Menu Expand
Tumor Hypoxia

Tumor Hypoxia

Zhong Yun

(2016)

Additional Information

Book Details

Table of Contents

Section Title Page Action Price
Contents xi
Preface v
Chapter 1 Tumor Hypoxia and Radiotherapy 1
1. Tumor Hypoxia and Radiation 1
2. The Oxygen Effect: Timing, Mechanism, and Concentration \r 2
3. Radioresistance of the Hypoxic Fraction: in vivo and Human Tumors\r 9
4. Targeting Hypoxia to Overcome Radioresistance 12
4.1. Methods to quantify tumor hypoxia 12
4.2. Radiation fractionation: reoxygenation for tumor hypoxia 14
4.3. Hypoxic cell radiosensitizers and cytotoxins 17
4.4. Radiation dose boosting 23
4.5. High-LET particle radiotherapy 26
5. Predicting Radioresistance and Radiation Treatment Outcomes\r 30
5.1. Predicting treatment response with imaging 30
5.2. Modeling the effect of hypoxia 31
References 34
Chapter 2 Post-translational Modifications of the Hypoxia Inducible Factors 49
1. Introduction 49
1.1. HIF- s: A brief introduction\r 50
1.1.1. HIF-1 \r 50
1.1.2. HIF-2 \r 51
1.1.3. HIF-3 \r 51
2. Post-translational Modifications of HIF- s\r 52
2.1. Hydroxylation of proline 402/564 52
2.1.1. Hydroxylation of asparagine by FIH-1 53
2.1.2. Polyubiquitination of HIF- by pVHL\r 54
2.1.3. Acetylation of HIF- s\r 54
2.1.4. Phosphorylation of HIF-1 by MAPK\r 55
2.1.5. SUMOylation 56
2.1.6. S-Nitrosylation 56
3. Targeting Post-translational Modifications in Tumor Therapy 57
3.1. Stabilization of HIF- through manipulatingits post-translational modifications for vascularand tissue regeneration\r 58
4.1. Summary 59
References 60
Chapter 3 Hypoxia and Metastasis 69
1. Introduction — Cancer Metastasis 69
2. Hypoxia and the Tumor Microenvironment 71
2.1. The extracellular matrix 71
2.1.1. Integrins 72
2.1.2. Matrix metalloproteinases 73
2.1.3. Extrinsic factors 74
2.2. Epithelial to mesenchymal transition 76
3. Hypoxia and Circulating Tumor Cells 77
3.1. Anoikis 78
3.2. Shear forces 79
3.3. The immune response 80
4. Hypoxia and Distant Metastasis 81
4.1. Homing of circulating tumor cells 81
4.2. Mesenchymal to epithelial transition 82
4.3. Tumor cell survival and growth 83
4.4. Angiogenesis 84
5. Targeting Hypoxia and Metastasis in the Clinic 85
6. Conclusions 90
References 90
Chapter 4 Hypoxia and Cancer Stem Cell Regulation 101
1. Introduction 101
2. The Clonal versus Stem Cell Cancer Models 102
3. The Stem Cell Niche 104
4. Tissue Hypoxia 105
4.1. Hypoxia inducible factors 105
4.2. Oxygen-dependent regulation of the HIFs 106
4.3. Oxygen-independent regulation of the HIFs 108
4.4. HIFs and cancer aggressiveness 109
5. Hypoxia Promotes Immature, Stem Cell-Like Phenotypes\r 110
6. Pseudohypoxia 110
6.1. The hypoxic and pseudohypoxic cancer stem cell niches\r 114
Acknowledgments 116
References 116
Chapter 5 Hypoxia and Senescence 127
1. Introduction 127
2. Phenotypes of Senescent Cells 128
3. Markers of Senescent Cells 129
4. Molecular Pathways Driving Senescence 131
5. Stresses that Induce Senescence 132
6. Senescent Cells and the Hypoxic Microenvironment 136
References 140
Chapter 6 Hypoxic Reprograming of Tumor Metabolism, Matching Environmental Supply with Biosynthetic Demand\r 147
1. Introduction 147
2. Genesis of Tumor Hypoxia 148
3. Hypoxia-Inducible Factor (HIF) is a Key Regulator of Hypoxic Adaptation\r 149
4. Reprogramming of Glucose Metabolism 151
5. Pyruvate Metabolism in Hypoxia 152
6. Regulation of Mitochondrial Biogenesis and Function in Hypoxia\r 154
7. Reprogramming of Glutamine Metabolism 155
8. Reprogramming of Glycogen Metabolism 156
9. Lipid Metabolism and Storage in Hypoxia 158
10. Hypoxia Induced miRNAs Add an Additional Layer to Regulate Metabolism\r 159
11. Conclusions 160
References 160
Chapter 7 Regulation of DNA Repair by Hypoxia 169
1. Introduction 169
2. Hypoxia Induces Genetic Instability\r 170
2.1. Increased DNA damage and mutations under hypoxia\r 170
2.2. Impaired DNA repair under hypoxia 172
3. Global Regulation of Epigenetic Pathways by Hypoxia\r 174
3.1. Hypoxia-induced histone modifications 174
3.2. Hypoxia-dependent regulation of genes involved in histone modifications\r 175
3.3. DNA methylation regulated by hypoxia 176
4. Hypoxia Drives Silencing of Specific DNA Repair Genes Through Epigenetic Regulation\r 176
4.1. Hypoxia-induced epigenetic silencing of the BRCA1 promoter\r 177
4.2. Hypoxia-induced epigenetic silencing of the promoters of mismatch repair genes\r 178
4.3. LSD1 mediates in H3K4 demethy lationat the BRCA1 promoter induced by hypoxia\r 180
4.4. LSD1 and PLU1 are required for hypoxia induced histone modifications at the MLH1 promoter\r 181
5. Concluding Remarks and Future Perspectives 181
Acknowledgment 182
References 182
Chapter 8 Regulation of the Hypoxic Response by Non-coding RNAs\r 189
1. Introduction 190
2. Non-coding RNAs — Not “Junk” Any More 191
3. Transfer RNA-Derived RNA Fragments (tRFs) 193
4. lncRNAs 193
4.1. H19 194
4.2. lincRNA-p21 194
4.3. lncRNA-LET 195
4.4. Hypoxia-induced non-coding ultraconserved transcripts (HINCUTs)\r 195
5. NATs 196
6. miRNAs 196
6.1. miRNAs that regulate HIF-1 198
6.2. miRNAs induced under hypoxia 199
6.2.1. miR-210, a marker for tumor hypoxia 199
6.2.2. miR-210 target identification 200
6.2.3. miR-210 regulates DNA damage response 202
6.2.4. miR-210 regulation of apoptosis 202
6.2.5. miR-210 regulation of cell cycle 203
6.2.6. miR-210 regulation of angiogenesis 204
6.2.7. miR-210 regulates mitochondrial metabolism 206
6.2.8. miR-210 as a potential cancer therapeutic target 207
6.2.9. Circulating miR-210 as a promising biomarker for cancer diagnosis and prognosis\r 208
7. Concluding Remarks 209
Acknowledgments 210
References 210
Chapter 9 Hypoxia-Induced Endoplasmic Reticulum Stress 225
1. Introduction 225
2. Function of ER 226
3. ER Stress 226
4. Unfolded Protein Response 227
5. IRE1 Signaling 227
6. PERK Signaling 230
7. ATF6 Signaling 231
8. Hypoxia and the UPR Pathway 232
10. Therapeutic Targeting of the UPR in Disease 237
11. Concluding Remarks 240
References 240
Chapter 10 The Hypoxic Tumor Microenvironment and the Anti-cancer Immune Response\r 249
1. Introduction\r 250
1.1. Oxygen dependent regulation of HIF-1 251
2. Neutrophils 253
3. Myeloid-derived Suppressor Cells 255
4. Macrophages 257
4.1. Macrophage polarization 258
4.2. Tumor associated macrophages 260
5. Dendritic Cells 261
6. T cells 263
6.1. CD4+ T cell differentiation 263
6.2. Regulatory T cells 266
6.3. Dynamic regulation of T cells by hypoxia 269
7. CD8+ T cells 270
7.1. HIF-1 and CD8+ T cell metabolism 271
8. B cells 273
9. Summary and Discussion 273
10. Therapeutic Implications 274
Acknowledgments 277
References 277
Index 293