Menu Expand
Experimental Methods in Wastewater Treatment

Experimental Methods in Wastewater Treatment

Mark C. M. van Loosdrecht | Per Halkjaer Nielsen | C. M. Lopez-Vazquez | Damir Brdjanovic

(2016)

Additional Information

Book Details

Abstract

Over the past twenty years, the knowledge and understanding of wastewater treatment has advanced extensively and moved away from empirically based approaches to a fundamentally-based first principles approach embracing chemistry, microbiology, and physical and bioprocess engineering, often involving experimental laboratory work and techniques. Many of these experimental methods and techniques have matured to the degree that they have been accepted as reliable tools in wastewater treatment research and practice. For sector professionals, especially a new generation of young scientists and engineers entering the wastewater treatment profession, the quantity, complexity and diversity of these new developments can be overwhelming, particularly in developing countries where access to advanced level laboratory courses in wastewater treatment is not readily available. In addition, information on innovative experimental methods is scattered across scientific literature and only partially available in the form of textbooks or guidelines. This book seeks to address these deficiencies. It assembles and integrates the innovative experimental methods developed by research groups and practitioners around the world. Experimental Methods in Wastewater Treatment forms part of the internet-based curriculum in wastewater treatment at UNESCO-IHE and, as such, may also be used together with video records of experimental methods performed and narrated by the authors including guidelines on what to do and what not to do. The book is written for undergraduate and postgraduate students, researchers, laboratory staff, plant operators, consultants, and other sector professionals.

Table of Contents

Section Title Page Action Price
Cover Cover
Table of contents x
1. INTRODUCTION 1
References 5
2. ACTIVATED SLUDGE ACTIVITY TESTS 7
2.1 INTRODUCTION 7
2.2 ENHANCED BIOLOGICAL PHOSPHORUS REMOVAL 9
2.2.1 Process description 9
2.2.2 Experimental setup 11
2.2.2.1 Reactors 11
Anaerobic conditions 12
Anoxic conditions 12
Aerobic conditions 13
Mixing 13
Temperature control 13
pH control 14
Sampling and dosing ports 15
2.2.2.2 Activated sludge sample collection 16
2.2.2.3 Activated sludge sample preparation 16
2.2.2.4 Substrate 17
2.2.2.5 Analytical procedures 19
PHA 19
Glycogen 21
2.2.2.6 Parameters of interest 22
2.2.3 EBPR batch activity tests: preparation 22
2.2.3.1 Apparatus 22
2.2.3.2 Materials 24
2.2.3.3 Media preparation 24
Real wastewater 24
Synthetic influent media or substrate 24
Nitrate or nitrite solution 25
Washing media 25
Formaldehyde solution 25
ATU (Allyl-N-thiourea) solution 25
Acid and base solutions 25
2.2.3.4 Material preparation 25
2.2.3.5 Activated sludge preparation 28
2.2.4 Batch activity tests: execution 29
2.2.4.1 Anaerobic EBPR batch activity tests 30
Test EBPR.ANA.1 Anaerobic batch EBPR tests performed under the absence of an electron donor 31
Test EBPR.ANA.2 Anaerobic batch EBPR tests performed under a defined addition of an electron donor 31
Test EBPR.ANA.3 Anaerobic batch EBPR tests performed after the addition of an electron donor in excess 32
2.2.4.2 Anoxic EBPR batch tests 33
Test EBPR.ANOX.1 Single anoxic EBPR batch tests 33
Test EBPR.ANOX.2 Combined anaerobic-anoxic EBPR batch tests 34
2.2.4.3 Aerobic EBPR batch tests 34
Test EBPR.AER.1 Single aerobic EBPR test 35
Test EBPR.AER.3 Combined anaerobic-anoxic-aerobic EBPR batch tests in series 36
Test EBPR.AER.4 Combined anaerobic-anoxic-aerobic EBPR batch tests in parallel 36
2.2.5 Data analysis 36
2.2.5.1 Estimation of stoichiometric parameters 36
2.2.5.2 Estimation of kinetic parameters 41
2.2.6 Data discussion and interpretation 42
2.2.6.1 Anaerobic batch activity tests 42
2.2.6.2 Aerobic batch activity tests 45
2.2.6.3 Anoxic batch activity tests 46
2.2.7 Example 47
2.2.7.1 Description 47
2.2.7.2 Data analysis 47
2.2.8 Additional considerations 51
2.2.8.1 GAO occurrence in EBPR systems 51
2.2.8.2 The effect of carbon source 51
2.2.8.3 The effect of temperature 51
2.2.8.4 The effect of pH 52
2.2.8.5 Denitrification by EBPR cultures 52
2.2.8.6 Excess/shortage of intracellular compounds 52
2.2.8.7 Excessive aeration 53
2.2.8.8 Shortage of essential ions 53
2.2.8.9 Toxicity/inhibition 53
2.3 BIOLOGICAL SULPHATE-REDUCTION 54
2.3.1 Process description 54
2.3.2 Sulphide speciation 56
2.3.3 Effects of environmental and operating conditions on SRB 57
2.3.3.1 Carbon source 57
2.3.3.2 COD to SO42- ratio 58
2.3.3.3 Temperature 58
2.3.3.4 pH 59
2.3.3.5 Oxygen 59
2.3.4 Experimental setup 60
2.3.4.1 Estimation of volumetric and specific rates 60
2.3.4.2 The reactor 60
2.3.4.3 Mixing 61
2.3.4.4 pH control 61
2.3.4.5 Temperature control 61
2.3.4.6 Sampling and dosing ports 62
2.3.4.7 Sample collection 62
2.3.4.8 Media 62
2.3.5 Analytical procedures 63
2.3.5.1 CODorganics and CODtotal 63
2.3.5.2 Sulphate 64
2.3.5.3 Sulphide 64
2.3.6 SRB batch activity tests: preparation 65
2.3.6.1 Apparatus 65
2.3.6.2 Materials 65
2.3.6.3 Media 65
Real wastewater 65
Synthetic media or substrate 65
2.3.6.4 Material preparation 66
2.3.6.5 Mixed liquor preparation 67
2.3.6.6 Sample collection and treatment 68
Filtered sample 68
Filtered sample with NaOH 68
Gas sample 68
Biomass sample 68
2.3.7 Batch activity tests: execution 68
Test SRB.ANA.1 Anaerobic SRB activity test 69
Test SRB.ANA.2 Anaerobic SRB activity test 69
2.3.8 Data analysis 69
2.3.8.1 Mass balances and calculations 69
2.3.8.2 Data discussion and interpretation 70
2.3.9 Example 70
2.3.10 Practical recommendations 72
2.4 BIOLOGICAL NITROGEN REMOVAL 73
2.4.1 Process description 73
2.4.1.1 Nitrification 74
2.4.1.2 Denitrification 75
2.4.1.3 Anaerobic ammonium oxidation (anammox) 76
2.4.2 Process-tracking alternatives 76
2.4.2.1 Chemical tracking 77
2.4.2.2 Titrimetric tracking 77
2.4.2.3 Manometric tracking 78
2.4.3 Experimental setup 79
2.4.3.1 Reactors 79
2.4.3.2 Instrumentation for titrimetric tests 79
2.4.3.3 Instrumentation for manometric tests 80
2.4.3.4 Activated sludge sample collection 81
2.4.3.5 Activated sludge sample preparation 82
2.4.3.6 Substrate 82
2.4.3.7 Analytical procedures 83
2.4.3.8 Parameters of interest 83
Nitrification 83
Denitrification 84
Anammox 85
2.4.3.9 Type of batch tests 86
2.4.4 Nitrification batch activity tests: preparation 86
2.4.4.1 Apparatus 86
2.4.4.2 Materials 86
2.4.4.3 Media preparation 86
Real wastewater 86
Titration solutions 86
Ammonium and nitrite stock solutions 87
Allyl-N-thiourea (ATU) 87
Acid and base solutions 87
Synthetic medium 87
Washing media 87
2.4.5 Nitrification batch activity tests: execution 87
Test NIT.CHE Nitrification chemical test: assessing the maximum ammonium oxidation rate 87
Activated sludge preparation 87
Execution of the test 88
Data analysis 88
Test NIT.TIT.1 Nitrification titration test: assessing the maximum ammonium oxidation rate 89
Activated sludge preparation 89
Execution of the test 89
Data analysis 89
Test NIT.TIT.2 Nitrification titration test: assessing the maximum ammonium and nitrite oxidation rates 90
Activated sludge preparation 90
Execution of the test 90
Data analysis 90
2.4.6 Denitrification batch activity tests: preparation 92
2.4.6.1 Apparatus 92
2.4.6.2 Materials 93
2.4.6.3 Working solutions 93
Real wastewater 93
Carbon source solution 93
Nitrate or nitrite solutions 93
Washing media 93
Acid and base solutions 93
Nutrient solution 93
2.4.6.4 Material preparation 93
2.4.7 Denitrification batch activity tests: execution 93
Test DEN.CHE.1 Denitrification chemical test: assessing the maximum denitrification rate and the anoxic growth yield in the presence of a specific carbon source 93
Activated sludge preparation 93
Execution of the test 94
Data analysis 94
Test DEN.CHE.2 Denitrification chemical test: assessing the denitrification potential of wastewater 95
Activated sludge preparation 95
Test execution 95
Data analysis 95
Test DEN.MAN Denitrification manometric test: assessing the denitrification kinetic rate 96
Activated sludge preparation 96
3. RESPIROMETRY 133
3.1 INTRODUCTION 133
3.1.1 Basics of respiration 134
3.1.2 Basics of respirometry 135
3.2 GENERAL METHODOLOGY OF RESPIROMETRY 136
3.2.1 Basics of respirometric methodology 136
3.2.2 Generalized principles: beyond oxygen 136
3.2.2.1 Principles based on measuring in the liquid phase 136
Static gas, static liquid (LSS) 137
Flowing gas, static liquid (LFS) 137
Static gas, flowing liquid (LSF) 138
Flowing gas, flowing liquid (LFF) 138
3.2.2.2 Principles based on measuring in the gas phase 138
Static gas, static liquid (GSS) 139
Flowing gas, static liquid (GFS) 140
Static gas, flowing liquid (GSF) 140
Flowing gas, flowing liquid (GFF) 140
3.3 EQUIPMENT 141
3.3.1 Equipment for anaerobic respirometry 141
3.3.1.1 Biogas composition 141
Measuring the biogas composition and correcting the measured flow 141
Removing other gases from the biogas 142
3.3.1.2 Measuring the gas flow 142
Manometric methods 142
Volumetric methods 142
3.3.2 Equipment for aerobic and anoxic respirometry 143
3.3.2.1 Reactor 143
3.3.2.2 Measuring arrangement 143
3.3.2.3 Practical implementation 144
Liquid phase, static gas, static liquid (LSS) principle 144
3.4 WASTEWATER CHARACTERIZATION 150
3.4.1 Biomethane potential (BMP) 150
3.4.1.1 Purpose 150
3.4.1.2 General 150
3.4.1.3 Test execution 151
3.4.1.4 Data processing 151
3.4.1.5 Recommendations 151
Pressure and temperature correction 151
Methane diffusion 152
pH indicator dye for the scrubbing solution 152
Inoculum activity 152
Micro and macro nutrients 152
Oxygen inhibition 152
Gas tightness 152
Alkaline scrubbers 152
3.4.2 Biochemical oxygen demand (BOD) 152
3.4.2.1 Purpose 152
3.4.2.2 General 152
3.4.2.3 Test execution 153
BOD test with a LSS respirometer 153
Dilution 153
Seeding 153
Blank 154
DO measurement 154
Data processing 154
Recommendations 155
A BOD test with a GFS respirometer 155
Recommendations 156
3.4.3 Short-term biochemical oxygen demand (BODst) 157
3.4.3.1 Test execution 158
3.4.3.2 Calculations 160
3.4.4 Toxicity and inhibition 160
3.4.4.1 Purpose 160
3.4.4.2 Test execution 160
3.4.4.3 Calculations 161
3.4.4.4 Biodegradable toxicants 162
3.4.5 Wastewater fractionation 163
3.4.5.1 Readily biodegradable substrate (SB) 166
3.4.5.2 Slowly biodegradable substrate (XCB) 167
3.4.5.3 Heterotrophic biomass (XOHO) 168
3.4.5.4 Autotrophic (nitrifying) biomass (XANO) 168
3.4.5.5 Ammonium (SNHx) 168
3.4.5.6 Organic nitrogen fractions (XCB,N and SB,N) 168
3.5 BIOMASS CHARACTERIZATION 169
3.5.1 Volatile suspended solids 169
3.5.2 Specific methanogenic activity (SMA) 169
3.5.2.1 Purpose 169
3.5.2.2 General 169
3.5.2.3 Test execution 169
3.5.2.4 Data processing 170
3.5.3 Specific aerobic and anoxic biomass activity 171
3.5.3.1 Maximum specific nitrification rate (AUR) 171
3.5.3.2 Maximum specific aerobic heterotrophic respiration rate (OUR) 173
3.5.3.3 Maximum specific denitrification rate (NUR) 173
References 175
4. OFF-GAS EMISSION TESTS 177
4.1 INTRODUCTION 177
4.2 SELECTING THE SAMPLING STRATEGY 178
4.2.1 Plant performance 178
4.2.2 Seasonal variations in emissions 178
4.2.3 Sampling objective 179
4.3 PLANT ASSESSMENT AND DATA COLLECTION 179
4.3.1. Preparation of a sampling campaign 179
4.3.2 Sample identification and data sheet 180
4.3.3 Factors that can limit the validity of the results 181
4.3.4 Practical advice for analytical measurements 181
4.3.5 General methodology for sampling 182
4.3.6 Sampling in the framework of the off-gas measurements 183
4.3.7. Testing and measurements protocol 185
4.4 EMISSION MEASUREMENTS 185
4.5 N2O MEASUREMENT IN OPEN TANKS 186
4.5.1 Protocol for measuring the surface flux of N2O 188
4.5.1.1 Equipment, materials and supplies 188
4.5.1.2 Experimental procedure 188
4.5.1.3 Sampling methods for nitrogen GHG emissions 189
The gas-phase sampling method in aerobic zones 189
Determination of the gas flow rate from the flux chamber in aerobic zones 190
The gas-phase sampling method in anoxic zones 190
Determination of the gas flow rate from the flux chamber in the anoxic zone 190
Continuous and real-time gas measurement 190
Principles of real-time N2O and CH4 measurements 191
4.5.1.4 Direct measurement of the liquid-phase N2O content 191
4.6 MEASUREMENT OF OFF-GAS FLOW IN OPEN TANKS 191
4.6.1 Protocol for aerated or aerobic zone 192
4.6.2 Protocol for non-aerated zones 192
4.7 AQUEOUS N2O and CH4 CONCENTRATION DETERMINATION 192
4.7.1 Measurement protocol for dissolved N2O measurement using polarographic electrodes 193
4.7.1.1 Equipment 193
4.7.1.2 Experimental procedure 193
4.7.2 Measurement protocol for dissolved gasses using gas chromatography 194
4.7.3 Measurement protocol for dissolved gas measurement by the salting-out method 194
4.7.3.1 Equipment 195
4.7.3.2 Sampling procedure 195
4.7.3.3 Measurement procedure 195
Measurement of the volume expansion due to pressure build-up in the bottle 195
Measurement of the methane or the nitrous oxide concentration in the headspace 195
Measurement of the headspace of the serum bottle 195
4.7.3.4 Calculations 196
Volume 196
Amount of methane 196
Concentration 196
4.7.4 Measurement protocol for dissolved gas measurement by the stripping method 196
4.7.4.1 Operational principle 196
4.7.4.2 Equipment 197
4.7.4.3 Calibration batch test 198
4.7.4.4 Measurement accuracy 198
4.7.4.5 Calculation of the N2O formation rate in the stripping device 198
4.8 DATA ANALYSIS AND PROCESSING 199
4.8.1 Determination of fluxes 199
4.8.2 Determination of aggregated emission fractions 199
4.8.3 Calculation of the emission factors 200
References 200
5. DATA HANDLING AND PARAMETER ESTIMATION 201
5.1 INTRODUCTION 201
5.2 THEORY AND METHODS 202
5.2.1 Data handling and validation 202
5.2.1.1 Systematic data analysis for biological processes 202
5.2.1.2 Degree of reduction analysis 203
5.2.1.3 Consistency check of the experimental data 204
5.2.2 Parameter estimation 205
5.2.2.1 The manual trial and error method 205
5.2.2.2 Formal statistical methods 205
The least squares method 206
The covariance matrix of parameter estimators 206
5.2.3 Uncertainty analysis 209
5.2.3.1 Linear error propagation 209
5.2.3.2 The Monte Carlo method 209
5.2.4 Local sensitivity analysis and identifiability analysis 210
5.2.4.1 Local sensitivity analysis 210
5.2.4.2 Identifiability analysis using the collinearity index 210
5.3 METHODOLOGY AND WORKFLOW 211
5.3.1 Data consistency check using an elemental balance and a degree of reduction analysis 211
5.3.2 Parameter estimation workflow for the non-linear least squares method 212
5.3.3 Parameter estimation workflow for the bootstrap method 212
5.3.4 Local sensitivity and identifiability analysis workflow 213
5.3.5 Uncertainty analysis using the Monte Carlo method and linear error propagation 213
5.4 ADDITIONAL EXAMPLES 214
5.5 ADDITIONAL CONSIDERATIONS 232
Best practice in parameter estimation 232
Best practice in uncertainty analysis 233
References 233
6. SETTLING TESTS 235
6.1 INTRODUCTION 235
6.2 MEASURING SLUDGE SETTLEABILITY IN SSTs 236
6.2.1 Sludge settleability parameters 237
6.2.1.1 Goal and application 237
6.2.1.2 Equipment 237
6.2.1.3 The Sludge Volume Index (SVI) 237
6.2.1.4 The Diluted Sludge Volume Index (DSVI) 237
6.2.1.5 The Stirred Specific Volume Index (SSVI3.5) 238
6.2.2 The batch settling curve and hindered settling velocity 238
6.2.2.1 Goal and application 238
6.2.2.2 Equipment 239
6.2.2.3 Experimental procedure 239
6.2.2.4 Interpreting a batch settling curve 240
6.2.2.5 Measuring the hindered settling velocity 241
6.2.3 vhs-X relation 241
6.2.3.1 Goal and application 241
6.2.3.2 Equipment 242
6.2.3.3 Experimental procedure 242
6.2.3.4 Determination of the zone settling parameters 243
6.2.3.5 Calibration by empirical relations based on SSPs 244
6.2.4 Recommendations for performing batch settling tests 245
6.2.4.1 Shape and size of the batch reservoir 245
6.2.4.2 Sample handling and transport 245
6.2.4.3 Concentration range 245
6.2.4.4 Measurement frequency 245
6.2.5 Recent advances in batch settling tests 245
6.3 MEASURING FLOCCULATION STATE OF ACTIVATED SLUDGE 246
6.3.1 DSS/FSS test 246
6.3.1.1 Goal and application 246
6.3.1.2 Equipment 246
General 246
ESS test 246
DSS test 246
FSS test 246
6.3.1.3 DSS test 246
6.3.1.4 FSS test 247
6.3.1.5 Interpretation of a DSS/FSS test 248
High DSSi low FSS 249
High DSSi high FSS 249
Low DSSi low FSS 249
Low DSSi high FSS 249
6.3.2 Recommendations 249
6.3.2.1 Flocculation conditions 249
6.3.2.2 Temperature influence 249
6.3.2.3 Supernatant sampling 249
6.3.3 Advances in the measurement of the flocculation state 250
6.4 MEASURING THE SETTLING BEHAVIOUR OF GRANULAR SLUDGE 250
6.4.1 Goal and application 250
6.4.2 Equipment 251
6.4.3 Density measurements 251
6.4.4 Granular biomass size determination 252
6.4.4.1 Sieving 252
6.4.4.2 Image analyser 253
6.4.5 Calculating the settling velocity of granules 253
6.4.6 Recommendations 254
6.4.6.1 Validation of results 254
6.4.6.2 Application for flocculent sludge 255
6.5 MEASURING SETTLING VELOCITY DISTRIBUTION IN PSTs 255
6.5.1 Introduction 255
6.5.2 General principle 255
6.5.3 Sampling and sample preservation 256
6.5.4 Equipment 256
6.5.5 Analytical protocol 257
6.5.6 Calculations and result presentation 258
6.5.6.1 Mass balance check 258
6.5.6.2 Calculation of the settling velocity distribution 258
6.5.6.3 Recommendations 259
References 260
7. MICROSCOPY 263
7.1 INTRODUCTION 263
7.2 THE LIGHT MICROSCOPE 263
7.2.1 Standard applications of light microscopy 265
7.2.2 Low power objective 265
7.2.3 High power objective 265
7.2.4 Immersion objective 265
7.2.5 Important considerations 266
7.2.6 Bright-field and dark-field illumination 266
7.2.7 Fluorescence microscopy 267
7.2.8 Confocal laser scanning microscopy 269
7.3 MORPHOLOGICAL INVESTIGATIONS 269
7.3.1 Microscopic identification of filamentous microorganisms 270
7.3.2 Identification of protozoa and metazoa 271
7.4 EXAMINING ACTIVATED SLUDGE SAMPLES MICROSCOPICALLY 272
7.4.1 Mounting the activated sludge sample 272
7.4.2 Gram staining 273
7.4.2.1 Reagents and solutions for Gram staining 273
Crystal violet solution 273
Gram’s iodine solution 274
Counterstain 274
Decolourizing solution 274
7.4.2.2 Procedure 274
7.4.3 Neisser staining 274
7.4.3.1 Reagents and solutions for Neisser staining 274
Methylene blue solution 274
Crystal violet solution 274
Counter-staining solution 274
Working solution 275
7.4.3.2 Procedure 275
7.4.4 DAPI staining 275
7.4.4.1 Reagents and solutions for DAPI staining 275
DAPI stock solution 275
7.4.4.2 Procedure 275
7.4.5 CTC staining 276
7.4.5.1 Reagents and solutions for CTC staining 276
7.4.5.2 Procedure 276
7.5 FLUORESCENCE in situ HYBRIDIZATION 276
7.5.1 Reagents and solutions for FISH 277
Fixative (8 % Paraformaldehyde, PFA) for Gram-negative cells 277
Lysozyme for cell permeabilisation 277
Proteinase K for cell permeabilisation 278
3 × phosphate-buffered saline (3 x PBS) 278
Tris-EDTA buffer (TE buffer) 278
1 M Tris-HCl, pH 8.0 278
5 M NaCl 278
Sterile distilled H2O (dH2O) 278
10 % Sodium dodecylsulfate (10 % SDS) 278
0.5 M EDTA 278
7.5.2 Procedure 278
7.6 COMBINED STAINING TECHNIQUES 280
7.6.1 FISH – DAPI staining 281
7.6.1.1 Reagents and solutions for DAPI staining 281
DAPI stock solution and storage 281
Reagents used for FISH 281
7.6.1.2 Procedure 281
7.6.2 FISH – PHA staining 282
7.6.2.1 Reagents and solutions for PHA staining 282
Reagents used for PHA staining 282
Reagents used for FISH 282
7.6.2.2 Procedure 282
References 282
8. MOLECULAR METHODS 285
8.1 INTRODUCTION 285
8.2 EXTRACTION OF DNA 286
8.2.1 General considerations 286
8.2.2 Sampling 286
8.2.3 DNA extraction 286
8.2.3.1 Cell lysis 286
8.2.3.2 Nuclease activity inhibition and protein removal 287
8.2.3.3 Purification 287
8.2.3.4 Elution and storage 287
8.2.4 Quantification and integrity 287
8.2.5 Optimised DNA extraction from wastewater activated sludge 288
8.2.5.1 Materials 288
8.2.5.2 DNA Extraction 288
Bead-beating 288
Protein precipitation and binding of DNA to matrix 288
DNA washing and elution 289
8.3 REAL-TIME QUANTITATIVE PCR (qPCR) 289
8.3.1 General considerations 289
8.3.2 Materials 291
Primers 291
Real-time thermal cycler 292
qPCR reagents 292
Equipment for measuring DNA concentration 292
8.3.3 Methods 292
Preparation of qPCR standards 292
Sample preparation 293
qPCR reaction setup 293
8.3.4 Data handling 294
Determination of sample copy numbers 294
Evaluation of PCR efficiency 294
8.3.5. Data output and interpretation 294
Extraction of nucleic acids is biased 294
Quality of the template DNA 294
Specificity of broad-range qPCR assays 295
Amplification of extracellular DNA (eDNA) 295
Variation in the gene copy number 295
8.3.6 Troubleshooting 295
The sample contains PCR inhibitors 295
The primer or probe design is not optimal 295
Inaccurate sample and reagent pipetting 295
8.3.7 Example 295
8.3.7.1 Samples 295
8.3.7.2 qPCR reaction setup 296
8.3.7.3 Results 296
8.4 AMPLICON SEQUENCING 297
8.4.1 General considerations 297
8.4.2 The 16S rRNA gene as a phylogenetic marker gene 297
8.4.3 PCR amplification 299
8.4.3.1 PCR reaction 299
8.4.3.2 PCR biases 300
8.4.3.3 Primer choice 300
8.4.4 DNA sequencing 301
8.4.4.1 Sequencing platform 301
8.4.4.2 Sequencing depth 301
8.4.5 Bioinformatic processing 301
8.4.5.1 Available software 301
8.4.5.2 Raw data 302
8.4.5.3 Quality scores and filtering 303
8.4.5.4 Merging paired-end reads 303
8.4.5.5 OTU clustering 303
8.4.5.6 Chimera detection and removal 304
8.4.5.7 Taxonomic classification 304
8.4.5.8 The OTU table 304
8.4.6 Data analysis 304
8.4.6.1 Defining the goal of the data analysis 304
8.4.6.2 Data validation and sanity check 305
8.4.6.3 Communities or individual species? 305
The community perspective 305
The species perspective 305
8.4.6.4 Identifying core and transient species 306
8.4.6.5 Explorative analysis using multivariate statistics. 306
8.4.6.6 Correlation analysis 307
8.4.6.7 Effect of treatments on individual species 307
8.4.7 General observations 307
8.4.7.1 A relative analysis 307
8.4.7.2 Copy number bias 307
8.4.7.3 Primer bias 307
8.4.7.4 Standardization 308
8.4.7.5 Impact of the method 308
8.4.8 Protocol: Illumina V1-3 16S rRNA amplicon libraries 308
8.4.8.1 Apparatus 308
8.4.8.2 Materials 308
8.4.8.3. Protocol 309
Sample DNA quality control and dilution (2.5 h) 309
Library PCR (2.0 h) 309
Library cleanup (2.0 h) 310
Library quality control (1.5 h) 311
Library pooling (2.0 h) 311
Storage and transport 311
8.4.9 Interpretation and troubleshooting 311
8.4.9.1 Sample DNA quality control and dilution 311
8.4.9.2 Library PCR 312
8.4.9.3 Library cleanup 312
8.4.9.4 Library quality control 313
8.4.9.5 Library pooling 314
8.4.9.6 Pool quality control and dilution 314
8.4.9.7 Storage 314
8.4.10 Protocol: Illumina V1-3 16S amplicon sequencing 314
8.4.10.1 Apparatus 314
8.4.10.2 Reagents 314
8.4.10.3 Protocol 314
Prepare MiSeq (2.0 h) 314
Prepare sequencing libraries (1.0 h) 315
Load the sample and primers on the reagent cartridge 315
8.4.10.4. Interpretation and troubleshooting 315
Prepare MiSeq and metadata 315
Prepare sequencing libraries 316
Load the sample and primers on the reagent cartridge 316
Sequencing 317
8.4.11 Design of Illumina 16S amplicon sequencing adaptors 317
8.5 OTHER METHODS 319
References 320
SYMBOLS AND ABBREVIATIONS 325