Menu Expand
Biobased Smart Polyurethane Nanocomposites

Biobased Smart Polyurethane Nanocomposites

Niranjan Karak

(2017)

Additional Information

Book Details

Abstract

Polyurethane nanocomposites present an attractive and sustainable way for designing smart materials that can be used in packaging, health and energy applications.

Biobased Smart Polyurethane Nanocomposites brings together the most recent research in the field from the basic concepts through to their applications. Special emphasis is given to sustainable biodegradable polyurethane nanocomposites with hyperbranched architecture. The book introduces biobased polyurethanes and the nanomaterials that can be used as nanocomposites followed by the resulting polyurethane nanocomposites. The second part then explores important applications in paints and surface coatings, shape memory, self-healing, self-cleaning, biomaterials and packaging materials.

Written by a leading expert on polyurethane nanocomposites, the book is a great introduction to this smart material and its applications.


Table of Contents

Section Title Page Action Price
Cover Cover
Biobased Smart Polyurethane Nanocomposites: From Synthesis to Applications i
Preface vii
Abbreviations and Symbols xi
Contents xv
Chapter 1 - Biobased Hyperbranched Polyurethane 1
1.1 Introduction 1
1.2 Historical Background 3
1.3 Classification 4
1.3.1 Structure 5
1.3.2 Source 6
1.3.3 Thermal Response 6
1.3.4 Properties and Applications 7
1.3.4.1 Elastomers 7
1.3.4.2 Foams 7
1.3.4.3 Fibers 8
1.3.4.4 Ionomers 8
1.3.4.5 Coatings 9
1.3.4.6 Adhesives 9
1.3.4.7 Smart Materials 9
1.3.4.8 Biomaterials 10
1.4 Raw Materials and Methods 10
1.4.1 Raw Materials 10
1.4.1.1 Diisocyanates 10
1.4.1.2 Di/Polyols 13
1.4.1.3 Macroglycols 13
1.4.1.4 Chain Extenders 15
1.4.1.5 Biobased Di/Polyols 15
1.4.1.6 Catalysts 18
1.4.2 Preparative Methods 19
1.5 Modifications 21
1.6 Testing and Analysis 22
1.6.1 Spectroscopic Techniques 23
1.6.2 Diffraction/Scattering Techniques 24
1.6.3 Microscopic Techniques 25
1.6.4 Other Techniques 25
1.6.5 Molecular Weight 26
1.6.6 Testing Methods 27
1.7 Properties 28
1.7.1 Physical 29
1.7.2 Rheological and Mechanical 29
1.7.3 Thermal and Flame Retardancy 30
1.7.4 Electrical 31
1.7.5 Weather and Chemical Resistance 31
1.7.6 Biodegradability 31
1.7.7 Shape Memory 33
1.7.8 Self-Healing and Self-Cleaning 33
1.8 Applications 33
1.8.1 Surface Coatings 34
1.8.2 Shape Memory Materials 34
1.8.3 Foams 35
1.8.4 Self-Healing Materials 35
1.8.5 Self-Cleaning Materials 35
1.8.6 Biomedical Applications 35
1.8.7 Packaging 36
1.8.8 Agriculture 36
1.8.9 Miscellaneous 36
1.9 Health and Safety 37
1.10 Concluding Remarks and Future Trends 37
References 38
Chapter 2 - Nanomaterials for Polyurethane Nanocomposites 41
2.1 Introduction 41
2.2 Definition, Significance, and Historical Background 42
2.2.1 Definition 42
2.2.2 Significance 43
2.2.3 Historical Background 44
2.3 Classification 44
2.3.1 Zero Dimensional 45
2.3.2 One Dimensional 46
2.3.3 Two Dimensional 47
2.3.4 Hybrid 47
2.4 Raw Materials 47
2.5 Preparative Methods 47
2.5.1 Physical Approaches 49
2.5.2 Chemical Approaches 50
2.6 Characterization 50
2.6.1 UV-visible Spectroscopy 51
2.6.2 FTIR Spectroscopy 52
2.6.3 NMR Spectroscopy 53
2.6.4 X-ray Diffraction 53
2.6.5 Electron Microscopy 53
2.6.6 Raman Spectroscopy 54
2.7 Properties 55
2.7.1 Physical and Mechanical 57
2.7.2 Optical 57
2.7.3 Electrical and Magnetic 58
2.7.4 Catalytic 58
2.7.5 Chemical Sensing 59
2.7.6 Biological 59
2.8 Brief Account of Different Nanomaterials 59
2.8.1 Metal and Metal Oxides 59
2.8.1.1 Silver Nanoparticles 60
2.8.1.2 Magnetic Iron Oxide Nanoparticles 61
2.8.1.3 TiO2 62
2.8.1.4 ZnO 62
2.8.2 Silicon-based Nanomaterials 63
2.8.2.1 Nanoclays 63
2.8.2.2 POSS 65
2.8.3 Carbon-based Nanomaterials 65
2.8.3.1 CNTs 66
2.8.3.2 Graphene 68
2.8.3.3 GO and RGO 69
2.8.3.4 Carbon Dots 70
2.8.4 Organic Nanomaterials 70
2.8.4.1 PANi Nanofibers 70
2.8.4.2 Cellulose Nanofibers 72
2.8.5 Nanohybrids 72
2.9 Safety and Ecological Balance 73
2.10 Applications 74
2.11 Conclusions and Future Trends 75
References 76
Chapter 3 - Biobased Polyurethane Nanocomposites 80
3.1 Introduction 80
3.2 Definition, Significance, and Background 82
3.3 Classification 82
3.4 Techniques of Fabrication 83
3.4.1 Solution Technique 83
3.4.2 In situ Polymerization Technique 85
3.4.3 Melt Mixing Technique 86
3.5 Analysis and Testing 86
3.5.1 Chemical Structure 87
3.5.2 Physical Structure 88
3.6 Properties 92
3.6.1 Mechanical 93
3.6.2 Rheological 94
3.6.3 Thermal 94
3.6.4 Electrical 95
3.6.5 Barrier 96
3.6.6 Catalytic 97
3.6.7 Flame Retardancy 98
3.6.8 Biodegradation 98
3.6.9 Antimicrobial Activity 99
3.6.10 Shape Memory 100
3.6.11 Self-Healing 101
3.6.12 Self-Cleaning 101
3.6.13 Miscellaneous 101
3.7 Applications 102
3.7.1 Surface Coatings and Paints 102
3.7.2 Shape Memory Materials 103
3.7.3 Sensors 104
3.7.4 Self-Healing Materials 104
3.7.5 Self-Cleaning Materials 104
3.7.6 Biomaterials 105
3.7.7 Miscellaneous 105
3.8 Conclusions and Future Trends 105
References 106
Chapter 4 - Surface Coatings and Paints 112
4.1 Introduction 112
4.2 Basic Concepts and History 114
4.3 Classification 115
4.3.1 Waterborne 117
4.3.1.1 One-Component and Two-Component WPU Coatings 120
4.3.1.2 PU Emulsions 121
4.3.1.3 UV-Curable WPU 122
4.3.1.4 WPU Nanocomposites 122
4.3.2 Others 124
4.3.2.1 Antifouling 124
4.3.2.2 High Solid Content 124
4.3.2.3 Radiation-Curable 124
4.3.2.4 Moisture Curable 125
4.3.2.5 Special Coatings 125
4.4 Components 125
4.4.1 Binders 126
4.4.2 Pigments 128
4.4.3 Additives 128
4.4.3.1 Wetting and Dispersing Agents 129
4.4.3.2 Viscosity Controlling Agents 129
4.4.3.3 Thixotropic and Antisettling Agents 130
4.4.3.4 Antidegradants 130
4.4.3.5 Antiskinning Agents 130
4.4.3.6 Desiccants 131
4.4.3.7 Biocides 131
4.4.3.8 Curing Agents 131
4.4.3.9 Flame Retardants 132
4.4.3.10 Antifoaming Agents 132
4.4.3.11 Coupling Agents or Adhesion Promoters 132
4.4.3.12 Antistatic Agents 132
4.4.3.13 Solvents/Media 133
4.5 Testing and Analysis 133
4.6 Properties 135
4.6.1 Flow Behavior 135
4.6.2 Mechanical 136
4.6.3 Thermal 136
4.6.4 Abrasion and Mar Resistance 137
4.6.5 Blushing 138
4.6.6 Optical 138
4.6.7 Adhesion and Corrosion 138
4.7 Problems 140
4.7.1 Bio-Film Formation 140
4.7.2 Photo-Degradation 141
4.7.3 Chemical or Environmental Degradation 141
4.7.4 Adhesion Failure 142
4.7.5 Flammability 142
4.7.6 Toxicity and Air Pollution 143
4.7.7 Hiding 143
4.7.8 Leveling 143
4.7.9 Sagging 144
4.7.10 Crawling 144
4.7.11 Cratering 144
4.7.12 Wrinkling 145
4.7.13 Popping 145
4.7.14 Foaming 146
4.8 Applications 146
4.9 Conclusions and Future Trends 148
References 148
Chapter 5 - Shape Memory Materials 154
5.1 Introduction 154
5.2 Classification and Advantages 156
5.3 Background and Basic Understanding 159
5.4 Mechanism 162
5.5 Criteria and Design Protocols 163
5.6 Factors Affecting Shape Memory Effects 167
5.6.1 Hard Segment 167
5.6.2 Soft Segment 168
5.6.3 Chain Extender 169
5.6.4 Moisture 169
5.6.5 Processing 169
5.6.6 Nanomaterials 170
5.6.7 Modifications 171
5.7 Testing Methods 173
5.7.1 Cyclic Thermo-Mechanical Test 174
5.7.2 Stretching–Shrinkage Test 175
5.7.3 Bending-Video Graphic Test 175
5.8 Biological Behavior 176
5.9 Applications 177
5.9.1 Biomedical 177
5.9.2 Smart Fabrics 179
5.9.3 Mechanical Devices 180
5.10 Concluding Remarks and Future Trends 181
References 181
Chapter 6 - Self-Healing Materials 187
6.1 Introduction 187
6.2 Classification and Definition 189
6.3 Basic Understanding 192
6.4 Approaches 193
6.4.1 Reversible Covalent Bond Formation 194
6.4.2 Reversible Non-Covalent Bond or Supramolecular Self-Assembly 196
6.4.3 Microencapsulation 197
6.4.4 Macro-Vascular Networks 198
6.4.5 Layer-by-Layer Strategy 198
6.4.6 Incorporation of Nanomaterials 199
6.4.7 Close-Then-Heal Strategy 201
6.5 Mechanism and Theory 202
6.6 Testing Methods 205
6.7 Applications 206
6.7.1 Encapsulation of Flexible Solar cells 207
6.7.2 Aerospace and Other Engineering 207
6.7.3 Super-Hydrophobic Coatings 207
6.7.4 Anticorrosion Coatings 208
6.7.5 Cellular Materials 209
6.8 Conclusions and Future Trends 210
References 211
Chapter 7 - Self-Cleaning Materials 216
7.1 Introduction 216
7.2 Classes of Self-Cleaning Surfaces 218
7.3 Basics of Self-Cleaning Effects 219
7.4 Techniques to Produce Self-Cleaning Surfaces 221
7.5 Mechanism of Photo-Catalytic Effects in Self-Cleaning Surfaces 223
7.6 Measurement of Self-Cleaning Behavior 225
7.7 Applications 227
7.7.1 Oil–Water Separation 227
7.7.2 Protection of Cultural Heritage 229
7.7.3 Special Coatings and Paints 230
7.7.3.1 Anti-Icing Coatings 230
7.7.3.2 Anticorrosion Coatings 231
7.7.3.3 Antibacterial Coatings 232
7.7.3.4 Self-Cleaning Textile Coatings 233
7.7.3.5 Antireflection Coatings 233
7.7.3.6 Antifogging Coatings 234
7.7.4 Water Desalination and Purification 234
7.7.5 Solar Cells 234
7.7.6 Heterogeneous Catalysis 235
7.7.7 Sensors 235
7.8 Concluding Remarks and Future Trends 236
References 237
Chapter 8 - Biomaterials 241
8.1 Introduction 241
8.2 Definition and Classification 243
8.2.1 Metals and Alloys 244
8.2.2 Ceramics 244
8.2.3 Polymers 245
8.2.4 Composites 246
8.3 Fabrication Process 246
8.4 Characterization 248
8.4.1 In vitro Cytotoxicity Assays 248
8.4.2 Cell Adhesion Assays 249
8.4.3 In vitro Immunocompatibility Assays 249
8.4.4 In vitro Hemocompatibility Assays 250
8.4.5 In vivo Assessment of Biocompatibility and Inflammatory Response 250
8.4.6 Biodegradation Tests 250
8.4.6.1 In vivo and In vitro Biodegradation Studies 251
8.4.7 Antimicrobial Tests 251
8.5 Properties 251
8.5.1 Mechanical 252
8.5.2 Surface 253
8.5.3 Thermal 253
8.5.4 Biological 254
8.5.4.1 Biocompatibility 254
8.5.4.2 Antibacterial Activity 256
8.5.4.3 Biodegradation 256
8.6 Applications 257
8.6.1 Tissue Engineering 259
8.6.2 Wound Dressing 261
8.6.3 Drug Delivery 261
8.6.4 Catheters and Stents 261
8.6.5 Artificial Organs 262
8.6.6 Smart Biomedical Devices 263
8.6.7 Antimicrobial Bio-Device Coatings 263
8.7 Conclusions and Future Trends 264
References 265
Chapter 9 - Packaging Materials 270
9.1 Introduction 270
9.2 Definition and History 272
9.3 Significance 272
9.4 Advantages Over Other Packaging Materials 273
9.5 Testing and Analysis 274
9.6 Properties 277
9.6.1 Barrier 278
9.6.2 Mechanical 278
9.6.3 Thermal and Flame Retardancy 280
9.6.4 Chemical Resistance and Weathering 281
9.6.5 Antimicrobial 282
9.6.6 Sensing 283
9.6.7 Antistatic 283
9.7 Applications 285
9.7.1 Nuclear Material 287
9.7.2 Food Items 287
9.7.3 Photographic Films 288
9.7.4 Electronic Materials 288
9.7.5 Bio-Medical 289
9.7.6 Miscellaneous 289
9.8 Examples of Commercial Products 289
9.9 Conclusions and Future Trends 291
References 291
Chapter 10 - Miscellaneous: Other Applications 294
10.1 Introduction 294
10.2 Adhesives 295
10.2.1 Advantages 296
10.2.2 Disadvantages 297
10.2.3 Classification 297
10.2.4 Surface Treatment 300
10.2.5 Testing Methods 300
10.2.6 Applications 301
10.3 Automobiles 302
10.4 Agriculture 305
10.5 Construction 307
10.6 Electrical and Electronic Industries 309
10.7 Energy 312
10.8 Footwear 314
10.9 Conclusions and Future Trends 316
References 317
Subject Index 320