Additional Information
Book Details
Abstract
Polyurethane nanocomposites present an attractive and sustainable way for designing smart materials that can be used in packaging, health and energy applications.
Biobased Smart Polyurethane Nanocomposites brings together the most recent research in the field from the basic concepts through to their applications. Special emphasis is given to sustainable biodegradable polyurethane nanocomposites with hyperbranched architecture. The book introduces biobased polyurethanes and the nanomaterials that can be used as nanocomposites followed by the resulting polyurethane nanocomposites. The second part then explores important applications in paints and surface coatings, shape memory, self-healing, self-cleaning, biomaterials and packaging materials.
Written by a leading expert on polyurethane nanocomposites, the book is a great introduction to this smart material and its applications.
Table of Contents
Section Title | Page | Action | Price |
---|---|---|---|
Cover | Cover | ||
Biobased Smart Polyurethane Nanocomposites: From Synthesis to Applications | i | ||
Preface | vii | ||
Abbreviations and Symbols | xi | ||
Contents | xv | ||
Chapter 1 - Biobased Hyperbranched Polyurethane | 1 | ||
1.1 Introduction | 1 | ||
1.2 Historical Background | 3 | ||
1.3 Classification | 4 | ||
1.3.1 Structure | 5 | ||
1.3.2 Source | 6 | ||
1.3.3 Thermal Response | 6 | ||
1.3.4 Properties and Applications | 7 | ||
1.3.4.1 Elastomers | 7 | ||
1.3.4.2 Foams | 7 | ||
1.3.4.3 Fibers | 8 | ||
1.3.4.4 Ionomers | 8 | ||
1.3.4.5 Coatings | 9 | ||
1.3.4.6 Adhesives | 9 | ||
1.3.4.7 Smart Materials | 9 | ||
1.3.4.8 Biomaterials | 10 | ||
1.4 Raw Materials and Methods | 10 | ||
1.4.1 Raw Materials | 10 | ||
1.4.1.1 Diisocyanates | 10 | ||
1.4.1.2 Di/Polyols | 13 | ||
1.4.1.3 Macroglycols | 13 | ||
1.4.1.4 Chain Extenders | 15 | ||
1.4.1.5 Biobased Di/Polyols | 15 | ||
1.4.1.6 Catalysts | 18 | ||
1.4.2 Preparative Methods | 19 | ||
1.5 Modifications | 21 | ||
1.6 Testing and Analysis | 22 | ||
1.6.1 Spectroscopic Techniques | 23 | ||
1.6.2 Diffraction/Scattering Techniques | 24 | ||
1.6.3 Microscopic Techniques | 25 | ||
1.6.4 Other Techniques | 25 | ||
1.6.5 Molecular Weight | 26 | ||
1.6.6 Testing Methods | 27 | ||
1.7 Properties | 28 | ||
1.7.1 Physical | 29 | ||
1.7.2 Rheological and Mechanical | 29 | ||
1.7.3 Thermal and Flame Retardancy | 30 | ||
1.7.4 Electrical | 31 | ||
1.7.5 Weather and Chemical Resistance | 31 | ||
1.7.6 Biodegradability | 31 | ||
1.7.7 Shape Memory | 33 | ||
1.7.8 Self-Healing and Self-Cleaning | 33 | ||
1.8 Applications | 33 | ||
1.8.1 Surface Coatings | 34 | ||
1.8.2 Shape Memory Materials | 34 | ||
1.8.3 Foams | 35 | ||
1.8.4 Self-Healing Materials | 35 | ||
1.8.5 Self-Cleaning Materials | 35 | ||
1.8.6 Biomedical Applications | 35 | ||
1.8.7 Packaging | 36 | ||
1.8.8 Agriculture | 36 | ||
1.8.9 Miscellaneous | 36 | ||
1.9 Health and Safety | 37 | ||
1.10 Concluding Remarks and Future Trends | 37 | ||
References | 38 | ||
Chapter 2 - Nanomaterials for Polyurethane Nanocomposites | 41 | ||
2.1 Introduction | 41 | ||
2.2 Definition, Significance, and Historical Background | 42 | ||
2.2.1 Definition | 42 | ||
2.2.2 Significance | 43 | ||
2.2.3 Historical Background | 44 | ||
2.3 Classification | 44 | ||
2.3.1 Zero Dimensional | 45 | ||
2.3.2 One Dimensional | 46 | ||
2.3.3 Two Dimensional | 47 | ||
2.3.4 Hybrid | 47 | ||
2.4 Raw Materials | 47 | ||
2.5 Preparative Methods | 47 | ||
2.5.1 Physical Approaches | 49 | ||
2.5.2 Chemical Approaches | 50 | ||
2.6 Characterization | 50 | ||
2.6.1 UV-visible Spectroscopy | 51 | ||
2.6.2 FTIR Spectroscopy | 52 | ||
2.6.3 NMR Spectroscopy | 53 | ||
2.6.4 X-ray Diffraction | 53 | ||
2.6.5 Electron Microscopy | 53 | ||
2.6.6 Raman Spectroscopy | 54 | ||
2.7 Properties | 55 | ||
2.7.1 Physical and Mechanical | 57 | ||
2.7.2 Optical | 57 | ||
2.7.3 Electrical and Magnetic | 58 | ||
2.7.4 Catalytic | 58 | ||
2.7.5 Chemical Sensing | 59 | ||
2.7.6 Biological | 59 | ||
2.8 Brief Account of Different Nanomaterials | 59 | ||
2.8.1 Metal and Metal Oxides | 59 | ||
2.8.1.1 Silver Nanoparticles | 60 | ||
2.8.1.2 Magnetic Iron Oxide Nanoparticles | 61 | ||
2.8.1.3 TiO2 | 62 | ||
2.8.1.4 ZnO | 62 | ||
2.8.2 Silicon-based Nanomaterials | 63 | ||
2.8.2.1 Nanoclays | 63 | ||
2.8.2.2 POSS | 65 | ||
2.8.3 Carbon-based Nanomaterials | 65 | ||
2.8.3.1 CNTs | 66 | ||
2.8.3.2 Graphene | 68 | ||
2.8.3.3 GO and RGO | 69 | ||
2.8.3.4 Carbon Dots | 70 | ||
2.8.4 Organic Nanomaterials | 70 | ||
2.8.4.1 PANi Nanofibers | 70 | ||
2.8.4.2 Cellulose Nanofibers | 72 | ||
2.8.5 Nanohybrids | 72 | ||
2.9 Safety and Ecological Balance | 73 | ||
2.10 Applications | 74 | ||
2.11 Conclusions and Future Trends | 75 | ||
References | 76 | ||
Chapter 3 - Biobased Polyurethane Nanocomposites | 80 | ||
3.1 Introduction | 80 | ||
3.2 Definition, Significance, and Background | 82 | ||
3.3 Classification | 82 | ||
3.4 Techniques of Fabrication | 83 | ||
3.4.1 Solution Technique | 83 | ||
3.4.2 In situ Polymerization Technique | 85 | ||
3.4.3 Melt Mixing Technique | 86 | ||
3.5 Analysis and Testing | 86 | ||
3.5.1 Chemical Structure | 87 | ||
3.5.2 Physical Structure | 88 | ||
3.6 Properties | 92 | ||
3.6.1 Mechanical | 93 | ||
3.6.2 Rheological | 94 | ||
3.6.3 Thermal | 94 | ||
3.6.4 Electrical | 95 | ||
3.6.5 Barrier | 96 | ||
3.6.6 Catalytic | 97 | ||
3.6.7 Flame Retardancy | 98 | ||
3.6.8 Biodegradation | 98 | ||
3.6.9 Antimicrobial Activity | 99 | ||
3.6.10 Shape Memory | 100 | ||
3.6.11 Self-Healing | 101 | ||
3.6.12 Self-Cleaning | 101 | ||
3.6.13 Miscellaneous | 101 | ||
3.7 Applications | 102 | ||
3.7.1 Surface Coatings and Paints | 102 | ||
3.7.2 Shape Memory Materials | 103 | ||
3.7.3 Sensors | 104 | ||
3.7.4 Self-Healing Materials | 104 | ||
3.7.5 Self-Cleaning Materials | 104 | ||
3.7.6 Biomaterials | 105 | ||
3.7.7 Miscellaneous | 105 | ||
3.8 Conclusions and Future Trends | 105 | ||
References | 106 | ||
Chapter 4 - Surface Coatings and Paints | 112 | ||
4.1 Introduction | 112 | ||
4.2 Basic Concepts and History | 114 | ||
4.3 Classification | 115 | ||
4.3.1 Waterborne | 117 | ||
4.3.1.1 One-Component and Two-Component WPU Coatings | 120 | ||
4.3.1.2 PU Emulsions | 121 | ||
4.3.1.3 UV-Curable WPU | 122 | ||
4.3.1.4 WPU Nanocomposites | 122 | ||
4.3.2 Others | 124 | ||
4.3.2.1 Antifouling | 124 | ||
4.3.2.2 High Solid Content | 124 | ||
4.3.2.3 Radiation-Curable | 124 | ||
4.3.2.4 Moisture Curable | 125 | ||
4.3.2.5 Special Coatings | 125 | ||
4.4 Components | 125 | ||
4.4.1 Binders | 126 | ||
4.4.2 Pigments | 128 | ||
4.4.3 Additives | 128 | ||
4.4.3.1 Wetting and Dispersing Agents | 129 | ||
4.4.3.2 Viscosity Controlling Agents | 129 | ||
4.4.3.3 Thixotropic and Antisettling Agents | 130 | ||
4.4.3.4 Antidegradants | 130 | ||
4.4.3.5 Antiskinning Agents | 130 | ||
4.4.3.6 Desiccants | 131 | ||
4.4.3.7 Biocides | 131 | ||
4.4.3.8 Curing Agents | 131 | ||
4.4.3.9 Flame Retardants | 132 | ||
4.4.3.10 Antifoaming Agents | 132 | ||
4.4.3.11 Coupling Agents or Adhesion Promoters | 132 | ||
4.4.3.12 Antistatic Agents | 132 | ||
4.4.3.13 Solvents/Media | 133 | ||
4.5 Testing and Analysis | 133 | ||
4.6 Properties | 135 | ||
4.6.1 Flow Behavior | 135 | ||
4.6.2 Mechanical | 136 | ||
4.6.3 Thermal | 136 | ||
4.6.4 Abrasion and Mar Resistance | 137 | ||
4.6.5 Blushing | 138 | ||
4.6.6 Optical | 138 | ||
4.6.7 Adhesion and Corrosion | 138 | ||
4.7 Problems | 140 | ||
4.7.1 Bio-Film Formation | 140 | ||
4.7.2 Photo-Degradation | 141 | ||
4.7.3 Chemical or Environmental Degradation | 141 | ||
4.7.4 Adhesion Failure | 142 | ||
4.7.5 Flammability | 142 | ||
4.7.6 Toxicity and Air Pollution | 143 | ||
4.7.7 Hiding | 143 | ||
4.7.8 Leveling | 143 | ||
4.7.9 Sagging | 144 | ||
4.7.10 Crawling | 144 | ||
4.7.11 Cratering | 144 | ||
4.7.12 Wrinkling | 145 | ||
4.7.13 Popping | 145 | ||
4.7.14 Foaming | 146 | ||
4.8 Applications | 146 | ||
4.9 Conclusions and Future Trends | 148 | ||
References | 148 | ||
Chapter 5 - Shape Memory Materials | 154 | ||
5.1 Introduction | 154 | ||
5.2 Classification and Advantages | 156 | ||
5.3 Background and Basic Understanding | 159 | ||
5.4 Mechanism | 162 | ||
5.5 Criteria and Design Protocols | 163 | ||
5.6 Factors Affecting Shape Memory Effects | 167 | ||
5.6.1 Hard Segment | 167 | ||
5.6.2 Soft Segment | 168 | ||
5.6.3 Chain Extender | 169 | ||
5.6.4 Moisture | 169 | ||
5.6.5 Processing | 169 | ||
5.6.6 Nanomaterials | 170 | ||
5.6.7 Modifications | 171 | ||
5.7 Testing Methods | 173 | ||
5.7.1 Cyclic Thermo-Mechanical Test | 174 | ||
5.7.2 Stretching–Shrinkage Test | 175 | ||
5.7.3 Bending-Video Graphic Test | 175 | ||
5.8 Biological Behavior | 176 | ||
5.9 Applications | 177 | ||
5.9.1 Biomedical | 177 | ||
5.9.2 Smart Fabrics | 179 | ||
5.9.3 Mechanical Devices | 180 | ||
5.10 Concluding Remarks and Future Trends | 181 | ||
References | 181 | ||
Chapter 6 - Self-Healing Materials | 187 | ||
6.1 Introduction | 187 | ||
6.2 Classification and Definition | 189 | ||
6.3 Basic Understanding | 192 | ||
6.4 Approaches | 193 | ||
6.4.1 Reversible Covalent Bond Formation | 194 | ||
6.4.2 Reversible Non-Covalent Bond or Supramolecular Self-Assembly | 196 | ||
6.4.3 Microencapsulation | 197 | ||
6.4.4 Macro-Vascular Networks | 198 | ||
6.4.5 Layer-by-Layer Strategy | 198 | ||
6.4.6 Incorporation of Nanomaterials | 199 | ||
6.4.7 Close-Then-Heal Strategy | 201 | ||
6.5 Mechanism and Theory | 202 | ||
6.6 Testing Methods | 205 | ||
6.7 Applications | 206 | ||
6.7.1 Encapsulation of Flexible Solar cells | 207 | ||
6.7.2 Aerospace and Other Engineering | 207 | ||
6.7.3 Super-Hydrophobic Coatings | 207 | ||
6.7.4 Anticorrosion Coatings | 208 | ||
6.7.5 Cellular Materials | 209 | ||
6.8 Conclusions and Future Trends | 210 | ||
References | 211 | ||
Chapter 7 - Self-Cleaning Materials | 216 | ||
7.1 Introduction | 216 | ||
7.2 Classes of Self-Cleaning Surfaces | 218 | ||
7.3 Basics of Self-Cleaning Effects | 219 | ||
7.4 Techniques to Produce Self-Cleaning Surfaces | 221 | ||
7.5 Mechanism of Photo-Catalytic Effects in Self-Cleaning Surfaces | 223 | ||
7.6 Measurement of Self-Cleaning Behavior | 225 | ||
7.7 Applications | 227 | ||
7.7.1 Oil–Water Separation | 227 | ||
7.7.2 Protection of Cultural Heritage | 229 | ||
7.7.3 Special Coatings and Paints | 230 | ||
7.7.3.1 Anti-Icing Coatings | 230 | ||
7.7.3.2 Anticorrosion Coatings | 231 | ||
7.7.3.3 Antibacterial Coatings | 232 | ||
7.7.3.4 Self-Cleaning Textile Coatings | 233 | ||
7.7.3.5 Antireflection Coatings | 233 | ||
7.7.3.6 Antifogging Coatings | 234 | ||
7.7.4 Water Desalination and Purification | 234 | ||
7.7.5 Solar Cells | 234 | ||
7.7.6 Heterogeneous Catalysis | 235 | ||
7.7.7 Sensors | 235 | ||
7.8 Concluding Remarks and Future Trends | 236 | ||
References | 237 | ||
Chapter 8 - Biomaterials | 241 | ||
8.1 Introduction | 241 | ||
8.2 Definition and Classification | 243 | ||
8.2.1 Metals and Alloys | 244 | ||
8.2.2 Ceramics | 244 | ||
8.2.3 Polymers | 245 | ||
8.2.4 Composites | 246 | ||
8.3 Fabrication Process | 246 | ||
8.4 Characterization | 248 | ||
8.4.1 In vitro Cytotoxicity Assays | 248 | ||
8.4.2 Cell Adhesion Assays | 249 | ||
8.4.3 In vitro Immunocompatibility Assays | 249 | ||
8.4.4 In vitro Hemocompatibility Assays | 250 | ||
8.4.5 In vivo Assessment of Biocompatibility and Inflammatory Response | 250 | ||
8.4.6 Biodegradation Tests | 250 | ||
8.4.6.1 In vivo and In vitro Biodegradation Studies | 251 | ||
8.4.7 Antimicrobial Tests | 251 | ||
8.5 Properties | 251 | ||
8.5.1 Mechanical | 252 | ||
8.5.2 Surface | 253 | ||
8.5.3 Thermal | 253 | ||
8.5.4 Biological | 254 | ||
8.5.4.1 Biocompatibility | 254 | ||
8.5.4.2 Antibacterial Activity | 256 | ||
8.5.4.3 Biodegradation | 256 | ||
8.6 Applications | 257 | ||
8.6.1 Tissue Engineering | 259 | ||
8.6.2 Wound Dressing | 261 | ||
8.6.3 Drug Delivery | 261 | ||
8.6.4 Catheters and Stents | 261 | ||
8.6.5 Artificial Organs | 262 | ||
8.6.6 Smart Biomedical Devices | 263 | ||
8.6.7 Antimicrobial Bio-Device Coatings | 263 | ||
8.7 Conclusions and Future Trends | 264 | ||
References | 265 | ||
Chapter 9 - Packaging Materials | 270 | ||
9.1 Introduction | 270 | ||
9.2 Definition and History | 272 | ||
9.3 Significance | 272 | ||
9.4 Advantages Over Other Packaging Materials | 273 | ||
9.5 Testing and Analysis | 274 | ||
9.6 Properties | 277 | ||
9.6.1 Barrier | 278 | ||
9.6.2 Mechanical | 278 | ||
9.6.3 Thermal and Flame Retardancy | 280 | ||
9.6.4 Chemical Resistance and Weathering | 281 | ||
9.6.5 Antimicrobial | 282 | ||
9.6.6 Sensing | 283 | ||
9.6.7 Antistatic | 283 | ||
9.7 Applications | 285 | ||
9.7.1 Nuclear Material | 287 | ||
9.7.2 Food Items | 287 | ||
9.7.3 Photographic Films | 288 | ||
9.7.4 Electronic Materials | 288 | ||
9.7.5 Bio-Medical | 289 | ||
9.7.6 Miscellaneous | 289 | ||
9.8 Examples of Commercial Products | 289 | ||
9.9 Conclusions and Future Trends | 291 | ||
References | 291 | ||
Chapter 10 - Miscellaneous: Other Applications | 294 | ||
10.1 Introduction | 294 | ||
10.2 Adhesives | 295 | ||
10.2.1 Advantages | 296 | ||
10.2.2 Disadvantages | 297 | ||
10.2.3 Classification | 297 | ||
10.2.4 Surface Treatment | 300 | ||
10.2.5 Testing Methods | 300 | ||
10.2.6 Applications | 301 | ||
10.3 Automobiles | 302 | ||
10.4 Agriculture | 305 | ||
10.5 Construction | 307 | ||
10.6 Electrical and Electronic Industries | 309 | ||
10.7 Energy | 312 | ||
10.8 Footwear | 314 | ||
10.9 Conclusions and Future Trends | 316 | ||
References | 317 | ||
Subject Index | 320 |