Menu Expand
Pond Treatment Technology

Pond Treatment Technology

Andrew Shilton

(2006)

Additional Information

Book Details

Abstract

Pond treatment technology is used in tens of thousands of applications serving many millions of people across the globe - why? Simply because it is efficient and effective. While pond treatment technology offers relative simplicity in its application, it incorporates a host of complex and diverse mechanisms that work to treat and cleanse polluted waters before their return to our environment. This book offers a comprehensive review of the pond technology field including the newest ideas and latest findings. Topics covered include: The physical, chemical and biological characteristics of the pond environment;      A detailed review of pond treatment mechanisms and performance;      Comprehensive guidance on pond design, operation and upgrade options;      A range of chapters summarising new and emerging pond technologies;      The integration of ponds with wetlands and aquaculture systems and their use as storage reservoirs;      Special applications of pond technology in cold climates, for agricultural wastes and for treatment of stormwater. The objective of this book is to get this wealth of knowledge "out there" to the users to ensure the continuous improvement and ongoing success of this crucial technology.

Table of Contents

Section Title Page Action Price
Contents v
Foreword xii
Contributors xiv
1.0 Introduction to pond treatment technology xvii
1.1 THE POND ENVIRONMENT xvii
1.2 THE ‘STANDARD’ POND SYSTEM xviii
1.2.1\tAnaerobic ponds xix
1.2.2\tFacultative ponds xix
1.2.3\tMaturation ponds xx
1.3\tPOND DESIGN AND OPERATION xx
1.4\tOTHER POND TYPES AND SPECIAL APPLICATIONS xx
1.4.1\tFermentation/digestion pits xx
1.4.2\tHi-rate algal ponds xxi
1.4.3\tAdvanced pond systems xxi
1.4.4\tThe PETRO process xxi
1.4.5\tIntegrated ponds and wetland systems xxii
1.4.6\tAquaculture ponds xxii
1.4.7\tStorage ponds/reservoirs xxii
1.4.8\tCold climate ponds xxiii
1.4.9\tAgricultural wastewater ponds xxiii
1.4.10\t\tStormwater ponds xxiii
1.5\tWATER QUALITY AND REGULATORY ISSUES xxiii
1.6\tEVALUATION OF THE TECHNOLOGIES xxiv
1.6.1 An appropriate technology xxvi
1.6.2 A sustainable energy technology xxvi
1.7\tSUMMARY xxvii
REFERENCES xxix
2.0 Microbiology of waste stabilisation ponds xxx
2.1\tINTRODUCTION xxx
2.2\tANAEROBIC PROCESSES AND CARBON REMOVAL IN PONDS xxxi
2.2.1 Anaerobic digestion and methanogenesis in ponds xxxi
2.2.2 Sulphate reduction and the risk of odour production xxxii
2.2.3 Importance of the surface crust and the bottom sludge layer xxxiii
2.3 AEROBIC PROCESSES AND CARBON REMOVAL IN PONDS xxxiv
2.3.1\tAerobic bacteria xxxiv
2.4\tPHOTOSYNTHETIC PROCESSES IN PONDS xxxiv
2.4.1\tPhotosynthetic oxygen production by pond algae xxxiv
2.2.2 Factors controlling algal photosynthesis xxxvi
2.2.3 Impact of algal photosynthesis on pond pH xxxvii
2.4.4\tAlgal dynamics and stratification xxxvii
2.5\tALGAL DIVERSITY AND FACTORS CONTROLLING ALGAL DOMINANCE xxxviii
2.5.1 Algal photo-organotrophy and chemo-organotrophy xli
2.5.2 Algal predation by pond fauna and the impact on pond efficiency xlii
2.5.3\tAnoxic photosynthesis and the photosynthetic bacteria xliii
2.5.4 Impact of algal biomass on effluent quality xliv
2.6\tMICROBIAL PROCESSES AND NUTRIENT REMOVAL IN PONDS xlv
2.6.1 Nitrogen transformations and removal xlv
2.6.2 Phosphorus transformation and removal xlvii
2.7\tMICROBIOLOGICAL ASPECTS OF SPECIAL POND SYSTEMS xlviii
2.7.1\tMacrophyte ponds xlviii
2.7.2 High rate algal pond systems (HRAP) l
2.7.3 Attached-growth ponds li
2.7.4 Wastewater storage and treatment reservoirs (WSTR) lii
2.8\tTHE NEED FOR FUTURE MICROBIOLOGICAL RESEARCH IN PONDS lvi
2.8.1 The nitrogen removal process lvi
2.8.2 The algae lvii
2.8.3 Biofilms and bacterial consortia lvii
2.8.4 Zooplankton lviii
2.9 CONCLUDING REMARKS lviii
REFERENCES lix
3.0 Physical and chemical environments lxv
3.1\tTHE DYNAMIC ENVIRONMENT lxv
3.2\tLIGHT lxvi
3.2.1\tIntroduction lxvi
3.2.2\tThe nature of light lxvii
3.2.3\tLight attenuation lxvii
3.2.4\tAlgal and non-algal light attenuation lxviii
3.2.5\tMeasurement of light lxix
3.3\tDISSOLVED OXYGEN lxx
3.3.1\tSignificance of oxygen lxx
3.3.2\tSources of Oxygen lxxi
3.3.3\tOxygen dynamics lxxi
3.3.4\tMeasurement of oxygen lxxii
3.3.5\tRedox and redox potential and its relationship with oxygen lxxiii
3.4\tpH lxxiii
3.4.1\tThe nature and significance of pH lxxiii
3.4.2\tThe carbonate/bicarbonate buffering system lxxiv
3.4.3\tTemporal and spatial variation in pH lxxiv
3.4.4\tMeasurement of pH lxxv
3.5\tTEMPERATURE lxxv
3.5.1\tWhy temperature is important lxxv
3.5.2\tStratification lxxv
3.5.3\tThermal short-circuiting lxxvi
3.5.4\tImplications for hydraulics lxxvi
3.6\tSALINITY lxxvi
3.7\tELEMENTAL CYCLING lxxvi
3.7.1\tNitrogen lxxvi
3.7.2\tSulphur lxxvii
3.7.3\tPhosphorus lxxviii
3.7.4\tCarbon lxxviii
3.8\tSUMMARY lxxviii
3.9\tRESEARCH RECOMMENDATIONS lxxix
REFERENCES lxxix
4.0 Solids and organics lxxxii
4.1\tWASTEWATER CHARACTERISTICS lxxxii
4.1.1\tGeneral overview lxxxii
4.1.2\tOrganic constituents lxxxiv
4.1.3\tSolid constituents lxxxv
4.1.4\tDecay prior to treatment lxxxv
4.2\tGROWTH OF SOLIDS AND ORGANICS WITHIN A POND lxxxvi
4.2.1\tBacterial growth lxxxvi
4.2.2\tAlgal growth lxxxvi
4.2.3\tGrowth of higher-level organisms lxxxvii
4.3\tDECAY OF SOLIDS AND ORGANICS WITHIN A POND lxxxvii
4.3.1\tOverview of decay in ponds lxxxvii
4.3.2\tAerobic decay lxxxvii
4.3.3\tGrazing by higher-level aerobes lxxxix
4.3.4\tAnaerobic decay in the liquid zone lxxxix
4.3.5\tThe benthic/sludge zone lxxxix
4.3.6\tBenthic feedback xc
4.4\tTREATMENT PERFORMANCE xc
4.5\tSUMMARY AND FUTURE RESEARCH NEEDS xci
REFERENCES xci
5.0 Nutrients xciii
5.1\tINTRODUCTION xciii
5.1.1\tTypical wastewater nutrient concentrations xciv
5.2\tNUTRIENT REMOVAL PROCESSES xcv
5.2.1\tSedimentation of wastewater solids xcvii
5.2.2\tAlgal / bacterial assimilation xcvii
Nitrogen source xcviii
Phosphorus source xcviii
Algal synthesis xcviii
The effect of pH xcix
Luxury consumption c
Sedimentation of algal/bacterial biomass c
5.2.3\tAmmonia volatilisation c
5.2.4\tPhosphate precipitation c
5.2.5\tAdsorption cii
5.2.6\tNitrification / Denitrification cii
Nitrification cii
Denitrification ciii
5.2.7\tHeterotrophic nitrification / denitrification civ
5.2.8\tPhosphine production civ
5.3\tRELATIVE IMPORTANCE OF PROCESSES civ
5.4\tRELEASE OF NUTRIENTS FROM POND SLUDGE cv
5.4.1\tPond sludge phosphorus content cv
5.5\tNUTRIENT REMOVAL EFFICIENCY cvi
5.5.1 Predicting Nutrient Removal Performance cvii
5.6\tIMPROVING NUTRIENT REMOVAL cix
5.6.1\tAerobic ponds - maturation and high rate ponds cix
5.6.2\tBiofilm attachment surfaces cx
5.6.3\tPrecipitation and adsorption cx
5.7 SUMMARY cx
5.8 FURTHER RESEARCH cxi
5.8.1\tNitrogen removal cxi
5.8.2\tPhosphorus removal cxi
REFERENCES cxi
6.0 Pond disinfection cxvi
6.1 INTRODUCTION cxvi
6.2 PATHOGENS AND INDICATOR ORGANISMS cxvii
6.2.1 Pathogens cxvii
6.2.2\tIndicators cxix
6.3 OVERVIEW OF DISINFECTION cxxi
6.3.1\tTemperature cxxi
6.3.2\tHydraulic residence time (HRT) cxxi
6.3.3\tAlgal toxins cxxiii
6.3.4\tSedimentation cxxiii
6.3.5 ‘Biological disinfection’ (ingestion by antagonistic microbes) cxxiii
6.4\tSUNLIGHT-MEDIATED DISINFECTION cxxiv
6.4.1\tWavelength cxxv
6.4.2\tThe mechanisms cxxvi
6.4.3\tOxygen cxxviii
6.4.4\tpH cxxviii
6.4.5\tHumic substances cxxviii
6.4.6\tModelling bacterial indicator removal in WSPs cxxix
6.5\tBACTERIAL PATHOGEN REMOVAL cxxx
6.5.1\tSalmonella cxxx
6.5.2\tShigella cxxx
6.5.3\tVibrio cholerae cxxxi
6.5.4\tCampylobacter cxxxi
6.5.5\tOther bacterial indicators and pathogens cxxxii
6.6\tVIRUS REMOVAL cxxxiii
6.6.1\tBacteriophages as model viruses cxxxiii
6.6.2\tPhage behaviour in WSPs cxxxiv
6.6.3\tVirus removal cxxxv
6.7\tREMOVAL AND VIABILITY OF HELMINTH OVA cxxxv
6.7.1\tHelminths in WSP sludge cxxxvi
6.8\tPROTOZOAN REMOVAL cxxxvi
6.9\tINFLUENCE OF PHYSICAL DESIGN cxxxvii
6.9.1\tPond configuration and depth cxxxviii
6.9.2\tInlet and outlet structures and baffling cxxxix
6.9.3\tWastewater treatment and storage reservoirs cxl
6.10\tPOST DISINFECTION OF WSP EFFLUENTS cxl
6.10.1\t\tChlorine cxli
6.10.2\t\tOzone cxli
6.10.3\t\tUltra-violet disinfection cxlii
6.10.4\t\tFilters cxlii
6.11\tRESEARCH NEEDS cxliii
6.12\tSUMMARY cxlv
REFERENCES cxlvi
7.0 Heavy metal removal cliii
7.1 INTRODUCTION cliii
7.1.1\tTypical wastewater heavy metal concentrations cliii
7.2\tHEAVY METAL REMOVAL PROCESSES cliv
7.2.1\tSedimentation of wastewater Solids cliv
7.2.2\tAdsorption cliv
7.2.3\tBioaccumulation clv
7.2.4\tChelation clvi
7.2.5\tPrecipitation clvii
7.3\tRELEASE OF HEAVY METALS FROM POND SLUDGE clvii
7.4\tHEAVY METAL REMOVAL EFFICIENCY clvii
7.5\tSUMMARY clix
7.6\tFURTHER RESEARCH clix
REFERENCES clix
8.1\tLOADING RATES clxi
8.2\tEMPIRICAL DESIGN EQUATIONS clxiii
8.3\tPOND DESIGN USING REACTOR THEORY clxiv
8.3.1\tIdeal flow clxiv
8.3.2\tNon-ideal flow clxv
8.3.3\tCombined pond models clxvii
8.3.4\tThe reaction rate constant clxviii
8.3.5\tThe Dispersion Number clxxi
8.4\tMATHEMATICAL MODELLING clxxiv
8.4.1\tReaction modelling clxxiv
8.4.2\tHydraulic modelling clxxvi
8.4.3\tIntegrated models clxxvii
8.5\tSUMMARY clxxix
REFERENCES clxxx
9.0 Pond process design - a practical guide clxxxiv
9.1\tINTRODUCTION clxxxiv
9.2\tEFFLUENT QUALITY clxxxv
9.3\tANAEROBIC PONDS clxxxvi
9.3.1\tDesign clxxxvi
9.4\tFACULTATIVE PONDS clxxxvii
9.4.1\tDesign clxxxviii
9.4.2\tTreatment efficiency clxxxix
BOD clxxxix
Pathogens cxc
9.5\tMATURATION PONDS cxc
9.5.1\tDesign cxci
Ammonia removal cxcii
9.6\tPHYSICAL SIZING cxciii
9.7\tPOND EFFLUENT REUSE cxcv
9.7.1\tAgricultural reuse cxcv
9.7.2\tAquacultural reuse cxcv
Total nitrogen cxcv
Faecal coliforms cxcvi
Free ammonia cxcvi
9.8 DESIGN EXAMPLE cxcvii
9.8.1 Solution cxcvii
9.9\tCASE STUDY cc
9.9.1\tSolution cc
9.10 FUTURE DESIGN DIRECTIONS cci
REFERENCES ccii
10.0 Hydraulic design cciv
10.1 INTRODUCTION TO POND HYDRAULICS cciv
10.1.1 The Theoretical Hydraulic Retention Time (HRT) cciv
10.1.2\t\tIdeal flow - plug-flow and completely mixed flow ccv
10.1.3\t\tHydraulic short-circuiting ccvi
10.1.4\t\tDead space and flow velocities ccvii
10.1.5\t\tNon-ideal flow and the dispersion number ccviii
10.1.6\t\tTracer studies ccix
10.1.7\tComputational fluid dynamics ccx
10.2\tINPUTS AND INFLUENCES ON HYDRAULICS ccxi
10.3\tRELATING HYDRAULICS TO TREATMENT ccxi
10.3.1\tThe treatment relationship ccxi
10.3.2\t\tIntegrating hydraulic and treatment efficiency ccxii
10.3.3\t\tWhy not just design for plug flow? ccxiii
10.4\tINLET DESIGN ccxiv
10.4.1\t\tUse of large horizontal inlets ccxv
10.4.2\t\tThe jet attachment technique ccxv
10.4.3\t\tVertical inlet ccxv
10.4.4\t\tDiffuse (manifold) inlet ccxvi
10.4.5\t\tInflow dropping from a horizontal pipe ccxvi
10.4.6\t\tInlet type – practical considerations and recommendations ccxvii
10.4.7\t\tInlet position ccxvii
10.4.8\t\tEffect of varying flowrate ccxviii
10.5\t\tOUTLET DESIGN ccxviii
10.5.1\t\tOutlet depth ccxviii
10.5.2\t\tOutlet position – influence on efficiency ccxviii
10.5.3\t\tOutlet position – influence on flow pattern ccxix
10.5.4\t\tOutlet manifolds ccxix
10.5.5\t\tOutlet position - design suggestions ccxix
Hydraulic dead spots ccxix
Use of baffles to control flow ccxx
Central outlets ccxx
Use of flow deflectors ccxx
Distance between inlet and outlet ccxx
10.6\t\tWIND ccxx
10.6.1\t\tJust how important are wind effects? ccxx
10.6.2\t\t Wind induced circulation ccxxi
10.6.3\t\tWind versus inlet mixing ccxxi
10.6.4\t\tApproximate analysis of mixing power input ccxxii
10.6.5\t\tControlling the effect of wind on pond hydraulics ccxxiv
10.7\t\tBAFFLES AND SHAPE ccxxiv
10.7.1\t\tHorizontal baffling across the pond (transverse) ccxxiv
10.7.2\t\tVertical baffling through the pond depth ccxxv
10.7.3\t\tLongitudinal versus transverse baffling ccxxvi
10.7.4\t\tInteractions of baffles and inlets ccxxvi
10.7.5\t\tNumber of baffles ccxxvi
10.7.6\t\tLength to width ratio ccxxvii
10.7.7\t\tAlternative baffle positioning ccxxviii
10.7.8\t\tThe stub baffle ccxxviii
10.8\t\tAERATORS, MIXERS AND TEMPERATURE ccxxix
10.8.1\t\tAerators and mixers ccxxix
10.8.2\t\tHigh rate algal ponds ccxxix
10.8.3\t\tTemperature effects ccxxix
10.9\tSummary and research recommendations ccxxx
REFERENCES ccxxxi
11.0 Solids removal and other upgrading techniques ccxxxiv
11.1 INTRODUCTION ccxxxiv
11.2 INTERMITTENT SLOW SAND FILTRATION ccxxxv
11.2.1\t\t\tSummary of performance ccxxxv
11.2.2\t\t\tOperating periods ccxxxvii
11.2.3\t\t\tMaintenance requirements ccxxxviii
11.2.4\t\t\tHydraulic loading rates ccxxxviii
11.2.5\t\t\tDesign of intermittent sand filters ccxxxix
11.2.6\t\t\tDesign example – intermittent sand filters ccxl
Determine dimensions of filters ccxl
Influent distribution system ccxl
Minimum freeboard required for filters ccxl
11.3 ROCK FILTERS ccxl
11.3.1\t\t\tPerformance of rock filters ccxli
11.3.2\t\t\tInter-pond rock filters ccxliv
11.3.3\t\t\tDesign of rock filters ccxliv
11.3.4\t\t\tMaintenance requirements ccxlv
11.4\tRAPID SAND FILTRATION ccxlv
11.5\tCOAGULATION-FLOCCULATION ccxlv
11.6\t\t\tDISSOLVED AIR FLOTATION ccxlvi
11.7\tMODIFICATIONS AND ADDITIONS TO TYPICAL DESIGNS ccl
11.7.1\t\t\tControlled discharge ccl
11.7.2\t\t\tHydrograph-controlled release cclii
11.7.3\t\t\tComplete-retention ponds cclii
11.8\tAUTOFLOCCULATION AND PHASE ISOLATION ccliii
11.9\tATTACHED GROWTH ccliii
11.10\tLAND APPLICATION/TREATMENT ccliv
11.10.1\tSlow rate irrigation (SR) ccliv
11.10.2\tRapid infiltration (RI) ccliv
11.10.3\tOverland flow (OF) cclv
11.10.4\tDesign concepts cclvi
11.11\tPARTIAL-MIX AERATED PONDS cclvi
11.11.1\tPartial-mix design model cclvi
11.11.2\tSelection of reaction rate constants cclvii
11.11.3\tInfluence of number of ponds cclvii
11.11.4 Design example cclviii
11.11.5\tTemperature effect cclix
11.11.6\tPond configuration cclix
11.11.7\tMixing and aeration cclx
11.12\tMACROPHYTE SYSTEMS cclx
11.13\tAQUACULTURE cclx
11.14\tUASB cclx
11.15\tULTRAVIOLET DISINFECTION cclx
11.16\tPERFORMANCE COMPARISONS WITH OTHER REMOVAL METHODS cclxi
REFERENCES cclxiii
12.0 Operation, maintenance and monitoring cclxvi
12.1\tINTRODUCTION cclxvi
12.2\tOPERATION cclxvii
12.2.1\t\t\tThe operating manual cclxvii
12.2.2\t\t\tRecords cclxvii
Records required for operation and maintenance cclxviii
12.2.3\t\t\tOperations staff cclxviii
Training cclxx
12.2.4\t\t\tFacilities, safety and security cclxxi
12.3\tMAINTENANCE cclxxii
12.3.1\t\t\tMaintenance duties and procedures cclxxii
12.3.2\t\t\tInlet works and intake structures cclxxiii
12.3.3 Pond maintenance cclxxiv
12.3.4\t\t\tMaintenance records cclxxv
12.4\tMONITORING cclxxv
12.4.1\t\t\tDefinitions and objectives cclxxv
12.4.2\t\t\tRegulatory monitoring programmes cclxxvii
12.4.3\t\t\tWSP evaluations cclxxix
12.4.4\t\t\tFlow cclxxxii
12.4.5\t\t\tAnalytical methods cclxxxii
12.5\t\tSLUDGE cclxxxii
12.5.1\t\t\tPredicting sludge accumulation cclxxxii
12.5.2\t\t\tMeasuring sludge accumulation cclxxxiii
Pond sludge survey methods cclxxxiv
Sludge survey data and analysis cclxxxvi
Plots of sludge bathymetry cclxxxvii
12.5.3\t\t\tSludge removal cclxxxvii
12.5.4\t\t\tSludge disposal cclxxxviii
Chemicals cclxxxix
Pathogens cclxxxix
12.6\tEMISSIONS ccxc
12.6.1\t\t\tSources of odour ccxc
12.6.2\t\t\tOdour control ccxci
Inlet works ccxcii
Covering ponds ccxcii
Anaerobic and facultative ponds ccxcii
Maturation ponds ccxciv
12.6.3\t\t\tAerosols ccxciv
12.7\t\t\tFUTURE DEVELOPMENTS ccxciv
REFERENCES ccxcv
13.0 Advanced integrated wastewater ponds ccxcviii
13.1\tINTRODUCTION ccxcviii
13.1.1\t\tHistorical development ccxcix
13.1.2 AIWPS implementation ccc
13.2\tADVANCED FACULTATIVE PONDS cccii
13.3\tHIGH RATE PONDS ccciv
13.3.1\t\tHRP operation cccvii
Depth cccvii
Paddlewheel mixing cccviii
Discharge cccviii
13.4\tALGAE SETTLING POND cccviii
13.4.1\t\tASP operation cccix
13.5\tMATURATION POND cccix
13.6\tTREATMENT PERFORMANCE cccx
13.6.1\t\tLime Addition cccxi
13.6.2\t\tEffluent Disposal cccxi
13.7\t\tAIWPS COSTS cccxi
13.7.1\t\tCapital Costs cccxi
Land costs cccxii
Construction costs cccxii
13.7.2\t\tOperation and Maintenance Costs cccxii
Sludge removal and disposal cccxii
Power requirement cccxiii
Personnel costs cccxiii
13.8\tADDITIONAL TREATMENT cccxiv
13.9\tRESOURCE RECOVERY cccxiv
13.9.1 Methane cccxiv
13.9.2 Algae Biomass cccxv
13.10\tUPGRADING CONVENTIONAL WSP'S cccxv
13.11\tTREATMENT OF OTHER WASTES cccxvi
13.12\tSUMMARY cccxvi
13.13\tFUTURE RESEARCH NEEDS cccxvii
AFPs cccxvii
HRPs cccxvii
ASPs cccxvii
MPs cccxvii
REFERENCES cccxviii
14.0 Pond(s) integrated with trickling filter and activated sludge processes cccxxvii
14.1 INTRODUCTION cccxxvii
14.2 ANAEROBIC POND(S)/TRICKLING HYBRID cccxxviii
14.2.1 Case study - Phola ponds/trickling filter hybrid plant (Mpumalanga province, South Africa) cccxxx
14.3\tPONDS/ACTIVATED SLUDGE PROCESS HYBRID cccxxx
14.4\tPONDS FOLLOWED BY TRICKLING FILTER/ACTIVATED SLUDGE PROCESS cccxxxii
14.4.1 Introduction to the PETRO concept cccxxxii
14.4.2\t\tBiological phenomena underlying PETRO cccxxxiii
14.4.3\t\tAlgae-rich inter-pond recirculation cccxxxiv
14.4.4\t\tSystem variants cccxxxvii
PETRO trickling filter variant cccxxxviii
PETRO activated sludge variant cccxxxviii
PETRO Biological Nutrient Removal (BNR) variant cccxxxviii
14.4.5\t\tRetrofit guidelines cccxxxix
Upgrading conventional trickling filter plants cccxl
Upgrading conventional WSP series cccxl
14.4.6\t\tDesign guidelines cccxl
14.4.7\t\tCapital and operational costs cccxlii
14.5 SUMMARY AND FUTURE RESEARCH NEEDS cccxlii
REFERENCES cccxliii
15.0 Integrated pond/wetland systems cccxliv
15.1\tINTRODUCTION cccxliv
15.2\tCONSTRUCTED WETLANDS cccxlv
15.2.1\tTypes of constructed wetlands cccxlv
Free water surface (FWS) cccxlv
Vegetated sub-merged bed (VSB) cccxlvi
Vertical flow (VF) cccxlvii
15.2.2\t\tVegetation cccxlviii
15.2.3\t\tTreatment mechanisms cccl
Solids and organic matter removal mechanisms cccl
Nutrient removal mechanisms cccl
Pathogen removal mechanisms cccli
15.3\tAPPLICATION OF POND AND CW SYSTEMS ccclii
15.3.1\t\tDomestic wastewater treatment ccclii
15.3.2\t\tAgricultural/industrial wastewater treatment cccliii
15.4\tDESIGN CONSIDERATIONS cccliii
15.4.1\t\tProcess design criteria cccliii
15.4.2\t\tDesign example – free water surface wetland ccclvi
Solution ccclvii
15.4.3\t\tResource recycling and reuse ccclix
15.5\tSUMMARY AND FUTURE RESEARCH NEEDS ccclix
REFERENCES ccclix
16.0 Integrated pond/aquaculture systems ccclxii
16.1 AQUACULTURE PONDS ccclxii
16.1.1\tTypes of aquaculture ponds ccclxii
16.1.2\t\tTreatment mechanisms ccclxiii
16.1.3\t\tFish species ccclxiv
16.1.4\t\tFish cultivation/stocking ccclxv
16.2\tAPPLICATIONS OF PONDS AND AQUACULTURE SYSTEMS ccclxvi
16.3\tDESIGN CONSIDERATIONS ccclxviii
16.3.1\t\tDesign example – aquaculture ponds ccclxix
16.3.2\t Resource recycling and reuse ccclxx
16.4\tSUMMARY AND FUTURE RESEARCH NEEDS ccclxxi
ACKNOWLEDGEMENTS ccclxxi
REFERENCES ccclxxi
17.0 Wastewater reservoirs ccclxxiii
17.1\tINTRODUCTION ccclxxiii
17.1.1\t\tWhat are wastewater reservoirs? ccclxxiii
17.1.2\t Water demand for irrigation and the hydrological cycle ccclxxiv
17.1.3\t\tBasic concepts in designing wastewater reservoirs ccclxxv
Non-steady-state reactors ccclxxv
17.2\tOPERATIONAL REGIMES AND WATER DEMAND ccclxxvii
17.3\tTHE ‘OLD’ CONTINUOUS-FLOW SINGLE RESERVOIR ccclxxix
17.3.1\t\tVolume and depth ccclxxix
17.3.2\t\tOutlet and inlet location ccclxxx
17.3.3\t\tThe hydraulics of the continuous-flow reservoirs ccclxxxi
The mean residence time (MRT) ccclxxxi
The percentage of fresh effluents (PFE) ccclxxxii
MRT and PFE in continuous-flow reservoirs ccclxxxiii
17.3.4\tPerformance of continuous-flow reservoirs ccclxxxiv
The removal of coliforms ccclxxxvi
17.4\tTHE ‘NEW’ BATCH RESERVOIRS ccclxxxvii
17.4.1\t\tA single batch reservoir ccclxxxvii
17.4.2\t\tSeveral reservoirs working in sequential batch ccclxxxviii
17.5\tORGANIC LOADING ccclxxxviii
17.5.1\t\tCalculating the surface organic loading ccclxxxviii
17.5.2\tMaximum surface organic loading ccclxxxix
17.5.3\t\tIncreasing the surface organic loading cccxc
17.5.4\t\tShocks of high organic loading cccxc
17.6\tTHE TOOLS FOR DESIGN cccxci
17.6.1\t\tThree complementary models cccxci
17.6.2\t\tPrior and post-treatment of effluents cccxci
17.7\tSUMMARY AND FUTURE RESEARCH NEEDS cccxcii
REFERENCES cccxciv
18.0 Cold and continental climated ponds cccxcvii
18.1\tINTRODUCTION cccxcvii
18.1.1\t\tHistory and development cccxcvii
18.1.2\tPond types and operating mode cccxcviii
18.2\tPROCESS DESIGN cdi
18.2.1\t\tDesign methods and equations cdii
18.3\tSPECIAL ASPECTS OF CONSTRUCTION cdiv
18.3.1\t\tConfiguration and orientation cdiv
18.3.2\t\tEarthworks and lining cdv
18.3.3\t\tHydraulics and pipework cdv
18.4\tOPERATION OF EXTREME CLIMATE PONDS cdvi
18.4.1\t\tSludge accumulation and disposal cdvi
18.4.2\t\tPond discharge cdvii
18.4.3\t\tMonitoring and maintenance cdviii
18.5\tPOND MICROBIOLOGY AND PATHOGEN REMOVAL cdix
18.5.1\t\tPond biology and microbial activity in cold WSPs cdix
18.5.2\t\tSurvival of pathogenic micro-organisms cdx
18.6\tMODIFICATIONS AND TRENDS IN DESIGN OF EXTREME CLIMATE PONDS cdxi
18.7\tCASE STUDIES cdxii
18.7.1\t\tWhitehorse, Yukon - continuing with WSPs cdxii
18.7.2\t\tStugun, Sweden - from WSPs to precipitation ponds cdxv
18.8\tFUTURE DIRECTIONS cdxviii
REFERENCES cdxix
19.0 Ponds for livestock wastes cdxxiv
19.1\tINTRODUCTION cdxxiv
19.2\tCHARACTERISTICS OF LIVESTOCK WASTES AND WASTEWATERS cdxxv
19.2.1\t\tOxygen demand cdxxv
19.2.2\t\tSolids cdxxvii
19.2.3\t\tNutrients cdxxviii
19.2.4\t\tPathogens cdxxix
19.2.5\t\tOther contaminants cdxxx
19.2.6\t\tPhysico-chemical factors affecting pond treatment of livestock wastewaters cdxxxi
19.3\tLIVESTOCK POND DESIGN AND OPERATION cdxxxii
19.3.1\t\tAnaerobic ponds cdxxxii
19.3.2\t\tFacultative ponds cdxxxiv
19.3.3\t\tMechanically aerated ponds cdxxxv
19.3.4\t\tMaturation ponds cdxxxvi
19.3.5\t\tHigh rate pond systems cdxxxvii
19.4\tFARM DAIRY CASE STUDY – NEW ZEALAND cdxxxviii
19.4.1\t\tAnaerobic and facultative pond systems cdxxxviii
19.4.2\t\tMechanical aeration of facultative ponds cdxxxix
19.4.3\t\tAdvanced integrated ponds cdxl
19.4.4\t\tSupplementary wetland treatment cdxlii
19.5\tPIGGERY CASE STUDY cdxlii
19.5.1\t\tAnaerobic and facultative ponds cdxlii
19.6\tSUMMARY AND FUTURE RESEARCH NEEDS cdxliv
REFERENCES cdxlv
20.0 Stormwater management ponds cdxlix
20.1 INTRODUCTION cdxlix
20.2 STORMWATER POND PROCESSES cdl
20.2.1\t\tHydraulics cdl
20.2.2\t\tWater quality processes cdlii
20.2.3\t\tSediment settling cdliv
20.2.4\t Ecology cdlv
20.3\t\tPERFORMANCE OF STORMWATER MANAGEMENT PONDS cdlvii
20.3.1\t\tThe fate of the pollutants cdlix
20.4\tDESIGN OF STORMWATER DETENTION AND RETENTION PONDS cdlx
20.4.1\t\tVolume and depth cdlx
20.4.2\t\tStormwater retention ponds cdlxiii
20.4.3\t\tExtended detention stormwater basins (EDSBs) cdlxv
20.4.4\t\tDesign considerations for stormwater ponds and basins cdlxvii
Land requirements cdlxvii
Water balance cdlxviii
Pollutant removal cdlxviii
Aesthetics and multiple uses cdlxviii
Permanent pool for stormwater retention ponds cdlxix
Stormwater retention pond depth zones cdlxix
Outlet works cdlxix
Side slopes cdlxx
Dam embankment cdlxx
Inlet cdlxx
Forebay design cdlxx
Underdrains adjacent to stormwater ponds cdlxxi
20.5\tMAINTENANCE OF STORMWATER PONDS AND BASINS cdlxxi
20.6\t\tSUMMARY cdlxxii
REFERENCES cdlxxiii
Index cdlxxvi