Menu Expand
Visual Hydrology

Visual Hydrology

Peter A. Mantz

(2004)

Additional Information

Book Details

Abstract

One approach to the introduction of computational material to the classroom is to supplement a textbook with modern computer codes. Unfortunately most codes are expensive, designed for commercial use, without source code and may require special software. Visual Hydrology provides a cheaper and simpler alternative, supplying computational exercises that can be fully assimilated by students, and allowing them to activate, understand and reproduce modern computer code.  Visual Hydrology aims to: explain the structure of modern object-oriented computer code                provide the source code for worked examples                numerically check the worked examples used in text                show how worked examples can be used with alternative data                describe and reference the underlying theory                provide additional exercises with each worked example                use Microsoft Excel software alone Requiring only a basic knowledge of Microsoft Excel, this Primer teaches the use of modern and readily-available computer code for engineering computation. Visual Hydrology demonstrates codes for common and practical examples used in hydrological engineering, and will be a valuable resource to students, research workers and consulting engineers in the water-related sector.  Examples of source code to accompany this publication can be downloaded by clicking here.

Table of Contents

Section Title Page Action Price
CONTENTS 6
PREFACE 8
Foreword by Professor E O’Connell 12
Source Code Examples 13
1.0 Visual Basic for Applications 14
1.1 THE VISUAL BASIC OBJECT MODEL 15
1.1.1 Summary 15
1.1.2 The object model 16
Object oriented programs 16
Tasks level 17
Collections level 17
Objects level 17
Procedures level 18
1.1.3 The excel environment 18
Toolbars 19
1.1.4 Recording a Macro 20
1.2 OBJECTS AND PROCEDURES 23
1.2.1 Summary 23
1.2.2 The VBE object library 24
1.2.3 “Histogram” worksheet 27
1.2.4 “Scatter” worksheet 30
1.2.5 “Surface” worksheet 31
1.3 NUMERICAL OBJECTS – ESTIMATING THE PI CONSTANT 33
1.3.1 Summary 33
1.3.2 The scope and lifetime of objects 34
1.3.3 Code operation 35
1.3.4 Subroutines 36
1.4 KINEMATIC OBJECTS – A MANOMETER SIMULATION 39
1.4.1 Summary 39
1.4.2 Excel symbols used in manipulating drawing objects 40
1.4.3 Drawing the manometer apparatus 41
1.4.4 Drawing the water tank and mercury manometer 42
1.4.5 Subroutines 43
1.5 FUNCTION OBJECTS - EVAPORATION AND POTENTIAL EVAPOTRANSPIRATION 45
1.5.1 Summary 45
1.5.2 Code operation 46
1.5.3 Theory 47
1.5.4 Dissipation of Energy 48
1.5.5 Potential evapotranspiration 50
1.5.6 Modules 51
“Penman” 51
“Functions” 51
2.0 Statistics and Geostatistics 54
2.1 THE CENTRAL LIMIT THEOREM 55
2.1.1 Summary 55
2.1.2 Code operation 56
2.1.3 Theory 57
Example distributions 57
Example distribution functions 57
Sample distributions 58
Normal distributions 58
Summary of results 59
2.1.4 Modules 59
Data module 59
Uniform module 60
Numerical Check 60
2.2 LINEAR AND MULTIPLE REGRESSION 61
2.2.1 Summary 61
2.2.2 Code operation 62
2.2.3 Theory 63
Linear regression 63
Goodness of fit 63
Confidence levels 64
Multiple regression 64
2.2.4 Modules 66
“Data” 66
“Linear” 66
“Multiple” 66
Numerical Check 67
2.3 EXTREME VALUE ANALYSIS 68
2.3.1 Summary 68
2.3.2 Code operation 69
2.3.3 Theory 69
Introduction 69
Probability density function 70
Inverse distribution function (idf) 71
Monte Carlo simulation 72
2.3.4 Modules 72
“Gumbel” subroutine 73
“MCData” subroutine 73
“MCPlot” subroutine 74
Numerical Check 74
Alternative data 74
2.4 LINEAR MOMENT ANALYSIS 75
2.4.1 Summary 75
2.4.2 Code operation 76
Theory 76
Discrete C-Moments for a sample 76
Continuous C-Moments and L-Moments for a population 77
Discrete L-Moments for a sample 78
2.4.4 Modules 79
“Data” 79
“Quantiles” 79
Numerical Check 80
2.5 ORDINARY AND UNIVERSAL KRIGING 81
2.5.1 Summary 81
2.5.2 Code operation 82
2.5.3 Ordinary Kriging for 2 stations 82
Theory 82
“Krige2” subroutine 83
Numerical Check 84
2.5.4 Universal Kriging for 3 stations 85
Theory 85
“Krige3U” subroutine 85
Numerical Check 86
2.6 BLOCK KRIGING 87
2.6.1 Summary 87
2.6.2 Code operation 88
2.6.3 Theory 89
2.6.4 Modules 91
“Krige” 91
“Functions” 92
Numerical check 92
2.6.5 Controls 94
Option buttons 94
“Point3” Spin buttons 94
“Area” Spin buttons 94
“Range” Spin button 94
“Sill” Spin button 95
“Nugget” Spin button 95
3.0 Groundwater Analysis 96
3.1 GROUNDWATER LEVELS BY POINT AND BLOCK KRIGING 97
3.1.1 Summary 97
3.1.2 Code operation 98
“Load data” area 98
“Trend surface” area 98
“Semivariogram” area 99
“Kriged surface” area 99
Summary of results 99
3.1.3 Modules 100
“Trends” 100
“Data” 101
“Krige” 103
Numerical check 103
3.1.4 Aspects of semivariogram theory 104
Covariance-semivariance relation 104
Stationarity 105
3.2 CONFINED AND UNCONFINED AQUIFERS 107
3.2.1 Summary 107
3.2.2 Code operation 108
3.2.3 Theory 108
Confined aquifer 108
Partially confined aquifer 109
Well pumping from an unconfined aquifer 110
3.2.4 Modules 111
“Aquifer” 111
“Well” 111
Numerical check 113
3.3. GROUNDWATER FLOW BY FINITE DIFFERENCE 114
3.3.1 Summary 114
3.3.2 Code operation 115
3.3.3 Theory 116
Well drawdown for a confined aquifer 116
Laplace and Poisson equations 117
Solution by finite difference 118
Boundary conditions 118
Iterative methods 119
3.3.4 Modules 120
“Well” 120
“Drawdown” 121
4.0 Precipitation 122
4.1 DESIGN LOCATION OF RAINFALL GAUGES 123
4.1.1 Summary 123
4.1.2 Code operation 124
Summary of results 124
Kriging 11 stations 124
Rainfall direction-elevation trend 125
Kriging 16 stations 126
4.1.3 Modules 126
Sheet1 (Run) object 126
“Data” 127
“Functions” 128
“Krige” 128
“Rainfall” 128
“Trends” 128
Numerical check 128
4.2 MEAN CATCHMENT RAINFALL AND ERROR 129
4.2.1 Summary 129
4.2.2 Code operation 130
Summary of results 130
Kriging 39 stations 130
Kriging 349 stations 131
4.2.3 Modules 132
“Data” 132
“Functions” 133
“Krige” 133
“Rainfall” 133
“Trends” 133
Alternative Data 133
4.2.4 Regional standard error 134
Theory 134
Numerical check 135
Discussion of the method 136
4.3 RAINFALL DEPTH, DURATION AND FREQUENCY 137
4.3.1 Summary 137
4.3.2 Code operation 138
4.3.3 Procedure for the single station data 138
Annual maxima 138
Gumbel reduced ordinates 139
“Growth” curve 139
4.3.4 Procedure for the FEH method 140
Brief description 140
The DDF model 140
These FEH-DDF values were directly calculated as worksheet functions in the “FEH” worksheet. If a station is changed, the 6 variables are changed accordingly from the FEH tabulated data. Note that the variable values must not be deleted in the worksheet, 141
Discussion 141
4.3.5 Modules 142
“Data” 142
“Hourly” 142
“Growth” 143
“Solve” 143
5.0 Surface Runoff 144
5.1 ROUND-NOSED, HORIZONTAL BROAD-CRESTED WEIR 145
5.1.1 Summary 145
5.1.2 Code operation 146
5.1.3 Theory 147
Critical depth 147
Critical flow over a weir 148
Design standards 149
Boundary roughness at the weir crest 150
Velocity coefficient 150
5.1.4 Modules 151
“Weir” 151
“Levels” 152
5.2 FLOOD FREQUENCY USING ANNUAL MAXIMUM FLOWS 153
5.2.1 Summary 153
5.2.2 Code operation 154
5.2.3 Procedure 155
Frequency distributions 155
Design hydrograph 155
5.2.4 Modules 157
“Data” 157
“GLO” 157
“Charts” 157
“Hydrograph” worksheet 158
6.0 Hydrologic Cycle 160
6.1 RAINFALL-RUNOFF USING THE FEH METHOD 161
6.1.1 Summary 161
6.1.2 Code operation 162
The Hydrological Cycle 162
Code events 163
6.1.3 Procedure 164
1. Unit Hydrograph 164
Design storm duration 165
3. Design storm depth 165
4. Design storm profile 166
5. Standard percentage runoff 167
6. Dynamic percentage runoff 167
Total runoff hydrograph 168
8. Flood peak frequency 168
6.1.4 Modules 168
“Shapes” 168
“Hydrology” 169
Alternative Data 170
6.2 RAINFALL-RUNOFF USING THE SCS METHOD 172
6.2.1 Summary 172
6.2.2 Code operation 173
Soil groups 173
The curve number expert system 174
Computation and Design areas 174
6.2.3 Procedure 175
Design storm depth 175
Design storm profile 176
Runoff hyetograph 177
Discussion 178
6.2.4 Modules 179
Subroutines in the “Sheet1 (Run)” object 179
“CN” 180
“Hydrology” 180
7.0 Reservoir Design 182
7.1 RESERVOIR ROUTING OF FLOODS 183
7.1.1 Summary 183
7.1.2 Code operation 184
7.1.3 Theory 185
River inflow rating curve 185
Spillway outflow rating curve 185
Reservoir routing 186
Storage curve 186
7.1.4 Modules 187
“Flows” 187
“Drawings” 188
Numerical check 188
7.2 RESERVOIR STORAGE DESIGN 190
7.2.1 Summary 190
7.2.2 Code operation 191
7.2.3 Discussion 192
7.2.4 Modules 192
“Hydrograph” 192
“ComputeTangent” 193
“ComputeYieldCurves” 194
Numerical check 195
EXERCISES 196
Chapter 1. Visual Basic for Applications 196
Chapter 2. Statistics and Geostatistics 197
Chapter 3. Groundwater analysis 198
Chapter 4. Precipitation 198
Chapter 5. Surface runoff 199
Chapter 6. Hydrologic cycle 200
Chapter 7. Reservoir design 200
BIBLIOGRAPHY 201
Computing 201
Statistics 201
Geostatistics 201
Hydrology 202
INDEX 204