Additional Information
Book Details
Abstract
This five-volume handbook focuses on processing techniques, characterization methods, and physical properties of thin films (thin layers of insulating, conducting, or semiconductor material). The editor has composed five separate, thematic volumes on thin films of metals, semimetals, glasses, ceramics, alloys, organics, diamonds, graphites, porous materials, noncrystalline solids, supramolecules, polymers, copolymers, biopolymers, composites, blends, activated carbons, intermetallics, chalcogenides, dyes, pigments, nanostructured materials, biomaterials, inorganic/polymer composites, organoceramics, metallocenes, disordered systems, liquid crystals, quasicrystals, and layered structures.
Thin films is a field of the utmost importance in today's materials science, electrical engineering and applied solid state physics; with both research and industrial applications in microelectronics, computer manufacturing, and physical devices.
Advanced, high-performance computers, high-definition TV, digital camcorders, sensitive broadband imaging systems, flat-panel displays, robotic systems, and medical electronics and diagnostics are but a few examples of miniaturized device technologies that depend the utilization of thin film materials. The Handbook of Thin Films Materials is a comprehensive reference focusing on processing techniques, characterization methods, and physical properties of these thin film materials.
Table of Contents
Section Title | Page | Action | Price |
---|---|---|---|
e9780127628707_1 | 1 | ||
Front Cover | 1 | ||
Hand book of Thin Film Devices: Hetero-Structures for High Performance Devices | 4 | ||
Copyright Page | 5 | ||
CONTENTS | 10 | ||
Preface | 12 | ||
List of Contributors | 14 | ||
CHAPTER 1. EPITAXIAL FILM GROWTH AND CHARACTERIZATION | 16 | ||
1.1. Introduction | 16 | ||
1.2. Epitaxial Deposition Techniques | 18 | ||
1.3. Materials Characterization | 45 | ||
1.4. Future Directions | 64 | ||
References | 66 | ||
CHAPTER 2. PROCESSING OF EPITAXIAL HETEROSTRUCTURE DEVICES | 72 | ||
2.1. Introduction | 72 | ||
2.2. Processing Techniques | 73 | ||
2.3. Device Processing | 93 | ||
2.4. Integration | 110 | ||
2.5. Conclusions | 114 | ||
References | 115 | ||
CHAPTER 3. FIELD EFFECT TRANSISTORS: FETs AND HEMTs | 120 | ||
3.1. Introduction | 121 | ||
3.2. HEMT Device Operation and Design | 122 | ||
3.3. Scaling Issues in Ultrahigh-Speed HEMTs | 130 | ||
3.4. Low-Noise HEMT Design | 133 | ||
3.5. Power HEMT Design | 136 | ||
3.6. Material Systems for HEMT Devices | 139 | ||
3.7. AlGaAs/InGaAs/GaAs Pseudomorphic HEMT (GaAs pHEMT) | 143 | ||
3.8. AllnAs/GaInAs/InP (InP HEMT) | 151 | ||
3.9. Conclusion | 165 | ||
References | 166 | ||
CHAPTER 4. HETEROJUNCTION BIPOLAR TRANSISTORS | 174 | ||
4.1. Heterojunction Bipolar Transistor Structure and Properties | 174 | ||
4.2. Heterojunction Bipolar Transistor Materials | 178 | ||
4.3. Heterojunction Bipolar Transistor Processing Techniques | 185 | ||
4.4. Heterojunction Bipolar Transistor DC Characteristics | 188 | ||
4.5. Heterojunction Bipolar Transistor RF Characteristics | 195 | ||
4.6. Heterojunction Bipolar Transistor Applications | 199 | ||
4.7. Heterojunction Bipolar Transistor Research Directions | 205 | ||
References | 208 | ||
CHAPTER 5. GaN-BASED MODULATION-DOPED FIELD-EFFECT TRANSISTORS AND ULTRAVIOLET DETECTORS | 210 | ||
5.1. Introduction | 211 | ||
5.2. Modulation-Doped Field-Effect Transistors (MODFET) | 212 | ||
5.3. Polarization | 212 | ||
5.4. MODFET Description | 215 | ||
5.5. Schottky Barriers for Gates | 217 | ||
5.6. Contacts to GaN | 218 | ||
5.7. AlGaN/GaN MODFETs | 219 | ||
5.8. Experimental Performance of GaN MODFETs | 222 | ||
5.9. Ultraviolet Detectors | 225 | ||
References | 231 | ||
CHAPTER 6. SILICON GERMANIUM ALLOY DEVICES | 234 | ||
6.1. Quick Summary of Trends for SiGe Devices and Circuits | 234 | ||
6.2. Review of Materials Properties | 236 | ||
6.3. Device Theory and Modeling | 238 | ||
6.4. SiGe Growth Techniques | 238 | ||
6.5. Details of SiGe Thin Film Electrical and Optical Devices | 241 | ||
6.6. Details of SiGe Thin Film Optical Devices | 249 | ||
6.7. SiGe Device Fabrication | 253 | ||
6.8. Characterization Techniques | 255 | ||
6.9. Anticipated Applications | 257 | ||
References | 258 | ||
CHAPTER 7. SILICON CARBIDE POWER DEVICES | 266 | ||
7.1. Introduction | 266 | ||
7.2. Figures of Merit | 268 | ||
7.3. Power Rectifiers | 273 | ||
7.4. Power Transistors | 290 | ||
7.5. Power Thyristors | 307 | ||
7.6. Materials and Process Challenges | 311 | ||
7.7. Summary | 311 | ||
References | 312 | ||
CHAPTER 8. GaN-BASED PYROELECTRONICS AND PIEZOELECTRONICS | 316 | ||
8.1. Introduction | 317 | ||
8.2. Pyroelectricity, Ferroelectricity, and Piezoelectricity | 317 | ||
8.3. GaN Pyroelectric Sensors | 323 | ||
8.4. Piezoelectric Effect and Its Application in GaN-Based Sensing Elements | 330 | ||
8.5. Piezoelectric Doping in GaN-Based Heterostructure Field Effect Transistors | 340 | ||
8.6. Piezoresistive Effect in GaN-Based Structures | 344 | ||
8.7. Spontaneous Polarization | 350 | ||
8.8. Conclusions | 352 | ||
References | 354 | ||
Index | 358 | ||
e9780125507608_2 | 370 | ||
Front Cover | 370 | ||
Hand book of Thin Film Devices: Semiconductor Optical and Electro-Optical Devices | 373 | ||
Copyright Page | 374 | ||
CONTENTS | 379 | ||
Preface | 383 | ||
List of Contributors | 385 | ||
CHAPTER 1. HGCDTE INFRARED DETECTORS | 387 | ||
1.1. Introduction | 387 | ||
1.2. HgCdTe Material Properties and Background | 388 | ||
1.3. HgCdTe Growth | 392 | ||
1.4. Native Defects and Impurity Doping Behavior | 392 | ||
1.5. Photovoltaic Detectors | 397 | ||
1.6. Recent Progress in Focal Plane Arrays (FPAs) | 405 | ||
1.7. Conclusions | 406 | ||
References | 407 | ||
CHAPTER 2. ANTIMONY-BASED INFRARED MATERIALS AND DEVICES | 413 | ||
2.1. Introduction | 413 | ||
2.2. Overview of Materials and Electronic Properties | 414 | ||
2.3. Mechanisms Limiting the Performance of Sources and Detectors | 420 | ||
2.4. Infrared Emitters | 423 | ||
2.5. Infrared Detectors | 429 | ||
2.6. Conclusions | 442 | ||
References | 442 | ||
CHAPTER 3. QUANTUM WELL INFRARED PHOTODETECTORS (QWIP) | 449 | ||
3.1. Introduction | 449 | ||
3.2. N-Doped Bound-to-Bound QWIP | 450 | ||
3.3. N-Doped Bound-to-Continuum QWIP | 451 | ||
3.4. N-Doped Bound-to-Quasibound QWIP | 452 | ||
3.5. Comparison of Bound, Quasibound, and Continuum QWIPs | 454 | ||
3.6. Light Coupling | 462 | ||
3.7. Imaging Focal Plane Arrays | 468 | ||
References | 483 | ||
CHAPTER 4. AN INTRODUCTION TO THE PHYSICS OF QUANTUM WELL INFRARED PHOTODETECTORS AND OTHER RELATED NEW DEVICES | 487 | ||
4.1. Introduction | 487 | ||
4.2. Detector Physics | 491 | ||
4.3. Related New Devices | 507 | ||
4.4. Conclusions | 517 | ||
References | 518 | ||
CHAPTER 5. SEMICONDUCTOR PHOTOEMISSIVE STRUCTURES FOR FAR INFRARED DETECTION | 521 | ||
5.1. Introduction | 521 | ||
5.2. Infrared Detection with Internal Photoemission | 522 | ||
5.3. Homojunction Internal Photoemission Detectors | 525 | ||
5.4. Pixelless FIR Imager | 551 | ||
References | 553 | ||
CHAPTER 6. INTERBAND III–V MID-IR SEMICONDUCTOR LASERS | 557 | ||
6.1. Introduction | 557 | ||
6.2. MID-IR Laser Fabrication | 559 | ||
6.3. Type-I MID-IR Lasers | 561 | ||
6.4. Type-II Quantum Well Lasers | 566 | ||
6.5. Interband Cascade Lasers | 569 | ||
6.6. Performance-Limiting Issues | 571 | ||
6.7. Conclusions | 575 | ||
References | 576 | ||
CHAPTER 7. HIGH-PERFORMANCE QUANTUM CASCADE LASER | 581 | ||
7.1. Introduction | 581 | ||
7.2. QC Laser Philosophy | 583 | ||
7.3. A Room Temperature QC Laser Operating at l = 5μm | 587 | ||
7.4. Long-Wavelength Room-temperature QC Laser at 11.5 μm | 594 | ||
7.5. Strain-compensated QC Laser at 3.5 μm | 596 | ||
7.6. Buried Heterostructure QC Lasers | 598 | ||
7.7. DFB QC Laser | 600 | ||
7.8. Electrically Tunable QC Laser | 602 | ||
7.9. Outlook | 607 | ||
References | 608 | ||
CHAPTER 8. InGaN-BASED UV/BLUE/GREEN LED AND LD STRUCTURE | 611 | ||
8.1. Introduction | 611 | ||
8.2. III – V Nitride Materials | 612 | ||
8.3. UV/Blue/Green LED | 616 | ||
8.4. III–V Nitride-Based LD | 623 | ||
8.5. Summary | 645 | ||
References | 646 | ||
CHAPTER 9. PLASMA DISPLAYS | 651 | ||
9.1. An Introduction to Flat Displays | 651 | ||
9.2. Plasma Display Panel Operation | 653 | ||
9.3. Electrical Driving Scheme for an AC-PDP Cell | 660 | ||
9.4. Optimization of the Efficacy and Brightness of a PDP | 664 | ||
9.5. Manufacturing of Plasma Displays | 667 | ||
References | 669 | ||
CHAPTER 10. LIQUID CRYSTAL DISPLAYS | 672 | ||
10.1. Liquid Crystal Displays | 672 | ||
10.2. Wide Viewing Angle Approaches | 679 | ||
10.3. Reflective LCD and Recycling Polarizers | 686 | ||
References | 691 | ||
CHAPTER 11. RECENT ADVANCES IN THIN FILM SOLAR CELLS | 697 | ||
11.1. Introduction | 697 | ||
11.2. Fundamentals of Solar Cells | 699 | ||
11.3. CdTe-Based Thin-Film Solar Cell | 705 | ||
11.4. Thin-Film Solar Cells Based on CulnSe 2 and Related Materials | 710 | ||
11.5. Amorphous Silicon Solar Cells | 718 | ||
11.6. Si-Based Thin-Film Cells | 726 | ||
11.7. GaAs Thin-Film Solar Cells | 740 | ||
11.8. Dye-Sensitized TiO2 Thin Film-Solar Cells | 741 | ||
References | 743 | ||
Index | 749 | ||
e9780125129114_3 | 761 | ||
Front Cover | 761 | ||
Handbook of Thin Film Materials: Ferroelectric and Dielectric Thin Films | 764 | ||
Copyright Page | 765 | ||
Contents | 772 | ||
About the Editor | 780 | ||
List of Contributors | 782 | ||
Volume Listing | 784 | ||
Chapter 1. THE ELECTRICAL PROPERTIES OF HIGH-DIELECTRIC-CONSTANT AND FERROELECTRIC THIN FILMS FOR VERY LARGE SCALE INTEGRATION CIRCUITS | 788 | ||
1. Introduction | 789 | ||
2. High-Dielectric-Constant Films: Tantalum Oxide (Ta2O5) | 794 | ||
3. High-Dielectric-Constant Films: Silicon Nitride (Si3N4) | 821 | ||
4. High-Dielectric-Constant Films: Titanium Oxide (TiO2) | 827 | ||
5. Other High-Dielectric-Constant Films: A12O3, Y2O3, HfO2, ZrO2, and Gd2O3 | 837 | ||
6. Ferroelectric Films: Lead Zirconate Titanate (PZT) | 844 | ||
7. Paraelectric Films: Barium Strontium Titanate (BST) | 858 | ||
8. Ferroelectric Films: Strontium Bismuth Tantalate (SBT) | 865 | ||
9. Other Ferroelectric and Paraelectric Films | 869 | ||
10. Metal–Ferroelectric–Insulator–Semiconductor Structures | 874 | ||
11. Conclusion | 878 | ||
Acknowledgments | 878 | ||
References | 878 | ||
Chapter 2. HIGH-PERMITTIVITY (Ba, Sr)TiO3 THIN FILMS | 886 | ||
1. Introduction | 887 | ||
2. Thin Film Deposition | 892 | ||
3. Physical and Electrical Properties of BST Thin Films | 898 | ||
4. Conduction Mechanisms | 910 | ||
5. Dielectric Relaxation and Defect Analysis of BST Thin Films | 916 | ||
6. Reliability | 923 | ||
7. Key Technologies for Gigabit DRAMs | 927 | ||
8. Optical Properties | 930 | ||
9. Other Possible Applications | 938 | ||
10. Summary | 946 | ||
References | 947 | ||
Chapter 3. ULTRATHIN GATE DIELECTRIC FILMS FOR Si-BASED MICROELECTRONIC DEVICES | 956 | ||
1. Introduction | 956 | ||
2. Requirements of Ultrathin Gate Dielectric Films | 959 | ||
3. Ultrathin Gate Dielectric Film Processing | 959 | ||
4. Characterization of Ultrathin Gate Dielectric Films | 963 | ||
5. Hydrogen and Ultrathin Gate Dielectric Films | 976 | ||
6. Silicon Oxide Gate Dielectric Films | 979 | ||
7. Silicon Oxynitride Gate Dielectric Films | 992 | ||
8. Alternative (High-k) Gate Dielectric Films | 1003 | ||
9. Final Remarks | 1011 | ||
Acknowledgments | 1012 | ||
References | 1012 | ||
Chapter 4. PIEZOELECTRIC THIN FILMS: PROCESSING AND PROPERTIES | 1018 | ||
1. Introduction | 1018 | ||
2. Piezoelectricity in Thin Films: Size Effects | 1021 | ||
3. Growth Techniques | 1025 | ||
4. Characterization Methods | 1043 | ||
5. Properties of Piezoelectric Thin Films | 1053 | ||
6. Conclusions | 1091 | ||
Acknowledgments | 1091 | ||
References | 1091 | ||
Chapter 5. FABRICATION AND CHARACTERIZATION OF FERROELECTRIC OXIDE THIN FILMS | 1096 | ||
1. Introduction | 1096 | ||
2. Overview of Basic Physical Properties of Ferroelectric Oxides | 1097 | ||
3. Deposition of Ferroelectric Oxide Thin Films | 1104 | ||
4. Characterization of Ferroelectric Thin Films | 1131 | ||
5. Summary and Concluding Remarks | 1146 | ||
References | 1147 | ||
Chapter 6. FERROELECTRIC THIN FILMS OF MODIFIED LEAD TITANATE | 1156 | ||
1. Introduction | 1156 | ||
2. Chemical Solution Deposition of Modified Lead Titanate Thin Films | 1158 | ||
3. Ferroelectric Characterization Techniques | 1173 | ||
4. Conclusions and Trends | 1181 | ||
Acknowledgments | 1182 | ||
References | 1182 | ||
Chapter 7. POINT DEFECTS IN THIN INSULATING FILMS OF LITHIUM FLUORIDE FOR OPTICAL MICROSYSTEMS | 1186 | ||
1. Preface | 1187 | ||
2. Lithium Fluoride: Material Properties | 1187 | ||
3. Color Centers in Lithium Fluoride Crystals. | 1187 | ||
4. Laser Active Color Centers in Lithium Fluoride Crystals | 1188 | ||
5. Lithium Fluoride Films | 1190 | ||
6. Color Center Formation by Low-Penetrating Particles | 1190 | ||
7. Coloration of LiF by Low-Energy Electron Beams | 1190 | ||
8. Kinetics of Low-Energy Electron-Induced Color Center Formation | 1191 | ||
9. Refractive Index Modification Induced by Color Centers in LiF | 1193 | ||
10. What about \"Thin Films\"? | 1194 | ||
11. Growth of Lithium Fluoride Films | 1194 | ||
12. Optical Absorption of Colored LiF Films | 1199 | ||
13. Photoluminescence of Colored LiF Films | 1200 | ||
14. Influence of LiF Film Structure on Color Center Formation | 1202 | ||
15. Nonlinear Optical Properties of Colored LiF Films | 1203 | ||
16. Design of Active Waveguides in LiF | 1205 | ||
17. Electron-Beam Lithography for Pattern Realization | 1205 | ||
18. CCs in Alkali Halide Films for Passive Optical Functions | 1207 | ||
19. CCs in Alkali Halide Films for Active Optical Functions | 1207 | ||
20. Optical Microscopy on LiF-Based Microstructures | 1213 | ||
21. Photoluminescence for Optical Microsystem Developments | 1215 | ||
22. Conclusions | 1216 | ||
Acknowledgments | 1216 | ||
References | 1217 | ||
Chapter 8. POLARIZATION SWITCHING OF FERROELECTRIC CRYSTALS | 1220 | ||
1. Introduction | 1220 | ||
2. Processing of Single Domain Crystals | 1224 | ||
3. Periodical Polarization Switching on Ferroelectrics with High Coercive Field | 1236 | ||
4. Conclusion | 1260 | ||
References | 1262 | ||
Chapter 9. HIGH-TEMPERATURE SUPERCONDUCTOR AND FERROELECTRIC THIN FILMS FOR MICROWAVE APPLICATIONS | 1268 | ||
1. Introduction | 1268 | ||
2. High-Temperature Superconducting Materials | 1269 | ||
3. Introduction to Ferroelectric Materials | 1287 | ||
4. Summary and Concluding Remarks | 1300 | ||
References | 1301 | ||
Chapter 10. TWINNING IN FERROELECTRIC THIN FILMS: THEORY AND STRUCTURAL ANALYSIS | 1304 | ||
1. Introduction | 1304 | ||
2. Theory | 1308 | ||
3. Experimental Methods | 1316 | ||
4. Correlation Between Experiment and Theory | 1319 | ||
5. Summary and Concluding Remarks | 1327 | ||
Acknowledgments | 1328 | ||
Appendix | 1328 | ||
References | 1329 | ||
Chapter 11. FERROELECTRIC POLYMER LANGMUIR–BLODGETT FILMS | 1332 | ||
1. Introduction | 1333 | ||
2. Langmuir–Blodgett Film Fabrication | 1342 | ||
3. Film Structure and Morphology | 1347 | ||
4. Ferroelectric Properties | 1352 | ||
5. Applications of Ferroelectric Langmuir–Blodgett Films | 1373 | ||
6. Conclusions | 1375 | ||
Acknowledgments | 1375 | ||
References | 1375 | ||
Chapter 12. OPTICAL PROPERTIES OF DIELECTRIC AND SEMICONDUCTOR THIN FILMS | 1380 | ||
1. Theory | 1380 | ||
2. Applications of Thin Films | 1397 | ||
3. Conclusions | 1407 | ||
Acknowledgment | 1408 | ||
References | 1409 | ||
Index | 1410 | ||
e9780125129121_4 | 1422 | ||
Front Cover | 1422 | ||
Handbook of Thin Film Materials: Semiconductor and Superconductor Thin Films | 1425 | ||
Copyright Page | 1426 | ||
Contents | 1433 | ||
About the Editor | 1441 | ||
List of Contributors | 1443 | ||
Volume Listing | 1445 | ||
Chapter 1. ELECTROCHEMICAL PASSIVATION OF Si AND SiGe SURFACES | 1449 | ||
1. Introduction | 1450 | ||
2. In Situ Characterization of Surface Bond Configurations and Electronic Surface States | 1451 | ||
3. Electrochemically Hydrogenated Si Surfaces | 1460 | ||
4. Hydrogenated Porous Silicon | 1470 | ||
5. Thin Anodic Oxides on Si | 1479 | ||
6. Thick Anodic Oxides on Si | 1489 | ||
7. Enhanced Passivation of SiGe by Anodic Oxidation | 1494 | ||
Acknowledgments | 1500 | ||
References | 1500 | ||
Chapter 2. EPITAXIAL GROWTH AND STRUCTURE OF III-V NITRIDE THIN FILMS | 1505 | ||
1. Introduction | 1505 | ||
2. Growth Methods | 1507 | ||
3. Epitaxial Growth | 1515 | ||
4. Doping of III-Nitrides | 1535 | ||
5. Structure and Microstructure of Epitaxial GaN | 1538 | ||
6. Ternary Alloys | 1548 | ||
References | 1559 | ||
Chapter 3. OPTICAL PROPERTIES OF HIGHLY EXCITED (Al, In) GaN EPILAYERS AND HETEROSTRUCTURES | 1565 | ||
1. Introduction | 1566 | ||
2. General Optical Properties of the Group III-Nitrides | 1569 | ||
3. Pump–Probe Spectroscopy of Highly Excited Group III-Nitrides | 1573 | ||
4. Gain Mechanisms in Nitride Lasing Structures | 1585 | ||
5. Optical Properties of InGan-Based Heterostructures | 1595 | ||
6. Optical Properties of Nitride Thin Films at High Temperatures | 1614 | ||
7. Microstructure Lasing | 1620 | ||
8. Imaging Techniques for Wide-Bandgap Semiconductors | 1626 | ||
9. Summary | 1630 | ||
Acknowledgments | 1631 | ||
References | 1631 | ||
Chapter 4. ELECTRICAL CONDUCTION PROPERTIES OF THIN FILMS OF CADMIUM COMPOUNDS | 1635 | ||
1. Introduction | 1635 | ||
2. Structure | 1637 | ||
3. Electrical Properties | 1650 | ||
4. Summary and Conclusions | 1690 | ||
Acknowledgments | 1691 | ||
References | 1692 | ||
Chapter 5. CARBON-CONTAINING HETEROEPITAXIAL SILICON AND SILICON/GERMANIUM THIN FILMS ON Si(001) | 1695 | ||
1. Introduction | 1695 | ||
2. Growth of Epitaxial Si1-yCy and Si1-x-yGexCy | 1696 | ||
3. Mechanical and Structural Properties | 1704 | ||
4. Electrical Properties of C-Containing Alloys on Si(001) | 1716 | ||
5. Highly Concentrated Pseudomorphic Si1-yCy Layers | 1725 | ||
6. Device Application of SiGe:C | 1728 | ||
7. Summary and Outlook | 1736 | ||
Acknowledgments | 1736 | ||
References | 1736 | ||
Chapter 6. LOW-FREQUENCY NOISE SPECTROSCOPY FOR CHARACTERIZATION OF POLYCRYSTALLINE SEMICONDUCTOR THIN FILMS AND POLYSILICON THIN FILM TRANSISTORS | 1739 | ||
1. Introduction | 1739 | ||
2. Noise of Polycrystalline Semiconductor Thin Films | 1742 | ||
3. Noise of the Drain Current in Polysilicon TFTs | 1746 | ||
4. Noise of the Leakage Current in Polysilicon TFTs | 1761 | ||
5. Avalanche-Induced Excess Noise in Polysilicon TFTs | 1766 | ||
6. Hot-Carrier Phenomena in Polysilicon TFTs | 1768 | ||
7. Concluding Remarks | 1771 | ||
References | 1772 | ||
Chapter 7. GERMANIUM THIN FILMS ON SILICON FOR DETECTION OF NEAR-INFRARED LIGHT | 1775 | ||
1. Introduction | 1775 | ||
2. SiGe Technology | 1778 | ||
3. SiGe on Si NIR Photodetectors: Historical Overview | 1794 | ||
4. Functional Devices | 1804 | ||
Appendix: Numerical Simulation of Relaxed Ge/Si Heterojunctions | 1809 | ||
References | 1813 | ||
Chapter 8. PHYSICAL PROPERTIES OF AMORPHOUS GALLIUM ARSENIDE | 1817 | ||
1. Introduction | 1817 | ||
2. Deposition and Growth Parameters | 1818 | ||
3. Composition, Structural, and Morphological Properties | 1823 | ||
4. Density of States | 1827 | ||
5. Optical Properties | 1833 | ||
6. Phonon Spectra | 1836 | ||
7. Electrical Transport Properties | 1839 | ||
8. Applications, Devices | 1846 | ||
9. List of Symbols | 1847 | ||
References | 1848 | ||
Chapter 9. AMORPHOUS CARBON THIN FILMS | 1851 | ||
1. Introduction | 1852 | ||
2. Deposition and Growth | 1857 | ||
3. Microstructure | 1868 | ||
4. Optical Properties | 1880 | ||
5. Defect Studies of Amorphous Carbon | 1903 | ||
6. Electrical Properties of Amorphous Carbon | 1915 | ||
7. Concepts of Localization and Delocalization in a-C | 1930 | ||
8. Electron Field Emission | 1932 | ||
9. Amorphous Carbon-Based Devices | 1946 | ||
10. Conclusion | 1949 | ||
References | 1949 | ||
Chapter 10. HIGH-Tc SUPERCONDUCTOR THIN FILMS | 1955 | ||
1. Introduction | 1955 | ||
2. Fabrication of High-Tc Superconductor Thin Films | 1957 | ||
3. High-Temperature Superconductor Thin Films | 1970 | ||
4. Transport Properties in High-Tc Superconductor Thin Films | 2024 | ||
5. Device Applications | 2042 | ||
6. Heterostructures | 2053 | ||
7. Conclusion | 2061 | ||
Acknowledgments | 2062 | ||
References | 2062 | ||
Chapter 11. ELECTRONIC AND OPTICAL PROPERTIES OF STRAINED SEMICONDUCTOR FILMS OF GROUPS IV AND III–V MATERIALS | 2073 | ||
1. Introduction | 2073 | ||
2. Deformation Potentials | 2075 | ||
3. The Tight-Binding Model | 2077 | ||
4. Strained Si | 2078 | ||
5. Strained Ge | 2080 | ||
6. Strained Si1-xGex Alloys | 2083 | ||
7. Strained Si1-yCy Alloys | 2085 | ||
8. Si/Ge Superlattices | 2086 | ||
9. Strained GaAs and InP | 2089 | ||
10. InAs/A1Sb Superlattices | 2090 | ||
11. Summary | 2093 | ||
References | 2094 | ||
Chapter 12. GROWTH, STRUCTURE, AND PROPERTIES OF PLASMA-DEPOSITED AMORPHOUS HYDROGENATED CARBON–NITROGEN FILMS | 2097 | ||
1. Introduction | 2097 | ||
2. Amorphous Hydrogenated Carbon Films | 2098 | ||
3. Nitrogen Incorporation Into a-C:H Films | 2102 | ||
4. Characterization of a-C(N):H Film Structure | 2111 | ||
5. Mechanical Properties | 2118 | ||
6. Optical and Electrical Properties | 2120 | ||
References | 2123 | ||
Chapter 13. CONDUCTIVE METAL OXIDE THIN FILMS | 2125 | ||
1. Transparent Conducting Oxides | 2125 | ||
2. Ruthenium Oxide | 2130 | ||
3. Iridium Oxide | 2134 | ||
4. Strontium Ruthenate | 2136 | ||
5. Strontium-Doped Lanthanum Cobaltite | 2140 | ||
6. Concluding Remarks | 2143 | ||
References | 2144 | ||
Index | 2147 | ||
9780125129138_5 | 2155 | ||
THIN_FILM_FM_VOL_5 | 2155 | ||
02-THIN502p061-098 | 2181 | ||
03-THIN503p099-140 | 2219 | ||
04-THIN504p141-168 | 2261 | ||
06-THIN506p207-336 | 2289 | ||
07-THIN507p337-374 | 2419 | ||
08-THIN508p375-438 | 2457 | ||
09-THIN509p439-494 | 2521 | ||
10-THIN510p495-554 | 2577 | ||
11-THIN511p555-588 | 2637 | ||
12-THIN512p589-620 | 2671 | ||
13-THINindexp621-633 | 2703 |