Menu Expand
Handbook of Thin Films, Five-Volume Set

Handbook of Thin Films, Five-Volume Set

Hari Singh Nalwa

(2001)

Additional Information

Abstract

This five-volume handbook focuses on processing techniques, characterization methods, and physical properties of thin films (thin layers of insulating, conducting, or semiconductor material). The editor has composed five separate, thematic volumes on thin films of metals, semimetals, glasses, ceramics, alloys, organics, diamonds, graphites, porous materials, noncrystalline solids, supramolecules, polymers, copolymers, biopolymers, composites, blends, activated carbons, intermetallics, chalcogenides, dyes, pigments, nanostructured materials, biomaterials, inorganic/polymer composites, organoceramics, metallocenes, disordered systems, liquid crystals, quasicrystals, and layered structures.
Thin films is a field of the utmost importance in today's materials science, electrical engineering and applied solid state physics; with both research and industrial applications in microelectronics, computer manufacturing, and physical devices.
Advanced, high-performance computers, high-definition TV, digital camcorders, sensitive broadband imaging systems, flat-panel displays, robotic systems, and medical electronics and diagnostics are but a few examples of miniaturized device technologies that depend the utilization of thin film materials. The Handbook of Thin Films Materials is a comprehensive reference focusing on processing techniques, characterization methods, and physical properties of these thin film materials.

Table of Contents

Section Title Page Action Price
e9780127628707_1 1
Front Cover 1
Hand book of Thin Film Devices: Hetero-Structures for High Performance Devices 4
Copyright Page 5
CONTENTS 10
Preface 12
List of Contributors 14
CHAPTER 1. EPITAXIAL FILM GROWTH AND CHARACTERIZATION 16
1.1. Introduction 16
1.2. Epitaxial Deposition Techniques 18
1.3. Materials Characterization 45
1.4. Future Directions 64
References 66
CHAPTER 2. PROCESSING OF EPITAXIAL HETEROSTRUCTURE DEVICES 72
2.1. Introduction 72
2.2. Processing Techniques 73
2.3. Device Processing 93
2.4. Integration 110
2.5. Conclusions 114
References 115
CHAPTER 3. FIELD EFFECT TRANSISTORS: FETs AND HEMTs 120
3.1. Introduction 121
3.2. HEMT Device Operation and Design 122
3.3. Scaling Issues in Ultrahigh-Speed HEMTs 130
3.4. Low-Noise HEMT Design 133
3.5. Power HEMT Design 136
3.6. Material Systems for HEMT Devices 139
3.7. AlGaAs/InGaAs/GaAs Pseudomorphic HEMT (GaAs pHEMT) 143
3.8. AllnAs/GaInAs/InP (InP HEMT) 151
3.9. Conclusion 165
References 166
CHAPTER 4. HETEROJUNCTION BIPOLAR TRANSISTORS 174
4.1. Heterojunction Bipolar Transistor Structure and Properties 174
4.2. Heterojunction Bipolar Transistor Materials 178
4.3. Heterojunction Bipolar Transistor Processing Techniques 185
4.4. Heterojunction Bipolar Transistor DC Characteristics 188
4.5. Heterojunction Bipolar Transistor RF Characteristics 195
4.6. Heterojunction Bipolar Transistor Applications 199
4.7. Heterojunction Bipolar Transistor Research Directions 205
References 208
CHAPTER 5. GaN-BASED MODULATION-DOPED FIELD-EFFECT TRANSISTORS AND ULTRAVIOLET DETECTORS 210
5.1. Introduction 211
5.2. Modulation-Doped Field-Effect Transistors (MODFET) 212
5.3. Polarization 212
5.4. MODFET Description 215
5.5. Schottky Barriers for Gates 217
5.6. Contacts to GaN 218
5.7. AlGaN/GaN MODFETs 219
5.8. Experimental Performance of GaN MODFETs 222
5.9. Ultraviolet Detectors 225
References 231
CHAPTER 6. SILICON GERMANIUM ALLOY DEVICES 234
6.1. Quick Summary of Trends for SiGe Devices and Circuits 234
6.2. Review of Materials Properties 236
6.3. Device Theory and Modeling 238
6.4. SiGe Growth Techniques 238
6.5. Details of SiGe Thin Film Electrical and Optical Devices 241
6.6. Details of SiGe Thin Film Optical Devices 249
6.7. SiGe Device Fabrication 253
6.8. Characterization Techniques 255
6.9. Anticipated Applications 257
References 258
CHAPTER 7. SILICON CARBIDE POWER DEVICES 266
7.1. Introduction 266
7.2. Figures of Merit 268
7.3. Power Rectifiers 273
7.4. Power Transistors 290
7.5. Power Thyristors 307
7.6. Materials and Process Challenges 311
7.7. Summary 311
References 312
CHAPTER 8. GaN-BASED PYROELECTRONICS AND PIEZOELECTRONICS 316
8.1. Introduction 317
8.2. Pyroelectricity, Ferroelectricity, and Piezoelectricity 317
8.3. GaN Pyroelectric Sensors 323
8.4. Piezoelectric Effect and Its Application in GaN-Based Sensing Elements 330
8.5. Piezoelectric Doping in GaN-Based Heterostructure Field Effect Transistors 340
8.6. Piezoresistive Effect in GaN-Based Structures 344
8.7. Spontaneous Polarization 350
8.8. Conclusions 352
References 354
Index 358
e9780125507608_2 370
Front Cover 370
Hand book of Thin Film Devices: Semiconductor Optical and Electro-Optical Devices 373
Copyright Page 374
CONTENTS 379
Preface 383
List of Contributors 385
CHAPTER 1. HGCDTE INFRARED DETECTORS 387
1.1. Introduction 387
1.2. HgCdTe Material Properties and Background 388
1.3. HgCdTe Growth 392
1.4. Native Defects and Impurity Doping Behavior 392
1.5. Photovoltaic Detectors 397
1.6. Recent Progress in Focal Plane Arrays (FPAs) 405
1.7. Conclusions 406
References 407
CHAPTER 2. ANTIMONY-BASED INFRARED MATERIALS AND DEVICES 413
2.1. Introduction 413
2.2. Overview of Materials and Electronic Properties 414
2.3. Mechanisms Limiting the Performance of Sources and Detectors 420
2.4. Infrared Emitters 423
2.5. Infrared Detectors 429
2.6. Conclusions 442
References 442
CHAPTER 3. QUANTUM WELL INFRARED PHOTODETECTORS (QWIP) 449
3.1. Introduction 449
3.2. N-Doped Bound-to-Bound QWIP 450
3.3. N-Doped Bound-to-Continuum QWIP 451
3.4. N-Doped Bound-to-Quasibound QWIP 452
3.5. Comparison of Bound, Quasibound, and Continuum QWIPs 454
3.6. Light Coupling 462
3.7. Imaging Focal Plane Arrays 468
References 483
CHAPTER 4. AN INTRODUCTION TO THE PHYSICS OF QUANTUM WELL INFRARED PHOTODETECTORS AND OTHER RELATED NEW DEVICES 487
4.1. Introduction 487
4.2. Detector Physics 491
4.3. Related New Devices 507
4.4. Conclusions 517
References 518
CHAPTER 5. SEMICONDUCTOR PHOTOEMISSIVE STRUCTURES FOR FAR INFRARED DETECTION 521
5.1. Introduction 521
5.2. Infrared Detection with Internal Photoemission 522
5.3. Homojunction Internal Photoemission Detectors 525
5.4. Pixelless FIR Imager 551
References 553
CHAPTER 6. INTERBAND III–V MID-IR SEMICONDUCTOR LASERS 557
6.1. Introduction 557
6.2. MID-IR Laser Fabrication 559
6.3. Type-I MID-IR Lasers 561
6.4. Type-II Quantum Well Lasers 566
6.5. Interband Cascade Lasers 569
6.6. Performance-Limiting Issues 571
6.7. Conclusions 575
References 576
CHAPTER 7. HIGH-PERFORMANCE QUANTUM CASCADE LASER 581
7.1. Introduction 581
7.2. QC Laser Philosophy 583
7.3. A Room Temperature QC Laser Operating at l = 5μm 587
7.4. Long-Wavelength Room-temperature QC Laser at 11.5 μm 594
7.5. Strain-compensated QC Laser at 3.5 μm 596
7.6. Buried Heterostructure QC Lasers 598
7.7. DFB QC Laser 600
7.8. Electrically Tunable QC Laser 602
7.9. Outlook 607
References 608
CHAPTER 8. InGaN-BASED UV/BLUE/GREEN LED AND LD STRUCTURE 611
8.1. Introduction 611
8.2. III – V Nitride Materials 612
8.3. UV/Blue/Green LED 616
8.4. III–V Nitride-Based LD 623
8.5. Summary 645
References 646
CHAPTER 9. PLASMA DISPLAYS 651
9.1. An Introduction to Flat Displays 651
9.2. Plasma Display Panel Operation 653
9.3. Electrical Driving Scheme for an AC-PDP Cell 660
9.4. Optimization of the Efficacy and Brightness of a PDP 664
9.5. Manufacturing of Plasma Displays 667
References 669
CHAPTER 10. LIQUID CRYSTAL DISPLAYS 672
10.1. Liquid Crystal Displays 672
10.2. Wide Viewing Angle Approaches 679
10.3. Reflective LCD and Recycling Polarizers 686
References 691
CHAPTER 11. RECENT ADVANCES IN THIN FILM SOLAR CELLS 697
11.1. Introduction 697
11.2. Fundamentals of Solar Cells 699
11.3. CdTe-Based Thin-Film Solar Cell 705
11.4. Thin-Film Solar Cells Based on CulnSe 2 and Related Materials 710
11.5. Amorphous Silicon Solar Cells 718
11.6. Si-Based Thin-Film Cells 726
11.7. GaAs Thin-Film Solar Cells 740
11.8. Dye-Sensitized TiO2 Thin Film-Solar Cells 741
References 743
Index 749
e9780125129114_3 761
Front Cover 761
Handbook of Thin Film Materials: Ferroelectric and Dielectric Thin Films 764
Copyright Page 765
Contents 772
About the Editor 780
List of Contributors 782
Volume Listing 784
Chapter 1. THE ELECTRICAL PROPERTIES OF HIGH-DIELECTRIC-CONSTANT AND FERROELECTRIC THIN FILMS FOR VERY LARGE SCALE INTEGRATION CIRCUITS 788
1. Introduction 789
2. High-Dielectric-Constant Films: Tantalum Oxide (Ta2O5) 794
3. High-Dielectric-Constant Films: Silicon Nitride (Si3N4) 821
4. High-Dielectric-Constant Films: Titanium Oxide (TiO2) 827
5. Other High-Dielectric-Constant Films: A12O3, Y2O3, HfO2, ZrO2, and Gd2O3 837
6. Ferroelectric Films: Lead Zirconate Titanate (PZT) 844
7. Paraelectric Films: Barium Strontium Titanate (BST) 858
8. Ferroelectric Films: Strontium Bismuth Tantalate (SBT) 865
9. Other Ferroelectric and Paraelectric Films 869
10. Metal–Ferroelectric–Insulator–Semiconductor Structures 874
11. Conclusion 878
Acknowledgments 878
References 878
Chapter 2. HIGH-PERMITTIVITY (Ba, Sr)TiO3 THIN FILMS 886
1. Introduction 887
2. Thin Film Deposition 892
3. Physical and Electrical Properties of BST Thin Films 898
4. Conduction Mechanisms 910
5. Dielectric Relaxation and Defect Analysis of BST Thin Films 916
6. Reliability 923
7. Key Technologies for Gigabit DRAMs 927
8. Optical Properties 930
9. Other Possible Applications 938
10. Summary 946
References 947
Chapter 3. ULTRATHIN GATE DIELECTRIC FILMS FOR Si-BASED MICROELECTRONIC DEVICES 956
1. Introduction 956
2. Requirements of Ultrathin Gate Dielectric Films 959
3. Ultrathin Gate Dielectric Film Processing 959
4. Characterization of Ultrathin Gate Dielectric Films 963
5. Hydrogen and Ultrathin Gate Dielectric Films 976
6. Silicon Oxide Gate Dielectric Films 979
7. Silicon Oxynitride Gate Dielectric Films 992
8. Alternative (High-k) Gate Dielectric Films 1003
9. Final Remarks 1011
Acknowledgments 1012
References 1012
Chapter 4. PIEZOELECTRIC THIN FILMS: PROCESSING AND PROPERTIES 1018
1. Introduction 1018
2. Piezoelectricity in Thin Films: Size Effects 1021
3. Growth Techniques 1025
4. Characterization Methods 1043
5. Properties of Piezoelectric Thin Films 1053
6. Conclusions 1091
Acknowledgments 1091
References 1091
Chapter 5. FABRICATION AND CHARACTERIZATION OF FERROELECTRIC OXIDE THIN FILMS 1096
1. Introduction 1096
2. Overview of Basic Physical Properties of Ferroelectric Oxides 1097
3. Deposition of Ferroelectric Oxide Thin Films 1104
4. Characterization of Ferroelectric Thin Films 1131
5. Summary and Concluding Remarks 1146
References 1147
Chapter 6. FERROELECTRIC THIN FILMS OF MODIFIED LEAD TITANATE 1156
1. Introduction 1156
2. Chemical Solution Deposition of Modified Lead Titanate Thin Films 1158
3. Ferroelectric Characterization Techniques 1173
4. Conclusions and Trends 1181
Acknowledgments 1182
References 1182
Chapter 7. POINT DEFECTS IN THIN INSULATING FILMS OF LITHIUM FLUORIDE FOR OPTICAL MICROSYSTEMS 1186
1. Preface 1187
2. Lithium Fluoride: Material Properties 1187
3. Color Centers in Lithium Fluoride Crystals. 1187
4. Laser Active Color Centers in Lithium Fluoride Crystals 1188
5. Lithium Fluoride Films 1190
6. Color Center Formation by Low-Penetrating Particles 1190
7. Coloration of LiF by Low-Energy Electron Beams 1190
8. Kinetics of Low-Energy Electron-Induced Color Center Formation 1191
9. Refractive Index Modification Induced by Color Centers in LiF 1193
10. What about \"Thin Films\"? 1194
11. Growth of Lithium Fluoride Films 1194
12. Optical Absorption of Colored LiF Films 1199
13. Photoluminescence of Colored LiF Films 1200
14. Influence of LiF Film Structure on Color Center Formation 1202
15. Nonlinear Optical Properties of Colored LiF Films 1203
16. Design of Active Waveguides in LiF 1205
17. Electron-Beam Lithography for Pattern Realization 1205
18. CCs in Alkali Halide Films for Passive Optical Functions 1207
19. CCs in Alkali Halide Films for Active Optical Functions 1207
20. Optical Microscopy on LiF-Based Microstructures 1213
21. Photoluminescence for Optical Microsystem Developments 1215
22. Conclusions 1216
Acknowledgments 1216
References 1217
Chapter 8. POLARIZATION SWITCHING OF FERROELECTRIC CRYSTALS 1220
1. Introduction 1220
2. Processing of Single Domain Crystals 1224
3. Periodical Polarization Switching on Ferroelectrics with High Coercive Field 1236
4. Conclusion 1260
References 1262
Chapter 9. HIGH-TEMPERATURE SUPERCONDUCTOR AND FERROELECTRIC THIN FILMS FOR MICROWAVE APPLICATIONS 1268
1. Introduction 1268
2. High-Temperature Superconducting Materials 1269
3. Introduction to Ferroelectric Materials 1287
4. Summary and Concluding Remarks 1300
References 1301
Chapter 10. TWINNING IN FERROELECTRIC THIN FILMS: THEORY AND STRUCTURAL ANALYSIS 1304
1. Introduction 1304
2. Theory 1308
3. Experimental Methods 1316
4. Correlation Between Experiment and Theory 1319
5. Summary and Concluding Remarks 1327
Acknowledgments 1328
Appendix 1328
References 1329
Chapter 11. FERROELECTRIC POLYMER LANGMUIR–BLODGETT FILMS 1332
1. Introduction 1333
2. Langmuir–Blodgett Film Fabrication 1342
3. Film Structure and Morphology 1347
4. Ferroelectric Properties 1352
5. Applications of Ferroelectric Langmuir–Blodgett Films 1373
6. Conclusions 1375
Acknowledgments 1375
References 1375
Chapter 12. OPTICAL PROPERTIES OF DIELECTRIC AND SEMICONDUCTOR THIN FILMS 1380
1. Theory 1380
2. Applications of Thin Films 1397
3. Conclusions 1407
Acknowledgment 1408
References 1409
Index 1410
e9780125129121_4 1422
Front Cover 1422
Handbook of Thin Film Materials: Semiconductor and Superconductor Thin Films 1425
Copyright Page 1426
Contents 1433
About the Editor 1441
List of Contributors 1443
Volume Listing 1445
Chapter 1. ELECTROCHEMICAL PASSIVATION OF Si AND SiGe SURFACES 1449
1. Introduction 1450
2. In Situ Characterization of Surface Bond Configurations and Electronic Surface States 1451
3. Electrochemically Hydrogenated Si Surfaces 1460
4. Hydrogenated Porous Silicon 1470
5. Thin Anodic Oxides on Si 1479
6. Thick Anodic Oxides on Si 1489
7. Enhanced Passivation of SiGe by Anodic Oxidation 1494
Acknowledgments 1500
References 1500
Chapter 2. EPITAXIAL GROWTH AND STRUCTURE OF III-V NITRIDE THIN FILMS 1505
1. Introduction 1505
2. Growth Methods 1507
3. Epitaxial Growth 1515
4. Doping of III-Nitrides 1535
5. Structure and Microstructure of Epitaxial GaN 1538
6. Ternary Alloys 1548
References 1559
Chapter 3. OPTICAL PROPERTIES OF HIGHLY EXCITED (Al, In) GaN EPILAYERS AND HETEROSTRUCTURES 1565
1. Introduction 1566
2. General Optical Properties of the Group III-Nitrides 1569
3. Pump–Probe Spectroscopy of Highly Excited Group III-Nitrides 1573
4. Gain Mechanisms in Nitride Lasing Structures 1585
5. Optical Properties of InGan-Based Heterostructures 1595
6. Optical Properties of Nitride Thin Films at High Temperatures 1614
7. Microstructure Lasing 1620
8. Imaging Techniques for Wide-Bandgap Semiconductors 1626
9. Summary 1630
Acknowledgments 1631
References 1631
Chapter 4. ELECTRICAL CONDUCTION PROPERTIES OF THIN FILMS OF CADMIUM COMPOUNDS 1635
1. Introduction 1635
2. Structure 1637
3. Electrical Properties 1650
4. Summary and Conclusions 1690
Acknowledgments 1691
References 1692
Chapter 5. CARBON-CONTAINING HETEROEPITAXIAL SILICON AND SILICON/GERMANIUM THIN FILMS ON Si(001) 1695
1. Introduction 1695
2. Growth of Epitaxial Si1-yCy and Si1-x-yGexCy 1696
3. Mechanical and Structural Properties 1704
4. Electrical Properties of C-Containing Alloys on Si(001) 1716
5. Highly Concentrated Pseudomorphic Si1-yCy Layers 1725
6. Device Application of SiGe:C 1728
7. Summary and Outlook 1736
Acknowledgments 1736
References 1736
Chapter 6. LOW-FREQUENCY NOISE SPECTROSCOPY FOR CHARACTERIZATION OF POLYCRYSTALLINE SEMICONDUCTOR THIN FILMS AND POLYSILICON THIN FILM TRANSISTORS 1739
1. Introduction 1739
2. Noise of Polycrystalline Semiconductor Thin Films 1742
3. Noise of the Drain Current in Polysilicon TFTs 1746
4. Noise of the Leakage Current in Polysilicon TFTs 1761
5. Avalanche-Induced Excess Noise in Polysilicon TFTs 1766
6. Hot-Carrier Phenomena in Polysilicon TFTs 1768
7. Concluding Remarks 1771
References 1772
Chapter 7. GERMANIUM THIN FILMS ON SILICON FOR DETECTION OF NEAR-INFRARED LIGHT 1775
1. Introduction 1775
2. SiGe Technology 1778
3. SiGe on Si NIR Photodetectors: Historical Overview 1794
4. Functional Devices 1804
Appendix: Numerical Simulation of Relaxed Ge/Si Heterojunctions 1809
References 1813
Chapter 8. PHYSICAL PROPERTIES OF AMORPHOUS GALLIUM ARSENIDE 1817
1. Introduction 1817
2. Deposition and Growth Parameters 1818
3. Composition, Structural, and Morphological Properties 1823
4. Density of States 1827
5. Optical Properties 1833
6. Phonon Spectra 1836
7. Electrical Transport Properties 1839
8. Applications, Devices 1846
9. List of Symbols 1847
References 1848
Chapter 9. AMORPHOUS CARBON THIN FILMS 1851
1. Introduction 1852
2. Deposition and Growth 1857
3. Microstructure 1868
4. Optical Properties 1880
5. Defect Studies of Amorphous Carbon 1903
6. Electrical Properties of Amorphous Carbon 1915
7. Concepts of Localization and Delocalization in a-C 1930
8. Electron Field Emission 1932
9. Amorphous Carbon-Based Devices 1946
10. Conclusion 1949
References 1949
Chapter 10. HIGH-Tc SUPERCONDUCTOR THIN FILMS 1955
1. Introduction 1955
2. Fabrication of High-Tc Superconductor Thin Films 1957
3. High-Temperature Superconductor Thin Films 1970
4. Transport Properties in High-Tc Superconductor Thin Films 2024
5. Device Applications 2042
6. Heterostructures 2053
7. Conclusion 2061
Acknowledgments 2062
References 2062
Chapter 11. ELECTRONIC AND OPTICAL PROPERTIES OF STRAINED SEMICONDUCTOR FILMS OF GROUPS IV AND III–V MATERIALS 2073
1. Introduction 2073
2. Deformation Potentials 2075
3. The Tight-Binding Model 2077
4. Strained Si 2078
5. Strained Ge 2080
6. Strained Si1-xGex Alloys 2083
7. Strained Si1-yCy Alloys 2085
8. Si/Ge Superlattices 2086
9. Strained GaAs and InP 2089
10. InAs/A1Sb Superlattices 2090
11. Summary 2093
References 2094
Chapter 12. GROWTH, STRUCTURE, AND PROPERTIES OF PLASMA-DEPOSITED AMORPHOUS HYDROGENATED CARBON–NITROGEN FILMS 2097
1. Introduction 2097
2. Amorphous Hydrogenated Carbon Films 2098
3. Nitrogen Incorporation Into a-C:H Films 2102
4. Characterization of a-C(N):H Film Structure 2111
5. Mechanical Properties 2118
6. Optical and Electrical Properties 2120
References 2123
Chapter 13. CONDUCTIVE METAL OXIDE THIN FILMS 2125
1. Transparent Conducting Oxides 2125
2. Ruthenium Oxide 2130
3. Iridium Oxide 2134
4. Strontium Ruthenate 2136
5. Strontium-Doped Lanthanum Cobaltite 2140
6. Concluding Remarks 2143
References 2144
Index 2147
9780125129138_5 2155
THIN_FILM_FM_VOL_5 2155
02-THIN502p061-098 2181
03-THIN503p099-140 2219
04-THIN504p141-168 2261
06-THIN506p207-336 2289
07-THIN507p337-374 2419
08-THIN508p375-438 2457
09-THIN509p439-494 2521
10-THIN510p495-554 2577
11-THIN511p555-588 2637
12-THIN512p589-620 2671
13-THINindexp621-633 2703