Menu Expand
Multi-wave Medical Imaging: Mathematical Modelling And Imaging Reconstruction

Multi-wave Medical Imaging: Mathematical Modelling And Imaging Reconstruction

Ammari Habib | Garnier Josselin | Nguyen Loc Hoang

(2017)

Additional Information

Book Details

Table of Contents

Section Title Page Action Price
Contents v
Acknowledgments xix
1. Introduction 1
1.1 Properties of Biological Tissues 2
1.1.1 Dielectric Properties 2
1.1.2 Optical Properties 7
1.1.3 Elastic Properties 10
1.2 Superresolution Biomedical Imaging 13
Part I Mathematical and Probabilistic Tools 17
2. Basic Mathematical Concepts 19
2.1 Special Functions 19
2.1.1 Bessel Functions 19
2.1.2 Hankel Functions 23
2.2 Function Spaces 26
2.3 Fourier Analysis 28
2.3.1 Fourier Transform 28
2.3.2 Shannon’s Sampling Theorem 31
2.4 Kramers–Kronig Relations and Causality 33
2.5 Singular Value Decomposition 35
2.6 Compact Operators 37
2.7 Spherical Mean Radon Transform 38
2.8 Regularization of Ill-Posed Problems 41
2.8.1 Stability 41
2.8.2 The Truncated SVD 43
2.8.3 Tikhonov–Phillips Regularization 44
2.8.4 Regularization by Truncated Iterative Methods 46
2.8.5 Regularizations by Nonquadratic Constraints 48
2.9 Optimal Control 49
2.10 Convergence of Nonlinear Landweber Iterations 50
2.11 Level Set Method 52
3. Layer Potential Techniques 55
3.1 The Laplace Equation 56
3.1.1 Fundamental Solution 56
3.1.2 Layer Potentials 57
3.1.3 Invertibility of λI − K*D 64
3.1.4 Symmetrization of K*D 65
3.1.5 Neumann Function 69
3.1.6 Transmission Problems 71
3.2 Helmholtz Equation 73
3.2.1 Fundamental Solution 74
3.2.2 Layer Potentials 76
3.2.3 Transmission Problem 78
3.2.4 Reciprocity 81
3.2.5 Lippmann–Schwinger Representation Formula 83
3.2.6 The Helmholtz–Kirchhoff Theorem 84
3.2.7 Scattering Amplitude and the Optical Theorem 85
3.3 Elasticity Equations 96
3.3.1 Radiation Condition 101
3.3.2 Integral Representation of Solutions to the Lamé System 102
3.3.3 Reciprocity Property and Helmholtz–Kirchhoff Identities 110
3.3.4 Incompressible Limit 112
4. Probabilistic Tools 115
4.1 Random Variables 116
4.2 Random Vectors 117
4.3 Gaussian Random Vectors 120
4.4 Random Processes 121
4.4.1 Gaussian Random Processes 122
4.4.2 Stationary Gaussian Random Processes 123
4.4.3 Local Maxima of a Gaussian Random Field 125
4.4.4 Global Maximum of a Gaussian Random Field 125
4.4.5 The Local Shape of a Local Maximum 126
4.4.6 Realization of a Cluttered Medium 127
5. General Image Characteristics 129
5.1 Spatial Resolution 129
5.1.1 Point Spread Function 129
5.1.2 Rayleigh Resolution Limit 131
5.2 Signal-to-Noise Ratio 131
Part II Single-Wave Imaging 133
6. Electrical Impedance Tomography 135
6.1 Mathematical Model 135
6.2 Ill-Conditioning 137
6.2.1 Static Imaging 138
6.2.2 Dynamic Imaging 138
6.2.3 Electrode Model 141
7. Ultrasound and Microwave Tomographies 143
7.1 Born Approximation 143
7.2 Diffraction Tomography Algorithm 144
7.3 Time-Reversal Techniques 146
7.3.1 Ideal Time-Reversal Imaging Technique 147
7.3.2 A Modified Time-Reversal Imaging Technique 151
8. Time-Harmonic Reverse-Time Imaging with Additive Noise 153
8.1 The Data Set 153
8.2 The Forward Problem 154
8.3 Imaging Functionals 156
8.4 The RT-Imaging Function 157
8.4.1 The Imaging Function without Measurement Noise 157
8.4.2 The Imaging Function with Measurement Noise 158
8.4.3 Localization Error 161
9. Reverse-Time Imaging with Clutter Noise 163
9.1 The Data Set 163
9.2 A Model for the Scattering Medium 164
9.3 The Forward Problem 166
9.4 The Imaging Function 168
9.4.1 The Imaging Function without Clutter Noise 168
9.4.2 The Imaging Function with Clutter Noise 171
10. Optical Coherence Tomography with Clutter Noise 177
10.1 The Principle of Optical Coherence Tomography 177
10.2 The Reference and Sample Beams 179
10.3 The Imaging Function 183
10.4 The Point Spread Function 184
10.5 The Clutter Noise in Optical CoherenceTomography 186
Part III Anomaly Imaging 189
11. Small Volume Expansions 191
11.1 Conductivity Problem 192
11.2 Helmholtz Equation 196
11.3 Asymptotic Formulas for Monopole Sources in Free Space 199
11.3.1 Conductivity Problem 199
11.3.2 Helmholtz Equation 199
11.4 Elasticity Equations 200
11.4.1 Static Regime 202
11.4.2 Time-Harmonic Regime 204
11.4.3 Properties of the EMT 207
11.5 Asymptotic Expansions for Time-Dependent Equations 212
11.5.1 Asymptotic Formulas for the Wave Equation 212
11.5.2 Asymptotic Analysis of TemperaturePerturbations 214
12. Anomaly Imaging Algorithms 219
12.1 Direct Imaging for the Conductivity Problem 220
12.1.1 Detection of a Single Inclusion: A Projection-Type Algorithm 220
12.1.2 Detection of Multiple Inclusions: A MUSIC-Type Algorithm 221
12.2 Direct Imaging Algorithms for the Helmholtz Equation 223
12.2.1 Direct Imaging at a Fixed Frequency 223
12.2.2 Direct Imaging at Multiple Frequencies 232
12.3 Direct Elasticity Imaging 235
12.3.1 A MUSIC-Type Method in the Static Regime 235
12.3.2 A MUSIC-Type Method in the Time-Harmonic Regime 237
12.3.3 Reverse-Time Migration and Kirchhoff Imaging in the Time-Harmonic Regime 240
12.4 Time-Domain Anomaly Imaging 241
12.4.1 Wave Imaging of Small Anomalies 241
12.4.2 Thermal Imaging of Small Anomalies 243
Part IV Multi-Wave Imaging 247
13. Photoacoustic Imaging 249
13.1 Introduction 249
13.2 Mathematical Formulation 251
13.3 Photoacoustic Imaging in Free Space 253
13.3.1 Full-View Setting 254
13.3.2 Limited-View Setting 255
13.3.3 Compensation of the Effect of Acoustic Attenuation 257
13.4 Photoacoustic Imaging of Small Absorbers with Imposed Boundary Conditions on the Pressure 269
13.4.1 Reconstruction Methods 269
13.4.2 Backpropagation of the Acoustic Signals 275
13.4.3 Selective Detection 277
13.5 Imaging with Limited-View Data 282
13.5.1 Geometrical Control of the Wave Equation 282
13.5.2 Reconstruction Procedure 283
13.5.3 Implementation of the HUM 284
13.6 Quantitative Photoacoustic Imaging 284
13.6.1 Asymptotic Approach 286
13.6.2 Multi-Wavelength Approach 289
13.7 Coherent Interferometry Algorithms 291
13.8 Concluding Remarks 295
14. Quantitative Thermoacoustic Imaging 297
14.1 Introduction 297
14.2 Measurements 298
14.3 Exact Formula 299
14.4 Optimal Control Approach 304
14.4.1 The Differentiability of the Data Map and Its Inverse 304
14.4.2 Landweber’s Iteration 307
15. Ultrasonically Induced Lorentz Force Electrical Impedance Tomography 309
15.1 Introduction 309
15.2 Electric Measurements from Acousto-Magnetic Coupling 311
15.2.1 Electrical Conductivity in Electrolytes 312
15.2.2 Ion Deviation by Lorentz Force 312
15.2.3 Internal Electrical Potential 313
15.2.4 Virtual Potential 315
15.3 Construction of the Virtual Current 316
15.4 Recovering the Conductivity by Optimal Control 319
15.5 The Orthogonal Field Method 322
15.5.1 Uniqueness Result for the Transport Equation 323
15.5.2 The Viscosity-Type Regularization 327
15.6 Numerical Illustrations 329
15.6.1 Deconvolution 329
15.6.2 Conductivity Reconstructions 330
15.7 Concluding Remarks 335
16. Magnetoacoustic Tomography with Magnetic Induction 337
16.1 Introduction 337
16.2 Forward Problem Description 339
16.2.1 Time Scales Involved 339
16.2.2 Electromagnetic Model 339
16.2.3 Acoustic Problem 341
16.3 Reconstruction of the Acoustic Source 343
16.4 Reconstruction of the Conductivity 346
16.4.1 Reconstruction of the Electric Current Density 346
16.4.2 Recovery of the Conductivity from Internal Electric Current Density 348
16.5 Numerical Illustrations 359
16.5.1 Optimal Control 359
16.5.2 Fixed Point Method 360
16.5.3 Orthogonal Field Method 361
16.6 Concluding Remarks 364
17. Impediography 365
17.1 Introduction 365
17.2 Mathematical Model 367
17.3 Substitution Algorithm 370
17.4 Optimal Control Algorithm 372
17.5 Concluding Remarks 374
18. Microwave Imaging by Elastic Deformation 375
18.1 Introduction 375
18.2 Exact Reconstruction Formulas 378
18.3 The Forward Problem and the Differentiability of the Data at a Fixed Frequency 384
18.4 Optimal Control Algorithm 388
19. Ultrasound-Modulated Optical Tomography 391
19.1 Introduction 391
19.2 Preliminaries 393
19.2.1 Acoustic Wave 393
19.2.2 Regularity Results 396
19.3 Reconstruction Algorithms 399
19.3.1 Fixed Point Algorithm 402
19.3.2 Optimal Control Algorithm 408
19.4 Numerical Illustrations 411
19.4.1 Concluding Remarks 415
20. Viscoelastic Modulus Reconstruction 417
20.1 Introduction 417
20.2 Reconstruction Methods 419
20.2.1 Viscoelasticity Model 419
20.2.2 Optimal Control Algorithm 421
20.2.3 Initial Guess 426
20.2.4 Local Reconstruction 429
20.3 Numerical Illustrations 430
20.4 Concluding Remarks 434
21. Mechanical Vibration-Assisted Conductivity Imaging 435
21.1 Introduction 435
21.2 Mathematical Modeling 436
21.3 Vibration-Assisted Anomaly Identification 439
21.3.1 Location Search Method and Asymptotic Expansion 441
21.3.2 Size Estimation and Reconstruction of the Material Parameters 445
21.4 Numerical Illustrations 447
21.4.1 Simulations of the Voltage Difference Map 447
21.4.2 Anomaly Location 448
21.5 Concluding Remarks 449
22. Full-Field Optical Coherence Elastography 451
22.1 Introduction 451
22.2 Preliminaries 454
22.3 Displacement Field Measurements 455
22.3.1 First-Order Approximation 456
22.3.2 Local Recovery via Linearization 459
22.3.3 Minimization of the Discrepancy Functional 463
22.4 Reconstruction of the Shear Modulus 469
22.5 Numerical Illustrations 469
22.6 Concluding Remarks 472
Part V Spectroscopic and Nanoparticle Imaging 473
23. Effective Electrical Tissue Properties 475
23.1 Introduction 475
23.2 Problem Settings and Main Results 477
23.2.1 Periodic Domain 477
23.2.2 Electrical Model of the Cell 478
23.2.3 Governing Equation 482
23.2.4 Main Results 483
23.3 Analysis of the Problem 486
23.3.1 Existence and Uniqueness of a Solution 487
23.3.2 Energy Estimate 488
23.4 Homogenization 490
23.4.1 Two-Scale Asymptotic Expansions 491
23.4.2 Convergence 496
23.5 Effective Admittivity for a Dilute Suspension 506
23.5.1 Computation of the Effective Admittivity 506
23.5.2 Case of Concentric Circular-Shaped Cells: The Maxwell–Wagner–Fricke Formula 510
23.5.3 Debye Relaxation Times 511
23.5.4 Properties of the Membrane Polarization Tensor and the Debye Relaxation Times 512
23.5.5 Anisotropy Measure 513
23.6 Numerical Simulations 514
23.7 Technical Results 517
23.7.1 Extension Lemmas 517
23.7.2 Poincaré–Wirtinger Inequality 521
23.7.3 Equivalence of the Two Norms on Wε 523
23.7.4 Existence Result 525
23.8 Concluding Remarks 526
24. Plasmonic Nanoparticle Imaging 527
24.1 Introduction 527
24.2 Layer Potential Formulation for Plasmonic Resonances 529
24.2.1 Problem Formulation and Some Basic Results 529
24.2.2 First-Order Correction to Plasmonic Resonances and Field Behavior at the Plasmonic Resonances 533
24.3 Multiple Plasmonic Nanoparticles 541
24.3.1 Layer Potential Formulation in the Multi-Particle Case 541
24.3.2 First-Order Correction to Plasmonic Resonances and Field Behavior at Plasmonic Resonances in the Multi-Particle Case 542
24.4 Scattering and Absorption Enhancements 552
24.4.1 The Quasi-Static Limit 552
24.4.2 An Upper Bound for the Averaged Extinction Cross-Section 555
24.5 Link with the Scattering Coefficients 563
24.5.1 Scattering Coefficients of Plasmonic Nanoparticles 563
24.5.2 The Leading-Order Term in the Expansion of the Scattering Amplitude 566
24.6 Asymptotic Expansion of the Integral Operators: Single Particle 569
24.7 Asymptotic Expansion of the Integral Operators: Multiple Particles 571
24.8 Sum Rules for the Polarization Tensor 577
24.9 Concluding Remarks 580
25. Nonlinear Harmonic Holography 583
25.1 Introduction 583
25.2 Problem Formulation 585
25.3 Small-Volume Expansions 587
25.3.1 Fundamental Frequency Problem 587
25.3.2 Second-Harmonic Problem 593
25.4 Imaging Functional 597
25.4.1 The Fundamental Frequency Case 597
25.4.2 Second-Harmonic Backpropagation 598
25.5 Statistical Analysis 599
25.5.1 Assumptions on the Random Process μ 600
25.5.2 Standard Backpropagation 602
25.5.3 Second-Harmonic Backpropagation 610
25.5.4 Stability with Respect to Measurement Noise 617
25.6 Numerical Results 622
25.6.1 The Direct Problem 622
25.6.2 The Imaging Functionals and the Effects of the Number of Plane Wave Illuminations 623
25.6.3 Statistical Analysis 626
25.7 Proof of Estimate (25.8) 631
25.8 Proof of Proposition 25.1 635
25.9 Proof of Proposition 25.3 636
25.10 Concluding Remarks 637
References 639
Index 663