 Anticancer Compounds 1064
2.02.4 Anti-HIV Agents 1080
2.02.5 Antimalarial Compounds 1083
2.02.6 Cardiovascular and Metabolic Diseases 1084
2.02.7 CNS Active Agents 1087
2.02.8 Outlook and Future Prospects 1090
References 1090
2.03 Marine Macroalgal Natural Products 1099
2.03.1 Introduction 1099
2.03.2 Isoprenoids 1100
2.03.3 Fatty Acid and Polyketide Metabolites 1109
2.03.4 Shikimate Metabolites 1113
2.03.5 Nonribosomal Peptide Metabolites 1114
2.03.6 Alkaloid Metabolites 1115
2.03.7 Glycolipids 1117
2.03.8 Conclusion 1119
Acknowledgments 1119
Abbreviations 1119
Nomenclature 1120
References 1120
2.04 Insect Natural Products 1125
2.04.1 Introduction 1125
2.04.2 Challenges in Arthropod Natural Products Chemistry 1128
2.04.3 Terpenoids 1129
2.04.4 Fatty Acid and Other Polyacetate Derivatives 1136
2.04.5 Polyketides 1141
2.04.6 Alkaloids and Amines 1143
2.04.7 Nucleoside Derivatives 1157
2.04.8 Miscellaneous Compounds 1158
2.04.9 Outlook 1159
References 1161
2.05 Terrestrial Microorganisms – Filamentous Bacteria 1167
2.05.1 Introduction 1167
2.05.2 Historical Bacterial Metabolites 1168
2.05.3 Newer Compounds or Compounds with Recently Described Mechanism of Action 1174
Abbreviations 1192
References 1192
2.06 The Natural Products Chemistry of Cyanobacteria 1199
2.06.1 Introduction 1200
2.06.2 Trends in the Structures of Cyanobacterial Natural Products 1201
2.06.3 Fatty Acid Derivatives from Cyanobacteria 1208
2.06.4 Terpenes 1211
2.06.5 Saccharides and Glycosides 1212
2.06.6 Peptides 1216
2.06.7 Polyketides 1223
2.06.8 Lipopeptides 1227
2.06.9 Conclusion 1240
Acknowledgments 1241
References 1241
2.07 Myxobacteria – Unique Microbial Secondary Metabolite Factories 1247
2.07.1 Myxobacteria as Producers of Bioactive Secondary Metabolites 1247
2.07.2 Approaches to Exploring the Biosynthetic Potential of Myxobacteria 1250
2.07.3 Biosynthesis of Myxobacterial Secondary Metabolites at the Molecular Level 1253
2.07.4 Deciphering Regulatory Mechanisms of Secondary Metabolism to Increase Productivity 1269
2.07.5 Biotechnological Strategies to Generate Modified Compounds 1272
2.07.6 Conclusions 1276
Acknowledgments 1276
References 1276
2.08 Natural Product Diversity from Marine Fungi 1281
2.08.1 Introduction 1281
2.08.2 Biology of Marine-Derived Fungi 1281
2.08.3 Natural Product Chemistry of Marine-Derived Fungi 1284
2.08.4 Conclusions 1315
Glossary 1315
References 1316
2.09 Bioactive Metabolites from Marine Dinoflagellates 1321
2.09.1 Introduction 1322
2.09.2 Amphidinium sp. 1322
2.09.3 Alexandrium sp. 1352
2.09.4 Dinophysis sp. 1353
2.09.5 Durinskia sp. 1354
2.09.6 Gambierdiscus toxicus 1354
2.09.7 Karenia sp. 1358
2.09.8 Karlodinium veneficum 1360
2.09.9 Ostreopis siamensis 1361
2.09.10 Prorocentrum sp. 1362
2.09.11 Protoceratium reticulatum 1365
2.09.12 Symbiodinium sp. 1368
2.09.13 Biosynthesis of Dinoflagellate Polyketides 1373
2.09.14 Prospects 1376
Glossary 1377
References 1377
2.10 Marine Invertebrates: Sponges 1385
2.10.1 Introduction 1386
2.10.2 Structure and Bioactivities of Metabolites Characteristic to Marine Sponges 1387
2.10.3 Sponge Metabolites as Drug Leads 1410
2.10.4 Roles of Sponge Metabolites in Marine Ecosystems 1413
2.10.5 Conclusions 1414
Abbreviations 1415
2.11 The Natural Products Chemistry of the Gorgonian Genus Pseudopterogorgia (Octocorallia: Gorgoniidae) 1421
2.11.1 Introduction 1421
2.11.2 Natural Products from Pseudopterogorgia spp. 1425
2.11.3 Aspects of Diterpenoid Biosynthesis and Chemical Ecology 1466
2.11.4 Selected Synthetic Transformations Suggesting Plausible Biogenetic Relationships between Different Families of Pseudopterogorgia Diterpenes 1470
2.11.5 Summary and Conclusions 1473
Acknowledgments 1479
Abbreviations 1479
References 1480
2.12 Exploiting Genomics for New Natural Product Discovery in Prokaryotes 1487
2.12.1 Introduction 1487
2.12.2 Overview of the Genetics and Enzymology of Natural Product Biosynthesis 1488
2.12.3 Development of Bioinformatics Tools for Natural Product Discovery by Genome Mining 1492
2.12.4 Experimental Strategies for the Isolation of New Natural Products by Genome Mining 1500
2.12.5 Concluding Remarks 1507
Abbreviations 1509
References 1509
2.13 Unlocking Environmental DNA Derived Gene Clusters Using a Metagenomics Approach 1513
2.13.1 Introduction 1513
2.13.2 Methodologies 1515
2.13.3 Type II PKS KS from Soil Multigenomic DNA 1518
2.13.4 Molecules and Their Biosynthetic Genes Isolated from Metagenomic Libraries 1520
2.13.5 Conclusions 1528
References 1529
2.14 The Chemistry of Symbiotic Interactions 1533
2.14.1 Introduction 1533
2.14.2 Protists 1534
2.14.3 Brown Algae 1535
2.14.4 Green Plants 1535
2.14.5 Fungi 1544
2.14.6 Sponges 1546
2.14.7 Cnidarians 1550
2.14.8 Arthropods 1553
2.14.9 Nematodes 1557
2.14.10 Flatworms 1558
2.14.11 Bryozoans 1558
2.14.12 Molluscs 1559
2.14.13 Tunicates 1559
2.14.14 Conclusions 1562
Abbreviations 1562
References 1563
2.15 Natural Peptide Toxins 1569
2.15.1 Introduction 1569
2.15.2 Cone Snails: Distribution, Diversity, Behavior, Feeding, and Defense 1570
2.15.3 Molecular Diversity of Cone Snail Venom 1571
2.15.4 Neuropharmacology of Cone Snail Toxins 1575
2.15.5 Structure and Activity of Cone Snail Toxins 1580
2.15.6 Cone Snail Toxins as Therapeutics and Drug Leads 1581
2.15.7 Sea Anemones: Distribution, Diversity, Behavior, Feeding, and Defense 1584
2.15.8 Sea Anemone Venom 1585
2.15.9 Structure and Activity of Sea Anemone Toxins 1586
2.15.10 Sea Anemone Toxins as Insecticides 1589
2.15.11 Conclusions 1590
References 1591
2.16 Cyanobactins – Ubiquitous Cyanobacterial Ribosomal Peptide Metabolites 1597
2.16.1 Introduction 1597
2.16.2 Cyanobactin Structures 1597
2.16.3 Sources and Symbiosis 1599
2.16.4 Shape and Metal Binding 1603
2.16.5 Bioactivity 1605
2.16.6 Total Synthesis 1606
2.16.7 Biosynthesis 1606
2.16.8 Ecology and Purpose 1610
2.16.9 Genome Mining and Modification 1611
2.16.10 Summary and Conclusions 1612
Acknowledgment 1612
References 1612
2.17 The Role of Synthesis and Biosynthetic Logic 1617
2.17.1 Introduction 1617
2.17.2 Chemoenzymatic Approaches to Pikromycin Synthesis 1619
2.17.3 Chemoenzymatic Approaches to Tyrocidine Synthesis 1624
2.17.4 Chemoenzymatic Approaches to Cryptophycin Synthesis 1628
2.17.5 Conclusions 1633
Abbreviations 1634
References 1634
2.18 Missasigned Structures: Case Examples from the Past Decade 1639
2.18.1 Introduction 1639
2.18.2 Structure Diversity of Marine Natural Products 1643
2.18.3 Misassigned Marine Natural Products 1643
2.18.4 Difficulties of Molecular Formula Assignments 1643
2.18.5 Difficulties in Assembling Planar Structures 1661
2.18.6 Completion of Structure Elucidation 1673
2.18.7 Conclusions 1676
Abbreviations 1676
References 1676
2.19 Natural Products of Therapeutic Importance 1681
2.19.1 Introduction 1681
2.19.2 Anti-infectives 1682
2.19.3 Anticholestemics 1694
2.19.4 Microbial Products in Cancer 1697
2.19.5 Nonmicrobial Products in Cancer 1702
2.19.6 Summary and Future Prospects 1703
References 1704
2.20 Natural Products as Probes of Selected Targets in Tumor Cell Biology and Hypoxic Signaling 1709
2.20.1 Introduction 1709
2.20.2 Organelle Function and Protein Stability 1711
2.20.3 Oxygen-Regulated Cell Signaling – Interactions between Cellular Processes 1731
2.20.4 Conclusions and Future Directions 1736
Acknowledgments 1736
References 1736
e9780080453811v3 1743
Cover 1743
Title page 1746
Copyright page 1747
Contents 1748
Contributors 1750
Preface 1754
Introduction 1756
Editors in Chief 1760
Volume Editors 1762
3.01 Overview and Introduction 1768
3.01.1 Biodiversity and Chemodiversity 1768
3.01.2 Biodiscovery 1769
3.01.3 Traditional Knowledge 1769
3.01.4 Food and Health 1769
3.01.5 Supply of Natural Products 1770
3.01.6 Chemistry of Some Common Plants and Related Products 1770
3.01.7 Model Plant and the Future 1770
References 1771
3.02 Natural Products as Lead Sources for Drug Development 1772
3.02.1 Introduction – A Historical Perspective 1772
3.02.2 Natural Product Properties 1776
3.02.3 Chemical Space 1781
3.02.4 Natural Product-Based Libraries 1786
3.02.5 Natural Product Drug Development 1794
3.02.6 Natural Products as Source for Leads and Clinical Candidates 1800
3.02.7 Conclusion and Outlook 1805
References 1807
3.03 Topical Chemical Space Relation to Biological Space 1814
3.03.1 Introduction 1814
3.03.2 Chemical Space 1816
3.03.3 Biological Space 1826
3.03.4 Comparing Chemical and Biological Space 1833
3.03.5 Examples of Studies Pursued 1835
3.03.6 Conclusions and Future Prospects 1842
Acknowledgments 1843
References 1843
3.04 The NAPRALERT Database as an Aid for Discovery of Novel Bioactive Compounds 1848
3.04.1 Introduction 1848
3.04.2 Relational Search Strategies 1855
3.04.3 Summary and Future Prospects 1857
3.04.4 NAPRALERT in Perspective 1860
References 1860
3.05 Plant Diversity from Brazilian Cerrado and Atlantic Forest as a Tool for Prospecting Potential Therapeutic Drugs 1862
3.05.1 Introduction 1862
3.05.2 Main Biomes of Brazil 1865
3.05.3 Development of the Brazilian Natural Products Chemistry 1868
3.05.4 Exploring New Approaches for Natural Product Drug Discovery in the Biota/FAPESP: Current Status of Bioprospecting in Brazil 1875
3.05.5 Search for Bioactive Secondary Metabolites from Brazilian Plant Species 1876
3.05.6 Final Remarks and Conclusions 1895
References 1896
3.06 Nature as Source of Medicines; Novel Drugs from Nature; Screening for Antitumor Activity 1902
3.06.1 Introduction 1903
3.06.2 Nature’s Continuing Role in Drug Discovery 1904
3.06.3 Why Nature? 1904
3.06.4 Nature as a Source of Molecular and Mechanistic Diversity in Cancer Chemotherapy 1915
3.06.5 Summary and Future Prospects 1934
References 1934
3.07 The Identification of Bioactive Natural Products by High Throughput Screening (HTS) 1944
3.07.1 Introduction 1944
3.07.2 Biota Collection 1945
3.07.3 Preparation of Natural Product Extracts for High-Throughput Screening 1946
3.07.4 Logistics 1947
3.07.5 Preparation of Plates for High-Throughput Screening 1947
3.07.6 High-Throughput Screening 1948
3.07.7 The Target 1948
3.07.8 The Assay 1948
3.07.9 Essential Components for a Good HTS Assay 1949
3.07.10 Technology 1950
3.07.11 High-Content Screening 1952
3.07.12 Natural Product High-Throughput Screening 1953
3.07.13 Isolation of Bioactive Natural Products 1955
3.07.14 Small-Scale Bioprofiling 1957
3.07.15 Scale-Up Purification 1958
3.07.16 Structure Determination 1959
3.07.17 Automated Structure Determination 1962
3.07.18 Converting a Natural Product Hit into a Drug 1962
References 1965
3.08 Natural Products Drug Discovery 1972
3.08.1 Introduction 1972
3.08.2 The Current Pharmaceutical Scenario 1973
3.08.3 Why Natural Products Are Intrinsically Useful for Drug Discovery 1974
3.08.4 Possible Reasons for the Current Downsizing of Natural Discovery 1981
3.08.5 Strategies in Natural Products Drug Discovery 1990
3.08.6 Conclusions 1998
References 1999
3.09 Natural Product-Based Biopesticides for Insect Control 2004
3.09.1 Introduction 2004
3.09.2 Commercial Insecticides of Plant Origin 2006
3.09.3 New Insecticide Sources 2011
3.09.4 Sustainable Production: Culture Methods 2026
3.09.5 The New Biopesticide Market 2028
3.09.6 Conclusions 2029
Abbreviations 2029
3.10 Natural Products as Sweeteners and Sweetness Modifiers 2036
3.10.1 Introduction 2036
3.10.2 Commercially Used Highly Sweet Natural Products 2037
3.10.3 Discovery of Natural Sweeteners 2041
3.10.4 Structural Types of Highly Sweet Natural Products 2043
3.10.5 Naturally Occurring Sweetness Inducers 2063
3.10.6 Naturally Occurring Triterpenoid Sweetness Inhibitors 2065
3.10.7 Sensory Evaluation of Natural Products for Sweetness and Sweetness-Modifying Properties 2071
3.10.8 Interactions of Natural Products at the Sweet Receptor 2073
3.10.9 Conclusions 2074
Abbreviations 2075
References 2076
3.11 Chemistry of Cosmetics 2084
3.11.1 Introduction 2084
3.11.2 History of Cosmetics and Natural Products 2084
3.11.3 Pharmaceutical Affairs Law in Japan and Its Relevance to Natural Products 2086
3.11.4 Skin-Whitening Cosmetics 2089
3.11.5 Antiaging Cosmetics 2094
3.11.6 Hair Growth Promoters 2100
3.11.7 Plant Cell/Tissue Culture Technology for Natural Produ 3.11.7 Plant Cell/Tissue Culture Technology for Natural Products in cosmeticcs\r 2104
3.11.8 Conclusion 2113
Abbreviations 2113
References 2114
3.12 Ethnopharmacology and Drug Discovery 2118
3.12.1 Introduction 2118
3.12.2 ‘Old’ Drugs – New Medicines 2119
3.12.3 Today’s Core Challenges 2141
3.12.4 Conclusion: People, Plants, and the Future of Medicines 2143
Abbreviations 2144
References 2144
3.13 Chinese Traditional Medicine 2150
3.13.1 Introduction 2150
3.13.2 Radix et Rhizoma Notoginseng (Sanqi, Tianqi, or Sanchi) 2154
3.13.3 Radix et Rhizoma Salviae Miltiorrhizae (Danshen) 2154
3.13.4 Ganoderma (Lingzhi) 2165
3.13.5 Radix et Rhizoma Glycyrrhizae (Licorice, Gancao) 2169
3.13.6 Herba Epimedii (Yinyanghuo) 2177
3.13.7 Flos Carthami (Honghua) 2177
3.13.8 Radix Isatidis (Banlangen) 2177
3.13.9 Radix Astragali (Huangqi) 2219
3.13.10 Herba Cistanches (Roucongrong) 2219
3.13.11 Gamboge (Tenghuang) 2219
3.13.12 Conclusion 2226
Glossary 2232
Abbreviation 2232
References 2232
3.14 Ayurveda in Modern Medicine: Development and Modification of Bioactivity 2246
3.14.1 Introduction 2246
3.14.2 Plant-Based Pharmaceuticals from Ayurveda 2248
3.14.3 Techniques for Development of Bioactivity of Ayurvedic Medicines 2258
3.14.4 Further Development from Phytochemical Leads 2261
3.14.5 Formulation in Ayurveda and Its Value Addition 2262
3.14.6 Quality Control 2265
3.14.7 Safety of Ayurvedic Preparations 2267
3.14.8 Ongoing Research in India on Ayurveda 2268
3.14.9 Conclusion 2268
Acknowledgment 2271
Abbreviations 2271
References 2271
3.15 Biologically Active Compounds in Food Products and Their Effects on Obesity and Diabetes 2276
3.15.1 Introduction 2277
3.15.2 Some Basic Aspects of Food Composition 2278
3.15.3 The Regulatory Categories Conventional Foods, Functional Foods,and Dietary Supplements 2279
3.15.4 Obesity: From Prevention to Metabolic Complications 2281
3.15.5 Natural Compounds in Weight Management and Diabetes – Introduction and Classification 2287
3.15.6 Natural Compounds and Preparations for Appetite Regulation 2288
3.15.7 Natural Compounds and Preparations Claiming to Affect Fat Absorption 2294
3.15.8 Natural Compounds Affecting Lipid Metabolism or Energy Expenditure 2295
3.15.9 Natural Compounds in Type 2 Diabetes 2298
3.15.10 Nutrigenomics – Finding Effects, Pathways, and New Molecules 2303
3.15.11 Conclusions 2306
Abbreviations 2306
References 2307
3.16 Chemistry of Flavonoid-Based Colors in Plants 2314
3.16.1 Introduction 2315
3.16.2 Color Variation Owing to Anthocyanin Structure 2322
3.16.3 Anthocyanin Localization in Plant Tissue 2347
3.16.4 Colors of Aurones and Chalcones 2349
3.16.5 Biosynthesis of Flavonoids 2355
3.16.6 Functions of Flavonoid Pigments in Plants 2358
3.16.7 Anthocyanin Production 2367
Glossary 2370
References 2371
3.17 Production of Pharmaceuticals by Plant Tissue Cultures 2382
3.17.1 Introduction 2382
3.17.2 Methods of Plant Tissue Culture 2383
3.17.3 Production of Pharmaceuticals by Plant Tissue Culture 2388
3.17.4 Perspectives 2391
Abbreviations 2391
References 2391
3.18 Plant Secondary Metabolism Engineering: Methods, Strategies, Advances, and Omics 2396
3.18.1 Introduction 2396
3.18.2 Techniques for the Genetic Manipulation of Plants 2399
3.18.3 Strategies for the Genetic Engineering of Secondary Metabolic Pathways 2401
3.18.4 Metabolic Engineering of Plant Biosynthetic Networks 2408
3.18.5 Influences of Omics Technologies on Metabolic Engineering of Plants 2425
3.18.6 Future Directions 2428
Acknowledgments 2429
References 2429
3.19 Biotransformation of Monoterpenoids 2436
3.19.1 Introduction 2436
3.19.2 Metabolic Pathways of Monoterpenoids 2437
3.19.3 Mosquitocidal and Knockdown Activity 2556
3.19.4 Antimicrobial Activity 2556
3.19.5 Microbial Transformation of Terpenoids as Unit Reaction 2557
References 2560
3.20 Biotransformation of Sesquiterpenoids 2570
3.20.1 Introduction 2570
3.20.2 Biotransformation of Sesquiterpenoids by Microorganisms 2570
3.20.3 Biotransformation of Sesquiterpenoids by Mammals, Insects, and Cytochrome P-450 2648
References 2654
3.21 Biotransformation of Di- and Triterpenoids, Steroids, and Miscellaneous Synthetic Substrates 2660
3.21.1 Biotransformation of Di- and Triterpenoids and Steroids 2660
3.21.2 Biotransformation of Ionones, Damascones, and Adamantanes 2682
3.21.3 Biotransformation of Aromatic Compounds 2690
3.21.4 Biotransformation of Cyclohexane Derivatives and Other Selected Synthetic Compounds by Microorganisms 2713
Acknowledgments 2728
References 2728
3.22 Beer Flavor 2734
3.22.1 Introduction 2735
3.22.2 Hop Chemistry 2741
3.22.3 Hop Processing 2751
3.22.4 Beer Flavors and Off-Flavors 2753
3.22.5 Beer Flavor Deterioration 2758
3.22.6 Microbiological Deterioration 2761
3.22.7 Prospects 2761
Acknowledgments 2761
References 2761
3.23 Chemistry of Tea 2766
3.23.1 Introduction 2767
3.23.2 Manufacture of Tea 2767
3.23.3 Constituents of Tea and Chemical Reactions during Manufacture 2769
3.23.4 Extraction and Storage of Tea 2786
3.23.5 Products 2788
3.23.6 Potential Health Effects of Tea, Its Flavonoids, and Theanine 2788
3.23.7 Analytical Section 2791
Abbreviations 2793
Nomenclature 2794
References 2794
3.24 Chemistry of Cannabis 2800
3.24.1 An Introduction to the Cannabis Plant 2801
3.24.2 Cannabinoids 2806
3.24.3 Sites and Mechanisms of Action of Cannabinoids 2816
3.24.4 Biological Effects of the Cannabinoids 2822
3.24.5 Noncannabinoid Constituents of Cannabis 2827
3.24.6 Cannabis as a Medicine 2835
3.24.7 Practical Aspects of Cannabis Research 2839
3.24.8 Conclusion 2841
Acknowledgements 2844
References 2844
3.25 Chemistry of Coffee 2852
3.25.1 Overview 2852
3.25.2 Botany 2856
3.25.3 Chemistry Components and Processes 2861
3.25.4 Conclusions 2880
3.26 Chemistry of Wine 2886
3.26.2 Chemistry Associated with Wine Fermentations 2888
3.26.3 Chemistry of Aroma Compounds in Wine 2893
3.26.4 Chemistry of Phenolic Compounds in Wine 2901
3.26.5 Conclusion and Future Prospects 2930
Abbreviations 2930
Nomenclature 2931
References 2931
3.27 Trees: A Remarkable Biochemical Bounty 2940
3.27.1 Trees: Human Reliance on Arborescent Life 2941
3.27.2 Evolution of the Woody Growth Habit: Land Colonization and Adaptation 2945
3.27.3 Wood Anatomy and Cellular/Tissue Function: The Living and the Dead 2958
3.27.4 Nature’s Phytochemical Bounty and Tree Biochemical Diversity 2994
3.27.5 Concluding Remarks 3049
Acknowledgments 3051
References 3051
3.28 The Chemistry of Arabidopsis thaliana 3064
3.28.1 Introduction 3064
3.28.2 Secondary Metabolites of Arabidopsis thaliana 3066
3.28.3 Ecological Roles of Secondary Metabolites of Arabidopsis thaliana 3074
3.28.4 Conclusions 3078
References 3079
e9780080453811v4 3084
Cover 3084
Title Page 3087
Copyright Page 3088
Contents 3089
Contributors 3091
Preface 3095
Introduction 3097
Editors in Chief 3101
Volume Editors 3103
4.01 Overview and Introduction 3109
4.01.1 Scope of Volume 4 3109
4.01.2 Comments on Progress in the Chemistry and Biology of Semiochemicals 3109
4.01.3 Future Perspectives in Chemical Ecology 3114
Acknowledgments 3114
Glossary 3114
References 3114
4.02 Plant Hormones 3117
4.02.1 Introduction 3120
4.02.2 Auxins 3121
4.02.3 Gibberellins 3132
4.02.4 Cytokinins 3145
4.02.5 Abscisic Acid 3161
4.02.6 Brassinosteroids 3175
4.02.7 Jasmonates and Oxylipins 3185
4.02.8 Ethylene 3195
4.02.9 Peptide Hormones in Plants 3199
4.02.10 Strigolactones 3204
References 3208
4.03 Insect Hormones 3235
4.03.1 Introduction 3235
4.03.2 Neuropeptides 3236
4.03.3 Moulting Hormone 3236
4.03.4 Juvenile Hormone 3247
4.03.5 Eicosanoids 3253
4.03.6 Conclusion 3255
Glossary 3255
References 3256
4.04 Pheromones of Terrestrial Invertebrates 3261
4.04.1 Introduction 3262
4.04.2 Pheromone Biology 3262
4.04.3 Isolation and Structure Elucidation 3264
4.04.4 Aromatic Compounds 3267
4.04.5 Unbranched Aliphatic Compounds 3271
4.04.6 Terpenes 3291
4.04.7 Propanogenins and Related Compounds 3304
4.04.8 Mixed Structures 3308
4.04.9 Other Structures 3313
References 3315
4.05 Pheromones in Vertebrates 3333
4.05.1 Introduction 3334
4.05.2 Pheromones in Ancient Vertebrates 3338
4.05.3 Pheromones in Advanced (Teleost) Fishes 3342
4.05.4 Pheromones in Amphibians 3348
4.05.5 Pheromones in Reptiles 3352
4.05.6 Pheromones in Birds 3353
4.05.7 Pheromones in Mammals 3354
4.05.8 Overview 3365
References 3366
4.06 Pheromones of Marine Invertebrates and Algae 3371
4.06.1 Introduction 3371
4.06.2 Algal Sex Pheromones 3371
4.06.3 Sperm Chemotaxis in Marine Invertebrates 3376
4.06.4 Sex Pheromones of Marine Invertebrates 3381
4.06.5 Alarm Pheromones 3384
4.06.6 Summary and Future Prospects 3385
References 3386
4.07 Cell-to-Cell Communications among Microorganisms 3391
4.07.1 Introduction 3392
4.07.2 Gamma-Butyrolactones in Streptomyces 3393
4.07.3 Signaling Molecules in High-GC Gram-Positive Bacteria 3403
4.07.4 Signaling Molecules in Low-GC Gram-Positive Bacteria 3406
4.07.5 Signaling Molecules in Gram-Negative Bacteria 3423
References 3438
4.08 Chemical Defence and Toxins of Plants 3447
4.08.1 Chemical Defense against Herbivores 3447
4.08.2 Antimicrobial Chemical Defense 3469
4.08.3 Phytotoxins 3479
References 3485
4.09 Chemical Defense and Toxins of Lower Terrestrial and Freshwater Animals 3495
4.09.1 Introduction 3495
4.09.2 Alveolata 3496
4.09.3 Porifera 3498
4.09.4 Cnidaria 3498
4.09.5 Platyhelminthes (Flatworms) 3499
4.09.6 Nemathelminthes: Nematoda 3499
4.09.7 Rotatoria (Rotifers) 3499
4.09.8 Nemertini 3499
4.09.9 Mollusca 3500
4.09.10 Annelida: Clitellata: Oligochaeta 3501
4.09.11 Annelida: Clitellata: Hirudinea 3502
4.09.12 Arthropoda: Onychophora 3502
4.09.13 Arthropoda: Tardigrada 3503
4.09.14 Arthropoda: Crustacea, Ostracoda 3503
4.09.15 Arthropoda: Crustacea, Decapoda 3503
4.09.16 Arthropoda: Crustacea, Amphipoda 3503
4.09.17 Arthropoda: Crustacea, Isopoda 3503
4.09.18 Arthropoda: Chelicerata, Scorpiones 3504
4.09.19 Arthropoda: Chelicerata, Pseudoscorpiones 3504
4.09.20 Arthropoda: Chelicerata, Acari (Mites) 3504
4.09.21 Arthropoda: Chelicerata, Opiliones 3506
4.09.22 Arthropoda: Chelicerata, Pedipalpi 3508
4.09.23 Arthropoda: Chelicerata, Araneae 3509
4.09.24 Arthropoda: Myriapoda: Opisthogoneata (Centipedes) 3510
4.09.25 Arthropoda: Myriapoda: Progoneata: Diplopoda (Millipedes) and Symphyla 3511
Acknowledgments 3514
References 3515
4.10 Toxins of Microorganisms 3519
4.10.1 Introduction 3519
4.10.2 Insecticides from Microorganisms 3520
4.10.3 Mycotoxins 3527
References 3557
4.11 Terrestrial Natural Products as Antifeedants 3565
4.11.1 Introduction 3565
4.11.2 Bioassays 3566
4.11.3 Plant Terpenes and Derivatives 3568
4.11.4 Alkaloids 3597
4.11.5 Phenylpropanoids 3598
4.11.6 Miscellaneous 3603
4.11.7 Feeding Deterrence in Higher Animals 3604
4.11.8 Conclusion 3605
References 3605
4.12 Marine Natural Products as Antifeedants 3611
4.12.1 Introduction 3611
4.12.2 Microorganisms 3613
4.12.3 Algae 3615
4.12.4 Sponges 3618
4.12.5 Coelenterates 3625
4.12.6 Ascidians 3629
4.12.7 Bryozoans 3631
4.12.8 Mollusks 3632
4.12.9 Other Marine Organisms 3640
4.12.10 Conclusions 3641
References 3641
4.13 Allelochemicals for Plant–Plant and Plant–Microbe Interactions 3647
4.13.1 Allelochemicals in Plant–Plant Interactions 3647
4.13.2 Allelochemicals in Plant–Microbe Interactions 3655
References 3666
4.14 Allelochemicals in Plant–Insect Interactions 3671
4.14.1 Introduction 3671
4.14.2 Host Selection 3672
4.14.3 Flower-Visiting and Foraging 3688
4.14.4 Insect–Plant Interface in Multitrophic Interactions 3693
References 3698
4.15 Human–Environment Interactions (1): Flavor and Fragrance 3703
4.15.1 Introduction 3704
4.15.2 Outline of the Flavor and Fragrance Industry 3704
4.15.3 Analytical Techniques 3709
4.15.4 Flavor and Fragrance of Natural Origin 3713
4.15.5 Perfumery (Fragrances) 3720
4.15.6 Flavor of Foodstuffs 3721
4.15.7 Human Interactions 3726
4.15.8 Outlook 3730
Abbreviations 3731
Nomenclature 3731
References 3731
4.16 Human–Environment Interactions – Taste 3739
4.16.1 Introduction 3740
4.16.2 Natural Products Associated with Sweetness 3741
4.16.3 Bitter-Tasting Natural Products 3752
4.16.4 Pungent Natural Products 3760
4.16.5 Astringent Natural Products 3764
4.16.6 Umami and Kokumi 3767
4.16.7 Sour and Salty Tastes 3770
4.16.8 Conclusion 3772
References 3772
e9780080453811v5 3781
Cover 3781
Title Page 3784
Copyright Page 3785
Contents 3786
Contributors 3788
Preface 3792
Introduction 3794
Editors in Chief 3798
Volume Editors 3800
5.01 Overview and Introduction 3806
5.02 Nonprotein L-Amino Acids 3810
5.02.1 Introduction 3810
5.02.2 Biosynthesis of Amino Acids 3811
5.02.3 Classification of Nonprotein Amino Acids 3817
Abbreviations 3868
References 3869
5.03 Novel Enzymes for Biotransformation and Resolution of Alpha-Amino Acids 3876
5.03.1 Introduction 3877
5.03.2 Amino Acid Oxidases 3877
5.03.3 Amino Acid Dehydrogenases 3881
5.03.4 Aminotransferases 3885
5.03.5 Lipases, Acylases, and Proteinases 3887
5.03.6 L-Amino Acid N-Acylases 3889
5.03.7 Hydantoinases and Carbamoylases 3890
5.03.8 Nitrilases, Nitrile Hydratases, and Amidases 3891
5.03.9 Concluding Remarks 3892
Nomenclature 3892
References 3893
5.04 1-Aminocyclopropane-1-Carboxylate Synthase, an Enzyme of Ethylene Biosynthesis 3896
5.04.1 Introduction 3896
5.04.2 Ethylene Biosynthesis in Higher Plants 3897
5.04.3 Ethylene Signal Transduction Pathway 3912
5.04.4 Ethylene Action 3915
Abbreviations 3920
References 3921
5.05 Specific and Nonspecific Incorporation of Selenium into Macromolecules 3926
5.05.1 Introduction 3926
5.05.2 Nonspecific Incorporation of Selenium into Macromolecules 3928
5.05.3 Specific Utilization of Selenium in Biology 3932
5.05.4 Summary 3947
Abbreviations 3947
References 3948
5.06 Protein Toxins from Bacteria 3954
5.06.1 Introduction: Bacterial Toxins – An Overview 3954
5.06.2 Potent Virulence Factors Directly Attack the Actin Cytoskeleton of Mammalian Cells: Actin-ADP-Ribosylating Toxins 3958
5.06.3 Introduction of a ‘Super’ Microbe 3963
5.06.4 Structural Commonalities/Differences among SEs and TSST-1 3965
5.06.5 Signal Transduction and Cell Responses Induced by SEs and TSST-1 3968
5.06.6 Animal Models: Surprise, Mice are Not Men! 3970
5.06.7 Strategic Countermeasures: An Eternal Battle between Man and Microbe 3971
5.06.8 Conclusions 3972
Abbreviations 3973
References 3973
5.07 Host Defense Peptides: Bridging Antimicrobial and Immunomodulatory Activities 3980
5.07.1 Introduction 3981
5.07.2 Defining Cationic Host Defense Peptides 3981
5.07.3 Host Defense Peptides Distribution and Class 3983
5.07.4 Host Defense Peptide Target Selection and Self-Promoted Uptake 3987
5.07.5 Host Defense Peptides and Cell Death 3992
5.07.6 Structure–Activity Relationship Studies of the Antimicrobial Activities of the Host Defense Peptides 3992
5.07.7 Bacterial Host Defense Peptide Resistance 3994
5.07.8 Direct Antimicrobial Activity of Host Defense Peptides In Vivo 3996
5.07.9 The Role of Peptides in Mammalian Immunity – The In Vivo Evidence 3997
5.07.10 Immunomodulatory Activities of Host Defense Peptides 3998
5.07.11 Host Defense Peptides and the Adaptive Immune Response 4003
5.07.12 Structure–Activity Relationship Studies of Host Defense Peptides – Immunomodulatory Activities 4004
5.07.13 Therapeutic Applications of Host Defense Peptides 4005
5.07.14 Strategies for Host Defense Peptide Selection and Optimization 4009
5.07.15 Conclusions 4011
Abbreviations 4013
References 4014
5.08 Biosynthesis and Mode of Action of Lantibiotics 4022
5.08.1 Introduction 4022
5.08.2 Overview of Lantibiotic Structures 4025
5.08.3 Lantibiotic Biosynthesis 4026
5.08.4 Biological Activities of Lantibiotics 4046
5.08.5 Potential Applications of Lantibiotics 4050
5.08.6 Lantibiotic Engineering and Structure–Activity Studies 4050
5.08.7 Outlook 4053
Abbreviations 4053
References 4054
5.09 Plant Peptide Toxins from Nonmarine Environments 4062
5.09.1 Introduction 4062
5.09.2 Plant Defense Peptides 4064
5.09.3 Plant Peptide Toxins in Biotechnology and Pharmaceutical Applications 4083
5.09.4 Concluding Remarks 4085
References 4085
5.10 Therapeutic Value of Peptides from Animal Venoms 4092
5.10.1 Introduction 4092
5.10.2 Peptides from Scorpion Venoms 4092
5.10.3 Peptides from Snake Venoms 4095
5.10.4 Peptides from Sea Anemone Venoms 4096
5.10.5 Peptides from Spider Venoms 4097
5.10.6 Peptides from Cone Snail Venoms 4099
5.10.7 Peptides from Insect Venoms 4101
5.10.8 Peptides from Worm Venoms 4102
5.10.9 Other Venom Peptides and Toxins of Interest 4102
Abbreviations 4103
References 4104
5.11 Signal Transduction in Gram-Positive Bacteria by Bacterial Peptides 4110
5.11.1 Introduction 4110
5.11.2 Peptide Pheromone Dependent Signaling Systems in Bacteriocin Production 4110
5.11.3 The Signaling Pathway of Plantaricin C11 System and Other Class II Bacteriocins 4112
5.11.4 Peptide-Dependent Regulation of Lantibiotics 4115
5.11.5 Induction of Competence for Natural Genetic Transformation in Streptococci 4115
5.11.6 Virulence Regulation by Peptide Signaling in Staphylococcus aureus 4117
5.11.7 Virulence Regulation in Enterococcus faecalis by Peptide Signaling 4120
5.11.8 Peptide Signaling Regulation of Carbohydrate Metabolism in Lactobacillus plantarum 4121
5.11.9 agr-Like Quorum Sensing Gene Clusters Identified in Other G+ Bacteria 4121
5.11.10 Pheromone-Responding Conjugative Plasmids in Enterococcus faecalis 4121
5.11.11 Perspectives 4122
Abbreviations 4123
References 4123
5.12 A New Generation of Artificial Enzymes: Catalytic Antibodies or ‘Abzymes’ 4128
5.12.1 Introduction 4128
5.12.2 The Concept of Catalytic Antibodies or Abzymes 4129
5.12.3 Catalytic Antibodies Generated against Transition State Analogues 4130
5.12.4 ‘Bait and Switch’ Strategy 4141
5.12.5 Reactive Immunization 4142
5.12.6 Antibodies Using Cofactors 4147
5.12.7 Anti-Idiotypic Antibodies 4149
5.12.8 Other Approaches 4151
5.12.9 Conclusion 4152
References 4154
5.13 Recent Progress on Understanding Ribosomal Protein Synthesis 4158
5.13.1 Introduction 4158
5.13.2 Ribosome Structure 4161
5.13.3 Ribosomal Aminoacyl-tRNA Selection 4164
5.13.4 Peptide Bond Formation 4170
5.13.5 Translocation 4174
5.13.6 Termination 4177
5.13.7 Ribosomal Incorporation of Non-Natural Amino Acids 4180
5.13.8 Conclusion 4183
References 4184
5.14 Glutaminyl-tRNA and Asparaginyl-tRNA Biosynthetic Pathways 4188
5.14.1 Introduction 4189
5.14.2 Nonenzymatic Deamidation of Glutaminyl and Asparaginyl Residues in Protein 4192
5.14.3 Introduction of Glutamine to the Genetic Code 4193
5.14.4 Partners of Direct and Indirect Pathways of Asn-tRNA Biosynthesis and their Reaction Mechanism 4202
5.14.5 Evolution of the Enzymes Involved in Gln-tRNA and in Asn-tRNA Biosynthesis 4219
5.14.6 Inhibitors of Enzymes Involved in Gln-tRNA and Asn-tRNA Biosynthesis as Tools for Structural and Mechanistic Studies and Leads for Therapeutic Applications 4221
5.14.7 Conclusions 4228
Abbreviations 4228
Nomenclature 4229
References 4230
5.15 Posttranslational Modification of Proteins 4238
5.15.1 Introduction 4238
5.15.2 Phosphorylation and Sulfation 4241
5.15.3 Cysteine Disulfide Formation 4248
5.15.4 Methylation 4249
5.15.5 N-Acetylation 4252
5.15.6 Hydroxylation 4253
5.15.7 Glycosylation 4254
5.15.8 ADP-Ribosylation 4255
5.15.9 Prenylation 4256
5.15.10 Biotin, Lipoate, and Phosphopantetheine Tethering 4260
5.15.11 Conclusions 4267
Acknowledgments 4268
Abbreviations 4268
References 4270
5.16 Collagen Formation and Structure 4274
5.16.1 Introduction 4275
5.16.2 Molecular Structure and Biological Function of Collagen Types 4275
5.16.3 Biosynthesis of Collagen Molecules 4298
5.16.4 Collagen Peptides as a Model of the Triple Helix 4307
5.16.5 Collagen Chain Selection, Trimerization, and Triple Helix Formation 4311
5.16.6 Atomic Structures of the Collagen Triple Helix and Collagen Trimerization Domains 4315
5.16.7 Other Collagens 4323
References 4323
5.17 Lipidation of Peptides and Proteins 4336
5.17.1 Introduction 4336
5.17.2 Synthesis of Lipidated Peptides 4343
5.17.3 Synthesis of Lipidated Proteins 4371
5.17.4 Conclusions 4383
Acknowledgments 4383
Abbreviations 4383
References 4385
5.18 Genetic Incorporation of Unnatural Amino Acids into Proteins 4392
5.18.1 Introduction 4392
5.18.2 Methodology 4393
5.18.3 Applications 4406
5.18.4 Future Developments 4418
Glossary 4419
References 4420
5.19 Nonribosomal Peptide Synthetases 4424
5.19.1 Introduction: Peptide-Based Natural Products 4425
5.19.2 Nonribosomal Peptide Natural Products 4426
5.19.3 The Canonical Enzymology of NRPS Modules 4426
5.19.4 Classes of Nonribosomal Peptide Synthetases 4428
5.19.5 Noncanonical Features of NRPSs 4437
5.19.6 Additional Enzyme Domains that Function in the NRPS Assembly Line 4440
5.19.7 Structure and Chemistry of NRPS Domains 4443
5.19.8 Pathways to Nonproteinogenic Amino Acids Incorporated into NRP Natural Products 4449
5.19.9 Chemical Approaches Toward Mechanistic Probes and Inhibitors of NRPS Enzymes 4453
5.19.10 Conclusions 4455
References 4456
5.20 The Properties, Formation, and Biological Activity of 2,5-Diketopiperazines 4462
5.20.1 Introduction 4463
5.20.2 What Are Cyclic Dipeptides? 4464
5.20.3 Historical Aspects and Naturally Occurring Diketopiperazines 4465
5.20.4 Structural Types and Classes of Cyclic Dipeptides 4465
5.20.5 Properties of Diketopiperazines 4466
5.20.6 Structural Relevance 4470
5.20.7 Relevance of Amino Acids 4475
5.20.8 Formation of 2,5-Diketopiperazines 4480
5.20.9 Biological Relevance 4486
Glossary 4494
Abbreviations 4495
Nomenclature 4496
References 4497
5.21 Ubiquitin-Dependent Protein Degradation 4504
5.21.1 Discovery of the Ubiquitin–Proteasome Pathway 4505
5.21.2 The Ubiquitin–Proteasome Pathway 4506
5.21.3 Ubiquitin-Conjugating Enzymes: E1, E2, and E3 4507
5.21.4 Regulation of the Ubiquitin–Proteasome Pathway 4511
5.21.5 Combinatorial Coding of Specificity in Ubiquitin Conjugation 4514
5.21.6 The Proteasome 4515
5.21.7 Regulation of the Proteasome 4517
5.21.8 COP9 Signalosome 4519
5.21.9 Deubiquitinating Enzymes 4520
5.21.10 Ubiquitination and Endocytosis 4524
5.21.11 The Ubiquitin–Proteasome Pathway and Endoplasmic Reticulum-Associated Degradation 4528
5.21.12 The Ubiquitin–Proteasome Pathway and Transcription 4528
5.21.13 Ubiquitin-Like Proteins 4535
5.21.14 Unusual Linkages of Ubiquitin 4538
5.21.15 Ubiquitin and Signaling 4539
5.21.16 Physiological Functions of the Ubiquitin–Proteasome Pathway 4539
5.21.17 Diseases Associated with the Ubiquitin–Proteasome Pathway 4542
5.21.18 Future Perspectives 4547
Abbreviations 4547
References 4548
e9780080453811v6 4558
Cover 4558
Title page 4561
Copyright page 4562
Contents 4563
Contributors 4565
Preface 4569
Introduction 4571
Editors-In-Chief 4575
Volume Editors 4577
6.01 Overview and Introduction 4583
6.01.1 Introduction 4583
6.01.2 Overview 4583
6.02 Enzymatic Synthesis of Complex Carbohydrates 4587
6.02.1 Introduction 4587
6.02.2 Glycosidases 4590
6.02.3 Glycosynthases 4597
6.02.4 Glycosyltransferases 4605
6.02.5 Outlook 4629
Abbreviations 4630
Nomenclature 4631
6.03 New Strategies for Glycopeptide, Neoglycopeptide, and Glycoprotein Synthesis 4637
6.03.1 Introduction 4637
6.03.2 Synthesis of Glycopeptides 4640
6.03.3 Synthesis of Neoglycopeptide 4657
6.03.4 Glycoprotein Synthesis 4661
6.03.5 Conclusions 4666
Abbreviations 4666
6.04 Carbohydrate Vaccines 4673
6.04.1 Introduction 4673
6.04.2 Tumor-Associated Carbohydrate Antigens 4674
6.04.3 TACA-Based Cancer Vaccine Development 4676
6.04.4 Conclusion 4697
Acknowledgment 4698
6.05 MS-Based Glycoanalysis 4705
6.05.1 Introduction 4706
6.05.2 Diversity in Eukaryotic Protein Glycosylation 4707
6.05.3 Workflows in MS-Based Protein Glycosylation Analysis 4710
6.05.4 MS/MS Glycan Sequencing 4721
6.05.5 Targeted Glycomics, Glycoproteomics, and the Way Forward 4731
Abbreviations 4734
6.06 Glycoanalysis of Bacterial Glycome 4739
6.06.1 Introduction 4739
6.06.2 Protein Glycosylation 4740
6.06.3 Lipopolysaccharide 4741
6.06.4 Capsular Polysaccharides 4750
6.06.5 Conclusions 4751
Acknowledgments 4751
Abbreviations 4751
Nomenclature 4752
6.07 Chemical Glycobiology 4757
6.07.1 Introduction 4757
6.07.2 Synthetic Glycans with Biological Activity 4758
6.07.3 Chemoenzymatic Synthesis to Study Glycan Structure and Function 4769
6.07.4 Applications of Metabolic Oligosaccharide Engineering 4779
6.07.5 Covalently Trapping Glycan Interactions with Photocross-linkers 4786
Abbreviations 4799
6.08 Alkaloid Glycosidase Inhibitors 4807
6.08.1 Introduction 4807
6.08.2 Chemistry of Alkaloid Glycosidase Inhibitors 4808
6.08.3 Glycosidase Inhibition 4819
6.08.4 Biological Activity of Glycosidase Inhibitors 4821
6.08.5 Structure and Biosynthesis of N-Linked Glycoproteins 4822
6.08.6 Structure and Synthesis of Glycosphingolipids 4828
6.08.7 Therapeutic Activities of Glycosidase Inhibitors 4833
Abbreviations 4836
6.09 Molecular Probes for Protein Glycosylation 4843
6.09.1 Introduction 4843
6.09.2 Protein Glycosylation in Eukaryotes 4845
6.09.3 Protein Glycosylation in Prokaryotes 4850
6.09.4 Chemical Approaches toward Understanding Protein Glycosylation 4850
6.09.5 Production of Homogeneous Glycoproteins 4851
6.09.6 Chemical Probes for Perturbing Protein Glycosylation 4859
6.09.7 Global Analysis of Protein Glycosylation 4864
6.09.8 Microarray Platforms for Glycomics 4872
6.09.9 Conclusions and Future Perspectives 4873
Acknowledgments 4873
Nomenclature 4873
6.10 O Antigen Biosynthesis 4879
6.10.1 Introduction 4879
6.10.2 Biogenesis of O Antigen 4880
6.10.3 Future Prospects 4892
Acknowledgments 4892
6.11 Biosynthesis of Complex Mucin-Type O-Glycans 4897
6.11.1 Introduction 4897
6.11.2 Mucins 4898
6.11.3 Mucin-Type O-Glycans 4900
6.11.4 Functions of O-Glycans and Changes of O-Glycan Structures in Disease 4902
6.11.5 Biosynthesis of O-Glycans 4904
6.11.6 Structures and Mechanisms of Glycosyltransferases 4905
6.11.7 Initiation of O-Glycosylation 4906
6.11.8 Synthesis of Core 1 4908
6.11.9 Synthesis of Core 2 4909
6.11.10 Synthesis of Core 3 4913
6.11.11 Synthesis of Core 4 4914
6.11.12 Synthesis of Minor Core Structures 4915
6.11.13 Extension and Branching Reactions 4915
6.11.14 The \x023- and \x024-Gal-Transferase Families 4917
6.11.15 Sialyltransferases 4918
6.11.16 Fucosyltransferases 4921
6.11.17 Blood Group Transferases 4923
6.11.18 Sulfotransferases 4924
6.11.19 Future Needs and Directions 4925
Acknowledgments 4926
Abbreviations 4926
6.12 Bacterial Protein Glycosylation 4933
6.12.1 Introduction 4933
6.12.2 Protein N-Glycosylation and O-Glycosylation at a Glance 4934
6.12.3 General Protein N-Glycosylation System in Campylobacter jejuni 4935
6.12.4 Protein O-Glycosylation in Gram-Negative Bacteria 4937
6.12.5 Protein O-Glycosylation in Gram-Positive Bacteria 4949
6.12.6 Protein O-Mannosylation in Mycobacteria 4950
6.12.7 Challenges in the Study of Bacterial Protein Glycosylation 4951
6.12.8 Glycoengineering in Bacteria 4951
6.12.9 Concluding Remarks 4956
Abbreviations 4957
6.13 Structure and Biosynthesis of the Mycobacterial Cell Wall 4963
6.13.1 Introduction 4963
6.13.2 Peptidoglycan 4964
6.13.3 Arabinogalactan 4964
6.13.4 Phosphatidylinositol Mannoside, Lipomannan, Lipoarabinomannan, and Arabinomannan Structure 4965
6.13.5 Peptidoglycan Synthesis 4967
6.13.6 Biosynthesis of Arabinogalactan 4970
6.13.7 Biosynthesis of the Phosphatidylinositol Containing Phosphatidylinositol Mannosides, Lipomannans, and Lipoarabinomannans 4977
6.13.8 Mycobacterial Cell Envelope Ultrastructure 4979
Acknowledgment 4983
6.14 Structure, Biosynthesis, and Function\rof Glycosaminoglycans 4989
6.14.1 Introduction 4989
6.14.2 Heparan Sulfate and Heparin 4989
6.14.3 Chondroitin Sulfate and Dermatan Sulfate 5001
6.14.4 Other Glycosaminoglycans 5003
Acknowledgments 5004
Abbreviations 5004
6.15 Biochemistry and Molecular Biology of Glycogen Synthesis in Bacteria and Mammals and Starch Synthesis in Plants 5011
6.15.1 Introduction 5012
6.15.2 The Role of Glycogen and Starch 5013
6.15.3 Synthesis of Bacterial Glycogen and Plant Starch 5014
6.15.4 Properties of the Bacterial and Plant Enzymes Involved in the Synthesis of Glycogen and Starch 5016
6.15.5 Regulation of the Synthesis of Bacterial Glycogen and Starch 5018
6.15.6 Subcellular Localization of ADP-Glc PPase in Plants 5033
6.15.7 Crystal Structure of Potato Tuber ADP-Glc PPase 5033
6.15.8 Bacterial Glycogen Synthase 5034
6.15.9 Starch Synthases 5037
6.15.10 Branching Enzyme 5046
6.15.11 Other Enzymes Involved in Starch Synthesis 5051
6.15.12 Genetic Regulation of Bacterial Glycogen Synthesis 5052
6.15.13 Properties of the Glycogen Biosynthetic Enzymes of Mammals 5054
6.15.14 Regulation of Mammalian Glycogen Synthesis 5058
6.16 Celluloses 5075
6.16.1 Introduction 5075
6.16.2 Structures and States of Aggregation 5076
6.16.3 Structural Studies 5079
6.16.4 New Spectroscopic Methods 5080
6.16.5 The Need for a New Paradigm 5086
6.16.6 Further Studies of Structures in Cellulose 5091
6.16.7 Computational Modeling 5096
6.16.8 Polymorphy in Cellulose 5098
6.16.9 Chemical Implications of Structure 5099
6.16.10 Cellulose Structures in Summary 5102
6.16.11 Cellulose Chemistry 5103
Glossary 5117
Abbreviations 5118
6.17 Vascular Plant Lignification: Biochemical/Structural Biology Considerations of Upstream Aromatic Amino Acid and Monolignol Pathways 5123
6.17.1 Introduction 5124
6.17.2 Biochemistry of Phenylalanine and Tyrosine Formation in Vascular Plants: The Entry Point to Phenylpropanoid Metabolism and to Lignification 5125
6.17.3 Structural Biology Considerations for the Monolignol-F Biosynthetic Pathway Steps 5139
6.17.4 Conclusions 5177
Acknowledgments 5177
6.18 Proanthocyanidins: Chemistry and Biology 5187
6.18.1 Introduction 5187
6.18.2 The Naming Convention 5188
6.18.3 Flavans, Flavan-3-ols, Flavan-4-ols, and Flavan-3,4-diols as Building\rBlocks for Proanthocyanidins 5190
6.18.4 Proanthocyanidins 5204
6.18.5 Nonproanthocyanidins with Flavan or Flavan-3-ol Constituent Units 5233
6.18.6 Conformation of Proanthocyanidins 5233
6.18.7 HPLC–MS Analysis of Proanthocyanidins 5235
6.18.8 Effects of Proanthocyanidins on Human Health and Nutrition 5235
6.19 Nucleoside Analogues 5245
6.19.1 Introduction 5245
6.19.2 Stereoelectronic Factors that Affect Nucleic Acid Stability 5247
6.19.3 2-O-Methyl and 29-Fluoro Modification 5248
6.19.4 Pseudouridine 5250
6.19.5 Base-Modified Nucleosides in tRNA 5254
6.19.6 Summary and Future Prospects 5260
6.20 RNA Modifying Enzymes 5265
6.20.1 Introduction 5265
6.20.2 Methylation 5266
6.20.3 Thiolation and Selenation 5278
6.20.4 Deamination 5282
6.20.5 Alkylation 5287
6.20.6 Reduction/Oxidation 5291
6.20.7 Transglycosylation 5294
6.20.8 Complex Modifications 5305
6.20.9 Conclusions and Perspectives 5313
Abbreviations 5315
6.21 Riboswitches 5325
6.21.1 Introduction 5325
6.21.2 Mechanisms of Gene Regulation 5326
6.21.3 Regulatory Signals 5328
6.21.4 Structure of Riboswitch RNAs 5335
6.21.5 Riboswitches and Gene Identification 5336
6.21.6 Using Riboswitches to Control Gene Expression 5337
6.21.7 Perspectives and Future Directions 5338
Glossary 5339
e9780080453811v7 5343
Cover 5343
Title Page 5346
Copyright Page 5347
Contents 5348
Contributors 5350
Preface 5354
Introduction 5356
Editors in Chief 5360
Volume Editors 5362
7.01 Overview and Introduction 5368
7.02 Riboflavin Biosynthesis 5370
7.02.1 Introduction 5370
7.02.2 GTP Cyclohydrolase II 5371
7.02.3 Deaminase/Reductase 5375
7.02.4 3,4-Dihydroxy-2-Butanone 4-Phosphate Synthase 5378
7.02.5 Lumazine Synthase 5379
7.02.6 Riboflavin Synthase 5382
7.02.7 Pentameric Riboflavin Synthases of Archaea 5389
7.02.8 Lumazine Protein 5390
7.02.9 Regulation of Riboflavin Biosynthesis 5390
7.02.10 Biotechnology 5395
7.02.11 Riboflavin Biosynthesis Genes as Potential Drug Targets 5395
7.02.12 Riboflavin Kinase and FAD Synthetase 5396
7.02.13 Biosynthesis of Deazaflavin Cofactors 5396
7.02.14 Riboflavin as Substrate for Other Biosynthetic Pathways 5396
References 5399
7.03 Flavin-Dependent Enzymes 5404
7.03.1 Introduction 5405
7.03.2 Oxidation of Carbon–Heteroatom Bonds 5409
7.03.3 Oxidation and Reduction of Carbon–Carbon Bonds 5423
7.03.4 Thiol/Disulfide Chemistry 5432
7.03.5 Electron Transfer Reactions 5439
7.03.6 Oxygen Reactions 5443
7.03.7 Nonredox Reactions 5454
7.03.8 Complex Flavoenzymes 5463
7.03.9 Summary 5468
Abbreviations 5468
References 5470
7.04 Biotechnology of Riboflavin Production 5482
7.04.1 Scope 5482
7.04.2 Introduction 5483
7.04.3 Industrial Production 5484
7.04.4 Riboflavin Biosynthesis 5487
7.04.5 Construction of Riboflavin Production Strains 5490
7.04.6 Process Development 5499
7.04.7 Conclusions 5502
References 5503
7.05 The Use of Subsystems to Encode Biosynthesis of Vitamins and Cofactors 5508
7.05.1 The Goal 5508
7.05.2 More Precisely, What Is a Subsystem? 5510
7.05.3 How Are Subsystems Built? 5517
7.05.4 What Is Revealed by the Construction of Subsystems? 5521
7.05.5 The Project to Annotate 1000 Genomes 5522
7.05.6 Summary 5522
Acknowledgments 5523
Abbreviations 5523
References 5523
7.06 Biosynthesis of Biotin 5528
7.06.1 Introduction 5528
7.06.2 The Biosynthetic Pathway 5528
References 5545
7.07 Lipoic Acid Biosynthesis and Enzymology 5548
7.07.1 Introduction 5548
7.07.2 The Biological Functions of Lipoamide 5550
7.07.3 Pathways for Construction of the Lipoyl Cofactor 5557
7.07.4 Characterization of Enzymes Involved in Lipoic Acid Biosynthesis and Metabolism 5560
Acknowledgment 5573
Glossary 5573
References 5575
7.08 Genomics and Enzymology of NAD Biosynthesis 5580
7.08.1 Introduction 5580
7.08.2 Biochemical Transformations and Enzymes 5581
7.08.3 Genomic Reconstruction of NAD Biosynthetic Pathways 5608
Acknowledgments 5617
Abbreviations 5617
References 5618
7.09 Pyridoxal Phosphate Biosynthesis 5626
7.09.1 Introduction 5626
7.09.2 Enzymology of PLP Biosynthesis via the DXP-Dependent Route 5627
7.09.3 Enzymology of PLP Biosynthesis via the R5P-Dependent Route 5632
7.09.4 Transport, Salvage, and Interconversion of Various Forms of Vitamin B6 5634
7.09.5 Conclusions 5635
Glossary 5635
Abbreviations 5635
References 5636
7.10 Pyridoxal 5Prime-Phosphate-Dependent Enzymes: Catalysis, Conformation, and Genomics 5640
7.10.1 Introduction 5641
7.10.2 Reactivity of Amino Acids at Alpha-Position 5647
7.10.3 Reactivity of Amino Acids at Beta-Position 5662
7.10.4 Reactivity of Amino Acids at Gamma-Position 5673
7.10.5 Radical Reactions in PLP-Enzymes 5679
7.10.6 Reactivity with Inhibitors 5682
7.10.7 Role of Conformational Changes in Substrate and Reaction Specificity and Allosteric Regulation 5694
7.10.8 Genomics, Evolution, Structure, and Reactivity/Specificity 5696
Acknowledgment 5703
Glossary 5703
Abbreviations 5703
References 5704
7.11 Coenzyme A Biosynthesis and Enzymology 5718
7.11.1 Introduction 5719
7.11.2 Coenzyme A and the Elucidation of Its Biosynthetic Pathway: A Historical Perspective 5720
7.11.3 CoA Biosynthesis 5722
7.11.4 CoA Utilization, Degradation, and Recycling 5741
7.11.5 CoA-Dependent Enzymes 5749
7.11.6 Chemical Biology Tools Based on CoA Enzymology 5763
7.11.7 Drug Development Efforts Targeting CoA Enzymology 5769
7.11.8 Conclusion 5770
References 5770
7.12 Menaquinone/Ubiquinone Biosynthesis and Enzymology 5778
7.12.1 Introduction 5778
7.12.2 Menaquinone Biosynthesis 5781
7.12.3 Phylloquinone Biosynthesis 5792
7.12.4 Ubiquinone Biosynthesis 5793
7.12.5 Organization of Q Biosynthetic Enzymes into a Complex 5803
7.12.6 Comparison of Q Biosynthesis in Yeast and Escherichia coli 5803
7.12.7 Biosynthesis of Isoprenoid Side Chain of MK and Q 5806
Acknowledgments 5806
Abbreviations 5806
References 5807
7.13 Biosynthesis of Heme and Vitamin B12 5812
7.13.1 Tetrapyrroles – The Pigments of Life 5813
7.13.2 Tetrapyrrole Biosynthetic Pathways 5813
7.13.3 Formation of 5-Aminolevulinic Acid 5815
7.13.4 Conversion of 5-Aminolevulinic Acid into Uroporphyrinogen III 5820
7.13.5 Tetrapyrrole Biosynthesis Branch Point – Uroporphyrinogen III 5826
7.13.6 Conversion of Uroporphyrinogen III into Protoheme 5826
7.13.7 The Biosynthesis of Adenosylcobalamin (Vitamin B12) 5832
7.13.8 A Note on Nomenclature 5832
7.13.9 Overview of Cobalamin Biosynthesis 5836
7.13.10 Uroporphyrinogen III to Precorrin-2 5836
7.13.11 The Aerobic Pathway 5841
7.13.12 The Anaerobic Pathway – From Precorrin-2 to Adenosylcobyric Acid 5848
7.13.13 Biosynthesis of Cobinamide (Phosphate) 5853
7.13.14 Nucleotide Loop Assembly 5856
References 5860
7.14 Cobalamin Coenzymes in Enzymology 5868
7.14.1 Introduction 5869
7.14.2 Early Theories of B12 Function 5870
7.14.3 Cobalamin Chemistry 5873
7.14.4 Adenosylcobalamin in Enzymatic Catalysis 5876
7.14.5 Methylcobalamin in Enzymatic Catalysis 5905
7.14.6 Conclusion 5907
Acknowledgment 5908
Abbreviations 5908
Nomenclature 5909
References 5909
7.15 Thiamin Biosynthesis 5914
7.15.1 Introduction 5914
7.15.2 Thiamin Biosynthesis in Bacillus subtilis 5914
7.15.3 Thiamin Phosphate Synthase 5915
7.15.4 Biosynthesis of the Thiazole Moiety of Thiamin in Bacteria 5916
7.15.5 Protein Thiocarboxylates as Sulfide Carriers in Thiamin Biosynthesis 5917
7.15.6 Formation of the Glycine Imine 5918
7.15.7 Formation of the Pyrimidine Moiety of Thiamin 5918
7.15.8 Kinases Involved in Thiamin Biosynthesis 5920
7.15.9 Thiamin Salvage 5920
7.15.10 Chemoenzymatic Synthesis of Thiamin Pyrophosphate 5921
7.15.11 Thiamin Biosynthesis in Saccharomyces cerevisiae 5922
7.15.12 Formation of the Thiamin Thiazole in Yeast 5922
7.15.13 Formation of the Thiamin Pyrimidine in Yeast 5923
7.15.14 Conclusions 5923
References 5924
7.16 Thiamin Enzymology 5928
7.16.1 Introduction 5929
7.16.2 Detection of Thiamin Diphosphate-Related Intermediates and Their Kinetic Fates, and the Information Gained from Such Data 5929
7.16.3 Determination of Rate-Limiting Steps and Microscopic Rate Constants on ThDP Enzymes 5946
7.16.4 Function and Dynamics of Mobile Loops on YPDC and E1ec 5947
7.16.5 Structure–Function Studies in ThDP-Initiated Multienzyme Complex Reactions at the E1 (ThDP-Dependent) Component 5954
7.16.6 Probing ThDP Enzyme Mechanisms with Coenzyme Analogs 5957
7.16.7 Active Center Communication in ThDP Enzymes 5957
7.16.8 Continuing Fascination with Thiamin Enzymes as Paradigm for Enzymatic Solvent Effects 5960
7.16.9 Perspective for Future Studies 5961
Acknowledgments 5962
Abbreviations 5962
References 5962
7.17 The Biosynthesis of Folate and Pterins and Their Enzymology 5966
7.17.1 Introduction 5967
7.17.2 The Biosynthesis of Folate 5969
7.17.3 Tetrahydrobiopterin Metabolism and Function 5983
7.17.4 Molybdopterin and Molybdenum Cofactor Biosynthesis 5995
Acknowledgments 6006
Abbreviations 6006
References 6008
7.18 Cofactor Catabolism 6016
7.18.1 Introduction 6016
7.18.2 Vitamin B6 Catabolism 6016
7.18.3 Heme Catabolism 6019
7.18.4 Vitamin B3 Catabolism 6024
7.18.5 Vitamin B2 Catabolism 6026
7.18.6 Vitamin B1 Catabolism 6026
7.18.7 Vitamin B9, Folate Catabolism 6026
7.18.8 Vitamin B7, Biotin Catabolism 6029
7.18.9 Lipoate Catabolism 6030
7.18.10 Other Cofactors 6030
7.18.11 Conclusion 6030
Acknowledgment 6032
Glossary 6036
Abbreviations 6036
References 6037
7.19 Protein-Derived Cofactors 6042
7.19.1 Introduction 6042
7.19.2 Pyruvoyl Cofactor – A Product of Peptide Cleavage 6044
7.19.3 4-Methylideneimidazole-5-One – A Product of Peptide Cyclization and Dehydration 6047
7.19.4 Protein-Derived Quinone Cofactors 6049
7.19.5 Functional Covalently Cross-Linked Amino Acid Residues in Metalloproteins 6062
7.19.6 Green Fluorescent Protein and Protein-Derived Fluorophores 6068
7.19.7 Pyrroloquinoline Quinone, a Protein-Derived Exogenous Cofactor 6070
7.19.8 Lantibiotics, Protein-Derived Antibiotic Peptides 6073
7.19.9 Conclusions and Perspectives 6074
Abbreviations 6074
References 6075
7.20 Biosynthesis of the Methanogenic Coenzymes 6078
7.20.1 Introduction 6078
7.20.2 Biosynthesis of Methanofuran 6079
7.20.3 Biosynthesis of Methanopterin 6083
7.20.4 Biosynthesis of Coenzyme F420 and Riboflavin Precursors 6091
7.20.5 Biosynthesis of Riboflavin, FMN, and FAD 6097
7.20.6 Biosynthesis of Coenzyme M and Coenzyme B 6102
7.20.7 Biosynthesis of Corrinoids and Coenzyme F430 6107
7.20.8 Concluding Remarks 6112
References 6112
e9780080453811v8 6116
Cover 6116
Title Page 6119
Copyright Page 6120
Contents 6121
Contributors 6123
Preface 6127
Introduction 6129
Editors in Chief 6133
Volume Editors 6135
8.01 Overview and Introduction 6141
8.01.1 Introduction 6141
8.01.2 Chapter Summaries 6142
References 6147
8.02 Evolution and the Enzyme 6149
8.02.1 Introduction 6149
8.02.2 The Earliest Enzymes: Getting the Basic Chemistry in Place 6150
8.02.3 Exploring Fold Space 6155
8.02.4 Elaborating on the Basics 6160
8.02.5 Enzyme Evolution in the Context of the Cell 6175
8.02.6 Enzyme Evolution in the Modern Age 6180
Abbreviations 6183
References 6184
8.03 Enzyme Promiscuity – Evolutionary and Mechanistic Aspects 6187
8.03.1 Introduction 6188
8.03.2 Promiscuity – The Rule or an Exception 6188
8.03.3 The Definitions of Promiscuity 6190
8.03.4 Quantifying the Degree and Magnitude of Promiscuity 6192
8.03.5 Predicting Promiscuity 6196
8.03.6 Mechanistic Aspects of Promiscuity 6197
8.03.7 Promiscuity and the Divergence of Enzyme Superfamilies 6202
8.03.8 Evolutionary Aspects of Promiscuity 6206
Acknowledgments 6223
Abbreviations 6223
References 6224
8.04 Mechanistic and Structural Studies of Microbial Dehalogenases: How Nature Cleaves a Carbon–Halogen Bond 6229
8.04.1 Introduction 6229
8.04.2 Dehalogenation Via Covalent Catalysis 6230
8.04.3 Dehalogenation Via Noncovalent Catalysis 6240
8.04.4 Structurally Undefined Dehalogenases 6250
8.04.5 Conclusions 6256
Acknowledgments 6258
Abbreviations 6258
Nomenclature 6259
References 6259
8.05 Guanidine-Modifying Enzymes in the Pentein Superfamily 6265
8.05.1 Introduction to the Pentein Superfamily 6266
8.05.2 Noncatalytic Proteins 6267
8.05.3 Hydrolases 6268
8.05.4 Dihydrolases 6285
8.05.5 Amidinotransferases 6288
8.05.6 Conclusion 6294
Acknowledgments 6295
References 6295
8.06 Tunnels and Intermediates in the Glutamine-Dependent Amidotransferases 6301
8.06.1 Introduction 6302
8.06.2 Glutamine-Dependent Amidotransferases and Nitrogen Metabolism 6303
8.06.3 Class I Amidotransferases 6308
8.06.4 Class II Amidotransferases 6335
8.06.5 Class III Amidotransferases 6355
8.06.6 Other Aspects 6359
8.06.7 Conclusion 6361
Acknowledgment 6361
References 6361
8.07 Fatty Acid Biosynthesis and Oxidation 6371
8.07.1 Introduction 6371
8.07.2 Thiolase Enzyme Homologs 6372
8.07.3 Oxidoreductases in Fatty Acid Biosynthesis and Breakdown 6383
8.07.4 Hydratases and Dehydratases 6398
8.07.5 Summary and Future Prospects 6408
References 6410
8.08 Diels-Alderases 6417
8.08.1 Introduction 6417
8.08.2 Enzymatic Formation of Diels–Alder Adducts 6422
8.08.3 Diels–Alder Reaction Catalyzed by the Biological System 6436
8.08.4 Enzyme-Catalyzed Diels–Alder Reactions 6441
8.08.5 Natural Diels–Alder Adducts Whose Biosynthetic Gene Clusters Have Been Identified 6447
8.08.6 Conclusions 6450
References 6451
8.09 Phosphoryl and Sulfuryl Transfer 6455
8.09.1 Introduction 6455
8.09.2 Uncatalyzed Reactions of Phosphate and Sulfate Monoesters 6458
8.09.3 Key Features of Enzymatic Catalysis, and Structural Similarities between Sulfatases and Phosphatases 6461
8.09.4 Enzymes that Catalyze the Hydrolysis of Phosphate Monoesters 6462
8.09.5 Sulfatases 6477
8.09.6 Conclusions 6482
Abbreviation 6482
References 6483
8.10 Catalytic Mechanism of DNA Polymerases 6489
8.10.1 Introduction 6490
8.10.2 Polymerase Families 6490
8.10.3 Structural Requirements for Polymerase Catalysis 6492
8.10.4 General Mechanism of Nucleotide Incorporation Catalyzed by DNA Polymerases 6495
8.10.5 Computational Studies 6512
8.10.6 Final Thoughts 6517
Abbreviations 6518
Nomenclature 6518
References 6519
8.11 Mechanisms of Enzymatic Glycosyl Transfer 6525
8.11.1 Introduction 6525
8.11.2 Reaction Mechanisms of Glycoside Hydrolases 6531
8.11.3 Examples of Mechanistic Studies of Some Representative Glycosidases 6535
8.11.4 Glycosyltransferases 6548
References 6554
8.12 Synthesis of Alginate in Bacteria 6563
8.12.1 Introduction 6563
8.12.2 Alginate Structure 6563
8.12.3 Overview of Alginate Biosynthesis 6565
8.12.4 Phosphomannose Isomerase 6566
8.12.5 Phosphomannomutase 6567
8.12.6 Guanosine Diphosphate-Mannose Pyrophosphorylase 6570
8.12.7 Guanosine Diphosphate-Mannose Dehydrogenase 6570
8.12.8 Mannuronan Synthesis 6572
8.12.9 C5-Mannuronan Epimerase 6572
8.12.10 Alginate Acetylation 6576
8.12.11 Alginate Lyase 6577
8.12.12 Secretion of Alginate 6578
8.12.13 Regulation of Alginate Synthesis 6578
8.12.14 Future Directions 6578
Abbreviations 6579
References 6579
8.13 Enzymology of Bacterial Resistance 6583
8.13.1 Introduction 6583
8.13.2 Enzymatic Basis for Beta-Lactam Resistance 6584
8.13.3 Enzymatic Basis for Glycopeptide Resistance 6595
8.13.4 Enzymatic Basis for Aminoglycoside Resistance 6601
8.13.5 Enzymatic Basis for Macrolide and Ketolide Resistance 6610
8.13.6 Enzymatic Basis for Resistance to the Quinolone Antibacterials 6614
8.13.7 Conclusion 6616
Abbreviations 6616
References 6616
8.14 Copper Metalloenzymes 6629
8.14.1 Introduction 6629
8.14.2 Copper Enzyme Catalysis 6639
Acknowledgment 6679
References 6679
8.15 Mechanisms of Metal-Dependent Hydrolases in Metabolism 6687
8.15.1 Introduction 6687
8.15.2 Metal Ion Cofactors 6688
8.15.3 Mononuclear Metallohydrolases 6693
8.15.4 Binuclear Metallohydrolases 6709
8.15.5 Conclusions 6715
Abbreviations 6716
References 6717
8.16 Dioxygenase Enzymes and Oxidative Cleavage Pathways 6723
8.16.1 Bacterial Aromatic Degradation Pathways 6723
8.16.2 Mammalian Aromatic Amino Acid Degradation Pathways 6743
8.16.3 Carotenoid Oxidative Cleavage Pathways 6749
8.16.4 Other Dioxygenase Enzymes Involved in Catabolic and Biosynthetic Pathways 6754
References 6759
8.17 S-Adenosylmethionine and Iron–Sulfur Clusters in Biological Radical Reactions: The Radical SAM Superfamily 6765
8.17.1 Introduction 6766
8.17.2 Radical SAM Enzymes: A Common Mechanistic Start 6770
8.17.3 Diverse Reactions Catalyzed by Radical SAM Enzymes 6775
8.17.4 Insights from Structural Studies of Radical SAM Enzymes 6790
8.17.5 Conclusions 6797
Acknowledgements 6797
Abbreviations 6797
References 6797
8.18 Detection of Novel Enzyme Intermediates 6803
8.18.1 Introduction 6803
8.18.2 Criteria for Establishing Enzyme Intermediates 6804
8.18.3 Methodologies and Experimental Design for Optimal Intermediate Detection of Enzyme Intermediates 6805
8.18.4 Selected Examples of Enzymological Studies Involving Detection and Characterization of Novel Enzyme Intermediates 6811
8.18.5 Novel Approaches for Detecting and Characterizing Enzyme Intermediates 6821
8.18.6 Conclusions 6822
Acknowledgments 6823
Abbreviations 6824
References 6824
8.19 Bisubstrate Analog Inhibitors 6829
8.19.1 Introduction 6829
8.19.2 Design and Analysis of Bisubstrate Analog Inhibitors 6830
8.19.3 Gcn5-Related N-Acetyltransferases 6831
8.19.4 Acetyl-CoA Carboxylase 6837
8.19.5 Protein Kinases 6838
8.19.6 Catechol-O-Methyltransferase 6840
8.19.7 Farnesyltransferase 6842
8.19.8 Current Bisubstrate Analogs as Therapeutics 6844
8.19.9 Future Perspectives 6853
Abbreviations 6853
References 6854
8.20 Quantum Chemical Modeling of Enzymatic Reactions – Applications to Epoxide-Transforming Enzymes 6859
8.20.1 Introduction 6859
8.20.2 Density Functional Theory 6860
8.20.3 Modeling Enzyme Active Sites and Reactions 6862
8.20.4 Applications to Epoxide-Transforming Enzymes 6866
8.20.5 Conclusions and Outlook 6884
Abbreviations 6884
Nomenclature 6885
References 6885
e9780080453811v9 6889
Cover 6889
Title Page 6892
Copyright Page 6893
Contents 6894
Contributors 6896
Preface 6900
Introduction 6902
Editors in Chief 6906
Volume Editors 6908
9.01 Overview and Introduction 6914
9.02 High Performance Liquid Chromatographic Separation Methods 6918
9.02.1 Introduction 6918
9.02.2 Modes of Separation by HPLC in Natural Product Isolation 6921
9.02.3 From Analytical to Preparative Scale Illustrated for HP-RPC 6926
9.02.4 Multidimensional High-Performance Liquid Chromatography 6933
9.02.5 HPLC Separation of Natural Products 6939
9.02.6 Conclusions 6954
Abbreviations 6956
References 6957
9.03 Introduction to Macromolecular X-Ray Crystallography 6964
9.03.1 Introduction 6964
9.03.2 Why Crystallography? 6965
9.03.3 Protein Crystals 6965
9.03.4 Obtaining Protein Crystals 6967
9.03.5 Principles of Diffraction 6970
9.03.6 Fourier Transforms 6973
9.03.7 Diffraction as a Fourier Series 6975
9.03.8 The Diffraction Experiment in Practice 6976
9.03.9 Phasing Methods 6980
9.03.10 The Electron Density Map 6988
9.03.11 Model Building and Refinement 6992
9.03.12 Model Validation 6995
9.03.13 An Example of a Crystal Structure Determination 6997
Acknowledgments 7000
Nomenclature 7000
References 7000
9.04 Characterization by Circular Dichroism Spectroscopy 7004
9.04.1 Introduction 7005
9.04.2 OR of Chiral Compounds 7005
9.04.3 Circular Dichroism Spectra 7007
9.04.4 CD Exciton Chirality Method 7013
9.04.5 Induced CD 7029
9.04.6 Characterization of Natural Products by CD – Selected Examples 7030
9.04.7 Concluding Remarks and Outlook 7054
References 7055
9.05 Determination of Structure including Absolute Configuration of Bioactive Natural Products 7060
9.05.1 Introduction 7060
9.05.2 Absolute Configuration and Sign of Optical Rotation 7060
9.05.3 Elucidating the Structure of Pheromones of Stink Bugs 7061
9.05.4 Absolute Configuration Involving Remote Stereocenters 7062
9.05.5 Absolute Configuration Involving Stereocenters Separated by a Polymethylene Spacer 7067
9.05.6 Origin of Biological Homochirality 7071
9.05.7 Exceptions to Biological Homochirality 7072
9.05.8 Mimics of Bioactive Natural Products and Bioisosterism 7074
9.05.9 Inventions of Pesticides and Medicinals 7076
9.05.10 Conclusion 7077
Abbreviations 7078
References 7078
9.06 NMR – Small Molecules and Analysis of Complex Mixtures 7082
9.06.1 Introduction 7082
9.06.2 Routine NMR Spectroscopy for Natural Products Structure Elucidation 7085
9.06.3 Complex Mixtures 7092
9.06.4 Methods to Improve Sensitivity 7100
9.06.5 Outlook 7105
Abbreviations 7105
References 7106
9.07 Biomolecular Recognition by Oligosaccharides and Glycopeptides: The NMR Point of View 7110
9.07.1 Scalar and Residual Dipolar Coupling Constants in the Structure Determination of Carbohydrates by NMR 7111
9.07.2 Conformation of Oligosaccharides in the Free and Bound States 7127
9.07.3 Bacterial Cell Wall Peptidoglycans and Fragments: Structural Studies and Functions 7131
9.07.4 NMR of Glycopeptide (Vancomycin-Type) Antibiotics: Structure and Interaction with Cell Wall Analogue Peptides 7140
Acknowledgments 7147
Abbreviations 7147
References 7149
9.08 Determination of Three-Dimensional Structures of Nucleic Acids by NMR 7160
9.08.1 Introduction 7160
9.08.2 Sample Preparation 7160
9.08.3 Resonance Assignments 7166
9.08.4 Extracting Structural Information 7171
9.08.5 Three-Dimensional Structure Refinement 7181
Abbreviations 7184
Nomenclature 7185
References 7185
9.09 Derivation of Peptide and Protein Structure using NMR Spectroscopy 7192
9.09.1 Introduction 7193
9.09.2 Sample Considerations and Solvent Suppression 7194
9.09.3 Data Acquisition for Nonlabeled Peptides 7201
9.09.4 Data Acquisition for Isotopically Labeled Proteins 7210
9.09.5 Extraction of Structural Constraints 7219
9.09.6 Calculation of Structures from NMR Data 7226
9.09.7 Conclusions and Future Prospects 7231
Acknowledgments 7232
Abbreviations 7232
Nomenclature 7233
References 7233
9.10 Mass Spectrometry: An Essential Tool for Trace Identification and Quantification 7240
9.10.1 Introduction 7241
9.10.2 Components of a Mass Spectrometer 7242
9.10.3 Tandem Mass Spectrometry 7262
9.10.4 Experimental Use of Mass Spectrometry 7269
Acknowledgments 7295
Abbreviations 7295
Nomenclature 7296
References 7297
9.11 Applications of Modern Mass Spectrometry Techniques in Natural Products Chemistry 7302
9.11.1 Introduction 7303
9.11.2 Applications of Mass Spectrometry on NRPS Systems 7320
9.11.3 Applications of Mass Spectrometry on PKS Systems 7349
9.11.4 Prospective Applications of Current Natural Product MS Methods on NRPS and PKS Systems 7359
9.11.5 Up-and-Coming Advances in Mass Spectrometry Tools for the Investigation of Natural Products and Their Biosynthetic Pathways 7362
Acknowledgments 7363
Abbreviations 7363
Nomenclature 7365
References 7365
9.12 Mass Spectrometry: Structure Determination of Proteins and Peptides 7370
9.12.1 Introduction 7371
9.12.2 Proteomics: A Field of Protein Characterization 7372
9.12.3 Mass Spectrometry Analysis of Proteomes 7376
9.12.4 Protein Expression Profiling through Quantitative Proteomics 7380
9.12.5 De Novo Sequencing of Peptides 7383
9.12.6 Posttranslational Modifications in Proteins and Peptides 7392
9.12.7 Higher-Order Structures of Proteins and Peptides 7397
9.12.8 Monitoring Protein–Ligand Interactions 7402
9.12.9 Conclusions 7404
Abbreviations 7405
References 7406
9.13 Application of Mass Spectrometry to Rapid Analysis of Bacterial Polysaccharides 7410
9.13.1 Introduction 7410
9.13.2 In-Source Fragmentation and Analysis of Polysaccharides by Capillary Electrophoresis–Mass Spectrometry 7411
9.13.3 Materials and Methods 7419
9.13.4 Conclusions 7421
Abbreviations 7422
References 7422
9.14 Modern Methods for the Isolation of Natural Product Receptors 7426
9.14.1 Introduction 7426
9.14.2 Traditional Approaches 7429
9.14.3 Genome-Wide Approaches 7431
9.14.4 Future Prospects 7473
Glossary 7473
References 7474
9.15 Bioinformatics 7482
9.15.1 Introduction 7482
9.15.2 Measuring Biodiversity 7484
9.15.3 Selected Data Mining Techniques for Gene Expression 7486
9.15.4 Software in Bioinformatics 7495
9.15.5 Structural Bioinformatics Approaches for Signaling Processes: A Case Study 7498
9.15.6 Summary and Future Prospects 7500
Abbreviations 7501
References 7502
9.16 Natural Products Research and Metabolomics 7508
9.16.1 Introduction 7508
9.16.2 Analytical Techniques 7511
9.16.3 Modeling and Data Analysis 7527
9.16.4 Sampling and Sample Preparation 7530
9.16.5 Examples 7530
9.16.6 Conclusion 7537
Abbreviations 7537
References 7538
9.17 Small Molecules as Versatile Tools for Activity-Based Protein Profiling Experiments 7542
9.17.1 Introduction 7543
9.17.2 Principles of Activity-Based Protein Profiling 7544
9.17.3 Chemical Probes for ABPP 7552
9.17.4 Biological Applications 7577
9.17.5 Conclusions and Outlook 7581
References 7583
9.18 Metabolic Studies Using the Retrobiosynthesis Concept – Theory, Technology, and Examples 7588
9.18.1 Isotopes in Metabolic Sciences 7588
9.18.2 Isotope Propagation in Metabolic Networks 7589
9.18.3 A Quasi-Steady-State Concept of Isotope Distribution 7590
9.18.4 A Rational Perturbation/Relaxation Strategy for Assessment of Metabolic Pathways 7590
9.18.5 The Retrobiosynthesis Concept in Practical Terms 7591
9.18.6 Isotopologue Space 7592
9.18.7 Quantitative Assessment of Isotopologue Abundance 7593
9.18.8 Application of the Retrobiosynthesis Concept to Studies in Biosynthesis 7594
9.18.9 Conclusion and Outlook 7605
Glossary 7605
References 7605
9.19 Bacterial Protein Overexpression Systems and Strategies 7608
9.19.1 Introduction 7609
9.19.2 Project Design 7609
9.19.3 Escherichia Coli Expression 7612
9.19.4 Cloning 7615
9.19.5 Methods to Improve Expression and Solubility 7618
9.19.6 Affinity Protein Purification 7623
9.19.7 Conclusions 7627
Abbreviations 7627
References 7628
9.20 Directed Evolution of Enzymes 7636
9.20.1 Introduction 7636
9.20.2 Library Construction Techniques and Consequences 7642
9.20.3 Selection and Screening Techniques 7648
9.20.4 Applications of Directed Molecular Evolution 7650
9.20.5 Conclusions 7658
Abbreviations 7658
References 7658
9.21 Single Molecule Fluorescence Methods in Enzymology 7664
9.21.1 Introduction 7664
9.21.2 Fluorescent Active Site 7665
9.21.3 Fluorogenic Reaction 7668
9.21.4 Fluorescent Substrate 7671
9.21.5 Fluorescence Resonance Energy Transfer (FRET) 7673
9.21.6 Fluorescence Quenching via Energy Transfer 7675
9.21.7 Fluorescence Quenching via Electron Transfer 7677
9.21.8 Summary 7679
Acknowledgments 7679
Abbreviations 7679
References 7679
e9780080453811v10 7684
Cover 7684
Title Page 7687
Copyright Page 7688
Contents of all Volumes 7689
Contributors to all Volumes 7701
Preface 7721
Introduction 7723
Editors in Chief 7727
Volume Editors 7729
INDEX 7735