Menu Expand
Enthalpy and Internal Energy

Enthalpy and Internal Energy

Emmerich Wilhelm | Trevor Letcher

(2017)

Abstract

Containing the very latest information on all aspects of enthalpy and internal energy as related to fluids, this book brings all the information into one authoritative survey in this well-defined field of chemical thermodynamics. Written by acknowledged experts in their respective fields, each of the 26 chapters covers theory, experimental methods and techniques and results for all types of liquids and vapours. These properties are important in all branches of pure and applied thermodynamics and this vital source is an important contribution to the subject hopefully also providing key pointers for cross-fertilization between sub-areas.

Table of Contents

Section Title Page Action Price
Cover Cover
Copyright iv
Foreword v
Preface vii
References x
Contents xi
Chapter 1 Internal Energy and Enthalpy: Introduction, Concepts and Selected Applications 1
1.1 Introduction 1
1.2 Thermodynamic Fundamentals 3
1.3 More Thermodynamics and Selected Applications 14
1.3.1 Properties of Real Fluids 14
1.3.2 Property Changes of Mixing 41
1.4 Concluding Remarks, Outlook and Acknowledgements 51
References 53
Chapter 2 Macroscopic Energy and Entropy Balances in Phase Equilibrium Studies 62
2.1 Introduction 62
2.2 Derivation of Macroscopic Balances 63
2.3 Equations 63
2.3.1 Macroscopic Energy Balance 63
2.3.2 Macroscopic Mechanical Energy Balance 64
2.3.3 Macroscopic Entropy Balance 64
2.4 Application of Macroscopic Balances 64
2.4.1 Differential Ebulliometry 64
2.5 Macroscopic Balances in Flow Calorimetry 71
2.6 Some Useful Derivative Relations 73
2.6.1 Limiting Activity Coefficients 73
2.6.2 Temperature and Pressure Derivatives 74
References 76
Chapter 3 Enthalpy Measurements of Condensed Matter by Peltier-element-based Adiabatic Scanning Calorimetry (pASC) 77
3.1 Introduction 77
3.2 Operational Principle of Adiabatic Scanning Calorimetry 78
3.3 Peltier-element-based Adiabatic Scanning Calorimeter (pASC) 79
3.4 Comparison with DSC 82
3.5 The pASC as Adiabatic Heat-step Calorimeter 83
3.6 The pASC as Heat-flux DSC-type Constant-rate Calorimeter 84
3.7 The pASC as Power-compensated DSC-type Constant-rate Calorimeter 84
3.8 High-resolution pASC Data near the Melting Point of Gallium 85
3.8.1 pASC Constant Power Scanning Results 85
3.8.2 pASC Heat-step Results 86
3.8.3 pASC Heat-flux and Power-compensated DSC-type Scanning Results 87
3.9 High-resolution pASC Data near Phase Transitions in Lipid Vesicles 89
3.10 High-resolution pASC Data for the Melting of Water 89
3.11 High-resolution pASC Data for Phase Transitions in a Liquid Crystal 92
References 94
Chapter 4 Isothermal Titration Calorimetry 96
4.1 Introduction 96
4.2 Thermodynamic Models of the Titration Processes in Isothermal Titration Calorimetry 102
4.2.1 The Process of Titration in the Different Types of Titration Cells 102
4.2.1.1 Titration Process in Open Titration Cells 103
4.2.1.2 Titration Process in Full Titration Cells 107
4.2.2 Run Types in Isothermal Titration Calorimetry 107
4.2.2.1 Concentration Run 108
4.2.2.2 Dilution Run 109
4.2.2.3 Concentration-dilution Run 110
4.2.3 Finite Titrations 112
4.2.3.1 Finite Titrations in Open Titration Cells 113
4.2.3.2 Finite Titrations in Full Titration Cells 114
4.2.4 Infinitesimal Titrations 116
4.2.4.1 Definitions and Properties of the Infinitesimal Titration 116
4.2.4.2 Thermodynamic Equations of the Infinitesimal Titrations Along Different Runs 119
4.3 Interaction of Solutes in Dilute Solutions by Isothermal Titration Calorimetry 121
4.3.1 Study of the Single Ligand Binding Site Model 122
Acknowledgments 129
References 129
Chapter 5 Calorimetric Determination of Enthalpies of Vaporization 133
5.1 Introduction 133
5.2 Theoretical Considerations 134
5.3 Calorimetric Determination of the Enthalpy of Vaporization 136
5.3.1 Condensation Apparatuses 137
5.3.1.1 Condensation Calorimeters 137
5.3.1.2 Reference Liquid Boil-off Calorimeter 139
5.3.2 Vaporization Calorimetry 141
5.3.2.1 Moderate and High Vapor Pressures 142
5.3.2.1.1 Recycle Flow Method 142
5.3.2.1.2 Method of Controlled Withdrawal of Vapor Phase 144
5.3.2.2 Low Pressures 147
5.3.2.2.1 Vaporization to a Gas Stream 147
5.3.2.2.2 Vaporization into Vacuum 151
5.3.3 Differential Scanning Calorimetry 154
5.3.4 Fast Scanning Calorimeter (FSC) 155
5.4 Conclusions 156
References 156
Chapter 6 Energetic Effects in Hydrogen-bonded Liquids and Solutions 159
6.1 Introduction 159
6.2 Pure Associated Liquids 162
6.2.1 Partitioning of the Heat Capacity of Liquids 162
6.2.2 Two-state Association Model 163
6.3 Nonaqueous Associated Solutions 165
6.3.1 Two-state Behaviour for the Excess Heat Capacity 165
6.3.2 Inert Solvents versus Proton Acceptors 166
6.4 Cold Water 168
6.4.1 Anomalous Thermodynamics 168
6.4.2 Two-state Analysis 169
6.5 Hydrophobicity 170
6.5.1 Hydration Phenomena 170
6.5.2 Aggregation of Small Amphiphiles 171
6.6 Final Remarks 174
Acknowledgments 175
References 175
Chapter 7 Thermodynamic Studies of Inclusion Compounds of Cyclodextrin 179
7.1 Introduction 179
7.2 Methods of Determination 180
7.2.1 Experimental 180
7.2.2 Theoretical 181
7.2.3 Quantum Chemical Approach 183
7.3 Thermodynamic Parameters 183
7.3.1 Enthalpy of Dilution 183
7.3.2 Effect of Aliphatic Group Size on α-CD Inclusion Compounds 184
7.3.2.1 α-CD+Aliphatic Alcohols 184
7.3.2.2 α-CD+Diols 189
7.3.2.3 α-CD+Aliphatic Nitrils 190
7.3.2.4 Difference Between Inclusion Compounds of Aliphatic Alcohols and Nitriles with α-CD 194
7.3.3 Positional Effect of Hydroxyl Groups in Butanediol Isomers 196
7.3.3.1 Inclusion of Butanediols into α-CD 196
7.3.3.2 Inclusion of Butanol Isomers into α-CD 196
7.3.4 Effect of Guest Molecule Functional Groups on Inclusion into α-CD 199
7.3.4.1 α-CD+Propane Derivatives 199
7.3.4.2 α-CD+Butane Derivatives 200
7.3.4.3 α-CD+Pentane Derivatives 200
7.3.4.4 Inclusion of Propane, Butane, and Pentane Derivatives into α-CD 200
7.4 Discussion 202
7.4.1 Entropy-Enthalpy Compensation 205
7.5 Closing Remarks 206
References 206
Chapter 8 Thermodynamic Studies of Chiral Compounds 212
8.1 Introduction 212
8.2 Material and Method 214
8.2.1 Material 214
8.2.2 Calorimetry 214
8.2.3 Theoretical Application 215
8.3 Enthalpic Behaviour 217
8.3.1 Enthalpies of Mixing for Pure Enantiomers in the Liquid State 217
8.3.1.1 Interaction of Enantiomers with Large Hydrophobic Groups 218
8.3.1.2 Correlation Between the Cohesive Energy Densities and the Enthalpies of Mixing\r 220
8.3.1.3 Molecular Interaction of Chiral Molecules 222
8.3.2 Interaction of Enantiomers in the Solution State 222
8.3.2.1 Solid Enantiomers in Solution 223
8.3.2.1.1 Enantiomers of Camphor and its Derivatives in Solution 223
8.3.2.1.2 Enantiomers of Dicarboxylic Acids in Solution 225
8.3.2.2 Liquid Enantiomers in Solution 227
8.3.2.2.1 Enantiomers of Limonene in Solution 227
8.3.2.2.2 Enantiomers of Fenchone in Solution 235
8.4 Theoretical Comparison 237
8.4.1 Solution Theory: Intermolecular Interaction of Enantiomers 239
8.4.2 Quantum Chemical Calculation 241
8.4.3 Molecular Dynamics Calculation 242
8.5 Closing Remarks 243
References 243
Chapter 9 Temperature Dependence of the Enthalpy of Alkanes and Related Phase Change Materials (PCMs) 246
9.1 Introduction 246
9.2 Experimental Details 248
9.3 Pure Alkanes and Rotator Phases 248
9.3.1 Background 248
9.3.2 Phase Transitions 250
9.3.3 Overview 251
9.3.4 RI-RII Transition 252
9.3.5 RV-RI Transition 255
9.3.6 Other Transitions 255
9.4 PCMs and Stored Heat 256
9.4.1 Background 256
9.4.2 PCMs 257
9.4.3 Alkane Mixtures 258
9.4.4 Fatty Acids 259
9.4.5 Water and Water-Salt Eutectics 259
9.4.6 Composites and Encapsulation 260
9.4.6.1 Overview 261
9.4.6.2 Cooling 262
9.4.6.3 Transition Heat and Storage Capacity 263
9.4.6.4 Rotator Phases 264
9.5 Summary and Conclusion 266
References 266
Chapter 10 Enthalpy Changes on Solution of Gases in Liquids 269
10.1 Introduction 269
10.2 Thermodynamics 270
10.2.1 Gas Solubility 270
10.2.2 Calorimetry 281
10.3 Selected Results 291
10.4 Concluding Remarks 293
References 294
Chapter 11 Titration Calorimetry and Differential Scanning Calorimetry of Lipid-Protein Interactions 299
11.1 Introduction 299
11.2 Isothermal Titration Calorimetry 300
11.2.1 Binding of Apolipoprotein A-1 (Apo A-1) to Lipid Vesicles 300
11.2.2 Langmuir Multi-site Binding Isotherm 303
11.2.3 LAH4-L1-into-lipid Isothermal Titration Calorimetry 304
11.2.4 Surface Partition Equilibrium and Gouy-Chapman Theory 306
11.3 Differential Scanning Calorimetry of Lipid-Protein Interactions 308
11.3.1 Thermal Unfolding of Apo A-1 in Solution and in Membranes 308
11.3.2 The 2-state Model Applied to Apo A-1 310
11.3.3 Zimm-Bragg Theory 311
Chapter 12 Biocalorimetry: Differential Scanning Calorimetry of Protein Solutions 315
12.1 Introduction 315
12.2 The Two-state Unfolding Model for Monomeric Proteins 318
12.3 The Three-state and Multi-state Unfolding Models for Monomeric Proteins 321
12.4 The Study of Protein-ligand and Protein-Protein Interactions by DSC 322
12.5 DSC Analysis of Protein Oligomers and Aggregates 325
12.6 Non-equilibrium Transitions 328
12.7 Conclusions 331
References 331
Chapter 13 Biocalorimetry of Plants, Insects and Soil Microorganisms 336
13.1 Introduction 336
13.2 Biocalorimetry of Plants 340
13.3 Biocalorimetry of Insects 345
13.3.1 Cold Hardiness 350
13.3.2 Whole Body Supercooling Points 350
13.3.3 Assessment of Pesticide Activity 351
13.3.4 Development of Postharvest Quarantine Treatments 351
13.4 Biocalorimetry of Soil Organic Matter 353
References 358
Chapter 14 Temperature Dependence of the Enthalpy Near Critical and Tricritical Second-order and Weakly First-order Phase Transitions 364
14.1 Introduction 364
14.2 Temperature Dependence of the Enthalpy at the Liquid-Liquid Critical Point 366
14.3 Enthalpy Temperature Dependence at Weakly First-order and Tricritical Second-order Phase Transitions 369
14.3.1 Enthalpy Temperature Dependence at the Weakly First-order Isotropic to Nematic Transition 370
14.3.2 Enthalpy Temperature Dependence at the Nematic to Smectic A Phase Transition 371
References 378
Chapter 15 Yang–Yang Critical Anomaly 380
15.1 Background 380
15.2 Isochoric Heat Capacity and Liquid-Gas Asymmetry 384
15.3 Yang-Yang Critical Anomaly Strength and Distinct Two-phase Isochoric Heat Capacity Contributions near the Liquid-Gas Critical Point 392
15.4 New Method for Evaluation of the Yang-Yang Anomaly Parameter from Direct Measurements of Two-phase Isochoric Heat Capacity and Saturated Liquid and Vapor Density 397
15.5 Conclusions 405
Acknowledgments 406
References 406
Chapter 16 Internal Pressure and Internal Energy of Saturated and Compressed Phases 411
16.1 Background 411
16.2 Thermodynamic and Statistical Mechanical Definition of the Internal Pressure 412
16.3 Internal Pressure and Intermolecular Forces 414
16.4 Methods for Internal Pressure Measurements 418
16.5 One-phase Isochoric Heat Capacity and Internal Pressure 423
16.6 Two-phase Isochoric Heat Capacity and Internal Pressure 427
16.7 Internal Pressure as a Function of External Pressure, Temperature or Density from a Reference Equation of State 434
16.8 Locus of Zero Internal Pressure 438
16.9 Simon's Melting Curve Equation Parameters and Internal Pressure 439
Acknowledgments 442
References 442
Chapter 17 Solubility Parameters: A Brief Review 447
17.1 Introduction and Development of Concept 447
17.2 Expanded Regular Solution Theory 456
17.3 Effect of Temperature and Pressure on Solubility Parameters 459
17.4 Empiricism and Further Developments, and Concluding Remarks 463
References 470
Chapter 18 Internal Pressure of Liquids: A Review 477
18.1 Introduction 477
18.2 Internal Pressures of Neat Liquids 479
18.2.1 Liquefied Gases 479
18.2.2 Liquid Metallic Elements 480
18.2.3 Molecular Liquids at Ambient Conditions 480
18.2.4 Liquid Polymers 481
18.2.5 Room Temperature Ionic Liquids (RTILs) 481
18.2.6 Molten Salts 483
18.2.7 Internal Pressure Dependence on the Temperature and Pressure 485
18.2.8 Correlations with Other Quantities 491
18.2.9 Internal Pressure of Solvents and Reactions in Them 492
18.3 Internal Pressure of Liquid Mixtures and Solutions 493
18.3.1 Liquid Mixtures 493
18.3.2 Dilute Solutions of Non-electrolytes 495
18.3.3 Dilute Solutions of Electrolytes 497
18.4 Discussion and Conclusions 500
References 501
Chapter 19 Excess Enthalpies for Binary Systems Containing Ionic Liquids 505
19.1 Introduction 505
19.2 Experimental Methodologies 506
19.3 Results and Discussion 506
19.3.1 Aqueous Systems 507
19.3.2 Alcohol Systems 511
19.3.3 Other Systems 516
19.4 Conclusions 518
References 518
Chapter 20 Electrolyte Solutions: Standard State Partial Molar Enthalpies of Aqueous Solution up to High Temperatures 521
20.1 Introduction 521
20.2 Experimental Methods 523
20.2.1 The Integral Heat Method 524
20.2.2 Treatment of Data 525
20.2.3 Differential Heat Capacity Calorimeters 534
20.2.4 Other Methods 537
20.3 Conclusion 538
References 538
Chapter 21 Correlation and Prediction of Excess Molar Enthalpies Using DISQUAC 543
21.1 Introduction 543
21.2 Main Hypotheses and Equations 545
21.2.1 Hypotheses 545
21.2.2 Equations 546
21.3 Fitting the Interaction Parameters 548
21.4 Interaction Parameters and Molecular Structure 549
21.5 Selected Data 551
21.6 Results 551
21.6.1 Group I 552
21.6.2 Group II 554
21.6.3 Group III 556
21.6.4 Group IV 557
21.6.5 Group V 560
21.6.6 Ternary Mixtures 562
21.7 Concluding Remarks 562
References 563
Chapter 22 Molecular Thermodynamics of Solutions 569
22.1 Introduction 569
22.2 The Non-random Hydrogen-bonding Model 570
22.2.1 The Essentials of the Model 570
22.2.2 The Hydrogen Bonding Contribution 573
22.2.3 The Dimerization of Acids 574
22.2.4 Intra-molecular Hydrogen Bonding 575
22.3 Applications 576
22.3.1 Systems with Carboxylic Acids 577
22.3.2 Systems with Intra-molecular Association 585
22.4 Conclusions 587
References 587
Chapter 23 Measurement of Heat Capacity and Phase Transition Enthalpy for Condensed Materials by Precision Adiabatic Calorimetry 590
23.1 Introduction 590
23.2 A New Adiabatic Calorimeter 592
23.2.1 Sample Cell and Adiabatic Calorimetric Cryostat 593
23.2.2 Computer, Data Collection Unit and Software 594
23.2.3 Adiabatic Control Module 599
23.2.4 The Module of Setting and Revision of Operation Conditions and Data Displaying 599
23.2.5 Calibration and Discussion of Results 599
23.3 Application of the Adiabatic Calorimeter in Measurement of Heat Capacity and Phase Transition Enthalpy of Ionic Liquids 601
23.3.1 Material, Adiabatic Calorimetry and TG Analysis 601
23.3.2 Heat Capacity 602
23.3.3 The Temperature, Enthalpy and Entropy of Solid-Liquid Phase Transition 605
23.3.4 Thermodynamic Functions of the Compound 606
23.3.5 The Results of TG-DTG Analysis 606
23.4 Conclusions 607
Acknowledgments 608
References 608
Subject Index 611