Menu Expand
Fluid Mechanics for Engineers in SI Units

Fluid Mechanics for Engineers in SI Units

David A. Chin

(2017)

Additional Information

Book Details

Abstract

For courses in fluid mechanics.

 

Introduces engineering students to the principles of fluid mechanics.

Written and conceived by an author with decades of relevant experience in the fields of fluid mechanics, engineering, and related disciplines, this First Edition of Fluid Mechanics for Engineers effectively introduces engineering students to the principles of fluid mechanics. With the understanding that fluid mechanics is a required core course for most engineering students, the author focuses first and foremost on the most essential topics of the field. Practical applications for several engineering disciplines are considered, with a special focus on civil engineering. Elective topics are also included for instructors’ consideration with regard to specific courses. Written in a stimulating style, Fluid Mechanics for Engineers fulfills the requirements of a core course while keeping students engaged.

Pearson Mastering Engineering not included. Students, if Pearson Mastering Engineering is a recommended/mandatory component of the course, please ask your instructor for the correct ISBN and course ID. Pearson Mastering Engineering should only be purchased when required by an instructor. Instructors, contact your Pearson representative for more information.

Pearson Mastering Engineering is an online homework, tutorial, and assessment program designed to work with this text to engage students and improve results. Interactive, self-paced tutorials provide individualized coaching to help students stay on track. With a wide range of activities available, students can actively learn, understand, and retain even the most difficult concepts.

 


Table of Contents

Section Title Page Action Price
Cover 1
Title page 2
Copyright page 3
Contents 5
Preface 12
Chapter 1 Properties of Fluids 17 18
1.1 Introduction 17 18
1.1.1 Nomenclature 19 20
1.1.2 Dimensions and Units 20 21
1.1.3 Basic Concepts of Fluid Flow 26 27
1.2 Density 27 28
1.3 Compressibility 32 33
1.4 Ideal Gases 36 37
1.4.1 Equation of State 36 37
1.4.2 Mixtures of Ideal Gases 37 38
1.4.3 Thermodynamic Properties 39 40
1.4.4 Speed of Sound in an Ideal Gas 44 45
1.5 Standard Atmosphere 44 45
1.6 Viscosity 46 47
1.6.1 Newtonian Fluids 46 47
1.6.2 Non-Newtonian Fluids 53 54
1.7 Surface Tension 55 56
1.8 Vapor Pressure 61 62
1.8.1 Evaporation, Transpiration, and Relative Humidity 63 64
1.8.2 Cavitation and Boiling 64 65
1.9 Thermodynamic Properties of Liquids 67 68
1.9.1 Specific Heat 67 68
1.9.2 Latent Heat 68 69
1.10 Summary of Properties of Water and Air 69 70
Key Equations in Properties of Fluids 70 71
Problems 72 73
Chapter 2 Fluid Statics 87 88
2.1 Introduction 87 88
2.2 Pressure Distribution in Static Fluids 88 89
2.2.1 Characteristics of Pressure 88 89
2.2.2 Spatial Variation in Pressure 89 90
2.2.3 Practical Applications 92 93
2.3 Pressure Measurements 101 102
2.3.1 Barometer 101 102
2.3.2 Bourdon Gauge 103 104
2.3.3 Pressure Transducer 104 105
2.3.4 Manometer 105 106
2.4 Forces on Plane Surfaces 110 111
2.5 Forces on Curved Surfaces 120 121
2.6 Buoyancy 127 128
2.6.1 Fully Submerged Bodies 127 128
2.6.2 Partially Submerged Bodies 132 133
2.6.3 Buoyancy Effects Within Fluids 138 139
2.7 Rigid-Body Motion of Fluids 139 140
2.7.1 Liquid with Constant Acceleration 141 142
2.7.2 Liquid in a Rotating Container 145 146
Key Equations in Fluid Statics 148 149
Problems 150 151
Chapter 3 Kinematics and Streamline Dynamics 177 178
3.1 Introduction 177 178
3.2 Kinematics 178 179
3.2.1 Tracking the Movement of Fluid Particles 181 182
3.2.2 The Material Derivative 188 189
3.2.3 Flow Rates 190 191
3.3 Dynamics of Flow along a Streamline 192 193
3.4 Applications of the Bernoulli Equation 202 203
3.4.1 Flow through Orifices 203 204
3.4.2 Flow Measurement 209 210
3.4.3 Trajectory of a Liquid Jet 214 215
3.4.4 Compressibility Effects 216 217
3.4.5 Viscous Effects 218 219
3.4.6 Branching Conduits 220 221
3.5 Curved Flows and Vortices 222 223
3.5.1 Forced Vortices 223 224
3.5.2 Free Vortices 226 227
Key Equations in Kinematics and Streamline Dynamics 229 230
Problems 232 233
Chapter 4 Finite Control Volume Analysis 256 257
4.1 Introduction 256 257
4.2 Reynolds Transport Theorem 257 258
4.3 Conservation of Mass 259 260
4.3.1 Closed Conduits 263 264
4.3.2 Free Discharges from Reservoirs 265 266
4.3.3 Moving Control Volumes 267 268
4.4 Conservation of Linear Momentum 268 269
4.4.1 General Momentum Equations 269 270
4.4.2 Forces on Pressure Conduits 273 274
4.4.3 Forces on Deflectors and Blades 281 282
4.4.4 Forces on Moving Control Volumes 282 283
4.4.5 Wind Turbines 288 289
4.4.6 Reaction of a Jet 293 294
4.4.7 Jet Engines and Rockets 296 297
4.5 Angular Momentum Principle 298 299
4.6 Conservation of Energy 307 308
4.6.1 The First Law of Thermodynamics 308 309
4.6.2 Steady-State Energy Equation 309 310
4.6.3 Unsteady-State Energy Equation 320 321
Key Equations in Finite Control Volume Analysis 323 324
Problems 327 328
Chapter 5 Differential Analysis 357 358
5.1 Introduction 357 358
5.2 Kinematics 358 359
5.2.1 Translation 358 359
5.2.2 Rotation 360 361
5.2.3 Angular Deformation 363 364
5.2.4 Linear Deformation 363 364
5.3 Conservation of Mass 365 366
5.3.1 Continuity Equation 365 366
5.3.2 The Stream Function 372 373
5.4 Conservation of Momentum 375 376
5.4.1 General Equation 376 377
5.4.2 Navier–Stokes Equation 379 380
5.4.3 Nondimensional Navier–Stokes Equation 381 382
5.5 Solutions of the Navier–Stokes Equation 385 386
5.5.1 Steady Laminar Flow Between Stationary Parallel Plates 385 386
5.5.2 Steady Laminar Flow Between Moving Parallel Plates 388 389
5.5.3 Steady Laminar Flow Adjacent to Moving Vertical Plate 391 392
5.5.4 Steady Laminar Flow Through a Circular Tube 394 395
5.5.5 Steady Laminar Flow Through an Annulus 396 397
5.5.6 Steady Laminar Flow Between Rotating Cylinders 399 400
5.6 Inviscid Flow 402 403
5.6.1 Bernoulli Equation for Steady Inviscid Flow 404 405
5.6.2 Bernoulli Equation for Steady Irrotational Inviscid Flow 407 408
5.6.3 Velocity Potential 409 410
5.6.4 Two-Dimensional Potential Flows 411 412
5.7 Fundamental and Composite Potential Flows 415 416
5.7.1 Principle of Superposition 415 416
5.7.2 Uniform Flow 417 418
5.7.3 Line Source/Sink Flow 418 419
5.7.4 Line Vortex Flow 421 422
5.7.5 Spiral Flow Toward a Sink 424 425
5.7.6 Doublet Flow 426 427
5.7.7 Flow Around a Half-Body 428 429
5.7.8 Rankine Oval 433 434
5.7.9 Flow Around a Circular Cylinder 437 438
5.8 Turbulent Flow 441 442
5.8.1 Occurrence of Turbulence 443 444
5.8.2 Turbulent Shear Stress 443 444
5.8.3 Mean Steady Turbulent Flow 445 446
5.9 Conservation of Energy 446 447
Key Equations in Differential Analysis of Fluid Flows 449 450
Problems 455 456
Chapter 6 Dimensional Analysis and Similitude 477 478
6.1 Introduction 477 478
6.2 Dimensions in Equations 477 478
6.3 Dimensional Analysis 481 482
6.3.1 Conventional Method of Repeating Variables 483 484
6.3.2 Alternative Method of Repeating Variables 486 487
6.3.3 Method of Inspection 487 488
6.4 Dimensionless Groups as Force Ratios 488 489
6.5 Dimensionless Groups in Other Applications 493 494
6.6 Modeling and Similitude 494 495
Key Equations for Dimensional Analysis and Similitude 506 507
Problems 507 508
Chapter 7 Flow in Closed Conduits 525 526
7.1 Introduction 525 526
7.2 Steady Incompressible Flow 526 527
7.3 Friction Effects in Laminar Flow 532 533
7.4 Friction Effects in Turbulent Flow 536 537
7.5 Practical Applications 544 545
7.5.1 Estimation of Pressure Changes 544 545
7.5.2 Estimation of Flow Rate for a Given Head Loss 546 547
7.5.3 Estimation of Diameter for a Given Flow Rate and Head Loss 547 548
7.5.4 Head Losses in Noncircular Conduits 548 549
7.5.5 Empirical Friction Loss Formulas 549 550
7.5.6 Local Head Losses 552 553
7.5.7 Pipelines with Pumps or Turbines 559 560
7.6 Water Hammer 560 561
7.7 Pipe Networks 565 566
7.7.1 Nodal Method 566 567
7.7.2 Loop Method 568 569
7.8 Building Water Supply Systems 573 574
7.8.1 Specification of Design Flows 574 575
7.8.2 Specification of Minimum Pressures 574 575
7.8.3 Determination of Pipe Diameters 576 577
Key Equations for Flow in Closed Conduits 583 584
Problems 587 588
Chapter 8 Turbomachines 608 609
8.1 Introduction 608 609
8.2 Mechanics of Turbomachines 609 610
8.3 Hydraulic Pumps and Pumped Systems 614 615
8.3.1 Flow Through Centrifugal Pumps 616 617
8.3.2 Efficiency 621 622
8.3.3 Dimensional Analysis 622 623
8.3.4 Specific Speed 626 627
8.3.5 Performance Curves 630 631
8.3.6 System Characteristics 632 633
8.3.7 Limits on Pump Location 635 636
8.3.8 Multiple Pump Systems 640 641
8.3.9 Variable-Speed Pumps 642 643
8.4 Fans 644 645
8.4.1 Performance Characteristics of Fans 644 645
8.4.2 Affinity Laws of Fans 645 646
8.4.3 Specific Speed 646 647
8.5 Hydraulic Turbines and Hydropower 648 649
8.5.1 Impulse Turbines 648 649
8.5.2 Reaction Turbines 654 655
8.5.3 Practical Considerations 658 659
Key Equations for Turbomachines 664 665
Problems 668 669
Chapter 9 Flow in Open Channels 693 694
9.1 Introduction 693 694
9.2 Basic Principles 694 695
9.2.1 Steady-State Continuity Equation 694 695
9.2.2 Steady-State Momentum Equation 694 695
9.2.3 Steady-State Energy Equation 711 712
9.3 Water Surface Profiles 724 725
9.3.1 Profile Equation 724 725
9.3.2 Classification of Water Surface Profiles 725 726
9.3.3 Hydraulic Jump 731 732
9.3.4 Computation of Water Surface Profiles 737 738
Key Equations in Open-Channel Flow 746 747
Problems 749 750
Chapter 10 Drag and Lift 759 760
10.1 Introduction 759 760
10.2 Fundamentals 760 761
10.2.1 Friction and Pressure Drag 762 763
10.2.2 Drag and Lift Coefficients 762 763
10.2.3 Flow over Flat Surfaces 765 766
10.2.4 Flow over Curved Surfaces 767 768
10.3 Estimation of Drag Coefficients 770 771
10.3.1 Drag on Flat Surfaces 770 771
10.3.2 Drag on Spheres and Cylinders 774 775
10.3.3 Drag on Vehicles 781 782
10.3.4 Drag on Ships 784 785
10.3.5 Drag on Two-Dimensional Bodies 785 786
10.3.6 Drag on Three-Dimensional Bodies 786 787
10.3.7 Drag on Composite Bodies 786 787
10.3.8 Drag on Miscellaneous Bodies 789 790
10.3.9 Added Mass 790 791
10.4 Estimation of Lift Coefficients 791 792
10.4.1 Lift on Airfoils 791 792
10.4.2 Lift on Airplanes 794 795
10.4.3 Lift on Hydrofoils 799 800
10.4.4 Lift on a Spinning Sphere in Uniform Flow 800 801
Key Equations for Drag and Lift 803 804
Problems 806 807
Chapter 11 Boundary-Layer Flow 827 828
11.1 Introduction 827 828
11.2 Laminar Boundary Layers 829 830
11.2.1 Blasius Solution for Plane Surfaces 829 830
11.2.2 Blasius Equations for Curved Surfaces 834 835
11.3 Turbulent Boundary Layers 836 837
11.3.1 Analytic Formulation 836 837
11.3.2 Turbulent Boundary Layer on a Flat Surface 837 838
11.3.3 Boundary-Layer Thickness and Shear Stress 844 845
11.4 Applications 845 846
11.4.1 Displacement Thickness 845 846
11.4.2 Momentum Thickness 849 850
11.4.3 Momentum Integral Equation 850 851
11.4.4 General Formulations for Self-Similar Velocity Profiles 854 855
11.5 Mixing-Length Theory of Turbulent Boundary Layers 856 857
11.5.1 Smooth Flow 856 857
11.5.2 Rough Flow 857 858
11.5.3 Velocity-Defect Law 858 859
11.5.4 One-Seventh Power Law Distribution 859 860
11.6 Boundary Layers in Closed Conduits 859 860
11.6.1 Smooth Flow in Pipes 860 861
11.6.2 Rough Flow in Pipes 861 862
11.6.3 Notable Contributors to Understanding Flow in Pipes 862 863
Key Equations for Boundary-Layer Flow 863 864
Problems 867 868
Chapter 12 Compressible Flow 884 885
12.1 Introduction 884 885
12.2 Principles of Thermodynamics 885 886
12.3 The Speed of Sound 891 892
12.4 Thermodynamic Reference Conditions 898 899
12.4.1 Isentropic Stagnation Condition 898 899
12.4.2 Isentropic Critical Condition 903 904
12.5 Basic Equations of One-Dimensional Compressible Flow 905 906
12.6 Steady One-Dimensional Isentropic Flow 907 908
12.6.1 Effect of Area Variation 907 908
12.6.2 Choked Condition 908 909
12.6.3 Flow in Nozzles and Diffusers 910 911
12.7 Normal Shocks 923 924
12.8 Steady One-Dimensional Non-Isentropic Flow 935 936
12.8.1 Adiabatic Flow with Friction 936 937
12.8.2 Isothermal Flow with Friction 949 950
12.8.3 Diabatic Frictionless Flow 951 952
12.8.4 Application of Fanno and Rayleigh Relations to Normal Shocks 957 958
12.9 Oblique Shocks, Bow Shocks, and Expansion Waves 962 963
12.9.1 Oblique Shocks 962 963
12.9.2 Bow Shocks and Detached Shocks 970 971
12.9.3 Isentropic Expansion Waves 972 973
Key Equations in Compressible Flow 977 978
Problems 984 985
Appendix A Units and Conversion Factors 999 1000
A.1 Units 999 1000
A.2 Conversion Factors 1000 1001
Appendix B Fluid Properties 1003 1004
B.1 Water 1003 1004
B.2 Air 1004 1005
B.3 The Standard Atmosphere 1005 1006
B.4 Common Liquids 1006 1007
B.5 Common Gases 1007 1008
B.6 Nitrogen 1008 1008
Appendix C Properties of Areas and Volumes 1009 1010
C.1 Areas 1009 1010
C.2 Properties of Circles and Spheres 1011 1012
C.2.1 Circles 1011 1012
C.2.2 Spheres 1012 1013
C.3 Volumes 1012 1013
Appendix D Pipe Specifications 1013 1014
D.1 PVC Pipe 1013 1014
D.2 Ductile Iron Pipe 1014 1015
D.3 Concrete Pipe 1014 1015
D.4 Physical Properties of Common Pipe Materials 1014 1015
Bibliography 1015 1016
Index 1026 1027