Menu Expand
Anthocyanins from Natural Sources

Anthocyanins from Natural Sources

Marianne Su-Ling Brooks | Giovana B Celli

(2019)

Additional Information

Book Details

Abstract

Interest in anthocyanins has increased in the past few years, due to their potential health-promoting properties as dietary antioxidants. Previously they were known as an important class of natural colorant, orange-red to blue-violet, found in fruits such as berries and in vegetables. This book discusses ways of targeting the delivery of these compounds, through manipulation of exploitation mechanisms. It addresses all aspects from extraction of anthocyanins from natural sources, their health benefits and metabolism to specialized controlled release applications. It will serve as a unique reference for those specializing in the fate of anthocyanins in the body (pharmacokinetics) and the research related to controlled release systems. It will provide an insight for pharmaceutical scientists, food engineers, food scientists and those interested in human health and nutrition.

Table of Contents

Section Title Page Action Price
Cover Cover
Preface v
Contents ix
Part I Chemistry and Extraction of Anthocyanins 1
Chapter 1 Natural Sources of Anthocyanins 3
1.1 Introduction 3
1.2 Anthocyanins in Foods 5
1.2.1 Fruits 5
1.2.1.1 Apple: Malus pumila L. 5
1.2.1.2 Apricot: Prunus armeniaca L. 5
1.2.1.3 Bilberry: Vaccinium myrtillus L. 5
1.2.1.4 Blackberry: Rubus allegheniensis Porter and Other Rubus Species 6
1.2.1.5 Blueberry: V. corymbosum L. (Highbush Blueberry) and V. angustifolium Ait. (Lowbush Blueberry) 6
1.2.1.6 Cherry: Prunus avium L. and Other Prunus Species 6
1.2.1.7 Cranberry: V. oxycoccus L. (European Cranberry) and V. macrocarpon Ait. (American Cranberry) 6
1.2.1.8 Currant: Ribes rubrum L. (Redcurrant) and R. nigrum L. (Blackcurrant) 7
1.2.1.9 Grape: Vitis vinifera L. and Other Vitis Species 7
1.2.1.10 Haskap Berry: Lonicera caerulea L. 7
1.2.1.11 Mulberry: Morus alba L. 7
1.2.1.12 Orange: Citrus sinensis L. 7
1.2.1.13 Peach: Prunus persica L. 8
1.2.1.14 Pear: Pyrus spp. 8
1.2.1.15 Plum: Prunus domestica L. and Other Prunus Species 9
1.2.1.16 Pomegranate: Punica granatum L. 9
1.2.1.17 Rosehip: Rosa canina L. and Other Rosa Species 9
1.2.1.18 Saskatoon Berry: Amelanchier alnifolia Nutt. 9
1.2.1.19 Strawberry: Fragaria x ananassa Duch. 9
1.2.2 Legumes and Vegetables 9
1.2.2.1 Asparagus: Asparagus officinalis L. 9
1.2.2.2 Bean: Phaseolus spp. 10
1.2.2.3 Cabbage: Brassica oleracea L. var. capitata f. rubra 10
1.2.2.4 Carrot: Daucus carota L. 10
1.2.2.5 Cauliflower: Brassica oleracea L. var. botrytis 10
1.2.2.6 Eggplant: Solanum melongena L. 11
1.2.2.7 Ginger: Zingiber officinale Roscoe 11
1.2.2.8 Lentil: Lens culinaris Medic. 11
1.2.2.9 Pea: Pisum sativum L. 12
1.2.2.10 Peanut: Arachis hypogaea L. 12
1.2.2.11 Pepper: Capsicum annuum L. 12
1.2.2.12 Potato: Solanum tuberosum L. 12
1.2.2.13 Onion: Allium cepa L. 12
1.2.2.14 Radish: Raphanus sativus L. 13
1.2.2.15 Rhubarb: Rheum spp. 13
1.2.2.16 Soybean: Glycine max (L.) Merr. 13
1.2.2.17 Sweet Potato: Ipomoea batatas L. 13
1.2.2.18 Turnip: Brassica campestris L. 14
1.2.3 Cereal Grains 14
1.2.3.1 Barley: Hordeum vulgare L. 14
1.2.3.2 Corn: Zea mays L. 14
1.2.3.3 Rice: Oryza sativa L. 14
1.2.3.4 Rye: Secale cereale L. 15
1.2.3.5 Sorghum: Sorghum bicolor (L.) Moench. 15
1.2.3.6 Wheat: Triticum spp. 15
1.3 Anthocyanins in Herbs and Plants of Traditional Medicine 15
1.3.1 Traditional Chinese Medicine 16
1.3.1.1 Da Zao (Jujube, Chinese Date): Ziziphus jujube Mill. 16
1.3.1.2 Juju (Chicory): Cichorium glandulosum Bioss. et Huet or C. intybus L. 17
1.3.1.3 Sha Ji (Common Sea Buckthorn): Hippophae rhamnoides L. 17
1.3.1.4 Shan Zha (Chinese Hawthorn, Mountain Hawthorn): Crataegus pinnatifida Bge. 17
1.3.1.5 Shan Zhu Yu (Japanese Cornel, Cornelian Cherry): Cornus officinalis Sieb. et Zucc. 17
1.3.1.6 Wu Wei Zi (Chinese Magnolia Berry, Five-flavor Fruit): Schisandra chinensis (Turcz.) Baill. 18
1.3.1.7 Zi Hua Di Ding: Viola yedoensis Makino 18
1.3.1.8 Zi Su: Perilla frutescens (L.) Britt. 19
1.3.2 Indian Ayurvedic Medicine 19
1.3.2.1 Adhaki: Cajanus cajan (L.) Millsp. (pigeon pea) 19
1.3.2.2 Kamala: Nelumbo nucifera Gaertn. (Syn. Nelumbium speciosum Willd.) 19
1.3.2.3 Kharjura: Phoenix dactylifera L. (Date Palm) 20
1.4 Anthocyanins in Exotic Plants from Around the World 20
1.4.1 Açai Berry: Euterpe oleraceae Mart. 20
1.4.2 Andes Berry: Rubus glaucus Benth 20
1.4.3 Bayberry (Also Known as Arbutus and Chinese Tree Berry): Myrica rubra Sieb. et Zucc. 20
1.4.4 Camu-camu: Myrciaria dúbia (HBK) McVaugh 20
1.4.5 Ceylon Gooseberry: Dovyalis hebecarpa (Gardner) Warb. 21
1.4.6 Corozo: Bactris guineensis (L.) H.E. Moore 22
1.4.7 Jaboticaba (or Jabuticaba): Myrciaria cauliflora (Mart.) O. Berg. 22
1.4.8 Jamelão: Syzygium cumini (L.) Skeels (Also Known as Jambolan, Jambul, Black Plum, and Jamblon) 22
1.4.9 Juçara (or Jussara): Euterpe edulis Mart. 22
1.4.10 Maqui Berry (Also Known as Maqui or Chilean Blackberry): Aristotelia chilensis (Mol.) Stuntz 23
1.4.11 Red-jambo (Also Known as Malay Apple, Pomerac, and Mountain-apple): Syzygium malaccense (L.) Merr. and Perry 24
1.4.12 Roselle: Hibiscus sabdariffa L. 24
1.5 Concluding Notes 24
References 24
Chapter 2 Chemistry of Anthocyanins 34
2.1 Introduction 34
2.2 Multistate System of Chemical Reactions for Anthocyanins: The Reversible System 35
2.2.1 Chemical Reactions Interconnecting the Multistate Species 37
2.2.1.1 Calculation of the Rate and Equilibrium Constants 38
2.2.1.2 Malvidin-3-glucoside 42
2.3 Self-aggregation of Anthocyanins 48
2.3.1 Intramolecular Self-aggregation Association in Malvidin-3-O-(6-p-coumaroyl)-glucoside 53
2.3.2 Intramolecular Self-aggregation Association in the Morning Glory Flower 54
2.3.3 Metalloanthocyanins 55
2.4 Deoxyanthocyanins: A Different Kinetic Paradigm 55
2.4.1 Oaklins 58
2.5 Chemical Reactivity of Anthocyanins - The Irreversible Reactions 59
2.5.1 Substituted Anthocyanins in Position 6 and 8 60
2.5.2 Pyranoanthocyanins (First Generation) 62
2.5.2.1 p-Hydroxyphenyl-pyranoanthocyanins 65
2.5.2.2 Vitisin A 66
2.5.2.3 Vitisins B 66
2.5.2.4 Methylpyranoanthocyanin 66
2.5.2.5 (+)-Cathechin, (-)-Epicathechin, and Catechol Substitution in Ring D 67
2.5.2.6 Deoxy-pyranoanthocyanins 69
2.5.3 Pyranoanthocyanins (Second Generation) 70
2.5.3.1 Vinylpyranoanthocyanins (Portisins) 70
2.5.3.2 Pyranoanthocyanin Dimers 71
2.6 Conclusion 71
Acknowledgments 72
References 72
Chapter 3 Extraction of Anthocyanins from Natural Sources - Methods and Commercial Considerations 77
3.1 Introduction 77
3.2 Basic Chemistry and Stability of Anthocyanins 78
3.3 Pretreatment of Natural Materials Before Extraction 80
3.4 Conventional Extraction Methods 84
3.4.1 Conventional Solvent Extraction 84
3.4.1.1 Solvent 85
3.4.1.2 Addition of Acids 86
3.4.1.3 Temperature 87
3.4.2 Solid-phase Extraction 87
3.5 Modern Green Extraction Methods 89
3.5.1 Pressurized Liquid Extraction 90
3.5.2 Supercritical Fluid Extraction 92
3.5.3 Microwave-assisted Extraction 93
3.5.4 Ultrasound-assisted Extraction 94
3.5.5 Pulsed Electric Field Extraction 95
3.5.6 Counter-current Chromatography 96
3.5.7 Enzyme-assisted Extraction 97
3.6 Conclusion 98
References 99
Chapter 4 Extraction of Anthocyanins from Food Processing Waste - Potential and Issues 106
4.1 Introduction 106
4.2 Characteristics of Raw Material Prior to Processing 107
4.3 Extraction of Anthocyanins from Processing Waste 111
4.3.1 Conventional Approaches 111
4.3.2 Novel Assisted Approaches 112
4.4 Application of Anthocyanins from Waste Sources as Food Ingredients 114
4.5 Regulation of the Use of Anthocyanins as a Food Ingredient in the European Union 115
4.6 Hurdles to the Application of Anthocyanins from Food Waste Sources in Foods 117
4.7 Conclusions 118
References 119
Part II Health Benefits and Metabolism 121
Chapter 5 Health Benefits of Anthocyanins 123
5.1 Introduction 123
5.2 Neuroprotective Effects of Anthocyanins 124
5.3 Anticancer Effects of Anthocyanins 127
5.3.1 In Vitro Studies 129
5.3.2 In Vivo Studies 135
5.4 Cardioprotective Effects of Anthocyanins 137
5.5 Antidiabetic Effects of Anthocyanins 139
5.6 Ocular Benefits of Anthocyanins 145
5.7 Future Research 146
5.8 Conclusions 147
Acknowledgments 148
References 148
Chapter 6 Pharmacokinetics 159
6.1 Introduction 159
6.2 Absorption 160
6.2.1 Structural and Physical Considerations 160
6.2.2 Transport 160
6.2.3 Tissue 161
6.3 Metabolism 162
6.3.1 Conjugation 162
6.3.2 Microbial Metabolism 164
6.4 Distribution 169
6.4.1 Pharmacokinetics 169
6.4.2 Microbial Metabolites 173
6.4.3 Tissue 175
6.5 Excretion/Elimination 175
6.5.1 Recovery 175
6.5.2 Microbial Metabolite 177
6.6 Summary 179
Abbreviations 179
Acknowledgments 179
References 180
Chapter 7 The Stability and Absorption of Anthocyanins in the Mouth 186
7.1 Introduction 186
7.2 Potential Health Benefits of Anthocyanins in the Oral Cavity 187
7.3 Stability of Anthocyanins in the Oral Cavity 189
7.3.1 Impact of Anthocyanin Chemical Structure 190
7.3.2 Effects of pH - Anthocyanin Equilibria 193
7.3.3 Anthocyanin Stability in Saliva 196
7.3.3.1 Effects of Salivary Inorganic Compounds 196
7.3.3.2 Effects of Non-enzymatic Salivary Proteins 197
7.3.3.3 Effects of Salivary Enzymes 198
7.3.4 The Role of the Oral Microbiota in Anthocyanin Stability 201
7.4 Absorption of Anthocyanins in the Oral Cavity 202
7.4.1 Effects of Route of Exposure on Anthocyanin Absorption 203
7.4.2 Localization of Anthocyanins in Oral Tissues 205
7.4.3 Effects of Anthocyanin Structure on Uptake and Absorption 206
7.5 Metabolism of Anthocyanins in the Oral Cavity 208
7.5.1 Enzymes Responsible for Metabolism of Anthocyanins in the Oral Cavity 208
7.5.2 Distribution of Anthocyanin-metabolizing Enzymes in the Oral Cavity 210
7.5.3 Oral Enterohepatic Recycling of Anthocyanins 211
7.6 Concluding Remarks 212
References 212
Chapter 8 Role of the Stomach in Anthocyanin Absorption 216
8.1 Introduction 216
8.2 Anatomy and Histology of the Stomach 217
8.3 Physiology of the Stomach 220
8.3.1 Motility 221
8.3.2 Hormone Secretion 221
8.3.3 Acid Secretion 222
8.3.4 Enzyme Secretion 224
8.3.5 Water Secretion 225
8.3.6 Mucus and Bicarbonate Secretion 226
8.3.7 Intrinsic Factor 227
8.4 Observations About Gastric Absorption of Drugs and Drug-like Compounds 227
8.5 Barriers and Breaches to Gastric Absorption 228
8.5.1 The pH Factor 228
8.5.2 The Mucus Factor 229
8.5.3 The Epithelial Factor: Paracellular and Transcellular Transport 229
8.6 The Case of Gastric Absorption of Dietary Anthocyanins 232
8.6.1 Pharmacokinetics of Anthocyanins 232
8.6.2 Chemical Stability of Anthocyanins in the Stomach 234
8.6.3 Expression of Bilitranslocase in the Stomach Epithelium 234
8.6.4 Direct Evidence of Gastric Absorption of Anthocyanins In Vivo 235
8.6.5 Direct Evidence of Gastric Absorption of Anthocyanins In Vitro 235
8.7 Systematic Scrutiny of the Gastric Absorption of Anthocyanins: Biological Factors vs. Experimental Evidence 236
8.8 Conclusions 239
Acknowledgments 239
References 239
Part III Controlled Release Systems for Anthocyanins 247
Chapter 9 Encapsulation Techniques for Anthocyanins 249
9.1 Goals of Encapsulation 249
9.2 Encapsulation Techniques for Anthocyanins 250
9.2.1 Spray Drying 252
9.2.2 Freeze Drying 256
9.2.3 Gel Formation 259
9.2.4 Emulsion Systems 266
9.2.5 Novel Encapsulation Techniques 270
9.3 Stability of Encapsulated Anthocyanins 273
9.4 Applications of Encapsulated Anthocyanins 275
9.5 Conclusion and Future Directions 276
References 277
Chapter 10 Routes of Anthocyanin Delivery and Suitable Systems for Targeted Release 282
10.1 Introduction 282
10.2 Routes of Anthocyanin Absorption 285
10.3 Proposed Systems for Sustained Delivery of Anthocyanins in the Mouth 286
10.4 Proposed Systems for Targeted Delivery of Anthocyanins in the Stomach 287
10.4.1 In situ Gelling (or Raft-Forming) Systems 290
10.4.2 Floating (or Low-density) Systems 290
10.4.3 Other Platforms 293
10.5 Proposed Systems for Targeted Delivery of Anthocyanins in the Intestines 294
10.6 Challenges and Future Prospects 295
10.7 Conclusions 296
References 297
Part IV Conclusions 305
Chapter 11 Closing Remarks and Future Prospects 307
11.1 Closing Remarks 307
11.2 Future Prospects 309
Subject Index 310