Menu Expand
Inorganic Chemistry

Inorganic Chemistry

Catherine Housecroft

(2018)

Additional Information

Book Details

Abstract

Now in its fifth edition, Housecroft & Sharpe's Inorganic Chemistry, continues to provide an engaging, clear and comprehensive introduction to core physical-inorganic principles.

This widely respected and internationally renowned textbook introduces the descriptive chemistry of the elements and the role played by inorganic chemistry in our everyday lives. The stunning full-colour design has been further enhanced for this edition with an abundance of three-dimensional molecular and protein structures and photographs, bringing to life the world of inorganic chemistry.

 

Updated with the latest research, this edition also includes coverage relating to the extended periodic table and new approaches to estimating lattice energies and to bonding classifications of organometallic compounds.

 

A carefully developed pedagogical approach guides the reader through this fascinating subject with features designed to encourage thought and to help students consolidate their understanding and learn how to apply their understanding of key concepts within the real world. Features include:

·    Thematic boxed sections with a focus on areas of Biology and Medicine, the Environment, Applications, and Theory engage students and ensure they gain a deep, practical and topical understanding

·    A wide range of in-text self-study exercises including worked examples, reflective questions and end of chapter problems aid independent study

·    Definition panels and end-of-chapter checklists provide students with excellent revision aids

·    Striking visuals throughout the book have been carefully crafted to illustrate molecular and protein structures and to entice students further into the world of inorganic chemistry

 

Inorganic Chemistry 5th edition is also accompanied by an extensive companion website, available at www.pearsoned.co.uk/housecroft . This features multiple choice questions and rotatable 3D molecular structures.


Table of Contents

Section Title Page Action Price
Front Cover Front Cover
IFC IFC
Periodic Table i
Title Page iii
Copyright Page iv
Summary of Contents v
Contents vii
Guided tour xxxiv
Preface to the fifth edition xxxvii
Acknowledgements xxxix
1 Basic concepts: atoms 1
1.1 Introduction 1
Inorganic chemistry: it is not an isolated branch of chemistry 1
The aims of Chapters 1 and 2 1
1.2 Fundamental particles of an atom 1
1.3 Atomic number, mass number and isotopes 2
Nuclides, atomic number and mass number 2
Relative atomic mass 2
Isotopes 2
1.4 Successes in early quantum theory 4
Some important successes of classical quantum theory 4
Bohr’s theory of the atomic spectrum of hydrogen 5
1.5 An introduction to wave mechanics 7
The wave-nature of electrons 7
The uncertainty principle 7
The Schrodinger wave equation 7
1.6 Atomic orbitals 9
The quantum numbers n , l and ml 9
The radial part of the wavefunction, R (r ) 10
The radial distribution function, 4\x01r2R(r)2 12
The angular part of the wavefunction, A.\x03; \x04. 12
Orbital energies in a hydrogen-like species 15
Size of orbitals 16
The spin quantum number and the magnetic spin quantum number 16
The ground state of the hydrogen atom 18
1.7 Many-electron atoms 18
The helium atom: two electrons 18
Ground state electronic configurations: experimental data 18
Penetration and shielding 20
1.8 The periodic table 22
1.9 The aufbau principle 22
Ground state electronic configurations 22
Valence and core electrons 24
Diagrammatic representations of electronic configurations 24
1.10 Ionization energies and electron affinities 25
Ionization energies 25
Electron affinities 27
2 Basic concepts: molecules 32
2.1 Bonding models: an introduction 32
A historical overview 32
Lewis structures 32
2.2 Homonuclear diatomic molecules: valence bond (VB) theory 33
Uses of the term homonuclear 33
Covalent bond distance, covalent radius and van der Waals radius 33
The valence bond (VB) model of bonding in H2 34
The valence bond (VB) model applied to F2 , O2 and N2 35
2.3 Homonuclear diatomic molecules: molecular orbital (MO) theory 35
An overview of the MO model 35
Molecular orbital theory applied to the bonding in H2 36
The bonding in He2; Li2 and Be2 38
The bonding in F2 and O2 39
What happens if the s–p separation is small? 41
2.4 The octet rule and isoelectronic species 42
The octet rule: first row p-block elements 42
Isoelectronic species 43
The octet rule: heavier p-block elements 44
2.5 Electronegativity values 44
Pauling electronegativity values, \x05P 44
Mulliken electronegativity values, \x05M 45
Allred–Rochow electronegativity values, \x05AR 46
Electronegativity: final remarks 46
2.6 Dipole moments 47
Polar diatomic molecules 47
Molecular dipole moments 48
2.7 MO theory: heteronuclear diatomic molecules 49
Which orbital interactions should be considered? 49
Hydrogen fluoride 50
Carbon monoxide 52
2.8 Molecular shape and the VSEPR model 52
Valence-shell electron-pair repulsion model 52
Structures derived from a trigonal bipyramid 55
Limitations of the VSEPR model 56
2.9 Molecular shape: stereoisomerism 56
Square planar species 56
Octahedral species 57
Trigonal bipyramidal species 57
High coordination numbers 57
Double bonds 58
3 Introduction to molecular symmetry 62
3.1 Introduction 62
3.2 Symmetry operations and symmetry elements 62
Rotation about an n-fold axis of symmetry 63
Reflection through a plane of symmetry (mirror plane) 63
Reflection through a centre of symmetry (inversion centre) 65
Rotation about an axis, followed by reflection through a plane perpendicular to this axis 66
Identity operator 66
3.3 Successive operations 68
3.4 Point groups 69
C1 point group 69
C1v point group 70
D1h point group 70
Td, Oh or Ih point groups 70
Determining the point group of a molecule or molecular ion 70
3.5 Character tables: an introduction 73
3.6 Why do we need to recognize symmetry elements? 74
3.7 Vibrational spectroscopy 74
How many vibrational modes are there for a given molecular species? 74
Selection rules for an infrared or Raman active mode of vibration 75
Linear (D1h or C1v ) and bent (C2v ) triatomic molecules 76
Bent molecules XY2 : using the C2v character table 77
XY3 molecules with D3h symmetry 78
XY3 molecules with C3v symmetry 80
XY4 molecules with Td or D4h symmetry 81
XY6 molecules with Oh symmetry 81
Metal carbonyl complexes, M(CO)n 82
Metal carbonyl complexes M(CO)6\x02n Xn 82
Observing IR spectroscopic absorptions 84
3.8 Chiral molecules 85
4 Experimental techniques 90
4.1 Introduction 90
4.2 Separation and purification techniques 90
Gas chromatography (GC) 90
Liquid chromatography (LC) 91
High-performance liquid chromatography (HPLC) 92
Recrystallization 93
4.3 Elemental analysis 93
CHN analysis by combustion 93
Atomic absorption spectroscopy (AAS) 94
4.4 Compositional analysis: thermogravimetry (TG) 96
4.5 Mass spectrometry 97
Electron ionization (EI) 97
Fast atom bombardment (FAB) 98
Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) 99
Electrospray ionization (ESI) 101
4.6 Infrared and Raman spectroscopies 102
Energies and wavenumbers of molecular vibrations 102
The Fourier transform infrared (FT-IR) spectrometer and sample preparation 103
Diagnostic absorptions 103
Deuterium/hydrogen exchange 104
Raman spectroscopy 106
4.7 Electronic spectroscopy 108
UV-VIS absorption spectroscopy 108
Types of absorption 108
Absorbance and the Beer–Lambert Law 109
Emission spectroscopy 110
4.8 Nuclear magnetic resonance (NMR) spectroscopy 110
NMR active nuclei and isotope abundance 111
Which nuclei are suitable for NMR spectroscopic studies? 111
Resonance frequencies and chemical shifts 112
Chemical shift ranges 112
Solvents for solution studies 112
Integration of signals and signal broadening 114
Homonuclear spin–spin coupling: 1 H–1 H 114
Heteronuclear spin–spin coupling: 13 C–1 H 115
Case studies 115
Stereochemically non-rigid species 117
Exchange processes in solution 120
4.9 Electron paramagnetic resonance (EPR) spectroscopy 121
What is EPR spectroscopy? 121
The Zeeman electronic effect 121
EPR spectra 122
4.10 Mo¨ssbauer spectroscopy 124
The technique of MoÅN ssbauer spectroscopy 124
What can isomer shift data tell us? 125
4.11 Structure determination: diffraction methods 126
X-ray diffraction (XRD) 126
Single crystal X-ray diffraction 127
Powder X-ray diffraction 129
Single crystal neutron diffraction 129
Electron diffraction 130
Low-energy electron diffraction (LEED) 130
Structural databases 130
4.12 Photoelectron spectroscopy (PES, UPS, XPS, ESCA) 130
4.13 Computational methods 131
Hartree–Fock theory 132
Density functional theory 132
Hu¨ckel MO theory 132
Molecular mechanics (MM) 132
5 Bonding in polyatomic molecules 144
5.1 Introduction 144
5.2 Valence bond theory: hybridization of atomic orbitals 144
What is orbital hybridization? 144
sp Hybridization: a scheme for linear species 145
sp2 Hybridization: a scheme for trigonal planar species 146
sp3 Hybridization: a scheme for tetrahedral and related species 147
Other hybridization schemes 148
5.3 Valence bond theory: multiple bonding in polyatomic molecules 149
C2 H4 149
HCN 149
BF3 150
5.4 Natural bond orbitals 151
5.5 Molecular orbital theory: the ligand group orbital approach and 151
Molecular orbital diagrams: moving from a diatomic to polyatomic species 151
MO approach to bonding in linear XH2 : symmetry matching by inspection 152
MO approach to bonding in linear XH2 : working from molecular symmetry 153
A bent triatomic: H2 O 153
5.6 Molecular orbital theory applied to the polyatomic molecules BH3 , NH3 and CH4 156
BH3 156
NH3 157
CH4 159
A comparison of the MO and VB bonding models 160
5.7 Molecular orbital theory: bonding analyses soon become complicated 161
5.8 Molecular orbital theory: learning to use the theory objectively -Bonding in CO2 164
p-Bonding in CO2 164
.NO3 165
SF6 165
Three-centre two-electron interactions 167
A more advanced problem: B2 H6 169
6 Structures and energetics of metallic and ionic solids 177
6.1 Introduction 177
6.2 Packing of spheres 177
Cubic and hexagonal close-packing 177
The unit cell: hexagonal and cubic close-packing 178
Interstitial holes: hexagonal and cubic close-packing 179
Non-close-packing: simple cubic and body-centred cubic arrays 180
6.3 The packing-of-spheres model applied to the structures of elements 180
Group 18 elements in the solid state 180
H2 and F2 in the solid state 181
Metallic elements in the solid state 181
6.4 Polymorphism in metals 182
Polymorphism: phase changes in the solid state 182
Phase diagrams 183
6.5 Metallic radii 183
6.6 Melting points and standard enthalpies of atomization of metals 184
6.7 Alloys and intermetallic compounds 184
Substitutional alloys 185
Interstitial alloys 185
Intermetallic compounds 188
6.8 Bonding in metals and semiconductors 188
Electrical conductivity and resistivity 188
Band theory of metals and insulators 189
The Fermi level 190
6.9 Semiconductors 190
Intrinsic semiconductors 191
Extrinsic (n- and p-type) semiconductors 191
6.10 Sizes of ions 191
Ionic radii 193
Periodic trends in ionic radii 193
6.11 Ionic lattices 195
The rock salt (NaCl) structure type 196
The caesium chloride (CsCl) structure type 197
The fluorite (CaF2) structure type 198
The antifluorite structure type 198
The zinc blende (ZnS) structure type: a diamond-type network 198
The b -cristobalite (SiO2) structure type 199
The wurtzite (ZnS) structure type 199
The rutile (TiO2) structure type 199
CdI2 and CdCl2 : layer structures 200
The perovskite (CaTiO3) structure type: a double oxide 200
6.12 Crystal structures of semiconductors 201
6.13 Lattice energy: estimates from an electrostatic model 201
Coulombic attraction within an isolated ion-pair 201
Coulombic interactions in an ionic lattice 202
Born forces 202
The Born–LandeÅL equation 203
Madelung constants 203
Refinements to the Born–LandeÅL equation 204
Overview 204
6.14 Lattice energy: the Born–Haber cycle 204
6.15 Lattice energy: ‘calculated’ versus ‘experimental’ values 206
6.16 Estimating lattice energies of new materials 206
The Kapustinskii equation 206
The volume-based thermodynamic (VBT) approach 206
6.17 Applications of lattice energies 208
Estimation of electron affinities 208
Fluoride affinities 208
Estimation of standard enthalpies of formation and disproportionation 209
6.18 Defects in solid state lattices 210
Schottky defect 210
Frenkel defect 211
Experimental observation of Schottky and Frenkel defects 211
Non-stoichiometric compounds 211
Colour centres (F-centres) 212
Thermodynamic effects of crystal defects 212
7 Acids, bases and ions in aqueous solution 218
7.1 Introduction 218
7.2 Properties of water 218
Structure and hydrogen bonding 218
The self-ionization of water 220
Water as a Bronsted acid or base 220
7.3 Definitions and units in aqueous solution 221
Molarity and molality 221
Standard state 221
Activity 222
7.4 Some Brønsted acids and bases 222
Carboxylic acids: examples of mono-, di- and polybasic acids 222
Inorganic acids 224
Inorganic bases: hydroxides 225
Inorganic bases: nitrogen bases 225
7.5 The energetics of acid dissociation in aqueous solution 226
Hydrogen halides 226
H2 S; H2 Se and H2 Te 227
7.6 Trends within a series of oxoacids EOn (OH)m 227
7.7 Aquated cations: formation and acidic properties 228
Water as a Lewis base 228
Aquated cations as Bronsted acids 230
7.8 Amphoteric oxides and hydroxides 231
Amphoteric behaviour 231
Periodic trends in amphoteric properties 231
7.9 Solubilities of ionic salts 232
Solubility and saturated solutions 232
Sparingly soluble salts and solubility products 232
The energetics of the dissolution of an ionic salt: \x01solG 233
The energetics of the dissolution of an ionic salt: hydration of ions 234
Solubilities: some concluding remarks 236
7.10 Common-ion effect 236
7.11 Coordination complexes: an introduction 237
Definitions and terminology 237
Investigating coordination complex formation 238
7.12 Stability constants of coordination complexes 239
Determination of stability constants 241
Trends in stepwise stability constants 241
Thermodynamic considerations of complex formation: an introduction 242
7.13 Factors affecting the stabilities of complexes containing only monodentate ligands 246
Ionic size and charge 246
Hard and soft metal centres and ligands 246
8 Reduction and oxidation 255
8.1 Introduction 255
Oxidation and reduction 255
Oxidation states 256
Stock nomenclature 256
8.2 Standard reduction potentials, Eo , and relationships between Eo ,\x01Go and K 257
Half-cells and galvanic cells 257
Defining and using standard reduction potentials, E 258
Dependence of reduction potentials on cell conditions 261
8.3 The effect of complex formation or precipitation on Mz+/M reduction potentials 265
Half-cells involving silver halides 266
Modifying the relative stabilities of different oxidation states of a metal 267
8.4 Disproportionation reactions 269
Disproportionation 269
Stabilizing species against disproportionation 270
8.5 Potential diagrams 270
8.6 Frost–Ebsworth diagrams 272
Frost–Ebsworth diagrams and their relationship to potential diagrams 272
Interpretation of Frost–Ebsworth diagrams 273
8.7 The relationships between standard reduction potentials and some other quantities 275
Factors influencing the magnitudes of standard reduction potentials 275
Values of \x01fG for aqueous ions 276
8.8 Applications of redox reactions to the extraction of elements from their ores 277
Ellingham diagrams 277
9 Non-aqueous media 283
9.1 Introduction 283
9.2 Relative permittivity 284
9.3 Energetics of ionic salt transfer from water to an organic solvent 285
9.4 Acid–base behaviour in non-aqueous solvents 286
Strengths of acids and bases 286
Levelling and differentiating effects 286
‘Acids’ in acidic solvents 286
Acids and bases: a solvent-oriented definition 287
Proton-containing and aprotic solvents 287
9.5 Liquid sulfur dioxide 287
9.6 Liquid ammonia 288
Physical properties 288
Self-ionization 288
Reactions in liquid NH3 288
Solutions of s-block metals in liquid NH3 290
Redox reactions in liquid NH3 291
9.7 Liquid hydrogen fluoride 291
Physical properties 291
Acid–base behaviour in liquid HF 291
Electrolysis in liquid HF 293
9.8 Sulfuric acid and fluorosulfonic acid 293
Physical properties of sulfuric acid 293
Acid–base behaviour in liquid H2 SO4 293
Physical properties of fluorosulfonic acid 294
9.9 Superacids 294
9.10 Bromine trifluoride 296
Physical properties 296
Behaviour of fluoride salts and molecular fluorides in BrF3 296
Reactions in BrF3 297
9.11 Dinitrogen tetraoxide 297
Physical properties 297
Reactions in N2 O4 297
9.12 Ionic liquids 299
Molten salt solvent systems 299
Ionic liquids at ambient temperatures 300
9.13 Supercritical fluids 307
Properties of supercritical fluids and their uses as solvents 307
Supercritical fluids as media for inorganic chemistry 309
10 Hydrogen 314
10.1 Hydrogen: the simplest atom 314
10.2 The H. and H\x02 ions 314
The hydrogen ion (proton) 314
The hydride ion 315
10.3 Isotopes of hydrogen 315
Protium and deuterium 315
Kinetic isotope effects 316
Deuterated compounds 316
Tritium 318
10.4 Dihydrogen 318
Occurrence 318
Physical properties 318
Synthesis and uses 318
Reactivity 322
10.5 Polar and non-polar E–H bonds 323
10.6 Hydrogen bonding 324
The hydrogen bond 324
Trends in boiling points, melting points and enthalpies of vaporization for p -block binary hydrides 327
Infrared spectroscopy 328
Solid state structures 329
Hydrogen bonding in biological systems 331
10.7 Binary hydrides: classification and general properties 332
Classification 332
Metallic hydrides 334
Saline hydrides 334
Molecular hydrides and complexes derived from them 335
Covalent hydrides with extended structures 336
11 Group 1: the alkali metals 341
11.1 Introduction 341
11.2 Occurrence, extraction and uses 341
Occurrence 341
Extraction 342
Major uses of the alkali metals and their compounds 343
11.3 Physical properties 344
General properties 344
Atomic spectra and flame tests 344
Radioactive isotopes 346
NMR active nuclei 348
11.4 The metals 348
Appearance 348
Reactivity 348
11.5 Halides 350
11.6 Oxides and hydroxides 351
Oxides, peroxides, superoxides, suboxides and ozonides 351
Hydroxides 353
11.7 Salts of oxoacids: carbonates and hydrogencarbonates 353
11.8 Aqueous solution chemistry and macrocyclic complexes 354
Hydrated ions 354
Complex ions 355
11.9 Non-aqueous coordination chemistry 359
12 The group 2 metals 364
12.1 Introduction 364
12.2 Occurrence, extraction and uses 364
Occurrence 364
Extraction 365
Major uses of the group 2 metals and their compounds 365
12.3 Physical properties 367
General properties 367
Flame tests 367
Radioactive isotopes 367
12.4 The metals 369
Appearance 369
Reactivity 369
12.5 Halides 370
Beryllium halides 370
Halides of Mg, Ca, Sr and Ba 372
12.6 Oxides and hydroxides 374
Oxides and peroxides 374
Hydroxides 377
12.7 Salts of oxoacids 378
12.8 Complex ions in aqueous solution 378
Aqua species of beryllium 378
Aqua species of Mg2+, Ca2+, Sr2+ and Ba2 379
Complexes with ligands other than water 380
12.9 Complexes with amido or alkoxy ligands 381
12.10 Diagonal relationships between Li and Mg, and between Be and Al 382
Lithium and magnesium 382
Beryllium and aluminium 383
13 The group 13 elements 387
13.1 Introduction 387
13.2 Occurrence, extraction and uses 387
Occurrence 387
Extraction 387
Major uses of the group 13 elements and their compounds 389
13.3 Physical properties 391
Electronic configurations and oxidation states 391
NMR active nuclei 395
13.4 The elements 395
Appearance 395
Structures of the elements 395
Reactivity 395
13.5 Simple hydrides 396
Neutral hydrides 396
The [MH4]- ions 402
13.6 Halides and complex halides 403
Boron halides: BX3 and B2 X4 403
Al(III), Ga(III), In(III) and Tl(III) halides and their complexes 406
Lower oxidation state Al, Ga, In and Tl halides 409
13.7 Oxides, oxoacids, oxoanions and hydroxides 411
Boron oxides, oxoacids and oxoanions 411
Aluminium oxides, oxoacids, oxoanions and hydroxides 414
Oxides of Ga, In and Tl 416
13.8 Compounds containing nitrogen 416
Nitrides 416
Ternary boron nitrides 416
Molecular species containing B–N or B–P bonds 419
Molecular species containing group 13 metal–nitrogen bonds 422
13.9 Aluminium to thallium: salts of oxoacids, aqueous solution chemistry and complexes 423
Aluminium sulfate and alums 423
Aqua ions 423
Redox reactions in aqueous solution 424
Coordination complexes of the M3+ ions 425
13.10 Metal borides 426
13.11 Electron-deficient borane and carbaborane clusters: an introduction 426
14 The group 14 elements 443
14.1 Introduction 443
14.2 Occurrence, extraction and uses 443
Occurrence 443
Extraction and manufacture 444
Uses 444
14.3 Physical properties 448
Ionization energies and cation formation 448
Some energetic and bonding considerations 450
NMR active nuclei 452
Mossbauer spectroscopy 452
14.4 Allotropes of carbon 452
Graphite and diamond: structure and properties 452
Graphite: intercalation compounds 454
Fullerenes: synthesis and structure 455
Fullerenes: reactivity 456
Carbon nanotubes 461
14.5 Structural and chemical properties of silicon, germanium, tin and lead 461
Structures 461
Chemical properties 461
14.6 Hydrides 462
Binary hydrides 463
Halohydrides of silicon and germanium 465
14.7 Carbides, silicides, germides, stannides and plumbides 466
Carbides 466
Silicides 467
Zintl ions containing Si, Ge, Sn and Pb 467
14.8 Halides and complex halides 471
Carbon halides 471
Silicon halides 473
Halides of germanium, tin and lead 474
14.9 Oxides, oxoacids and hydroxides 477
Oxides and oxoacids of carbon 477
Silica, silicates and aluminosilicates 480
Oxides, hydroxides and oxoacids of germanium, tin and lead 488
14.10 Siloxanes and polysiloxanes (silicones) 490
14.11 Sulfides 491
14.12 Cyanogen, silicon nitride and tin nitride 494
Cyanogen and its derivatives 494
Silicon nitride 496
Tin(IV) nitride 496
14.13 Aqueous solution chemistry and salts of oxoacids of germanium, tin and lead 496
15 The group 15 elements 502
15.1 Introduction 502
15.2 Occurrence, extraction and uses 503
Occurrence 503
Extraction 504
Uses 505
15.3 Physical properties 507
Bonding considerations 508
NMR active nuclei 509
Radioactive isotopes 510
15.4 The elements 510
Nitrogen 510
Phosphorus 510
Arsenic, antimony and bismuth 512
15.5 Hydrides 513
Trihydrides, EH3 (E. N, P, As, Sb and Bi) 513
Hydrides E2 H4 (E. N, P, As) 517
Chloramine and hydroxylamine 518
Hydrogen azide and azide salts 520
15.6 Nitrides, phosphides, arsenides, antimonides and bismuthides 521
Nitrides 521
Phosphides 523
Arsenides, antimonides and bismuthides 524
15.7 Halides, oxohalides and complex halides 525
Nitrogen halides 525
Oxofluorides and oxochlorides of nitrogen 527
Phosphorus halides 528
Phosphoryl trichloride, POCl3 531
Arsenic and antimony halides 531
Bismuth halides 533
15.8 Oxides of nitrogen 534
Dinitrogen monoxide, N2O 534
Nitrogen monoxide, NO 535
Dinitrogen trioxide, N2O3 537
Dinitrogen tetraoxide, N2 O4 , and nitrogen dioxide, NO2 537
Dinitrogen pentaoxide, N2O5 539
15.9 Oxoacids of nitrogen 539
Isomers of H2 N2 O2 539
Nitrous acid, HNO2 540
Nitric acid, HNO3 , and its derivatives 540
15.10 Oxides of phosphorus, arsenic, antimony and bismuth 544
Oxides of phosphorus 544
Oxides of arsenic, antimony and bismuth 545
15.11 Oxoacids of phosphorus 545
Phosphinic acid, H3 PO2 547
Phosphonic acid, H3 PO3 547
Hypodiphosphoric acid, H4 P2 O6 547
Phosphoric acid, H3 PO4 , and its derivatives 548
Chiral phosphate anions 550
15.12 Oxoacids of arsenic, antimony and bismuth 550
15.13 Phosphazenes 553
15.14 Sulfides and selenides 556
Sulfides and selenides of phosphorus 556
Arsenic, antimony and bismuth sulfides 557
15.15 Aqueous solution chemistry and complexes 558
16 The group 16 elements 564
16.1 Introduction 564
16.2 Occurrence, extraction and uses 565
Occurrence 565
Extraction 565
Uses 565
16.3 Physical properties and bonding considerations 567
NMR active nuclei and isotopes as tracers 569
16.4 The elements 570
Dioxygen 570
Ozone 571
Sulfur: allotropes 573
Sulfur: reactivity 574
Selenium and tellurium 575
16.5 Hydrides 576
Water, H2O 576
Hydrogen peroxide, H2O2 577
Hydrides H2E (E = S, Se, Te) 580
Polysulfanes 581
16.6 Metal sulfides, polysulfides, polyselenides and polytellurides 581
Sulfides 581
Polysulfides 581
Polyselenides and polytellurides 582
16.7 Halides, oxohalides and complex halides 584
Oxygen fluorides 584
Sulfur fluorides and oxofluorides 585
Sulfur chlorides and oxochlorides 588
Halides of selenium and tellurium 589
16.8 Oxides 591
Oxides of sulfur 591
Oxides of selenium and tellurium 596
16.9 Oxoacids and their salts 597
Dithionous acid, H2S2O4 597
Sulfurous and disulfurous acids, H2SO3 and H2S2O5 599
Dithionic acid, H2S2O6 600
Sulfuric acid, H2SO4 600
Fluoro- and chlorosulfonic acids, HSO3F and HSO3 Cl 602
Polyoxoacids with S–O–S units 602
Peroxysulfuric acids, H2S2O8 and H2SO5 602
Thiosulfuric acid, H2S2O3, and polythionates 602
Oxoacids of selenium and tellurium 603
16.10 Compounds of sulfur and selenium with nitrogen 604
Sulfur–nitrogen compounds 604
Tetraselenium tetranitride 606
16.11 Aqueous solution chemistry of sulfur, selenium and tellurium 606
17 The group 17 elements 611
17.1 Introduction 611
Fluorine, chlorine, bromine and iodine 611
Astatine and tennessine 612
17.2 Occurrence, extraction and uses 612
Occurrence 612
Extraction 612
Uses 613
17.3 Physical properties and bonding considerations 615
NMR active nuclei and isotopes as tracers 618
17.4 The elements 620
Difluorine 620
Dichlorine, dibromine and diiodine 620
Charge transfer complexes 621
Clathrates 623
17.5 Hydrogen halides 623
17.6 Metal halides: structures and energetics 624
17.7 Interhalogen compounds and polyhalogen ions 626
Interhalogen compounds 626
Bonding in . [XY2]- ions 630
Polyhalogen cations 630
Polyhalide anions 631
17.8 Oxides and oxofluorides of chlorine, bromine and iodine 631
Oxides 632
Oxofluorides 633
17.9 Oxoacids and their salts 634
Hypofluorous acid, HOF 634
Oxoacids of chlorine, bromine and iodine 634
17.10 Aqueous solution chemist 638
18 The group 18 elements 645
18.1 Introduction 645
18.2 Occurrence, extraction and uses 646
Occurrence 646
Extraction 647
Uses 647
18.3 Physical properties 648
NMR active nuclei 648
18.4 Compounds of xenon 650
Fluorides 650
Chlorides 654
Oxides 654
Oxofluorides and oxochlorides 654
Other compounds of xenon 655
18.5 Compounds of argon, krypton and radon 657
19 d-Block metal chemistry: general considerations 661
19.1 Topic overview 661
19.2 Ground state electronic configurations 661
d-Block metals versus transition elements 661
Electronic configurations 662
19.3 Physical properties 662
19.4 The reactivity of the metals 664
19.5 Characteristic properties: a general perspective 664
Colour 664
Paramagnetism 665
Complex formation 665
Variable oxidation states 665
19.6 Electroneutrality principle 666
19.7 Coordination numbers and geometries 667
The Kepert model 668
Coordination numbers in the solid state 669
Coordination number 2 669
Coordination number 3 669
Coordination number 4 669
Coordination number 5 671
Coordination number 6 672
Coordination number 7 673
Coordination number 8 674
Coordination number 9 675
Coordination numbers of 10 and above 676
19.8 Isomerism in d -block metal complexes 676
Structural isomerism: ionization isomers 676
Structural isomerism: hydration isomers 677
Structural isomerism: coordination isomerism 677
Structural isomerism: linkage isomerism 677
Stereoisomerism: diastereoisomers 678
Stereoisomerism: enantiomers 679
20 d-Block metal chemistry: coordination complexes 687
20.1 Introduction 687
High- and low-spin states 687
20.2 Bonding in d -block metal complexes: valence bond theory 688
Hybridization schemes 688
20.3 Crystal field theory 689
The octahedral crystal field 689
Crystal field stabilization energy: high- and low-spin octahedral complexes 691
Jahn–Teller distortions 693
The tetrahedral crystal field 693
The square planar crystal field 695
Other crystal fields 696
Crystal field theory: uses and limitations 696
20.4 Molecular orbital theory: octahedral complexes 697
Complexes with no metal–ligand \x01 -bonding 697
Complexes with metal–ligand \x01 -bonding 698
20.5 Ligand field theory 703
20.6 Describing electrons in multi-electron systems 703
Quantum numbers L and ML for multi-electron species 703
Quantum numbers S and MS for multi-electron species 704
Microstates and term symbols 704
The quantum numbers J and MJ 705
Ground states of elements with Z=1-\x0210 706
The d2 configuration 708
20.7 Electronic spectra: absorption 709
Spectral features 709
Charge transfer absorptions 710
Selection rules 711
Electronic absorption spectra of octahedral and tetrahedral complexes 712
Interpretation of electronic absorption spectra: use of Racah parameters 715
Interpretation of electronic absorption spectra: Tanabe–Sugano diagrams 718
20.8 Electronic spectra: emission 719
20.9 Evidence for metal–ligand covalent bonding 720
The nephelauxetic effect 720
EPR spectroscopy 721
20.10 Magnetic properties 721
Magnetic susceptibility and the spin-only formula 721
Spin and orbital contributions to the magnetic moment 723
The effects of temperature on \x06eff 725
Spin crossover 726
Ferromagnetism, antiferromagnetism and ferrimagnetism 726
20.11 Thermodynamic aspects: ligand field stabilization energies (LFSE) 728
Trends in LFSE 728
Lattice energies and hydration energies of Mn+ ions 729
Octahedral versus tetrahedral coordination: spinels 730
20.12 Thermodynamic aspects: the Irving–Williams series 730
20.13 Thermodynamic aspects: oxidation states in aqueous solution 731
21 d-Block metal chemistry: the first row metals 738
21.1 Introduction 738
21.2 Occurrence, extraction and uses 738
21.3 Physical properties: an overview 743
21.4 Group 3: scandium 743
The metal 743
Scandium(III) 743
21.5 Group 4: titanium 744
The metal 744
Titanium(IV) 745
Titanium(III) 748
Low oxidation states 748
21.6 Group 5: vanadium 749
The metal 749
Vanadium(V) 749
Vanadium(IV) 750
Vanadium(III) 752
Vanadium(II) 753
21.7 Group 6: chromium 754
The metal 754
Chromium(VI) 754
Chromium(V) and chromium(IV) 756
Chromium(III) 756
Chromium(II) 758
Chromium–chromium multiple bonds 759
21.8 Group 7: manganese 761
The metal 761
Manganese(VII) 762
Manganese(VI) 763
Manganese(V) 763
Manganese(IV) 764
Manganese(III) 766
Manganese(II) 767
Manganese(I) 768
21.9 Group 8: iron 769
The metal 769
Iron(VI), iron(V) and iron(IV) 769
Iron(III) 771
Iron(II) 775
Iron in low oxidation states 777
21.10 Group 9: cobalt 777
The metal 777
Cobalt(IV) 778
Cobalt(III) 778
Cobalt(II) 781
21.11 Group 10: nickel 785
The metal 785
Nickel(IV) and nickel(III 785
Nickel(II) 786
Nickel(I) 788
21.12 Group 11: copper 788
The metal 788
Copper(IV) and copper(III) 789
Copper(II) 790
Copper(I) 793
21.13 Group 12: zinc 796
The metal 796
Zinc(II) 796
Zinc(I) 797
22 d-Block metal chemistry: the heavier metals 803
22.1 Introduction 803
22.2 Occurrence, extraction and uses 803
22.3 Physical properties 806
Effects of the lanthanoid contraction 809
Coordination numbers 809
NMR active nuclei 809
22.4 Group 3: yttrium 810
The metal 810
Yttrium(III) 810
22.5 Group 4: zirconium and hafnium 810
The metals 810
Zirconium(IV) and hafnium(IV) 810
Lower oxidation states of zirconium and hafnium 812
Zirconium clusters 812
22.6 Group 5: niobium and tantalum 812
The metals 812
Niobium(V) and tantalum(V) 813
Niobium(IV) and tantalum(IV) 815
Lower oxidation state halides 816
22.7 Group 6: molybdenum and tungsten 817
The metals 817
Molybdenum(VI) and tungsten(VI) 818
Molybdenum(V) and tungsten(V) 823
Molybdenum(IV) and tungsten(IV) 823
Molybdenum(III) and tungsten(III) 825
Molybdenum(II) and tungsten(II) 826
22.8 Group 7: technetium and rhenium 829
The metals 829
High oxidation states of technetium and rhenium: M(VII), M(VI) and M(V) 829
Technetium(IV) and rhenium(IV) 832
Technetium(III) and rhenium(III) 834
Technetium(I) and rhenium(I) 835
22.9 Group 8: ruthenium and osmium 836
The metals 836
High oxidation states of ruthenium and osmium: M(VIII), M(VII) and M(VI) 836
Ruthenium(V), (IV) and osmium(V), (IV) 839
Ruthenium(III) and osmium(III) 841
Ruthenium(II) and osmium(II) 843
Mixed-valence ruthenium complexes 846
22.10 Group 9: rhodium and iridium 847
The metals 847
High oxidation states of rhodium and iridium: M(VI) and M(V) 847
Rhodium(IV) and iridium(IV) 847
Rhodium(III) and iridium(III) 848
Rhodium(II) and iridium(II) 851
Rhodium(I) and iridium(I) 851
22.11 Group 10: palladium and platinum 852
The metals 852
The highest oxidation states: M(VI) and M(V) 852
Palladium(IV) and platinum(IV) 853
Palladium(III), platinum(III) and mixed-valence complexes 854
Palladium(II) and platinum(II) 855
Platinum(–II) 858
22.12 Group 11: silver and gold 860
The metals 860
Gold(V) and silver(V) 860
Gold(III) and silver(III) 860
Gold(II) and silver(II) 861
Gold(I) and silver(I) 863
Gold(–I) and silver(–I) 866
22.13 Group 12: cadmium and mercury 866
The metals 866
Cadmium(II) 867
Mercury(II) 867
Mercury(I) 868
23 Organometallic compounds of s- and p-block elements 875
23.1 Introduction 875
23.2 Group 1: alkali metal organometallics 875
23.3 Group 2 organometallics 879
Beryllium 879
Magnesium 880
Calcium, strontium and barium 882
23.4 Group 13 884
Boron 884
Aluminium 884
Gallium, indium and thallium 887
23.5 Group 14 892
Silicon 893
Germanium 895
Tin 897
Lead 901
Coparallel and tilted C5 -rings in group 14 metallocenes 903
23.6 Group 15 904
Bonding aspects and E=E bond formation 904
Arsenic, antimony and bismuth 905
23.7 Group 16 909
Selenium and tellurium 909
24 Organometallic compounds of d-block elements 915
24.1 Introduction 915
24.2 Common types of ligand: bonding and spectroscopy 915
\x07-Bonded alkyl, aryl and related ligands 915
Carbonyl ligands 916
Hydride ligands 918
Phosphane and related ligands 918
x01-Bonded organic ligands 920
Nitrogen monoxide 922
Dinitrogen 923
Dihydrogen 924
24.3 The 18-electron rule 925
24.4 Covalent bond classification (CBC) 926
24.5 Metal carbonyls: synthesis, physical properties and structure 928
Synthesis and physical properties 929
Structures 932
24.6 The isolobal principle and application of Wade’s rules 934
24.7 Total valence electron counts in d-block organometallic clusters 937
Single cage structures 937
Condensed cages 939
Limitations of total valence counting schemes 939
24.8 Types of organometallic reactions 940
Substitution of CO ligands 940
Oxidative addition 940
Alkyl and hydrogen migrations 941
b-Hydrogen elimination 942
a-Hydrogen abstraction 943
Summary 943
24.9 Metal carbonyls: selected reactions 944
24.10 Metal carbonyl hydrides and halides 945
24.11 Alkyl, aryl, alkene and alkyne complexes 947
x07-Bonded alkyl and aryl ligands 947
Alkene ligands 947
Alkyne ligands 950
24.12 Allyl and buta-1,3-diene complexes 951
Allyl and related ligands 951
Buta-1,3-diene and related ligands 953
24.13 Carbene and carbyne complexes 953
24.14 Complexes containing Z5 -cyclopentadienyl ligands 955
Ferrocene and other metallocenes 956
(Z5-Cp)2Fe2(CO)4 and derivatives 958
24.15 Complexes containing Z6- and Z7-ligands 962
Z6-Arene ligands 962
Cycloheptatriene and derived ligands 963
24.16 Complexes containing the Z4-cyclobutadiene ligand 964
25 Catalysis and some industrial processes 971
25.1 Introduction and definitions 971
25.2 Catalysis: introductory concepts 971
Energy profiles for a reaction: catalysed versus non-catalysed 971
Catalytic cycles 972
Choosing a catalyst 974
25.3 Homogeneous catalysis: alkene (olefin) and alkyne metathesis 974
25.4 Homogeneous catalytic reduction of N2 to NH3 977
25.5 Homogeneous catalysis: industrial applications 978
Alkene hydrogenation 978
Monsanto and Cativa acetic acid syntheses 982
Tennessee–Eastman acetic anhydride process 983
Hydroformylation (Oxo-process) 984
Alkene oligomerization 986
25.6 Homogeneous catalyst development 986
Polymer-supported catalysts 986
Biphasic catalysis 987
25.7 Heterogeneous catalysis: surfaces and interactions with adsorbates 989
25.8 Heterogeneous catalysis: commercial applications 991
Alkene polymerization: Ziegler–Natta catalysis and metallocene catalysts 991
Fischer–Tropsch carbon chain growth 993
Haber–Bosch process 994
Production of SO3 in the Contact process 995
Catalytic converters 996
Zeolites as catalysts for organic transformations: uses of ZSM-5 997
25.9 Heterogeneous catalysis: organometallic cluster models 998
26 d-Block metal complexes: reaction mechanisms 1007
26.1 Introduction 1007
26.2 Ligand substitutions: some general points 1007
Kinetically inert and labile complexes 1007
Stoichiometric equations say nothing about mechanism 1008
Types of substitution mechanism 1009
Activation parameters 1009
26.3 Substitution in square planar complexes 1010
Rate equations, mechanism and the trans-effect 1010
Ligand nucleophilicity 1013
26.4 Substitution and racemization in octahedral complexes 1015
Water exchange 1015
The Eigen–Wilkins mechanism 1017
Stereochemistry of substitution 1018
Base-catalysed hydrolysis 1020
Isomerization and racemization of octahedral complexes 1021
26.5 Electron-transfer processes 1022
Inner-sphere mechanism 1022
Outer-sphere mechanism 1025
27 The f-block metals: lanthanoids and actinoids 1033
27.1 Introduction 1033
27.2 f-Orbitals and oxidation states 1035
27.3 Atom and ion sizes 1036
The lanthanoid contraction 1036
Coordination numbers 1036
27.4 Spectroscopic and magnetic properties 1037
Electronic spectra and magnetic moments: lanthanoids 1037
Luminescence of lanthanoid complexes 1040
Electronic spectra and magnetic moments: actinoids 1041
27.5 Sources of the lanthanoids and actinoids 1041
Occurrence and separation of the lanthanoids 1041
The actinoids 1041
27.6 Lanthanoid metals 1043
27.7 Inorganic compounds and coordination complexes of the lanthanoids 1045
Halides 1045
Hydroxides and oxides 1046
Complexes of Ln(III) 1046
27.8 Organometallic complexes of the lanthanoids 1048
x07-Bonded complexes 1048
Cyclopentadienyl complexes 1051
Bis(arene) derivatives 1053
Complexes containing the Z8-cyclooctatetraenyl ligand 1053
27.9 The actinoid metals 1053
27.10 Inorganic compounds and coordination complexes of thorium, uranium and plutonium 1054
Thorium 1054
Uranium 1055
Plutonium 1057
27.11 Organometallic complexes of thorium and uranium 1058
-Bonded complexes 1058
Cyclopentadienyl derivatives 1058
Complexes containing the Z8-cyclooctatetraenyl ligand 1059
28 Inorganic materials and nanotechnology 1065
28.1 Introduction 1065
28.2 Electrical conductivity in ionic solids 1065
Sodium and lithium ion conductors 1066
d-Block metal(II) oxides 1068
28.3 Transparent conducting oxides and their applications in devices 1068
Sn-doped In2O3 (ITO) and F-doped SnO2 (FTO) 1068
Dye-sensitized solar cells (DSCs) 1069
Solid state lighting: OLEDs 1070
Solid state lighting: LECs 1071
28.4 Superconductivity 1072
Superconductors: early examples and basic theory 1072
High-temperature superconductors 1073
Iron-based superconductors 1075
Chevrel phases 1076
Superconducting properties of MgB2 1077
Applications of superconductors 1077
28.5 Ceramic materials: colour pigments 1078
White pigments (opacifiers) 1078
Adding colour 1079
28.6 Chemical vapour deposition (CVD) 1079
High-purity silicon for semiconductors 1080
a-Boron nitride 1080
Silicon nitride and carbide 1080
III–V Semiconductors 1081
Metal deposition 1083
Ceramic coatings 1083
Perovskites and cuprate superconductors 1083
28.7 Inorganic fibres 1085
Boron fibres 1085
Carbon fibres 1086
Silicon carbide fibres 1087
Alumina fibres 1088
28.8 Graphene 1088
28.9 Carbon nanotubes 1091
29 The trace metals of life 1098
29.1 Introduction 1098
Amino acids, peptides and proteins: some terminology 1100
29.2 Metal storage and transport: Fe, Cu, Zn and V 1101
Iron storage and transport 1101
Metallothioneins: transporting some toxic metals 1108
29.3 Dealing with O2 1109
Haemoglobin and myoglobin 1109
Haemocyanin 1112
Haemerythrin 1114
Cytochromes P-450 1116
29.4 Biological redox processes 1117
Blue copper proteins 1117
The mitochondrial electron-transfer chain 1118
Iron–sulfur proteins 1120
Cytochromes 1127
29.5 The Zn2+ ion: Nature’s Lewis acid 1130
Carbonic anhydrase II 1130
Carboxypeptidase A 1132
Carboxypeptidase G2 1133
Cobalt-for-zinc ion substitution 1133
Appendices 1141
1 Greek letters with pronunciations xxxii
2 Abbreviations and symbols for quantities and units xxxii
3 Selected character tables xxxii
4 The electromagnetic spectrum xxxii
5 Naturally occurring isotopes and their abundances xxxii
6 Van der Waals, metallic, covalent and ionic radii xxxii
7 Pauling electronegativity values (\x05P) for selected elements of theperiodic table xxxii
8 Ground state electronic configurations of the elements andionization energies xxxii
9 Electron affinities xxxii
10 Standard enthalpies of atomization (aH) of the elements at 298 K xxxii
11 Selected standard reduction potentials (298 K) xxxii
12 Selected bond enthalpy terms xxxii
Answers to non-descriptive problems 1170
Index 1191
IUPAC: Brief Guide to the Nomenclature of Inorganic Chemistry 1248
IBC IBC
Back Cover Back Cover