Menu Expand
Inorganic Two-dimensional Nanomaterials

Inorganic Two-dimensional Nanomaterials

Changzheng Wu

(2017)

Additional Information

Book Details

Abstract

Inorganic 2D nanomaterials, or inorganic graphene analogues, are gaining great attention due to their unique properties and potential energy applications. They contain ultrathin nanosheet morphology with one-dimensional confinement, but unlike pure carbon graphene, inorganic two-dimensional nanomaterials have a more abundant elemental composition and can form different crystallographic structures. These properties contribute to their unique chemical reaction activity, tunable physical properties and facilitate applications in the field of energy conversion and storage.

Inorganic Two-dimensional Nanomaterials details the development of the nanostructures from computational simulation and theoretical understanding to their synthesis and characterization. Individual chapters then cover different applications of the materials as electrocatalysts, flexible supercapicitors, flexible lithium ion batteries and thermoelectrical devices.

The book provides a comprehensive overview of the field for researchers working in the areas of materials chemistry, physics, energy and catalysis.


Table of Contents

Section Title Page Action Price
Cover Cover
Inorganic Two-dimensional Nanomaterials: Fundamental Understanding, Characterizations and Energy Applications i
Preface vii
Contents xi
Section I - Fundamental Understanding 1
Chapter 1 - Exploring Two-dimensional Crystals with Atomic Thickness from Molecular Design and Global Structure Search 3
1.1 Introduction 3
1.2 Boron 5
1.2.1 Theoretical Design 5
1.2.1.1 α-sheet 5
1.2.1.2 Proposal of Polymorphism of the 2D Boron Sheet 7
1.2.1.3 B12 Icosahedral Sheet 8
1.2.1.4 Global Minimum Searching Boron Sheet 8
1.3 Carbon 11
1.3.1 Graphene Derivatives 11
1.3.2 The Graphyne Group 15
1.3.3 Penta-graphene 15
1.4 Silicon 17
1.4.1 Surface Reconstruction 17
1.4.2 Bilayer and Multilayer Silicene Construction 19
1.4.3 Hydrogenated Silicene 21
1.4.4 Group-14 Element Derivatives 22
1.5 Phosphorene 22
1.5.1 Theoretical Design 23
1.5.1.1 Blue Phosphorus 23
1.5.1.2 Phase Coexistence and Metal-insulator Transition in Few-layer Phosphorene 24
1.5.1.3 Tiling Phosphorus 25
1.5.1.4 Single-layered Hittorf’s Phosphorus 25
1.5.1.5 Nine New Phosphorene Polymorphs with Non-honeycomb Structures 26
1.5.1.6 Porous Polymorphs of 2D Phosphorus 27
1.6 Compounds 28
1.6.1 Carbides 28
1.6.1.1 B–C Compounds 28
1.6.1.2 Si–C Compounds 29
1.6.1.3 Be2C 29
1.6.2 Silicates 29
1.6.2.1 B–Si Compounds 29
1.6.2.2 Cu2Si 29
1.6.3 Boron Nitrides and Carbon Nitrides 30
1.7 Conclusion and Outlook 30
Acknowledgements 30
References 30
Chapter 2 - Nanoscale Buckling Mechanics of Ultrathin Sheets 35
2.1 Introduction 35
2.2 Buckling in a Free-standing Monolayer Sheet 36
2.2.1 Nanoscale Buckling due to Thermal Fluctuations 36
2.2.2 Nanoscale Buckling due to Edge Stress 38
2.2.3 Nanoscale Buckling in 2D Heterostructures 40
2.2.4 Nanoscale Buckling due to Topological Defects 41
2.3 Buckling of a Monolayer on Substrates 44
2.3.1 Wrinkling Mediated by Substrate Elasticity or van der Waals Interactions 45
2.3.2 The Formation of Soliton-like Buckle-delamination and Bubble-like Blister 46
2.3.3 Interlayer Interaction Induced Deformation in 2D van der Waals Heterostructures 48
2.3.4 Localized Wrinkling by Orientational Binding on the Substrate Surface 50
2.4 Buckling of Twisted Bilayer Graphene 51
2.5 Conclusions 52
Acknowledgements 53
References 53
Chapter 3 - Surface Modification for Engineering the Intrinsic Magnetic Properties of Inorganic 2D Nanomaterials 56
3.1 Introduction 56
3.2 Intrinsic Magnetic Properties in Inorganic 2D Nanomaterials 58
3.3 Surface Modification for Engineering the Magnetic Properties of Inorganic 2D Nanomaterials 63
3.3.1 Introducing Magnetism by Heteroatom Incorporation 64
3.3.2 Introducing Magnetism by Molecular Absorption 65
3.3.3 Introducing Magnetism by Multiple Defects Introduction 67
3.4 Application of 2D Magnetic Nanomaterials 69
3.4.1 2D Magnetic Nanosheets for Spintronics 69
3.4.2 2D Magnetic Superlattice for Enhanced Magnetocaloric Effects 73
3.4.3 2D Magnetic Nanomaterials for Energy-related Application 75
3.5 Conclusions and Outlooks 76
References 78
Chapter 4 - Solid-state Synthesis of Two-dimensional Layered Crystals 85
4.1 Introduction 85
4.2 Solid State Decomposition (SSD) 87
4.2.1 Thermal Decomposition Process for Graphene Growth 87
4.2.2 Parameters Affecting the Growth of Graphene 88
4.2.3 The Advantages and Limitations of SSD Method 90
4.3 Chemical Vapor Transport Reaction (CVT) 90
4.3.1 The Introduction of CVT 90
4.3.2 Single 2D Materials 91
4.3.2.1 Binary 2D Materials 92
4.3.2.2 Ternary 2D Materials 94
4.3.2.3 Doping/Hybridizing of 2D Materials 94
4.3.3 Effects of Growth Parameters 97
4.3.3.1 Transport Agents and Temperature 97
4.3.3.2 The Rate of Mass Transport 98
4.4 Chemical Vapor Deposition (CVD) 99
4.4.1 CVD Growth of Graphene 100
4.4.2 CVD Growth of Transition Metal Dichalcogenides (TMDs) 101
4.4.3 CVD Growth of 2D Hetrostructures 103
4.4.4 Factors Affecting the Growth in CVD 104
4.4.5 The Advantages and Limitations of CVD Method 105
4.5 Template Driven Growth (TDG) 106
4.5.1 Types of Templates 106
4.5.2 Graphene-based Template Growth 108
4.5.3 The Advantages and Limitations of Template Confined Growth 110
4.6 Other Methods 110
4.6.1 Molecular Beam Epitaxy (MBE) 110
4.6.2 Atomic Layer Deposition (ALD) 113
4.6.3 Microwave-assisted Synthesis 114
4.7 Summary and Outlook 115
Acknowledgements 117
References 117
Chapter 5 - Liquid Phase Synthesis of Two-dimensional Crystals: from Top-down to Bottom-up 126
5.1 Introduction 126
5.2 Top-down Strategies 128
5.2.1 Small Molecules Assisted Exfoliation Strategy 129
5.2.2 Ions Intercalation–deintercalation Assisted Exfoliation Strategy 132
5.2.3 Ion Exchange Based Exfoliation Strategy 134
5.2.4 Lamellar Hybrid Intermediate Based Exfoliation Strategy 136
5.2.5 2D Precursor-based Topotactic Reaction Strategy 136
5.3 Bottom-up Strategies 140
5.3.1 Self-assembly Strategy 141
5.3.2 Oriented Attachment Strategy 143
5.3.3 Template-based Strategy 144
5.4 Conclusion 146
Acknowledgements 146
References 147
Chapter 6 - Growth of Inorganic Two-dimensional Heterostructures Based on Transition Metal Dichalcogenides 153
6.1 Introduction 153
6.2 TMDCs/TMDCs 154
6.3 TMDCs/Graphene 159
6.4 Conclusion and Perspectives 162
Acknowledgement 163
References 163
Section II - Characterizations 169
Chapter 7 - The Investigations of Mono-element Two Dimensional Materials by Scanning Tunneling Microscopy/Spectroscopy 171
7.1 Introduction 171
7.2 Scanning Tunneling Microscopy/Spectroscopy 172
7.3 Graphene 175
7.3.1 Exfoliated Graphene 177
7.3.1.1 Graphene on SiO2 177
7.3.1.2 Graphene on h-BN 178
7.3.1.3 Graphene on Graphite 179
7.3.1.4 Graphene on MoS2 181
7.3.1.5 Epitaxial Graphene on SiC(0001) 183
7.3.1.6 Graphene on Metal Substrates 184
7.3.2 Quasiparticle Interferences 187
7.3.3 Twist Graphene Layers 189
7.3.4 Landau Levels 192
7.4 Other 2D Materials of Group 14 Elements 194
7.4.1 Silicene 194
7.4.1.1 Monolayer Silicene Superstructures on Ag(111) 196
7.4.1.2 Scanning Tunneling Spectroscopy of Silicene 203
7.4.2 Germanene 208
7.4.3 Stanene 210
7.5 Borophene 211
7.6 Summary 214
References 214
Chapter 8 - Synchrotron Radiation Spectroscopic Techniques for Two-dimensional Materials 222
8.1 Synchrotron Radiation X-ray Absorption\rSpectroscopy 222
8.1.1 Basic XAFS Concepts 223
8.1.2 Structural Parameters Determined from XAFS Data Analysis 224
8.2 Advantages of Using XAFS Spectroscopy for Fine Structural Characterization of 2D Nanomaterials 225
8.3 Recent Research Progress of XAFS Spectroscopy in 2D Materials 226
8.3.1 Structural Distortion of Ultrathin 2D Materials 226
8.3.2 Low-coordinated Surface Atoms of Ultrathin 2D Materials 230
8.3.3 Vacancy and Doping of Ultrathin 2D Materials 234
8.4 Outlook of Time- and Spatial-resolved Synchrotron Radiation XAFS Techniques for 2D Nanomaterials 234
Acknowledgements 236
References 236
Section III - Energy Applications 241
Chapter 9 - Inorganic Two-dimensional Nanomaterials for Electrocatalysis 243
9.1 Introduction 243
9.2 Electrocatalysis Fundamentals 244
9.3 Unique Features and Advantages of 2D Nanomaterials for Electrocatalysis 245
9.4 Recent Research Progress 247
9.4.1 Hydrogen Evolution Reaction (HER) 247
9.4.1.1 Molybdenum Disulfide (MoS2) 247
9.4.1.2 Other Chalcogenides 253
9.4.1.3 Other 2D HER Electrocatalysts 256
9.4.2 Oxygen Evolution Reaction (OER) 256
9.4.2.1 Layered Double Hydroxides 258
9.4.2.2 Other 2D OER Electrocatalysts 258
9.4.3 Oxygen Reduction Reaction (ORR) 260
9.4.4 CO2 Electrochemical Reduction 261
9.5 Concluding Remarks and Outlook 261
References 263
Chapter 10 - Two-dimensional Nanomaterials for Applications in Flexible Supercapacitors 266
10.1 Introduction 266
10.2 Graphene-based Flexible Supercapacitors 268
10.3 Inorganic 2D Nanomaterials-based Flexible Supercapacitors 271
10.3.1 EDLC Mechanism (Conducting Materials) 271
10.3.1.1 MXenes-based Supercapacitors 271
10.3.1.2 TMDs-based Flexible Supercapacitors 274
10.3.2 Pseudo-materials-based Flexible Supercapacitors 274
10.4 2D Nanomaterials for Planar Supercapacitors (Microsupercapacitors) 281
10.4.1 Conductive 2D Nanomaterials for Flexible Planar Supercapacitors 282
10.4.2 Pseudo-capacitive 2D Nanomaterials for Flexible Planar Supercapacitors 284
10.5 Gel Electrolytes for 2D Nanomaterials-based Flexible Supercapacitors 286
10.5.1 Aqueous Gel Electrolyte 287
10.5.2 Non-aqueous Gel Electrolyte 289
10.6 Conclusions and Outlooks 290
References 291
Chapter 11 - Flexible Two-dimensional Nanomaterials for Lithium-ion Batteries Applications 294
11.1 Introduction 294
11.2 Paper-like Graphene Nanostructures 295
11.3 Flexible 2D Hybrid Film Paper 299
11.4 Flexible 2D Graphene Composite Paper Anodes 301
11.4.1 Flexible 2D Graphene/Metal Oxides Composite Paper Anodes 301
11.4.2 Flexible 2D Graphene/Metal Sulfide Composite Anodes 310
11.4.3 Graphene/Si Composite Anodes 313
11.5 Flexible 2D Graphene Composite Cathodes 315
11.6 Flexible 2D Inorganic Nanosheets-based Electrodes for Li-ion Batteries 316
11.6.1 Flexible 2D Metal Oxide Nanosheets Composite 316
11.6.2 Flexible 2D Metal Sulfide Nanosheets Composites Anode 321
11.6.3 Flexible 2D Multiple-compound Nanosheets Composites 323
11.7 Conclusions and Future Study 325
Acknowledgements 327
References 327
Chapter 12 - Two-dimensional Nanomaterials—An Ideal Platform to Understand Photocatalysis 334
12.1 Introduction 334
12.2 Light Harvesting 336
12.3 Interfacial Charge Carrier Dynamics 344
12.4 Surface Redox Reaction 356
References 365
Chapter 13 - Two-dimensional Nanomaterials as Promising Candidates for Thermoelectric Applications 369
13.1 Introduction 369
13.1.1 Performance Parameters of Thermoelectric Materials 372
13.1.2 The Modulation of Thermoelectric Parameters 374
13.1.2.1 Enhancement of the Seebeck Coefficient 374
13.1.2.2 Lowering the Thermal Conductivity 375
13.1.3 Dimensionality Effect in Thermoelectric Materials 378
13.2 Thermoelectric Materials with 2D Characteristics 379
13.2.1 IV–VI Thermoelectric Materials 380
13.2.2 V–VI Thermoelectric Materials 384
13.2.2.1 Bi2Te3 384
13.2.2.2 Bi2Se3 386
13.2.3 TMD-based Thermoelectric Materials 386
13.2.4 Layered Oxide-based Thermoelectric Materials 387
13.3 Thermoelectric Performance of 2D Nanosheets 389
13.4 Conclusion 395
References 397
Subject Index 401