Menu Expand
Cancer Therapeutics And Imaging: Molecular And Cellular Engineering And Nanobiomedicine

Cancer Therapeutics And Imaging: Molecular And Cellular Engineering And Nanobiomedicine

Rege Kaushal | Goklany Sheba

(2017)

Additional Information

Book Details

Table of Contents

Section Title Page Action Price
CONTENTS v
Chapter 1 Optically Modulated Theranostic Nanoparticles 1
1.1 Polymeric nanoparticles 2
1.2 Carbon nanotubes 4
1.3 Silica nanoparticles 7
1.4 Gold nanoparticles 9
1.5 Lipid based nanoparticles 15
1.6 Up conversion nanoparticles 16
1.7 Conclusions 19
References 19
Chapter 2 Gene Therapy Treatments for Cancer 25
2.1 Introduction 25
2.1.1 Overview of gene delivery methods 26
2.1.1.1 Viral gene delivery methods 27
2.1.1.2 Non-viral gene delivery methods 30
2.1.1.2.1 Naked plasmid DNA 33
2.2 Delivery of tumor suppressor genes into tumor cells 33
2.2.1 Genetic dysregulation in cancer cells 34
2.2.2 Delivery of tumor suppressor genes 34
2.2.2.1 Delivery of the gatekeeper p53 gene 36
2.2.2.2 Delivery of the gatekeeper retinoblastoma protein (Rb) gene 37
2.2.2.3 Delivery of the caretaker BRCA-1 and BRCA-2 genes 38
2.2.2.4 Delivery of the cytokine MDA-7/IL-24 gene 39
2.2.2.5 Delivery of the adenoviral E1A gene 40
2.2.2.6 Delivery of the gatekeeper FUS-1 gene 42
2.2.3 Strategies to enhance tumor suppressor gene expression 42
2.2.3.1 Optimization of the transgene expression cassette 43
2.2.3.2 Replication and maintenance of plasmids by S/MAR’s 45
2.2.3.3 Plasmid DNA sequences can also decrease transgene expression 46
2.2.3.4 Epigenetic effects on transgene expression 46
2.3 DNA vaccines reprogram the immune system to attack cancer cells 47
2.3.1 Overview of the immune system 48
2.3.1.1 Cancer cells evade natural immune responses 49
2.3.2 Development of DNA vaccines for cancer treatment 50
2.3.2.1 Clinical trials of DNA vaccines 50
2.3.3 Strategies to enhance the activity of DNA vaccines 51
2.2.3.1 Antigen processing 53
2.3.2.2 Antigen presentation with MHC1 or MHC2 53
2.4 Additional genetic strategies for cancer treatment 54
2.4.1 Suicide gene therapy 54
2.4.2 Silencing of oncogenes with RNAi 55
2.4.3 Oncolytic virotherapy 56
2.5 Concluding remarks 57
References 58
Chapter 3 Nanocarrier Based Pulmonary Gene Delivery for Lung Cancer: Therapeutic and Imaging Approaches 89
3.1 Introduction 90
3.2 Lung cancer, therapies, gene delivery 91
3.2.1 Lung cancer 91
3.2.2 Inhalation delivery 92
3.2.2.1 Nebulizers 93
3.2.2.2 Pressurized meter dose inhalers 94
3.2.2.3 Dry powder inhalers (DPI) 94
3.2.3 Therapeutic agents 96
3.2.3.1 Small interfering RNA 96
3.2.3.2 Micro RNA 97
3.2.4 Imaging techniques for lung tumors 98
3.3 Nanocarrier systems 99
3.3.1 Polymer-based drug carriers 100
3.3.1.1 Natural polymers 100
3.3.1.2 Synthetic polymers 100
3.3.2 Lipid-based drug carriers 101
3.3.2.1 Liposomes 101
3.3.2.2 Solid lipid nanoparticles (SLN) 101
3.3.2.3 Nanostructured lipid carriers (NLC) 101
3.3.3 Carbon nanotubes 102
3.4 Characterization of nanocarriers 102
3.4.1 Evaluation of nanocarriers for pulmonary delivery 102
3.4.1.1 Fine particle fraction 103
3.4.1.2 Emitted dose 104
3.4.1.3 Mass median aerodynamic diameter (MMAD) 104
3.4.2 Preclinical models and evaluation 104
3.4.2.1 Xenograft models 105
3.4.2.2 Orthotopic models 105
3.4.2.3 Transgenic tumor models 105
3.4.3 In vivo characterization 106
3.5Examples of siRNA and miRNA based delivery systems 107
3.5.1 Nanocarrier based inhalation delivery of siRNA 107
3.5.1.1 Folate–chitosan-graft-polyethylenimine based system 107
3.5.1.2 Mesoporous silica nanoparticles 108
3.5.1.3 Liposome based drug delivery system 108
3.5.2 Nanocarrier based delivery of DNA 109
3.5.2.1 Polyethyleneimine based drug delivery 109
3.5.2.2 Spermine based drug delivery carrier 110
3.6 Imaging techniques for nanoparticles 111
3.6.1 Computed tomography (CT) 111
3.6.2 Magnetic resonance imaging (MRI) 113
3.6.3 Nuclear imaging of positron emission tomography (PET), single-photon emission computed tomography (SPECT) 117
3.6.4 Optical imaging techniques 119
3.7 Conclusion and future directions 119
Acknowledgment 120
Declaration of Interest 121
References 121
Chapter 4 Quantitative Contrast Enhanced Ultrasound Imaging in Cancer Therapy 137
4.1 Introduction 138
4.2 Basics of contrast enhanced ultrasound imaging 139
4.2.1 The ultrasound contrast agent 139
4.3 CEUS imaging in cancer 141
4.4 Methods of quantitative CEUS imaging 142
4.4.1 Perfusion imaging in tumors 142
4.5 Methods of quantitative CEUS imaging 145
4.5.1 Microbubble pharmacodynamics 145
4.5.2 Quantitative molecular imaging in tumors 146
4.6 Challenges in quantitative CEUS imaging in cancer 149
4.6.1 Tumor variability 149
4.7 Conclusion 150
References 150
Chapter 5 Multifunctional Dendritic Nanoparticles as a Nanomedicine Platform 155
5.1 Introduction 156
5.2 Dendrimers used in biomedical applications 157
5.2.1 Synthetic routes of dendrimers 157
5.2.2 Types of dendrimers 158
5.2.3 Biological properties of dendrimers 160
5.2.4 Pharmacokinetics and biodistribution 161
5.2.5 Multivalent interactions 162
5.2.6 Dendrimers for therapeutic applications 163
5.2.7 Drug delivery 164
5.2.8 Gene delivery 165
5.2.9 Anti-pathogen 166
5.2.10 Dendrimers for diagnostics 167
5.3 Dendritic polymers used in biomedical applications 168
5.3.1 Dendritic-block copolymers 168
5.3.2 Dendrimersomes 174
5.4 Challenges with clinical translation 175
5.5 Future perspective 175
References 176
Chapter 6 Oral Drug Delivery Systems for Gastrointestinal Cancer Therapy 187
6.1 Introduction 188
6.2 Types of therapeutic agents 190
6.2.1 Small molecule drugs 190
6.2.2 RNA interference 191
6.2.3 Peptides and proteins 192
6.3 Challenges for the oral delivery of drugs 195
6.3.1 Mucus layer 196
6.3.2 Epithelium and tissue barriers 197
6.3.3 Enzymatic barrier 198
6.4 Types of oral delivery systems 198
6.4.1 Mucoadhesive delivery 199
6.4.2 Nanoparticles 200
6.4.2.1 Polymers 201
6.4.2.2 Liposomes 203
6.4.2.3 Nanoemulsions 203
6.5 Influence of physicochemical parameters of nanoparticles 204
6.5.1 Shape 204
6.5.2 Size 205
6.5.3 Surface 205
6.6 Summary 206
Acknowledgements 206
References 207
Chapter 7 Cancer Therapeutics with Light: Role of Nanoscale and Tissue Engineering in Photodynamic Therapy 219
7.1 Introduction 220
7.2 Selective photosensitizers as therapeutic and imaging agents 225
7.2.1 Site-specific targeted delivery 225
7.2.2 Site-activated targeting 228
7.2.3 Prodrug approaches 229
7.3 Alternative light sources for photodynamic therapy\rand imaging 231
7.3.1 Quantum dots 231
7.3.1.1 Quantum dot-photosensitizer conjugates 233
7.3.1.2 Quantum dots as photosensitizers 233
7.3.2 Nanoscintillators 234
7.3.3 Upconversion nanomaterials 235
7.3.4 Emerging alternatives 237
7.3.4.1 Cherenkov radiation 237
7.3.4.2 Biological sources of light 237
7.3.4.3 Organic light emitting diodes 239
7.4 Engineering three-dimensional culture models\rfor light-based therapy 239
7.4.1 3D models for investigating photosensitizer penetration\rand corresponding photoactivity 239
7.4.2 3D models in light dosimetry 242
7.4.2.1 Understanding in vivo PDT dose parameters in 3D models 242
7.4.3 Assessing treatment response in 3D models 244
7.4.3.1 Evaluating the efficacy of PDT and PDT combinations 244
7.4.3.2 Analysis framework for evaluating treatment response 246
7.5 Perspective and future directions 247
Acknowledgements 248
References 248
Chapter 8 Targeted Contrast Agents for 1H MRI of Tumor Microenvironment 261
8.1 Introduction 262
8.1.1 Magnetic resonance imaging: An introduction 263
8.1.2 MRI contrast agents 264
8.1.3 Targeted imaging of cancer 268
8.2 Lanthanide based agents 268
8.2.1 Small molecular targeted contrast agents 270
8.2.1.1 Vascular targeting small molecular probes 270
8.2.1.2 Extravascular targeted small molecular probes 272
8.2.2 Macromolecular targeted contrast agents 276
8.2.2.1 Vascular targeting macromolecular probes 278
8.2.2.2 Extravascular targeted macromolecular probes 278
8.2.3 Nano-platform based contrast agents 283
8.2.3.1 Vascular targeting nano-platform probes 286
8.2.3.2 Extravascular targeting nano-platform probes 289
8.3 Iron based agents 293
8.3.1 Vascular targeting iron based probes 294
8.3.2 Extravascular targeting iron based probes 297
8.4 Conclusion and future prospects 302
References 303
Chapter 9 Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Anti-cancer Delivery Systems for Therapy and Diagnostics 317
9.1 Introduction 318
9.2 Characteristics, composition and methods of preparation 319
9.3 Recent trends in use SLN and NLC for cancer therapy 322
9.3.1 Pegylation-longevity in the blood 322
9.3.2 Co-loading of anticancer agents 325
9.3.3 pH-sensitivity for drug release at lowered pH 328
9.3.4 Imaging agents 329
9.3.5 Attachment of targeting ligands to the surface of lipid nanoparticles 332
9.4 Prospects for SLN and NLC in cancer therapy 336
References 338
Index 345