Menu Expand
Stochastic Modeling And Analytics In Healthcare Delivery Systems

Stochastic Modeling And Analytics In Healthcare Delivery Systems

Li Jingshan | Kong Nan | Xie Xiaolei

(2017)

Additional Information

Book Details

Table of Contents

Section Title Page Action Price
Contents xi
Preface vii
Chapter 1 Patient Appointment Scheduling 1
Abstract 1
1.1. Introduction 2
1.2. Appointment Scheduling in Outpatient Clinics 3
1.2.1. Appointment scheduling in outpatient clinics with simulation 5
1.3. Surgery Scheduling 11
1.3.1. Methodologies 11
1.3.2. Surgery scheduling with SAA method 14
1.4. Summary 22
References 26
Chapter 2 A Simulation Model of French Emergency Medical Service 31
Abstract 31
2.1. Introduction 32
2.2. The Use of Simulation in the EMS Literature 34
2.3. The DES Model of SAMU 94 36
2.3.1. The SAMU 94 process description 36
2.3.2. Data collection and analysis 40
2.3.3. DES model design 42
2.3.4. DES model validation 45
2.4. Analysis of DES Model Results 45
2.4.1. Simulation strategy design 45
2.4.2. Simulation results 48
2.5. Conclusions and Perspectives 51
References 52
Chapter 3 Modeling and Simulation of the Emergency Department of an Italian Hospital\r 57
Abstract 57
3.1. Introduction 58
3.2. Literature Review 59
3.3. Problem Description 61
3.3.1. Stakeholders 61
3.3.2. The context 61
3.3.3. Process of ED activities 62
3.4. Simulation Model 66
3.4.1. Activities of ED in the normal situation 67
3.4.2. Activities of ED in the major accident situation 68
3.5. Simulation Experiments 69
3.5.1. Data collection 70
3.5.2. Validation and verification 71
3.5.3. Design of experiments 72
3.5.4. Improvements and suggestions for the hospital 77
3.6. Conclusion 80
References 80
Chapter 4 Stochastic and Dynamic Programming for Improving the Reservation Process of MRIExaminations\r 83
Abstract 83
4.1. Introduction 84
4.2. Literature Review 88
4.3. The Determination of CTS and the Optimal Patient Assignment Policy 90
4.3.1. Model formulation 91
4.3.2. Exploration of the optimal patient assignment policy via MDP 92
4.3.3. Contract optimization via Monte Carlo approximation 95
4.4. Joint Patient Assignment and Advance CTS Cancellation 97
4.4.1. One-day advance CTS cancellation 97
4.4.2. Joint patient assignment and one-day and two-day advance CTS cancellation policies 100
4.5. Implementation Strategies 106
4.6. Conclusions and Future Perspectives 109
Acknowledgment 111
References 111
Chapter 5 Simulation Modeling of Hospital Discharge Process 113
Abstract 113
5.1. Introduction 115
5.2. Methods 117
5.2.1. The discharge process 117
5.2.1.1. The SW/CM workflow 118
5.2.1.2. The RPH workflow 120
5.2.1.3. The transportation workflow 121
5.2.2. The simulation model 121
5.2.3. Data collection 122
5.2.4. Model validation 124
5.2.5. Test design 124
5.3. Results 125
5.3.1. RPH intervention rate 125
5.3.2. Reducing RPH working time 125
5.3.3. Reducing SW/CM working time 126
5.3.4. Reducing the time of “wait for physician’s order” 126
5.3.5. Reducing the time of “wait for others” 127
5.4. Discussions 128
5.5. Conclusions 129
Acknowledgement 131
Competing Interests 131
References 131
Chapter 6 Predictive Modeling of Care Demand and Transition 135
Abstract 135
6.1. Background and Introduction 136
6.2. A Classification Study for 30-Day Hospital Readmission Prediction 139
6.2.1. Summary of the study 139
6.2.2. Current landscape in practice 139
6.2.3. State of the art in academic research 140
6.2.4. Data description 142
6.2.5. Data modeling methodology 142
6.2.5.1. Data preparation 143
6.2.5.2. Ad-hoc conditional logistic regression modeling 146
6.2.6. Analysis results 148
6.3. A Bayesian Modeling Study of Community Dwelling Duration Prior to Long-Term Care 149
6.3.1. Summary of the study 149
6.3.2. Current landscape in practice 150
6.3.3. State-of-the-art academic research 151
6.3.4. Data description 152
6.3.5. Data modeling methodology 152
6.3.6. Analysis results 154
6.4. Conclusions and Future Work 157
Acknowledgments 158
References 158
Chapter 7 A Multi-agent-based Simulation Model to Analyze Patients’ Hospital Selection in Hierarchical Healthcare Systems 167
Abstract 167
7.1. Introduction 168
7.2. Model Description 171
7.2.1. Patients’ preference 172
7.2.2. Patients’ decision model 175
7.3. Case Study 177
7.3.1. Input parameter 177
7.3.2. Simulation analysis 179
7.3.3. Two incentive policies 183
7.3.3.1. Reducing the outpatient cost of CHCs 183
7.3.3.2. Improving the lowest quality of the CHC 184
7.4. Conclusion 185
Acknowledgement 186
References 186
Chapter 8 Forecasting Recipient Outcomes of Deceased Donor Livers 189
Abstract 189
8.1. Introduction 190
8.2. Existing Work and Motivation 191
8.2.1. Liver transplantation 191
8.2.2. Donor liver availability and utilization 192
8.2.3. Transplant recipient outcomes 192
8.2.4. Methodology overview 193
8.3. Statistical Models 194
8.3.1. Recipient characteristics 194
8.3.2. Donor characteristics 196
8.3.3. Cold ischemia time 198
8.4. Simulation Model 198
8.4.1. Model description 199
8.4.2. Model validation 200
8.5. Results 201
8.5.1. Proportional hazard model 201
8.5.2. D-MELD 205
8.6. Summary and Discussion 206
8.6.1. Limitations 206
8.6.2. Future work 207
Acknowledgments 207
References 207
Chapter 9 Internet of Hearts — Large-Scale Stochastic Network Modeling and Analysis of Cardiac Electrical Signals 211
Abstract 211
9.1. Introduction 212
9.2. Background 216
9.3. Analytical Modules 219
9.3.1. Real-time spatiotemporal visualization and feature extraction 220
9.3.2. Optimal model-based representation 222
9.3.3. Stochastic network modeling and online diagnosis 229
9.4. MESH Design 237
9.4.1. Wearable sensing device 239
9.4.2. MESH database 240
9.4.3. MESH smartphone application 242
9.5. Discussion 245
9.6. Summary 246
Acknowledgment 247
References 248
Chapter 10 Using Agent-Based Interpersonal Influence Simulation to Study the Formation of Public Opinion 253
Abstract 253
10.1. Introduction and Background 254
10.2. Computational Models of Social Contagion and Influence 257
10.3. An ABM Approach 259
10.4. Simulation Results and Discussions 263
10.4.1. Simulation results 265
10.4.2. Discussion on policy implications 270
10.5. Conclusions and Future Work 272
Appendix 273
References 275
Chapter 11 Growth Curves of American Children Differ Significantly from CDC Reference Standards 281
Abstract 281
11.1. Introduction 282
11.2. Methods 283
11.2.1. Data sources 284
11.2.1.1. NorthShore University HealthSystem \rEnterprise Data Warehouse 284
11.2.1.2. National Health and Nutrition Examination Survey 286
11.2.2. Inclusion criteria 286
11.2.3. Exclusion criteria 286
11.2.4. Data statistics 287
11.3. Results 287
11.3.1. Stature-for-age 294
11.3.2. Weight-for-age 294
11.3.3. BMI-for-age 294
11.3.4. LMS statistics 295
11.3.5. Curve analysis 297
11.4. Conclusions 299
11.4.1. Significance 300
11.4.2. Long-term goal 302
11.4.3. Limitations 302
Acknowledgment 303
References 303
Index 307