Menu Expand
Brock Biology of Microorganisms, Global Edition

Brock Biology of Microorganisms, Global Edition

Michael T. Madigan | Kelly S. Bender | Daniel H. Buckley | W. Matthew Sattley | David A. Stahl

(2017)

Additional Information

Book Details

Abstract

A streamlined approach to master microbiology

 

Brock Biology of Microorganisms is the leading majors microbiology text on the market. It sets the standard for impeccable scholarship, accuracy, and strong coverage of ecology, evolution, and metabolism. The 15th edition seamlessly integrates the most current science, paying particular attention to molecular biology and the genomic revolution. It introduces a flexible, more streamlined organization with a consistent level of detail and comprehensive art program. Brock Biology of Microorganisms helps students quickly master concepts, both in and outside the classroom, through personalized learning, engaging activities to improve problem solving skills, and superior art and animations with Mastering Microbiology.

 

Pearson Mastering Microbiology is not included. Students, if Mastering Microbiology is a recommended/mandatory component of the course, please ask your instructor for the correct ISBN and course ID. Mastering Microbiology should only be purchased when required by an instructor.

Table of Contents

Section Title Page Action Price
Cover Cover
Inside Front Cover IFC
Title Page 9
Copyright Page 10
About the Authors 11
Dedications 13
Preface 15
Acknowledgments 21
Acknowledgments for the Global Edition 23
Contents 25
Unit 1 The Foundations of Microbiology 37
1 The Microbial World 37
microbiologynow Microorganisms, Our Constant Companions 37
I • Exploring the Microbial World 38
1.1 Microorganisms, Tiny Titans of the Earth 38
1.2 Structure and Activities of Microbial Cells 39
1.3 Microorganisms and the Biosphere 41
1.4 The Impact of Microorganisms on Human Society 42
II • Microscopy and the Origins of Microbiology 47
1.5 Light Microscopy and the Discovery of Microorganisms 47
1.6 Improving Contrast in Light Microscopy 49
1.7 Imaging Cells in Three Dimensions 51
1.8 Probing Cell Structure: Electron Microscopy 52
III • Microbial Cultivation Expands the Horizon of Microbiology 54
1.9 Pasteur and Spontaneous Generation 55
1.10 Koch, Infectious Diseases, and Pure Cultures 57
1.11 Discovery of Microbial Diversity 60
IV • Molecular Biology and the Unity and Diversity of Life 61
1.12 Molecular Basis of Life 61
1.13 Woese and the Tree of Life 62
1.14 An Introduction to Microbial Life 65
2 Microbial Cell Structure and Function 70
microbiologynow The Archaellum: Motility for the Archaea 70
I • Cells of Bacteria and Archaea 71
2.1 Cell Morphology 71
2.2 The Small World 72
II • The Cell Membrane and Wall 75
2.3 The Cytoplasmic Membrane 75
2.4 Bacterial Cell Walls: Peptidoglycan 78
2.5 LPS: The Outer Membrane 81
2.6 Archaeal Cell Walls 83
III • Cell Surface Structures and Inclusions 84
2.7 Cell Surface Structures 84
2.8 Cell Inclusions 86
2.9 Gas Vesicles 88
2.10 Endospores 89
IV • Cell Locomotion 92
2.11 Flagella, Archaella, and Swimming Motility 92
2.12 Gliding Motility 96
2.13 Chemotaxis and Other Taxes 97
V • Eukaryotic Microbial Cells 100
2.14 The Nucleus and Cell Division 100
2.15 Mitochondria, Hydrogenosomes, and Chloroplasts 102
2.16 Other Eukaryotic Cell Structures 104
Explore the Microbial World 74
Tiny Cells 74
3 Microbial Metabolism 109
microbiologynow Sugars and Sweets: Archaea Do It Their Way 109
I • Microbial Nutrients and Nutrient Uptake 110
3.1 Feeding the Microbe: Cell Nutrition 110
3.2 Transporting Nutrients into the Cell 111
II • Energetics, Enzymes, and Redox 113
3.3 Energy Classes of Microorganisms 113
3.4 Principles of Bioenergetics 114
3.5 Catalysis and Enzymes 116
3.6 Electron Donors and Acceptors 117
3.7 Energy-Rich Compounds 120
III • Catabolism: Fermentation and Respiration 121
3.8 Glycolysis and Fermentation 121
3.9 Respiration: Citric Acid and Glyoxylate Cycles 124
3.10 Respiration: Electron Carriers 126
3.11 Electron Transport and the Proton Motive Force 128
3.12 Options for Energy Conservation 130
IV • Biosyntheses 132
3.13 Sugars and Polysaccharides 132
3.14 Amino Acids and Nucleotides 133
3.15 Fatty Acids and Lipids 134
4 Molecular Information Flow and Protein Processing 138
microbiologynow Synthesis of Jumbo Proteins: Secretion of Halomucin 138
I • Molecular Biology and Genetic Elements 139
4.1 DNA and Genetic Information Flow 139
4.2 Genetic Elements: Chromosomes and Plasmids 142
II • Copying the Genetic Blueprint: DNA Replication 145
4.3 Templates, Enzymes, and the Replication Fork 146
4.4 Bidirectional Replication, the Replisome, and Proofreading 149
III • R NA Synthesis: Transcription 151
4.5 Transcription in Bacteria 151
4.6 Transcription in Archaea and Eukarya 154
IV • Protein Synthesis: Translation 156
4.7 Amino Acids, Polypeptides, and Proteins 156
4.8 Transfer RNA 159
4.9 Translation and the Genetic Code 160
4.10 The Mechanism of Protein Synthesis 162
V • Protein Processing, Secretion, and Targeting 165
4.11 Assisted Protein Folding and Chaperones 165
4.12 Protein Secretion: The Sec and Tat Systems 166
4.13 Protein Secretion: Gram-Negative Systems 167
Unit 2 Microbial Growth and Regulation 173
5 Microbial Growth and Its Control 173
microbiologynow Picking Apart a Microbial Consortium 173
I • Cell Division and Population Growth 174
5.1 Binary Fission, Budding, and Biofilms 174
5.2 Quantitative Aspects of Microbial Growth 176
5.3 The Microbial Growth Cycle 178
5.4 Continuous Culture 179
II • Culturing Microbes and Measuring Their Growth 180
5.5 Growth Media and Laboratory Culture 180
5.6 Microscopic Counts of Microbial Cell Numbers 184
5.7 Viable Counting of Microbial Cell Numbers 185
5.8 Turbidimetric Measures of Microbial Cell Numbers 187
III • Environmental Effects on Growth: Temperature 188
5.9 Temperature Classes of Microorganisms 188
5.10 Microbial Life in the Cold 189
5.11 Microbial Life at High Temperatures 192
IV • Environmental Effects on Growth: pH, Osmolarity, and Oxygen 194
5.12 Effects of pH on Microbial Growth 194
5.13 Osmolarity and Microbial Growth 195
5.14 Oxygen and Microbial Growth 196
V • Controlling Microbial Growth 200
5.15 General Principles and Growth Control by Heat 200
5.16 Other Physical Control Methods: Radiation and Filtration 202
5.17 Chemical Control of Microbial Growth 203
6 Microbial Regulatory Systems 209
microbiologynow Microbial Hunter: Pseudomonas aeruginosa Senses and Scavenges Nutrients from Damaged Tissues 209
I • DNA-Binding Proteins and Transcriptional Regulation 210
6.1 DNA-Binding Proteins 210
6.2 Negative Control: Repression and Induction 212
6.3 Positive Control: Activation 213
6.4 Global Control and the lac Operon 215
6.5 Transcription Controls in Archaea 217
II • Sensing and Signal Transduction 219
6.6 Two-Component Regulatory Systems 219
6.7 Regulation of Chemotaxis 220
6.8 Quorum Sensing 222
6.9 Stringent Response 224
6.10 Other Global Networks 226
III • RNA-Based Regulation 228
6.11 Regulatory RNAs 228
6.12 Riboswitches 230
6.13 Attenuation 231
IV • Regulation of Enzymes and Other Proteins 232
6.14 Feedback Inhibition 232
6.15 Post-Translational Regulation 233
7 Molecular Biology of Microbial Growth 238
microbiologynow Explosive Cell Death Promotes Biofilm Formation 238
I • Bacterial Cell Division 239
7.1 Visualizing Molecular Growth 239
7.2 Chromosome Replication and Segregation 241
7.3 Cell Division and Fts Proteins 243
7.4 MreB and Cell Morphology 245
7.5 Peptidoglycan Biosynthesis 246
II • Regulation of Development in Model Bacteria 248
7.6 Regulation of Endospore Formation 248
7.7 Caulobacter Differentiation 249
7.8 Heterocyst Formation in Anabaena 250
7.9 Biofilm Formation 251
III • Antibiotics and Microbial Growth 253
7.10 Antibiotic Targets and Antibiotic Resistance 253
7.11 Persistence and Dormancy 255
8 Viruses and Their Replication 259
microbiologynow Virophages: Viruses That Parasitize Other Viruses 259
I • The Nature of Viruses 260
8.1 What Is a Virus? 260
8.2 Structure of the Virion 261
8.3 Overview of the Virus Life Cycle 263
8.4 Culturing, Detecting, and Counting Viruses 264
II • The Viral Replication Cycle 266
8.5 Attachment and Entry of Bacteriophage T4 266
8.6 Replication of Bacteriophage T4 267
8.7 Temperate Bacteriophages and Lysogeny 270
8.8 An Overview of Animal Virus Infection 272
Unit 3 Genomics and Genetics 277
9 Microbial Systems Biology 277
microbiologynow DNA Sequencing in the Palm of Your Hand 277
I • Genomics 278
9.1 Introduction to Genomics 278
9.2 Sequencing and Annotating Genomes 280
9.3 Genome Size and Gene Content in Bacteria and Archaea 283
9.4 Organelle and Eukaryotic Microbial Genomes 285
II • The Evolution of Genomes 288
9.5 Gene Families, Duplications, and Deletions 288
9.6 Horizontal Gene Transfer and the Mobilome 290
9.7 Core Genome Versus Pan Genome 291
III • Functional Omics 293
9.8 Metagenomics 293
9.9 Gene Chips and Transcriptomics 295
9.10 Proteomics and the Interactome 298
9.11 Metabolomics 299
IV • The Utility of Systems Biology 302
9.12 Single-Cell Genomics 302
9.13 Integrating Mycobacterium tuberculosis Omics 303
9.14 Systems Biology and Human Health 305
10 Viral Genomics, Diversity, and Ecology 310
microbiologynow Viral Imaging to the Rescue: Structural Blueprint of Zika 310
I • Viral Genomes and Evolution 311
10.1 Size and Structure of Viral Genomes 311
10.2 Viral Evolution 313
II • DNA Viruses 315
10.3 Single-Stranded DNA Bacteriophages: ФX174 and M13 315
10.4 Double-Stranded DNA Bacteriophages: T7 and Mu 317
10.5 Viruses of Archaea 319
10.6 Uniquely Replicating DNA Animal Viruses 321
10.7 DNA Tumor Viruses 322
III • Viruses with RNA Genomes 324
10.8 Positive-Strand RNA Viruses 324
10.9 Negative-Strand RNA Animal Viruses 326
10.10 Double-Stranded RNA Viruses 328
10.11 Viruses That Use Reverse Transcriptase 329
IV • Viral Ecology 331
10.12 The Bacterial and Archael Virosphere 332
10.13 Viral Defense Mechanisms of Bacteria and Archaea 333
10.14 The Human Virome 335
V • Subviral Agents 336
10.15 Viroids 336
10.16 Prions 337
11 Genetics of Bacteria and Archaea 342
microbiologynow Killing and Stealing: DNA Uptake by the Predator Vibrio cholerae 342
I • Mutation 343
11.1 Mutations and Mutants 343
11.2 Molecular Basis of Mutation 344
11.3 Reversions and Mutation Rates 346
11.4 Mutagenesis 348
II • Gene Transfer in Bacteria 349
11.5 Genetic Recombination 350
11.6 Transformation 352
11.7 Transduction 353
11.8 Conjugation 356
11.9 The Formation of Hfr Strains and Chromosome Mobilization 357
III • Gene Transfer in Archaea and Other Genetic Events 360
11.10 Horizontal Gene Transfer in Archaea 360
11.11 Mobile DNA: Transposable Elements 361
11.12 Preserving Genomic Integrity: CRISPR Interference 364
12 Biotechnology and Synthetic Biology 368
microbiologynow Creation of a New Life Form: Design of a Minimal Cell 368
I • Tools of the Genetic Engineer 369
12.1 Manipulating DNA: PCR and Nucleic Acid Hybridization 369
12.2 Molecular Cloning 372
12.3 Expressing Foreign Genes in Bacteria 374
12.4 Molecular Methods for Mutagenesis 376
12.5 Reporter Genes and Gene Fusions 378
II • Making Products from Genetically Engineered Microbes: Biotechnology 379
12.6 Somatotropin and Other Mammalian Proteins 379
12.7 Transgenic Organisms in Agriculture and Aquaculture 381
12.8 Engineered Vaccines and Therapeutics 383
12.9 Mining Genomes and Engineering Pathways 385
12.10 Engineering Biofuels 387
III • Synthetic Biology and Genome Editing 389
12.11 From Synthetic Metabolic Pathways to Synthetic Cells 390
12.12 Genome Editing and CRISPRs 392
12.13 Biocontainment of Genetically Modified Organisms 394
Unit 4 Microbial Evolution and Diversity 399
13 Microbial Evolution and Systematics 399
microbiologynow Lokiarchaeota and the Origin of Eukarya 399
I • Early Earth and the Origin and Diversification of Life 400
13.1 Formation and Early History of Earth 400
13.2 Photosynthesis and the Oxidation of Earth 403
13.3 Living Fossils: DNA Records the History of Life 405
13.4 Endosymbiotic Origin of Eukaryotes 406
II • Microbial Evolution 408
13.5 The Evolutionary Process 408
13.6 The Evolution of Microbial Genomes 411
III • Microbial Phylogeny and Systematics 412
13.7 Molecular Phylogeny: Making Sense of Molecular Sequences 412
13.8 The Species Concept in Microbiology 418
13.9 Taxonomic Methods in Systematics 420
13.10 Classification and Nomenclature 423
Explore the Microbial World 413
The Black Queen Hypothesis 413
14 Metabolic Diversity of Microorganisms 428
microbiologynow Microbes That Plug into the Matrix 428
I • Phototrophy 429
14.1 Photosynthesis and Chlorophylls 429
14.2 Carotenoids and Phycobilins 432
14.3 Anoxygenic Photosynthesis 434
14.4 Oxygenic Photosynthesis 437
II • Autotrophy and N2 Fixation 440
14.5 Autotrophic Pathways 441
14.6 Nitrogen Fixation 443
III • Respiratory Processes Defined by Electron Donor 446
14.7 Principles of Respiration 446
14.8 Hydrogen (H2) Oxidation 448
14.9 Oxidation of Sulfur Compounds 449
14.10 Iron (Fe2+) Oxidation 451
14.11 Nitrification 452
14.12 Anaerobic Ammonia Oxidation (Anammox) 454
IV • Respiratory Processes Defined by Electron Acceptor 455
14.13 Nitrate Reduction and Denitrification 455
14.14 Sulfate and Sulfur Reduction 457
14.15 Other Electron Acceptors 459
V • One-Carbon (C1) Metabolism 461
14.16 Acetogenesis 461
14.17 Methanogenesis 463
14.18 Methanotrophy 467
VI • Fermentation 470
14.19 Energetic and Redox Considerations 470
14.20 Lactic and Mixed-Acid Fermentations 471
14.21 Clostridial and Propionate Fermentations 474
14.22 Fermentations That Lack Substrate-Level Phosphorylation 476
14.23 Syntrophy 477
VII • Hydrocarbon Metabolism 479
14.24 Aerobic Hydrocarbon Metabolism 480
14.25 Anaerobic Hydrocarbon Metabolism 481
15 Functional Diversity of Microorganisms 487
microbiologynow New Discoveries Have Redefined the Global Nitrogen Cycle 487
I • Functional Diversity as a Concept 488
15.1 Making Sense of Microbial Diversity 488
II • Diversity of Phototrophic Bacteria 489
15.2 Overview of Phototrophic Bacteria 489
15.3 Cyanobacteria 489
15.4 Purple Sulfur Bacteria 494
15.5 Purple Nonsulfur Bacteria and Aerobic Anoxygenic Phototrophs 495
15.6 Green Sulfur Bacteria 496
15.7 Green Nonsulfur Bacteria 498
15.8 Other Phototrophic Bacteria 499
III • Microbial Diversity in the Sulfur Cycle 500
15.9 Dissimilative Sulfate-Reducers 501
15.10 Dissimilative Sulfur-Reducers 502
15.11 Dissimilative Sulfur-Oxidizers 503
IV • Microbial Diversity in the Nitrogen Cycle 506
15.12 Diversity of Nitrogen-Fixers 506
15.13 Diversity of Nitrifiers and Denitrifiers 508
V • Other Distinctive Functional Groupings of Microorganisms 510
15.14 Dissimilative Iron-Reducers 510
15.15 Dissimilative Iron-Oxidizers 511
15.16 Methanotrophs and Methylotrophs 512
15.17 Microbial Predators 514
15.18 Microbial Bioluminescence 517
VI • Morphologically Diverse Bacteria 519
15.19 Spirochetes 519
15.20 Budding and Prosthecate/Stalked Microorganisms 521
15.21 Sheathed Microorganisms 524
15.22 Magnetic Microbes 525
16 Diversity of Bacteria 530
microbiologynow The Mystery of the Missing Peptidoglycan 530
I • Proteobacteria 531
16.1 Alphaproteobacteria 532
16.2 Betaproteobacteria 535
16.3 Gammaproteobacteria: Enterobacteriales 537
16.4 Gammaproteobacteria: Pseudomonadales and Vibrionales 539
16.5 Deltaproteobacteria and Epsilonproteobacteria 540
II • Firmicutes, Tenericutes, and Actinobacteria 542
16.6 Firmicutes: Lactobacillales 543
16.7 Firmicutes: Nonsporulating Bacillales and Clostridiales 544
16.8 Firmicutes: Sporulating Bacillales and Clostridiales 545
16.9 Tenericutes: The Mycoplasmas 547
16.10 Actinobacteria: Coryneform and Propionic Acid Bacteria 548
16.11 Actinobacteria: Mycobacterium 550
16.12 Filamentous Actinobacteria: Streptomyces and Relatives 551
III • Bacteroidetes 553
16.13 Bacteroidales 553
16.14 Cytophagales, Flavobacteriales, and Sphingobacteriales 554
IV • Chlamydiae, Planctomycetes, and Verrucomicrobia 556
16.15 Chlamydiae 556
16.16 Planctomycetes 558
16.17 Verrucomicrobia 559
V • Hyperthermophilic Bacteria 559
16.18 Thermotogae and Thermodesulfobacteria 559
16.19 Aquificae 560
VI • Other Bacteria 561
16.20 Deinococcus–Thermus 561
16.21 Other Notable Phyla of Bacteria 562
17 Diversity of Archaea 566
microbiologynow The Archaea Just Under Your Feet 566
I • Euryarchaeota 567
17.1 Extremely Halophilic Archaea 568
17.2 Methanogenic Archaea 571
17.3 Thermoplasmatales 574
17.4 Thermococcales and Archaeoglobales 576
II • Thaumarchaeota, Nanoarchaeota, and Korarchaeota 577
17.5 Thaumarchaeota and Nitrification in Archaea 577
17.6 Nanoarchaeota and the “Hospitable Fireball” 578
17.7 Korarchaeota and the “Secret Filament” 579
III • Crenarchaeota 580
17.8 Habitats and Energy Metabolism 580
17.9 Crenarchaeota from Terrestrial Volcanic Habitats 581
17.10 Crenarchaeota from Submarine Volcanic Habitats 583
IV • Evolution and Life at High Temperature 586
17.11 An Upper Temperature Limit for Microbial Life 586
17.12 Molecular Adaptations to Life at High Temperature 588
17.13 Hyperthermophilic Archaea, H2, and Microbial Evolution 589
18 Diversity of Microbial Eukarya 593
microbiologynow Arbuscular Mycorrhizal Fungi: Intimate, Unseen, and Powerful 593
I • Organelles and Phylogeny of Microbial Eukarya 594
18.1 Endosymbioses and the Eukaryotic Cell 594
18.2 Phylogenetic Lineages of Eukarya 596
II • Protists 597
18.3 Excavata 597
18.4 Alveolata 599
18.5 Stramenopiles 601
18.6 Rhizaria 603
18.7 Amoebozoa 604
III • Fungi 606
18.8 Fungal Physiology, Structure, and Symbioses 606
18.9 Fungal Reproduction and Phylogeny 608
18.10 Microsporidia and Chytridiomycota 609
18.11 Zygomycota and Glomeromycota 610
18.12 Ascomycota 611
18.13 Basidiomycota 612
IV • Archaeplastida 613
18.14 Red Algae 613
18.15 Green Algae 614
Unit 5 Microbial Ecology and Environmental Microbiology 619
19 Taking the Measure of Microbial Systems 619
microbiologynow The Vineyard Microbiome Revealed by Next-Generation Sequencing Technology 619
I • Culture-Dependent Analyses of Microbial Communities 620
19.1 Enrichment Culture Microbiology 620
19.2 Classical Procedures for Isolating Microbes 624
19.3 Selective Single-Cell Isolation: Laser Tweezers, Flow Cytometry, Microfluidics, and High-Throughput Methods 625
II • Culture-Independent Microscopic Analyses of Microbial Communities 627
19.4 General Staining Methods 627
19.5 Fluorescence In Situ Hybridization (FISH) 630
III • Culture-Independent Genetic Analyses of Microbial Communities 631
19.6 PCR Methods of Microbial Community Analysis 631
19.7 Microarrays for Analysis of Microbial Phylogenetic and Functional Diversity 635
19.8 Environmental Genomics and Related Methods 636
IV • Measuring Microbial Activities in Nature 640
19.9 Chemical Assays, Radioisotopic Methods, and Microsensors 640
19.10 Stable Isotopes and Stable Isotope Probing 642
19.11 Linking Functions to Specific Organisms 644
19.12 Linking Genes and Cellular Properties to Individual Cells 646
20 Microbial Ecosystems 651
microbiologynow Microbes of the Abyss 651
I • Microbial Ecology 652
20.1 General Ecological Concepts 652
20.2 Ecosystem Service: Biogeochemistry and Nutrient Cycles 653
II • The Microbial Environment 654
20.3 Environments and Microenvironments 654
20.4 Surfaces and Biofilms 656
20.5 Microbial Mats 658
III • Terrestrial Environments 660
20.6 Soils 660
20.7 The Terrestrial Subsurface 665
IV • Aquatic Environments 666
20.8 Freshwaters 667
20.9 The Marine Environment: Phototrophs and Oxygen Relationships 669
20.10 Major Marine Phototrophs 672
20.11 Pelagic Bacteria, Archaea, and Viruses 674
20.12 The Deep Sea 676
20.13 Deep-Sea Sediments 678
20.14 Hydrothermal Vents 681
21 Nutrient Cycles 687
microbiologynow The Big Thaw and the Microbiology of Climate Change 687
I • Carbon, Nitrogen, and Sulfur Cycles 688
21.1 The Carbon Cycle 688
21.2 Syntrophy and Methanogenesis 690
21.3 The Nitrogen Cycle 692
21.4 The Sulfur Cycle 694
II • Other Nutrient Cycles 695
21.5 The Iron and Manganese Cycles 696
21.6 The Phosphorus, Calcium, and Silica Cycles 698
III • Humans and Nutrient Cycling 702
21.7 Mercury Transformations 702
21.8 Human Impacts on the Carbon and Nitrogen Cycles 703
Explore the Microbial World 698
Microbially Wired 698
22 Microbiology of the Built Environment 708
microbiologynow After the Toilet Flushes 708
I • Mineral Recovery and Acid Mine Drainage 709
22.1 Mining with Microorganisms 709
22.2 Acid Mine Drainage 711
II • Bioremediation 712
22.3 Bioremediation of Uranium-Contaminated Environments 712
22.4 Bioremediation of Organic Pollutants: Hydrocarbons 713
22.5 Bioremediation of Organic Pollutants: Pesticides and Plastics 714
III • Wastewater and Drinking Water Treatment 716
22.6 Primary and Secondary Wastewater Treatment 716
22.7 Advanced Wastewater Treatment 719
22.8 Drinking Water Purification and Stabilization 722
22.9 Water Distribution Systems 724
IV • Indoor Microbiology and Microbially Influenced Corrosion 725
22.10 The Microbiology of Homes and Public Spaces 725
22.11 Microbially Influenced Corrosion of Metals 727
22.12 Biodeterioration of Stone and Concrete 728
23 Microbial Symbioses with Microbes, Plants, and Animals 732
microbiologynow The Inner Life of Bees 732
I • Symbioses between Microorganisms 733
23.1 Lichens 733
23.2 “Chlorochromatium aggregatum” 734
II • Plants as Microbial Habitats 736
23.3 The Legume–Root Nodule Symbiosis 736
23.4 Mycorrhizae 741
23.5 Agrobacterium and Crown Gall Disease 744
III • Insects as Microbial Habitats 745
23.6 Heritable Symbionts of Insects 745
23.7 Termites 748
IV • Other Invertebrates as Microbial Habitats 750
23.8 Hawaiian Bobtail Squid 750
23.9 Marine Invertebrates at Hydrothermal Vents and Cold Seeps 752
23.10 Entomopathogenic Nematodes 753
23.11 Reef-Building Corals 754
V • Mammalian Gut Systems as Microbial Habitats 757
23.12 Alternative Mammalian Gut Systems 757
23.13 The Rumen and Ruminant Animals 758
Explore the Microbial World 747
The Symbiotic Organ of The Bean Bug 747
Unit 6 Microbe–Human Interactions and the Immune System 765
24 Microbial Symbioses with Humans 765
microbiologynow Frozen in Time: The Iceman Microbiome 765
I • Structure and Function of the Healthy Adult Human Microbiome 766
24.1 Overview of the Human Microbiome 766
24.2 Gastrointestinal Microbiota 768
24.3 Oral Cavity and Airways 772
24.4 Urogenital Tracts and Their Microbes 776
24.5 The Skin and Its Microbes 777
II • From Birth to Death: Development of the Human Microbiome 780
24.6 Human Study Groups and Animal Models 780
24.7 Colonization, Succession, and Stability of the Gut Microbiota 781
III • Disorders Attributed to the Human Microbiome 783
24.8 Disorders Attributed to the Gut Microbiota 783
24.9 Disorders Attributed to the Oral, Skin, and Vaginal Microbiota 786
IV • Modulation of the Human Microbiome 788
24.10 Antibiotics and the Human Microbiome 788
24.11 Probiotics and Prebiotics 789
Explore the Microbial World 773
The Gut–Brain Axis 773
25 Microbial Infection and Pathogenesis 793
microbiologynow The Microbial Community That Thrives on Your Teeth 793
I • Human–Microbial Interactions 794
25.1 Microbial Adherence 794
25.2 Colonization and Invasion 796
25.3 Pathogenicity, Virulence, and Attenuation 798
25.4 Genetics of Virulence and the Compromised Host 799
II • Enzymes and Toxins of Pathogenesis 800
25.5 Enzymes as Virulence Factors 801
25.6 AB-Type Exotoxins 802
25.7 Cytolytic and Superantigen Exotoxins 805
25.8 Endotoxins 807
26 Innate Immunity: Broadly Specific Host Defenses 811
microbiologynow Rehabilitating a Much-Maligned Peptide: Amyloid-ß 811
I • Fundamentals of Host Defense 812
26.1 Basic Properties of the Immune System 812
26.2 Barriers to Pathogen Invasion 813
II • Cells and Organs of the Immune System 815
26.3 The Blood and Lymphatic Systems 815
26.4 Leukocyte Production and Diversity 816
III • Phagocyte Response Mechanisms 818
26.5 Pathogen Challenge and Phagocyte Recruitment 818
26.6 Pathogen Recognition and Phagocyte Signal Transduction 820
26.7 Phagocytosis and Phagocyte Inhibition 823
IV • Other Innate Host Defenses 824
26.8 Inflammation and Fever 825
26.9 The Complement System 826
26.10 Innate Defenses against Viruses 829
Explore the Microbial World 821
Drosophila Toll Receptors—An Ancient Response to Infections 821
27 Adaptive Immunity: Highly Specific Host Defenses 834
microbiologynow Got (Raw) Milk? The Role of Unprocessed Cow’s Milk in Protecting against Allergy and Asthma 834
I • Principles of Adaptive Immunity 835
27.1 Specificity, Memory, Selection Processes, and Tolerance 835
27.2 Immunogens and Classes of Immunity 838
II • Antibodies 840
27.3 Antibody Production and Structural Diversity 840
27.4 Antigen Binding and the Genetics of Antibody Diversity 844
III • The Major Histocompatibility Complex (MHC) 847
27.5 MHC Proteins and Their Functions 847
27.6 MHC Polymorphism, Polygeny, and Peptide Binding 850
IV • T Cells and Their Receptors 851
27.7 T Cell Receptors: Proteins, Genes, and Diversity 851
27.8 T Cell Diversity 854
V • Immune Disorders and Deficiencies 857
27.9 Allergy, Hypersensitivity, and Autoimmunity 857
27.10 Superantigens and Immunodeficiency 860
28 Clinical Microbiology and Immunology 866
microbiologynow Bacteriophages: Tiny Allies in the Fight against Antibiotic-Resistant Bacteria 866
I • The Clinical Microbiology Setting 867
28.1 Safety in the Microbiology Laboratory 867
28.2 Healthcare-Associated Infections 868
II • Isolating and Characterizing Infectious Microorganisms 869
28.3 Workflow in the Clinical Laboratory 869
28.4 Choosing the Right Treatment 875
III • Immunological and Molecular Tools for Disease Diagnosis 876
28.5 Immunoassays and Disease 876
28.6 Precipitation, Agglutination, and Immunofluorescence 878
28.7 Enzyme Immunoassays, Rapid Tests, and Immunoblots 880
28.8 Nucleic Acid–Based Clinical Assays 883
IV • Prevention and Treatment of Infectious Diseases 886
28.9 Vaccination 886
28.10 Antibacterial Drugs 888
28.11 Antimicrobial Drugs That Target Nonbacterial Pathogens 894
28.12 Antimicrobial Drug Resistance and New Treatment Strategies 896
Explore the Microbial World 872
MRSA—A Formidable Clinical Challenge 872
Unit 7 Infectious Diseases and Their Transmission 902
29 Epidemiology 902
microbiologynow A Mysterious New Disease Outbreak 902
I • Principles of Epidemiology 903
29.1 The Language of Epidemiology 903
29.2 The Host Community 905
29.3 Infectious Disease Transmission and Reservoirs 906
29.4 Characteristics of Disease Epidemics 908
II • Epidemiology and Public Health 910
29.5 Public Health and Infectious Disease 910
29.6 Global Health Comparisons 913
III • Emerging Infectious Diseases, Pandemics, and Other Threats 914
29.7 Emerging and Reemerging Infectious Diseases 914
29.8 Examples of Pandemics: HIV/AIDS, Cholera, and Influenza 916
29.9 Public Health Threats from Microbial Weapons 919
Explore the Microbial World 909
Textbook Epidemiology: The SARS Epidemic 909
30 Person-to-Person Bacterial and Viral Diseases 923
microbiologynow A New Weapon against AIDS? 923
I • Airborne Bacterial Diseases 924
30.1 Airborne Pathogens 924
30.2 Streptococcal Syndromes 925
30.3 Diphtheria and Pertussis 928
30.4 Tuberculosis and Leprosy 929
30.5 Meningitis and Meningococcemia 931
II • Airborne Viral Diseases 932
30.6 MMR and Varicella-Zoster Infections 932
30.7 The Common Cold 934
30.8 Influenza 935
III • Direct-Contact Bacterial and Viral Diseases 937
30.9 Staphylococcus aureus Infections 937
30.10 Helicobacter pylori and Gastric Diseases 939
30.11 Hepatitis 940
30.12 Ebola: A Deadly Threat 942
IV • Sexually Transmitted Infections 943
30.13 Gonorrhea and Syphilis 944
30.14 Chlamydia, Herpes, and Human Papillomavirus 946
30.15 HIV/AIDS 948
31 Vectorborne and Soilborne Bacterial and Viral Diseases 955
microbiologynow A New Look at Rabies Vaccines 955
I • Animal-Transmitted Viral Diseases 956
31.1 Rabies Virus and Rabies 956
31.2 Hantavirus and Hantavirus Syndromes 957
II • Arthropod-Transmitted Bacterial and Viral Diseases 958
31.3 Rickettsial Diseases 958
31.4 Lyme Disease and Borrelia 961
31.5 Yellow Fever, Dengue Fever, Chikungunya, and Zika 962
31.6 West Nile Fever 965
31.7 Plague 966
III • Soilborne Bacterial Diseases 968
31.8 Anthrax 968
31.9 Tetanus and Gas Gangrene 969
32 Waterborne and Foodborne Bacterial and Viral Diseases 973
microbiologynow The Classic Botulism Scenario 973
I • Water as a Disease Vehicle 974
32.1 Agents and Sources of Waterborne Diseases 974
32.2 Public Health and Water Quality 975
II • Waterborne Diseases 976
32.3 Vibrio cholerae and Cholera 976
32.4 Legionellosis 978
32.5 Typhoid Fever and Norovirus Illness 978
III • Food as a Disease Vehicle 979
32.6 Food Spoilage and Food Preservation 980
32.7 Foodborne Disease and Food Epidemiology 981
IV • Food Poisoning 983
32.8 Staphylococcal Food Poisoning 983
32.9 Clostridial Food Poisoning 984
V • Food Infection 985
32.10 Salmonellosis 985
32.11 Pathogenic Escherichia coli 986
32.12 Campylobacter 987
32.13 Listeriosis 988
32.14 Other Foodborne Infectious Diseases 989
33 Eukaryotic Pathogens: Fungi, Protozoa, and Helminths 994
microbiologynow Environmental Change and Parasitic Diseases in the Amazon 994
I • Fungal Infections 995
33.1 Pathogenic Fungi and Classes of Infection 995
33.2 Fungal Diseases: Mycoses 997
II • Visceral Parasitic Infections 998
33.3 Amoebae and Ciliates: Entamoeba, Naegleria, and Balantidium 999
33.4 Other Visceral Parasites: Giardia, Trichomonas, Cryptosporidium, Toxoplasma, and Cyclospora 1000
III • Blood and Tissue Parasitic Infections 1002
33.5 Plasmodium and Malaria 1002
33.6 Leishmaniasis, Trypanosomiasis, and Chagas Disease 1003
33.7 Parasitic Helminths: Schistosomiasis and Filariases 1004
Photo Credits 1009
Glossary Terms 1013
A 1013
B 1013
C 1013
D 1013
E 1014
F 1014
G 1014
H 1014
I 1014
K 1014
L 1014
M 1014
N 1015
O 1015
P 1015
Q 1015
R 1015
S 1016
T 1016
U 1016
V 1016
W 1016
X 1016
Y 1016
Z 1016
Index 1017
A 1017
B 1020
C 1022
D 1026
E 1028
F 1030
G 1032
H 1034
I 1036
J 1037
K 1037
L 1038
M 1039
N 1042
O 1043
P 1044
Q 1048
R 1048
S 1050
T 1054
U 1056
V 1056
W 1058
X 1058
Y 1058
Z 1058
Inside Back Cover IBC
Back Cover Back Cover