Menu Expand
Recent Developments in Forward Osmosis Processes

Recent Developments in Forward Osmosis Processes

Rodrigo Valladares Linares | Zhenyu Li | Menachem Elimelech | Gary Amy | Hans Vrouwenvelder

(2017)

Additional Information

Book Details

Abstract

Forward osmosis (FO) is an emerging membrane technology with a range of possible water treatment applications (desalination and wastewater treatment and recovery). Recent Developments in Forward Osmosis Processes provides an overview of applications, advantages, challenges, costs and current knowledge gaps. Commercial technology, hybrid FO systems for both desalination and water recovery applications have shown to have higher capital cost compared to conventional technologies. Nevertheless, due to the demonstrated lower operational costs of hybrid FO systems, the unit cost for each m3 of fresh water produced with the FO system are lower than conventional desalination/water recovery technologies (i.e. ultrafiltration/RO systems). There are key benefits of using FO hybrid systems compared to RO: • chemical storage and feed systems may be reduced for capital, operational and maintenance cost savings, • reduced process piping costs, • more flexible treatment units, • higher overall sustainability of the desalination process, while producing high quality water.

Table of Contents

Section Title Page Action Price
Cover Cover
Contents v
Additional Image credits xiii
List of Contributors xv
Preface xvii
Summary xix
Part 1: Introduction 1
Chapter 1.1: Population distribution and water scarcity 3
1.1.1 OSMOTIC MEMBRANE PROCESSES 5
1.1.2 FORWARD OSMOSIS (FO) 6
1.1.3 FO SYSTEM FOR WASTEWATER RECOVERY AND SEAWATER DESALINATION 8
1.1.4 CONCENTRATION POLARIZATION IN FO MEMBRANES 9
1.1.5 FO MEMBRANE FOULING 10
1.1.6 ENERGY DEMAND IN DESALINATION AND WATER TREATMENT PROCESSES 11
1.1.7 SCOPE AND OUTLINE 11
1.1.8 REFERENCES 13
Part 2: Water Recovery 17
Chapter 2.1: The management of urban runoff in coastal regions 19
2.1.1 INTRODUCTION 19
2.1.2 MATERIALS AND METHODS 22
2.1.2.1 Synthetic urban runoff and seawater 22
2.1.2.2 FO membrane and simulated osmotic detention pond 22
2.1.2.3 Analytical methods 24
2.1.3 RESULTS AND DISCUSSION 25
2.1.3.1 Effects of feed water condition on flux patterns 25
2.1.3.2 Salt leakage and NOM fouling 27
2.1.3.3 Rejection of trace metals and nutrients 29
2.1.3.4 Environmental and economic implications 31
2.1.4 SUMMARY 32
2.1.5 REFERENCES 33
Chapter 2.2: Water harvesting from municipal wastewater 37
2.2.1 INTRODUCTION 37
2.2.2 EXPERIMENTAL 39
2.2.2.1 Feed water and draw solution 39
2.2.2.2 FO membrane and experimental set-up 40
2.2.2.3 Analytical methods 40
2.2.3 RESULTS AND DISCUSSION 41
2.2.3.1 Flux patterns 41
2.2.3.2 Salt leakage and retention of nutrients and trace metals 42
2.2.3.3 Fouling characterization and osmotic backwash 46
2.2.4 SUMMARY 48
2.2.5 REFERENCES 48
Chapter 2.3: Indirect desalination of seawater 53
2.3.1 INTRODUCTION 53
2.3.2 MATERIALS, METHODS AND EXPERIMENTAL 54
2.3.2.1 Membranes and equipment 54
2.3.2.2 Draw solution and feed water 55
2.3.2.3 Experimental protocol 55
2.3.3 THEORETICAL BACKGROUND 56
2.3.4 RESULTS AND DISCUSSION 58
2.3.4.1 Feed water and draw solution characterization 58
2.3.4.2 Long-term forward osmosis experiments 60
2.3.5 ENERGY, COST AND WATER REUSE CONSIDERATIONS 63
2.3.5.1 Comparison of energy use 63
2.3.5.2 Cost analysis 64
2.3.5.3 Alternative water reuse of diluted draw solutions 66
2.3.6 SUMMARY 66
2.3.7 REFERENCES 67
Part 3: Fouling 69
Chapter 3.1: Fouling propensity during desalination of seawater 71
3.1.1 INTRODUCTION 71
3.1.2 MATERIALS AND METHODS 73
3.1.2.1 Feed and draw solution 73
3.1.2.2 Forward osmosis set-up and fouling tests 74
3.1.2.3 Analytical methods 76
3.1.3 RESULTS AND DISCUSSION 76
3.1.3.1 Flux patterns during FO 76
3.1.3.2 Identification of major foulants 80
3.1.3.3 Salt and foulant rejection 85
3.1.4 SUMMARY 86
3.1.5 REFERENCES 87
Chapter 3.2: NOM and TEP fouling 91
3.2.1 INTRODUCTION 91
3.2.2 EXPERIMENTAL 92
3.2.2.1 FO membranes and cell configuration 92
3.2.2.2 Water samples 93
3.2.2.3 FO membrane fouling procedure 93
3.2.2.4 NOM characterization 95
3.2.2.5 FO membrane cleaning 96
3.2.2.5.1 Air scouring cleaning 96
3.2.2.5.2 Chemical cleaning 96
3.2.3 RESULTS AND DISCUSSION 97
3.2.3.1 FO membrane process 97
3.2.3.2 Fouling of the active layer of FO membrane 98
3.2.3.3 Fouling of the support layer of FO membrane 101
3.2.3.4 Cleaning of the FO membrane – active layer 103
3.2.3.5 Cleaning of the FO membrane – support layer 104
3.2.4 SUMMARY 104
3.2.5 REFERENCES 105
Chapter 3.3: Draw solute induced calcium carbonate scaling 107
3.3.1 INTRODUCTION 107
3.3.2 MATERIALS AND METHODS 108
3.3.2.1 FS, DS and FO set-up 108
3.3.2.2 FO membrane, and the measurement of intrinsic permeability and separation properties 109
3.3.2.3 Experimental protocol for FO testing 109
3.3.2.4 Analytical methods 110
3.3.3 RESULTS AND DISCUSSION 110
3.3.3.1 Characterization of FO membrane 110
3.3.3.2 Water and reverse solute flux 112
3.3.3.3 Characterization of scaling in seawater desalination using NH3/CO2 FO process 114
3.3.3.4 Reversibility of scaling and recovery of permeate water flux by hydraulic flushing 117
3.3.3.5 Mechanism of scaling formation in seawater desalination using NH3/CO2 FO process 117
3.3.4 SUMMARY 121
3.3.5 REFERENCES 122
Chapter 3.4: Impact of spacer thickness on biofouling in forward osmosis 125
3.4.1 INTRODUCTION 125
3.4.2 MATERIALS AND METHODS 126
3.4.2.1 Membrane, spacers and cell configuration 126
3.4.2.2 Water sources 127
3.4.2.3 Biofilm formation 129
3.4.2.4 Analytical methods 129
3.4.3 RESULTS 130
3.4.3.1 Effect of spacer thickness on performance 130
3.4.3.2 Effect of spacer thickness on biomass accumulation 132
3.4.3.3 Effect of spacer thickness on fouling localization 134
3.4.3.4 Effect of spacer thickness on fouling composition 134
3.4.4 DISCUSSION 136
3.4.4.1 Thickest spacer provides the best performance 136
3.4.4.2 FO and RO show similar biofouling patterns 137
3.4.4.3 Future studies 138
3.4.5 SUMMARY 138
3.4.6 REFERENCES 139
Chapter 3.5: Effect of cleaning methods to remove organic fouling 143
3.5.1 INTRODUCTION 143
3.5.2 MATERIALS AND METHODS 143
3.5.3 RESULTS 145
3.5.4 SUMMARY 146
3.5.5 REFERENCES 147
Part 4: Rejection of Pollutants 149
Chapter 4.1: Rejection of micropollutants by FO membranes 151
4.1.1 INTRODUCTION 151
4.1.2 MATERIALS AND METHODS 152
4.1.2.1 FO membrane 152
4.1.2.2 RO membrane 153
4.1.2.3 Source waters 153
4.1.2.4 Experimental setup and procedure 153
4.1.2.5 Micropollutants stock preparation and analyses 154
4.1.2.6 FO membrane characterization 156
4.1.3 RESULTS AND DISCUSSION 156
4.1.3.1 Zeta potential and contact angle 156
4.1.3.2 Rejection of micropollutants by FO 157
4.1.4 SUMMARY 162
4.1.5 REFERENCES 162
Chapter 4.2: Rejection of boron 165
4.2.1 INTRODUCTION 165
4.2.2 MATERIALS AND METHODS 166
4.2.2.1 FO membranes 166
4.2.2.2 Experimental setup and procedure 167
4.2.3 RESULTS AND DISCUSSION 167
4.2.3.1 Membrane characterization 168
4.2.3.2 Membrane performance 169
4.2.3.2.1 Water flux 169
4.2.3.2.2 Draw solute rejection 170
4.2.3.3 Boron flux 171
4.2.4 SUMMARY 173
4.2.5 REFERENCES 173
Part 5: Draw Solution and Membranes 175
Chapter 5.1: Draw solution 177
5.1.1 INTRODUCTION 177
5.1.2 FUNDAMENTALS OF FO PROCESSES 179
5.1.3 IDEAL DRAW SOLUTION FOR THE FO PROCESS 182
5.1.4 LITERATURE REVIEW ABOUT DRAW SOLUTIONS 184
5.1.4.1 Commercially available compounds as draw solutes 184
5.1.4.1.1 Volatile compounds 184
5.1.4.1.2 Nutrient compounds 190
5.1.4.1.3 Inorganic salts 191
5.1.4.1.4 Organic salts 194
5.1.4.2 Synthetic materials as draw solutes 195
5.1.5 APPLICATIONS OF TYPICAL DRAW SOLUTIONS IN INTEGRATED FO PROCESSES 198
5.1.5.1 Seawater desalination 198
5.1.5.2 Wastewater reclamation 200
5.1.5.3 Protein enrichment 201
5.1.5.4 Power regeneration 202
5.1.6 CHALLENGES AND PROSPECTS FOR THE FUTURE 203
5.1.7 SUMMARY 205
5.1.8 NOMENCLATURE 205
5.1.8.1 Greek symbols 206
5.1.9 REFERENCES 206
Chapter 5.2: Cellulose acetate membrane: minimized internal concentration polarization 215
5.2.1 INTRODUCTION 215
5.2.2 EXPERIMENTAL 217
5.2.2.1 Materials 217
5.2.2.2 Membrane preparation 218
5.2.2.3 Forward osmosis and fouling tests 218
5.2.2.4 Pure water permeability, salt rejection and salt permeability tests 219
5.2.2.5 Pore size and pore size distribution 219
5.2.2.6 Water contact angle 220
5.2.2.7 Porosity P 220
5.2.2.8 Field emission scanning electronic microscopy (FESEM) 221
5.2.2.9 Atomic force microscope (AFM) 221
5.2.2.10 Positron annihilation spectroscopy (PAS) 221
5.2.3 RESULTS AND DISCUSSION 222
5.2.3.1 Morphology influenced by different substrates and phase inversion conditions 222
5.2.3.2 Morphology characterized by PALS 226
5.2.3.3 Pore size and pore size distribution 227
5.2.3.4 PWP, NaCl rejection and FO performance of different membranes 228
5.2.3.5 Modeling of FO performance and structural parameter St 232
5.2.3.6 Single vs. double dense-layer structure in the FO-MBR integrated system 238
5.2.4 SUMMARY 240
5.2.5 REFERENCES 240
Part 6: Modeling 245
Chapter 6.1: Modeling water flux 247
6.1.1 INTRODUCTION 247
6.1.2 GOVERNING EQUATIONS FOR PERMEATE FLUX 249
6.1.2.1 External concentration polarization 249
6.1.2.2 Internal concentration polarization 251
6.1.2.3 Model parameters 253
6.1.3 RESULTS AND DISCUSSION 253
6.1.3.1 Dense symmetric membrane 254
6.1.3.2 Asymmetric membrane in PRO mode 255
6.1.3.3 Asymmetric membrane in FO mode 258
6.1.3.4 Implications for improved membrane design 261
6.1.4 SUMMARY 263
6.1.5 REFERENCES 263
Chapter 6.2: Biofouling in FO systems: An experimental and numerical study 265
6.2.1 INTRODUCTION 265
6.2.2 EXPERIMENTAL 267
6.2.2.1 Experimental setup 267
6.2.2.2 Model description 268
6.2.2.2.1 Model geometry 268
6.2.2.2.2 Fluid flow 269
6.2.2.2.3 Salt transport 272
6.2.2.2.4 Biofilm development 273
6.2.2.2.5 Model solution 274
6.2.2.2.6 Simulation of batch operation 274
6.2.3 RESULTS AND DISCUSSION 274
6.2.3.1 Evaluation of the forward osmosis model 275
6.2.3.1.1 Water flux increase with increasing osmotic pressure 275
6.2.3.1.2 Flux decline in batch experiments 275
6.2.3.1.3 Flux decline in repeated batch studies with biofilm formation 276
6.2.3.2 Biofilm effect on FO performance 278
6.2.3.2.1 Impact of biofilm on water flux and concentration polarization 278
6.2.3.2.2 Effect of biofilm properties 280
6.2.3.2.3 Biofilm roughness and membrane surface coverage 282
6.2.3.2.4 Impact of biofilm location on flux 283
6.2.4 SUMMARY 286
6.2.5 REFERENCES 286
Part 7: Outlook 291
Chapter 7.1: Emerging applications for greater sustainability 293
7.1.1 INTRODUCTION 293
7.1.2 OSMOTIC DILUTION FOR ENERGY CONSERVATION 294
7.1.3 OSMOSIS ENGINEERED FOR PROTECTION OF THE ENVIRONMENT 297
7.1.4 MEMBRANES AT SEA: FUEL FROM WASTE 299
7.1.5 OSMOTIC AUGMENTATION OF WATER RESOURCES FOR AGRICULTURE 301
7.1.6 OUTLOOK 303
7.1.7 SUMMARY 304
7.1.8 REFERENCES 304
Chapter 7.2: Life cycle cost assessment 307
7.2.1 INTRODUCTION 307
7.2.2 METHODOLOGY 310
7.2.2.1 Life cycle cost methodology 310
7.2.2.2 Technologies analyzed 311
7.2.2.3 OPEX and CAPEX calculations 312
7.2.3 RESULTS AND DISCUSSION 315
7.2.3.1 Life cycle cost analysis and sensitivity evaluation 315
7.2.3.1.1 OPEX and CAPEX: total cost comparison 315
7.2.3.1.2 Sensitivity analysis based on FO membrane flux and module cost 317
7.2.3.2 Biogas production 321
7.2.3.3 Water quality versus public perception 322
7.2.3.4 Wastewater recovery and reuse: successful projects 324
7.2.3.5 Co-location 325
7.2.4 SUMMARY 325
7.2.5 REFERENCES 326
Chapter 7.3: Niches in seawater desalination and wastewater reuse 331
7.3.1 INTRODUCTION 331
7.3.1.1 Increasing need for fresh water along coasts 331
7.3.1.2 Current membrane systems in the water industry: reverse osmosis 331
7.3.1.3 Forward osmosis hybrid systems: an opportunity 332
7.3.2 DESALINATION APPLICATIONS 334
7.3.2.1 Direct desalination 334
7.3.2.2 Indirect desalination 339
7.3.3 IMPAIRED-QUALITY WATER TREATMENT AND REUSE APPLICATIONS 342
7.3.3.1 Water harvesting from municipal wastewater 342
7.3.3.2 Industrial wastewater reclamation and reuse 348
7.3.3.3 Other applications for impaired-quality water treatment 349
7.3.4 ENERGY AND ECONOMICS OF FO SYSTEMS 350
7.3.5 PRESSURE RETARDED OSMOSIS: SPECIAL FO APPLICATION FOR ENERGY RECOVERY IN WATER INDUSTRY 352
7.3.5.1 Generating power with PRO 352
7.3.5.2 Large-scale applications of PRO 354
7.3.5.3 PRO membranes 356
7.3.6 MAJOR CHALLENGES FOR COMMERCIALIZATION 357
7.3.7 SUMMARY 359
7.3.8 REFERENCES 360
Supplementary material 369
Chapter 2.1 369
Chapter 3.1 370
Chapter 3.3 370
Index 371