Additional Information
Book Details
Abstract
For one-semester, undergraduate-level courses in Optoelectronics and Photonics, in the departments of electrical engineering, engineering physics, and materials science and engineering.
This text takes a fresh look at the enormous developments in electo-optic devices and associated materials—such as Pockels (Lithium Niobate) modulators.
Table of Contents
Section Title | Page | Action | Price |
---|---|---|---|
Cover | Cover | ||
Contents | 9 | ||
Chapter 1 Wave Nature of Light | 19 | ||
1.1 Light Waves in a Homogeneous Medium | 19 | ||
A. Plane Electromagnetic Wave | 19 | ||
B. Maxwell’s Wave Equation and Diverging Waves | 22 | ||
Example 1.1.1 A diverging laser beam | 26 | ||
1.2 Refractive Index and Dispersion | 26 | ||
Example 1.2.1 Sellmeier equation and diamond | 29 | ||
Example 1.2.2 Cauchy equation and diamond | 30 | ||
1.3 Group Velocity and Group Index | 30 | ||
Example 1.3.1 Group velocity | 33 | ||
Example 1.3.2 Group velocity and index | 33 | ||
Example 1.3.3 Group and phase velocities | 34 | ||
1.4 Magnetic Field, Irradiance, and Poynting Vector | 34 | ||
Example 1.4.1 Electric and magnetic fields in light | 37 | ||
Example 1.4.2 Power and irradiance of a Gaussian beam | 37 | ||
1.5 Snell’s Law and Total Internal Reflection (TIR) | 38 | ||
Example 1.5.1 Beam displacement | 41 | ||
1.6 Fresnel’s Equations | 42 | ||
A. Amplitude Reflection and Transmission Coefficients (r and t ) | 42 | ||
B. Intensity, Reflectance, and Transmittance | 48 | ||
C. Goos-Hänchen Shift and Optical Tunneling | 49 | ||
Example 1.6.1 Reflection of light from a less dense medium (internal reflection) | 51 | ||
Example 1.6.2 Reflection at normal incidence, and internal and external reflection | 52 | ||
Example 1.6.3 Reflection and transmission at the Brewster angle | 53 | ||
1.7 Antireflection Coatings and Dielectric Mirrors | 54 | ||
A. Antireflection Coatings on Photodetectors and Solar Cells | 54 | ||
Example 1.7.1 Antireflection coating on a photodetector | 55 | ||
B. Dielectric Mirrors and Bragg Reflectors | 56 | ||
Example 1.7.2 Dielectric mirror | 58 | ||
1.8 Absorption of Light and Complex Refractive Index | 59 | ||
Example 1.8.1 Complex refractive index of InP | 62 | ||
Example 1.8.2 Reflectance of CdTe around resonance absorption | 63 | ||
1.9 Temporal and Spatial Coherence | 63 | ||
Example 1.9.1 Coherence length of LED light | 66 | ||
1.10 Superposition and Interference of Waves | 67 | ||
1.11 Multiple Interference and Optical Resonators | 69 | ||
Example 1.11.1 Resonator modes and spectral width of a semiconductor Fabry–Perot cavity | 73 | ||
1.12 Diffraction Principles | 74 | ||
A. Fraunhofer Diffraction | 74 | ||
Example 1.12.1 Resolving power of imaging systems | 79 | ||
B. Diffraction Grating | 80 | ||
Example 1.12.2 A reflection grating | 83 | ||
Additional topics | 84 | ||
1.13 Interferometers | 84 | ||
1.14 Thin Film Optics: Multiple Reflections in Thin Films | 86 | ||
Example 1.14.1 Thin film optics | 88 | ||
1.15 Multiple Reflections in Plates and Incoherent Waves | 89 | ||
1.16 Scattering of Light | 90 | ||
1.17 Photonic Crystals | 92 | ||
Questions and Problems | 98 | ||
Chapter 2 Dielectric Waveguides and Optical Fibers | 111 | ||
2.1 Symmetric Planar Dielectric Slab Waveguide | 111 | ||
A. Waveguide Condition | 111 | ||
B. Single and Multimode Waveguides | 116 | ||
C. TE and TM Modes | 116 | ||
Example 2.1.1 Waveguide modes | 117 | ||
Example 2.1.2 V-number and the number of modes | 118 | ||
Example 2.1.3 Mode field width, 2w[Sub(0)] | 119 | ||
2.2 Modal and Waveguide Dispersion in Planar Waveguides | 120 | ||
A. Waveguide Dispersion Diagram and Group Velocity | 120 | ||
B. Intermodal Dispersion | 121 | ||
C. Intramodal Dispersion | 122 | ||
2.3 Step-Index Optical Fiber | 123 | ||
A. Principles and Allowed Modes | 123 | ||
Example 2.3.1 A multimode fiber | 128 | ||
Example 2.3.2 A single-mode fiber | 128 | ||
B. Mode Field Diameter | 128 | ||
Example 2.3.3 Mode field diameter | 129 | ||
C. Propagation Constant and Group Velocity | 130 | ||
Example 2.3.4 Group velocity and delay | 131 | ||
D. Modal Dispersion in Multimode Step-Index Fibers | 132 | ||
Example 2.3.5 A multimode fiber and dispersion | 132 | ||
2.4 Numerical Aperture | 133 | ||
Example 2.4.1 A multimode fiber and total acceptance angle | 134 | ||
Example 2.4.2 A single-mode fiber | 134 | ||
2.5 Dispersion In Single-Mode Fibers | 135 | ||
A. Material Dispersion | 135 | ||
B. Waveguide Dispersion | 136 | ||
C. Chromatic Dispersion | 138 | ||
D. Profile and Polarization Dispersion Effects | 138 | ||
Example 2.5.1 Material dispersion | 140 | ||
Example 2.5.2 Material, waveguide, and chromatic dispersion | 141 | ||
Example 2.5.3 Chromatic dispersion at different wavelengths | 141 | ||
Example 2.5.4 Waveguide dispersion | 142 | ||
2.6 Dispersion Modified Fibers and Compensation | 142 | ||
A. Dispersion Modified Fibers | 142 | ||
B. Dispersion Compensation | 144 | ||
Example 2.6.1 Dispersion compensation | 146 | ||
2.7 Bit Rate, Dispersion, and Electrical and Optical Bandwidth | 146 | ||
A. Bit Rate and Dispersion | 146 | ||
B. Optical and Electrical Bandwidth | 149 | ||
Example 2.7.1 Bit rate and dispersion for a single-mode fiber | 151 | ||
2.8 The Graded Index (GRIN) Optical Fiber | 151 | ||
A. Basic Properties of GRIN Fibers | 151 | ||
B. Telecommunications | 155 | ||
Example 2.8.1 Dispersion in a graded index fiber and bit rate | 156 | ||
Example 2.8.2 Dispersion in a graded index fiber and bit rate | 157 | ||
2.9 Attenuation in Optical Fibers | 158 | ||
A. Attenuation Coefficient and Optical Power Levels | 158 | ||
Example 2.9.1 Attenuation along an optical fiber | 160 | ||
B. Intrinsic Attenuation in Optical Fibers | 160 | ||
C. Intrinsic Attenuation Equations | 162 | ||
Example 2.9.2 Rayleigh scattering equations | 163 | ||
D. Bending losses | 164 | ||
Example 2.9.3 Bending loss for SMF | 167 | ||
2.10 Fiber Manufacture | 168 | ||
A. Fiber Drawing | 168 | ||
B. Outside Vapor Deposition | 169 | ||
Example 2.10.1 Fiber drawing | 171 | ||
Additional topics | 171 | ||
2.11 Wavelength Division Multiplexing: WDM | 171 | ||
2.12 Nonlinear Effects in Optical Fibers and DWDM | 173 | ||
2.13 Bragg Fibers | 175 | ||
2.14 Photonic Crystal Fibers—Holey Fibers | 176 | ||
2.15 Fiber Bragg Gratings and Sensors | 179 | ||
Example 2.15.1 Fiber Bragg grating at 1550 nm | 183 | ||
Questions and Problems | 183 | ||
Chapter 3 Semiconductor Science and Light-Emitting Diodes | 195 | ||
3.1 Review of Semiconductor Concepts and Energy Bands | 195 | ||
A. Energy Band Diagrams, Density of States, Fermi–Dirac Function and Metals | 195 | ||
B. Energy Band Diagrams of Semiconductors | 198 | ||
3.2 Semiconductor Statistics | 200 | ||
3.3 Extrinsic Semiconductors | 203 | ||
A. n-Type and p-Type Semiconductors | 203 | ||
B. Compensation Doping | 206 | ||
C. Nondegenerate and Degenerate Semiconductors | 207 | ||
D. Energy Band Diagrams in an Applied Field | 208 | ||
Example 3.3.1 Fermi levels in semiconductors | 209 | ||
Example 3.3.2 Conductivity of n-Si | 209 | ||
3.4 Direct and Indirect Bandgap Semiconductors: E–k Diagrams | 210 | ||
3.5 pn Junction Principles | 214 | ||
A. Open Circuit | 214 | ||
B. Forward Bias and the Shockley Diode Equation | 217 | ||
C. Minority Carrier Charge Stored in Forward Bias | 222 | ||
D. Recombination Current and the Total Current | 222 | ||
3.6 pn Junction Reverse Current | 225 | ||
3.7 pn Junction Dynamic Resistance and Capacitances | 227 | ||
A. Depletion Layer Capacitance | 227 | ||
B. Dynamic Resistance and Diffusion Capacitance for Small Signals | 229 | ||
3.8 Recombination Lifetime | 230 | ||
A. Direct Recombination | 230 | ||
B. Indirect Recombination | 232 | ||
Example 3.8.1 A direct bandgap pn junction | 232 | ||
3.9 pn Junction Band Diagram | 234 | ||
A. Open Circuit | 234 | ||
B. Forward and Reverse Bias | 236 | ||
Example 3.9.1 The built-in voltage from the band diagram | 237 | ||
3.10 Heterojunctions | 238 | ||
3.11 Light-Emitting Diodes: Principles | 240 | ||
A. Homojunction LEDs | 240 | ||
B. Heterostructure High Intensity LEDs | 242 | ||
C. Output Spectrum | 244 | ||
Example 3.11.1 LED spectral linewidth | 247 | ||
Example 3.11.2 LED spectral width | 248 | ||
Example 3.11.3 Dependence of the emission peak and linewidth on temperature | 249 | ||
3.12 Quantum Well High Intensity LEDs | 249 | ||
Example 3.12.1 Energy levels in the quantum well | 252 | ||
3.13 LED Materials and Structures | 253 | ||
A. LED Materials | 253 | ||
B. LED Structures | 254 | ||
Example 3.13.1 Light extraction from a bare LED chip | 257 | ||
3.14 LED Efficiencies and Luminous Flux | 258 | ||
Example 3.14.1 LED efficiencies | 260 | ||
Example 3.14.2 LED brightness | 261 | ||
3.15 Basic LED Characteristics | 261 | ||
3.16 LEDs for Optical Fiber Communications | 262 | ||
3.17 Phosphors and White LEDs | 265 | ||
Additional topics | 267 | ||
3.18 LED Electronics | 267 | ||
Questions and Problems | 270 | ||
Chapter 4 Stimulated Emission Devices: Optical Amplifiers and Lasers | 281 | ||
4.1 Stimulated Emission, Photon Amplification, and Lasers | 281 | ||
A. Stimulated Emission and Population Inversion | 281 | ||
B. Photon Amplification and Laser Principles | 282 | ||
C. Four-Level Laser System | 285 | ||
4.2 Stimulated Emission Rate and Emission Cross-Section | 286 | ||
A. Stimulated Emission and Einstein Coefficients | 286 | ||
Example 4.2.1 Minimum pumping power for three-level laser systems | 288 | ||
B. Emission and Absorption Cross-Sections | 289 | ||
Example 4.2.2 Gain coefficient in a Nd[Sup(3+)] -doped glass fiber | 291 | ||
4.3 Erbium-Doped Fiber Amplifiers | 292 | ||
A. Principle of Operation and Amplifier Configurations | 292 | ||
B. EDFA Characteristics, Efficiency, and Gain Saturation | 296 | ||
Example 4.3.1 An erbium-doped fiber amplifier | 299 | ||
C. Gain-Flattened EDFAs and Noise Figure | 300 | ||
4.4 Gas Lasers: The He-Ne Laser | 303 | ||
Example 4.4.1 Efficiency of the He-Ne laser | 306 | ||
4.5 The Output Spectrum of a Gas Laser | 306 | ||
Example 4.5.1 Doppler broadened linewidth | 309 | ||
4.6 Laser Oscillations: Threshold Gain Coefficient and Gain Bandwidth | 311 | ||
A. Optical Gain Coefficient g | 311 | ||
B. Threshold Gain Coefficient g[Sub(th)] and Output Power | 312 | ||
Example 4.6.1 Threshold population inversion for the He-Ne laser | 315 | ||
C. Output Power and Photon Lifetime in the Cavity | 315 | ||
Example 4.6.2 Output power and photon cavity lifetime T[Sub(ph)] | 317 | ||
D. Optical Cavity, Phase Condition, Laser Modes | 317 | ||
4.7 Broadening of the Optical Gain Curve and Linewidth | 319 | ||
4.8 Pulsed Lasers: Q-Switching and Mode Locking | 323 | ||
A. Q-Switching | 323 | ||
B. Mode Locking | 326 | ||
4.9 Principle of the Laser Diode | 327 | ||
4.10 Heterostructure Laser Diodes | 331 | ||
Example 4.10.1 Modes in a semiconductor laser and the optical cavity length | 336 | ||
4.11 Quantum Well Devices | 337 | ||
Example 4.11.1 A GaAs quantum well | 339 | ||
4.12 Elementary Laser Diode Characteristics | 340 | ||
Example 4.12.1 Laser output wavelength variation with temperature | 346 | ||
Example 4.12.2 Laser diode efficiencies for a sky-blue LD | 346 | ||
Example 4.12.3 Laser diode efficiencies | 347 | ||
4.13 Steady State Semiconductor Rate Equations: The Laser Diode Equation | 348 | ||
A. Laser Diode Equation | 348 | ||
B. Optical Gain Curve, Threshold, and Transparency Conditions | 351 | ||
Example 4.13.1 Threshold current and optical output power from a Fabry–Perot heterostructure laser diode | 352 | ||
4.14 Single Frequency Semiconductor Lasers | 354 | ||
A. Distributed Bragg Reflector LDs | 354 | ||
B. Distributed Feedback LDs | 355 | ||
C. External Cavity LDs | 358 | ||
Example 4.14.1 DFB LD wavelength | 360 | ||
4.15 Vertical Cavity Surface Emitting Lasers | 360 | ||
4.16 Semiconductor Optical Amplifiers | 364 | ||
Additional topics | 366 | ||
4.17 Superluminescent and Resonant Cavity LEDs: SLD and RCLED | 366 | ||
4.18 Direct Modulation of Laser Diodes | 367 | ||
4.19 Holography | 370 | ||
Questions and Problems | 373 | ||
Chapter 5 Photodetectors and Image Sensors | 381 | ||
5.1 Principle of the pn Junction Photodiode | 381 | ||
A. Basic Principles | 381 | ||
B. Energy Band Diagrams and Photodetection Modes | 383 | ||
C. Current-Voltage Convention and Modes of Operation | 385 | ||
5.2 Shockley–Ramo Theorem and External Photocurrent | 386 | ||
5.3 Absorption Coefficient and Photodetector Materials | 388 | ||
5.4 Quantum Efficiency and Responsivity | 391 | ||
Example 5.4.1 Quantum efficiency and responsivity | 394 | ||
Example 5.4.2 Maximum quantum efficiency | 395 | ||
5.5 The pin Photodiode | 395 | ||
Example 5.5.1 Operation and speed of a pin photodiode | 399 | ||
Example 5.5.2 Photocarrier diffusion in a pin photodiode | 399 | ||
Example 5.5.3 Responsivity of a pin photodiode | 400 | ||
Example 5.5.4 Steady state photocurrent in the pin photodiode | 401 | ||
5.6 Avalanche Photodiode | 402 | ||
A. Principles and Device Structures | 402 | ||
Example 5.6.1 InGaAs APD responsivity | 406 | ||
Example 5.6.2 Silicon APD | 406 | ||
B. Impact Ionization and Avalanche Multiplication | 406 | ||
Example 5.6.3 Avalanche multiplication in Si APDs | 408 | ||
5.7 Heterojunction Photodiodes | 409 | ||
A. Separate Absorption and Multiplication APD | 409 | ||
B. Superlattice APDs | 411 | ||
5.8 Schottky Junction Photodetector | 413 | ||
5.9 Phototransistors | 417 | ||
5.10 Photoconductive Detectors and Photoconductive Gain | 418 | ||
5.11 Basic Photodiode Circuits | 421 | ||
5.12 Noise in Photodetectors | 424 | ||
A. The pn Junction and pin Photodiodes | 424 | ||
Example 5.12.1 NEP of a Si pin photodiode | 428 | ||
Example 5.12.2 Noise of an ideal photodetector | 428 | ||
Example 5.12.3 SNR of a receiver | 429 | ||
B. Avalanche Noise in the APD | 430 | ||
Example 5.12.4 Noise in an APD | 430 | ||
5.13 Image Sensors | 431 | ||
A. Basic Principles | 431 | ||
B. Active Matrix Array and CMOS Image Sensors | 433 | ||
C. Charge-Coupled Devices | 435 | ||
Additional topics | 437 | ||
5.14 Photovoltaic Devices: Solar Cells | 437 | ||
A. Basic Principles | 437 | ||
B. Operating Current and Voltage and Fill Factor | 439 | ||
C. Equivalent Circuit of a Solar Cell | 440 | ||
D. Solar Cell Structures and Efficiencies | 442 | ||
Example 5.14.1 Solar cell driving a load | 444 | ||
Example 5.14.2 Open circuit voltage and short circuit current | 445 | ||
Questions and Problems | 445 | ||
Chapter 6 Polarization and Modulation of Light | 457 | ||
6.1 Polarization | 457 | ||
A. State of Polarization | 457 | ||
Example 6.1.1 Elliptical and circular polarization | 460 | ||
B. Malus’s Law | 460 | ||
6.2 Light Propagation in an Anisotropic Medium: Birefringence | 461 | ||
A. Optical Anisotropy | 461 | ||
B. Uniaxial Crystals and Fresnel’s Optical Indicatrix | 463 | ||
C. Birefringence of Calcite | 466 | ||
D. Dichroism | 467 | ||
6.3 Birefringent Optical Devices | 468 | ||
A. Retarding Plates | 468 | ||
Example 6.3.1 Quartz-half wave plate | 469 | ||
Example 6.3.2 Circular polarization from linear polarization | 470 | ||
B. Soleil–Babinet Compensator | 470 | ||
C. Birefringent Prisms | 471 | ||
6.4 Optical Activity and Circular Birefringence | 472 | ||
6.5 Liquid Crystal Displays | 474 | ||
6.6 Electro-Optic Effects | 478 | ||
A. Definitions | 478 | ||
B. Pockels Effect | 479 | ||
Example 6.6.1 Pockels Cell Modulator | 484 | ||
C. Kerr Effect | 484 | ||
Example 6.6.2 Kerr Effect Modulator | 486 | ||
6.7 Integrated Optical Modulators | 486 | ||
A. Phase and Polarization Modulation | 486 | ||
B. Mach–Zehnder Modulator | 487 | ||
C. Coupled Waveguide Modulators | 489 | ||
Example 6.7.1 Modulated Directional Coupler | 492 | ||
6.8 Acousto-Optic Modulator | 492 | ||
A. Photoelastic Effect and Principles | 492 | ||
B. Acousto-Optic Modulators | 494 | ||
Example 6.8.1 AO Modulator | 499 | ||
6.9 Faraday Rotation and Optical Isolators | 499 | ||
Example 6.9.1 Faraday rotation | 500 | ||
6.10 Nonlinear Optics and Second Harmonic Generation | 501 | ||
Additional topics | 505 | ||
6.11 Jones Vectors | 505 | ||
Questions and Problems | 506 | ||
Appendices | 514 | ||
Appendix A: Gaussian Distribution | 514 | ||
Appendix B: Solid Angles | 516 | ||
Appendix C: Basic Radiometry and Photometry | 518 | ||
Appendix D: Useful Mathematical Formulae | 521 | ||
Appendix E: Notation and Abbreviations | 523 | ||
Index | 535 | ||
A | 535 | ||
B | 535 | ||
C | 536 | ||
D | 536 | ||
E | 537 | ||
F | 537 | ||
G | 537 | ||
H | 537 | ||
I | 538 | ||
J | 538 | ||
K | 538 | ||
L | 538 | ||
M | 539 | ||
N | 539 | ||
O | 540 | ||
P | 540 | ||
Q | 541 | ||
R | 541 | ||
S | 542 | ||
T | 543 | ||
U | 543 | ||
V | 543 | ||
W | 543 | ||
Y | 544 |