Menu Expand
Biological Wastewater Treatment

Biological Wastewater Treatment

Mogens Henze | Mark C. M. van Loosdrecht | G.A. Ekama | Damir Brdjanovic

(2008)

Additional Information

Book Details

Abstract

For information on the online course in Biological Wastewater Treatment from UNESCO-IHE, visit: http://www.iwapublishing.co.uk/books/biological-wastewater-treatment-online-course-principles-modeling-and-design 
Over the past twenty years, the knowledge and understanding of wastewater treatment have advanced extensively and moved away from empirically-based approaches to a first principles approach embracing chemistry, microbiology, physical and bioprocess engineering, and mathematics. Many of these advances have matured to the degree that they have been codified into mathematical models for simulation with computers. For a new generation of young scientists and engineers entering the wastewater treatment profession, the quantity, complexity and diversity of these new developments can be overwhelming, particularly in developing countries where access is not readily available to advanced level tertiary education courses in wastewater treatment.  
Biological Wastewater Treatment addresses this deficiency. It assembles and integrates the postgraduate course material of a dozen or so professors from research groups around the world that have made significant contributions to the advances in wastewater treatment. The book forms part of an internet-based curriculum in biological wastewater treatment which also includes:

  •  Summarized lecture handouts of the topics covered in book 
  • Filmed lectures by the author professors 
  • Tutorial exercises for students self-learning  
Upon completion of this curriculum the modern approach of modelling and simulation to wastewater treatment plant design and operation, be it activated sludge, biological nitrogen and phosphorus removal, secondary settling tanks or biofilm systems, can be embraced with deeper insight, advanced knowledge and greater confidence.  

Table of Contents

Section Title Page Action Price
Half Title 2
Title 4
Copyright 5
Preface 6
About the book and online course 8
Contents 9
Chapter 1: Wastewater Treatment Development 12
1.1 GLOBAL DRIVERS FOR SANITATION 12
1.2 HISTORY OF WASTEWATER TREATMENT 12
REFERENCES 18
ACKNOWLEDGEMENT 18
Chapter 2: Microbial Metabolism 20
2.1 INTRODUCTION 20
2.2 ELEMENTS OF MICROBIOLOGY 21
2.2.1 Classification of microorganisms 21
2.2.2 Cell structure and components 22
2.2.3 Functions of bacteria 24
2.2.4 Characterization of bacteria 24
2.2.4.1 Fluorescent in situ hybridization (FISH) 25
2.2.4.2 Polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) 25
2.2.5 Bacterial bioenergetics 25
2.2.6 Nutritional requirements for microbial growth 26
2.2.7 Carbon and energy sources and microbial diversity 27
2.2.8 Environmental conditions (oxygen, temperature, toxicity) 29
2.2.8.1 Oxygen 29
2.2.8.2 Temperature 29
2.3 STOICHIOMETRY AND ENERGETICS 30
2.3.1 Theoretical chemical oxygen demand (thCOD) and electron equivalents 30
2.3.2 Cell growth 31
2.3.3 Yield and energy 32
2.3.3.1 Energy from catabolism 32
2.3.3.2 Synthesis fraction and biomass yield 32
2.3.3.3 Observed yield from stoichiometry 35
2.3.3.4 True yield estimation from bioenergetics 36
2.3.3.5 Example: Estimating true yield from bioenergetics for the aerobic oxidation of glucose with ammonia as nitrogen source 37
2.4 KINETICS 38
2.4.1 Substrate utilisation rate 38
2.4.1.1 Saturation function 38
2.4.1.2 Inhibition function 39
2.4.2 Growth rate 39
2.4.3 Stoichiometric and kinetic parameter values 40
REFERENCES 41
NOMENCLATURE 41
Chapter 3: Wastewater Characterization 44
3.1 THE ORIGIN OF WASTEWATER 44
3.2 WASTEWATER CONSTITUENTS 44
3.3 BOD AND COD 45
3.4 PERSON EQUIVALENTS AND PERSON LOAD 46
3.5 IMPORTANT COMPONENTS 46
3.6 SPECIAL COMPONENTS 47
3.7 MICROORGANISMS 48
3.8 SPECIAL WASTEWATERS AND INTERNAL PLANT RECYCLE STREAMS 48
3.9 RATIOS 51
3.10 VARIATIONS 51
3.11 WASTEWATER FLOWS 52
3.12 TRADITIONAL WASTE FROM HOUSEHOLDS 53
3.13 WASTEWATER DESIGN FOR HOUSEHOLDS 54
3.14 WASTEWATER AND BIOMASS FRACTIONATION 55
3.15 SYMBOLS LIST OF VARIABLES FOR MODELS 56
3.16 CHARACTERIZATION PROTOCOLS 56
3.17 EXAMPLE COMPOSITION OF INFLUENT BIOREACTOR AND EFFLUENT 56
3.18 WASTEWATER FINGERPRINT 56
REFERENCES 63
Chapter 4: Organic Material Removal 64
4.1 INTRODUCTION 64
4.1.1 Transformations in the biological reactor 64
4.1.2 Steady state and dynamic simulation models 65
4.2 ACTIVATED SLUDGE SYSTEM CONSTRAINTS 66
4.2.1 Mixing regimes 66
4.2.2 Sludge retention time (SRT) 67
4.2.3 Nominal hydraulic retention time (HRTn) 67
4.2.4 Connection between sludge age and hydraulic retention time 68
4.3 SOME MODEL SIMPLIFICATIONS 68
4.3.1 Complete utilization of biodegradable organics 68
4.4 STEADY STATE SYSTEM EQUATIONS 69
4.4.1 For the influent 69
4.4.2 For the system 69
4.4.2.1 Reactor VSS mass 69
4.4.2.2 Reactor ISS mass 70
4.4.2.3 Reactor TSS mass 70
4.4.2.4 Carbonaceous oxygen demand 71
4.4.3 Reactor volume and retention time 71
4.4.4 Irrelevance of HRT 71
4.4.5 Effluent COD concentration 72
4.4.6 The COD (or e-) mass balance 72
4.4.7 Active fraction of the sludge 73
4.4.8 Steady state design 73
4.4.9 The steady state design procedure 74
4.5 DESIGN EXAMPLE 74
4.5.1 Temperature effects 75
4.5.2 Calculations for organic material degradation 75
4.5.3 The COD mass balance 77
4.6 REACTOR VOLUME REQUIREMENTS 79
4.7 DETERMINATION OF REACTOR TSS CONCENTRATION 80
4.7.1 Reactor cost 80
4.7.2 Secondary settling tank cost 80
4.7.3 Total cost 81
4.8 CARBONACEOUS OXYGEN DEMAND 82
4.8.1 Steady state (daily average) conditions 82
4.8.2 Daily cyclic (dynamic) conditions 82
4.9 DAILY SLUDGE PRODUCTION 83
4.10 SYSTEM DESIGN AND CONTROL 84
4.10.1 System sludge mass control 84
4.10.2 Hydraulic control of sludge age 86
4.11 SELECTION OF SLUDGE AGE 87
4.11.1 Short sludge ages (1 to 5 days) 87
4.11.1.1 Conventional plants 87
4.11.1.2 Aerated lagoons 88
4.11.2 Intermediate sludge ages (10 to 15 days) 89
4.11.3 Long sludge ages (20 days or more) 90
4.11.3.1 Aerobic plants 90
4.11.3.2 Anoxic-aerobic plants 91
4.11.3.3 Anaerobic-anoxic-aerobic plants 91
4.11.4 Dominant drivers for activated sludge system size 92
4.11.5 Some general comments 93
REFERENCES 94
NOMENCLATURE 95
Chapter 5: Nitrogen Removal 98
5.1 INTRODUCTION TO NITRIFICATION 98
5.2 BIOLOGICAL KINETICS 99
5.2.1 Growth 99
5.2.2 Growth behaviour 100
5.2.3 Endogenous respiration 101
5.3 PROCESS KINETICS 101
5.3.1 Effluent ammonia concentration 101
5.4 FACTORS INFLUENCING NITRIFICATION 103
5.4.1 Influent source 103
5.4.2 Temperature 103
5.4.3 Unaerated zones 104
5.4.3.1 Maximum allowable unaerated mass fraction 105
5.4.4 Dissolved oxygen concentration 106
5.4.5 Cyclic flow and load 106
5.4.6 pH and alkalinity 107
5.5 NUTRIENT REQUIREMENTS FOR SLUDGE PRODUCTION 110
5.5.1 Nitrogen requirements 110
5.5.2 N (and P) removal by sludge production 111
5.6 DESIGN CONSIDERATIONS 112
5.6.1 Effluent TKN 112
5.6.2 Nitrification capacity 113
5.7 NITRIFICATION DESIGN EXAMPLE 114
5.7.1 Effect of nitrification on mixed liquor pH 115
5.7.2 Minimum sludge age for nitrification 115
5.7.3 Raw wastewater N concentrations 116
5.7.4 Settled wastewater 116
5.7.5 Nitrification process behaviour 116
5.8 BIOLOGICAL NITROGEN REMOVAL 119
5.8.1 Interaction between nitrification and nitrogen removal 119
5.8.2 Benefits of denitrification 119
5.8.3 Nitrogen removal by denitrification 120
5.8.4 Denitrification kinetics 121
5.8.5 Denitrification systems 121
5.8.5.1 The Ludzack-Ettinger system 122
5.8.5.2 The 4 stage Bardenpho system 123
5.8.6 Denitrification rates 123
5.8.7 Denitrification potential 126
5.8.8 Minimum primary anoxic sludge mass fraction 128
5.8.9 Denitrification - influence on reactor volume and oxygen demand 128
5.9 DEVELOPMENT AND DEMONSTRATION OF DESIGN PROCEDURE 128
5.9.1 Review of calculations 129
5.9.2 Allocation of unaerated sludge mass fraction 130
5.9.3 Denitrification performance of the MLE system 130
5.9.3.1 Optimum a-recycle ratio 130
5.9.3.2 The balanced MLE system 134
5.9.3.3 Effect of influent TKN/COD ratio 137
5.9.3.4 MLE sensivity diagram 138
5.10 SYSTEM VOLUME AND OXYGEN DEMAND 141
5.10.1 System volume 141
5.10.2 Daily average total oxygen demand 141
5.11 SYSTEM DESIGN, OPERATION AND CONTROL 143
REFERENCES 143
NOMENCLATURE 144
Chapter 6: Innovative Nitrogen Removal 150
6.1 INTRODUCTION 150
6.2 IMPACT OF SIDE STREAM PROCESSES 151
6.3 THE NITROGEN CYCLE 152
6.4 NITRITE BASED N-REMOVAL 154
6.5 ANAEROBIC AMMONIA OXIDATION 157
6.6 BIO-AUGMENTATION 160
6.7 CONCLUSIONS 162
REFERENCES 163
NOMENCLATURE 164
Chapter 7: Enhanced Biological Phosphorus Removal 166
7.1 INTRODUCTION 166
7.2 PRINCIPLE OF ENHANCED BIOLOGICAL PHOSPHORUS REMOVAL (EBPR) 167
7.3 MECHANISM OF EBPR 168
7.3.1 Background 168
7.3.2 Biological P removal microorganisms 168
7.3.3 Prerequisites 169
7.3.4 Observations 169
7.3.5 Biological P removal mechanism 169
7.3.5.1 In the anaerobic reactor 170
7.3.5.2 In the subsequent aerobic reactor 171
7.3.5.3 Quantitative anaerobic-aerobic PAO model 171
7.3.6 Fermentable COD and slowly biodegradable COD 172
7.3.7 Functions of the anaerobic zone 172
7.3.8 Influence of recycling oxygen and nitrate to the anaerobic reactor 173
7.3.9 Denitrification by PAOs 173
7.3.10 Relationship between influent COD components and sludge components 173
7.4 OPTIMISATION AND DEVELOPMENT OF EBPR SYSTEMS 173
7.4.1 Principles of EBPR optimization 173
7.4.2 Discovery 175
7.4.3 PhoStrip® system 175
7.4.4 Modified Bardenpho 177
7.4.5 Phoredox or anaerobic/oxic (A/O) system 178
7.4.6 Effect of nitrate on EBPR 179
7.4.7 University of Cape Town (UCT; VIP) system 180
7.4.8 Modified UCT system 181
7.4.9 Johannesburg (JHB) system 181
7.4.10 Biological-chemical phosphorus removal (BCFS® system) 182
7.5 MODEL DEVELOPMENT FOR EBPR 182
7.5.1 Early developments 182
7.5.2 Readily biodegradable COD 182
7.5.3 Parametric model 183
7.5.4 Comments on the parametric model 183
7.5.5 NDEBPR system kinetics 184
7.5.6 Enhanced PAO cultures 184
7.5.6.1 Enhanced culture development 184
7.5.6.2 Enhanced culture kinetic model 185
7.5.6.3 Simplified enhanced culture steady state model 186
7.5.7 Steady state mixed culture NDEBPR systems 187
7.5.7.1 Mixed culture steady state model 187
7.5.7.2 Incorporation of denitrification aspects in steady state mixed culture model 189
7.6 MIXED CULTURE STEADY STATE MODEL 190
7.6.1 Principles of the model 190
7.6.2 Mass equations 191
7.6.2.1 PAOs 191
7.6.2.2 OHOs 191
7.6.2.3 Inert mass 191
7.6.3 Division of biodegradable COD between PAOs and OHOs 192
7.6.3.1 Kinetics of conversion of fermentable organics to VFAs 192
7.6.3.2 Effect of recycling nitrate or oxygen 192
7.6.3.3 Steady state conversion equations 193
7.6.3.4 Implications of conversion theory 194
7.6.4 P release 194
7.6.5 P removal and effluent total phosphorus concentration 194
7.6.6 VSS and TSS sludge masses and P content of TSS 195
7.6.6.1 VSS sludge mass 195
7.6.6.2 FSS sludge mass 195
7.6.6.3 TSS sludge mass and sludge VSS/TSS ratio 196
7.6.6.4 P content of TSS 196
7.6.7 Process volume requirements 196
7.6.8 Nitrogen requirements for sludge production 197
7.6.9 Oxygen demand 197
7.6.9.1 Carbonaceous oxygen demand 197
7.6.9.2 Nitrification oxygen demand 198
7.6.9.3 Total oxygen demand 198
7.7 DESIGN EXAMPLE 199
7.7.1 Steady state design procedure 199
7.7.2 Information provided 199
7.7.3 Calculations 201
7.8 INFLUENCE OF EBPR ON THE SYSTEM 208
7.8.1 Influence on volatile and total suspended solids and oxygen demand 208
7.8.2 P/VSS ratio 209
7.9 FACTORS INFLUENCING THE MAGNITUDE 210
7.9.1 Zero discharge of nitrate and oxygen to anaerobic reactor 210
7.9.1.1 Sludge age and anaerobic mass fraction 210
7.9.1.2 Influent COD 210
7.9.1.3 Subdivision of f sub;AN 211
7.9.1.4 Settled and unsettled influent 211
7.9.1.5 Minimally required aerobic SRT for good EBPR 211
7.9.2 Influence of influent RBCOD fraction 212
7.9.3 Influence of recycling nitrate and oxygen to the anaerobic reactor 212
7.9.4 Influence of temperature on EBPR 213
7.9.4.1 Temperature effects on the physiology of EBPR 214
7.9.4.2 Process and molecular ecological studies 214
7.10 DENITRIFICATION IN NDEBPR SYSTEMS 215
7.10.1 Background 215
7.10.2 Denitrification potential in NDEBPR systems 215
7.10.2.1 Denitrification potential of the primary anoxic reactor 216
7.10.2.2 Denitrification potential of the secondary anoxic reactor 217
7.10.3 Principles of denitrification design procedures for NDEBPR systems 217
7.10.4 Analysis of denitrification in NDEBPR systems 218
7.10.4.1 UCT System 218
7.10.5 Maximum nitrate recycled to anaerobic reactor 219
7.11 GLYCOGEN ACCUMULATING ORGANISMS (GAOS) 219
7.12 CONCLUSION AND PERSPECTIVES 221
REFERENCES 221
ACKNOWLEDEGEMENT 227
NOMENCLATURE 227
Chapter 8: Pathogen Removal 232
8.1 INTRODUCTION 232
8.2 TYPES OF ENTERIC PATHOGENS 232
8.2.1 Viruses 233
8.2.2 Bacteria 234
8.2.3 Protozoa 235
8.2.4 Helminthes 236
8.3 OCCURRENCE OF PATHOGENS IN SEWAGE 237
8.3.1 Indicator organisms 237
8.3.2 Bacterial indicators 238
8.3.3 Bacteriophage as indicators 239
8.3.4 Standards and criteria for indicators 240
8.4 REMOVAL OF PATHOGENS AND INDICATORS BY WASTEWATER TREATMENT PROCESSES 241
8.4.1 Ponds 241
8.4.2 Tricking filters 242
8.4.3 Activated sludge 242
8.4.4 Membrane bioreactors 243
8.4.5 Anaerobic reactors 244
8.4.6 Wetlands and reed beds 244
8.4.7 Land treatment 245
8.4.7.1 Overland flow 245
8.4.7.2 Infiltration 245
8.4.8 Septic tanks 246
8.4.9 Tertiary treatment 246
8.4.10 Disinfection 247
8.4.11 Chlorine disinfection 247
8.4.12 Ozone 248
8.4.12.1 Estimating the effectiveness of chlorine and ozone 248
8.4.13 Ultraviolet light disinfection 249
8.5 CONCLUSIONS 250
REFERENCES 251
NOMENCLATURE 253
Chapter 9: Aeration and Mixing 256
9.1 AERATION TECHNOLOGY 256
9.1.1 Introduction 256
9.1.2 Surface aerators 258
9.1.3 Coarse-bubble systems 260
9.1.4 Fine-bubble systems 261
9.2 AIR BLOWER SYSTEMS 264
9.2.1 State of the art 264
9.2.2 Centrifugal blowers 264
9.2.3 Positive displacement blowers 265
9.2.4 Variable frequency drives 265
9.2.5 Existing control systems 266
9.2.6 Blower upgrades and recommendations 266
9.3 CONVERTING MANUFACTURERS’ DATA TO PROCESS CONDITIONS 267
9.3.1 The impact of cell retention time 267
9.3.2 Role of selectors 268
9.3.3 Diffuser fouling, scaling, and cleaning 270
9.3.4 Surfactant effects 272
9.3.5 Aeration performance monitoring 273
9.4 SUSTAINABLE AERATION PRACTICE 274
9.4.1 Mechanically-simple aerated wastewater treatment systems 274
9.4.2 Energy-conservation strategies 275
9.5 AERATION REQUIREMENTS 278
9.5.1 Design algorithm 278
9.5.2 Verification/upgrade algorithm 279
REFERENCES 279
ACKNOWLEDGEMENTS 281
NOMENCLATURE 281
Chapter 10: Toxicity 284
10.1 INTRODUCTION 284
10.2 MEASURES OF TOXICITY 285
10.2.1 Respirometry 285
10.2.2 Bioluminescence (Microtox®) 286
10.2.3 Other tests 286
10.2.4 Online toxicity meters 287
10.3 KINETIC MODELS FOR TOXIC SUBSTRATES 287
10.3.1 Models of enzyme inhibition 288
10.3.1.1 Competitive inhibition 288
10.3.1.2 Non-competitive inhibition 289
10.3.1.3 Un-competitive inhibition 289
10.3.2 Inhibition constant 290
10.3.3 Substrate inhibition 290
10.3.4 Product Inhibition 291
10.3.5 Other kinetic expressions 291
10.3.6 Physical causes of inhibition 291
10.3.6.1 Temperature 292
10.3.6.2 pH 293
10.4 DEALING WITH TOXICITY 293
10.4.1 Performance parameters under inhibition 294
10.4.1.1 Case study 10.1: Wastewater treatment in chemical manufacturing 294
10.4.1.2 Case study 10.2.: Textile wastewater treatment 295
10.4.1.3 Case study 10.3: Urban wastewater treatment 297
10.5 CONCLUDING REMARKS 298
REFERENCES 299
NOMENCLATURE 300
Chapter 11: Bulking Sludge 302
11.1 INTRODUCTION 302
11.2 HISTORICAL ASPECTS 304
11.3 RELATIONSHIP BETWEEN MORPHOLOGY AND ECOPHYSIOLOGY 304
11.3.1 Microbiological approach 305
11.3.2 Morphological-ecological approach 306
11.4 FILAMENTOUS BACTERIA IDENTIFICATION AND CHARACTERISATION 306
11.4.1 Microscopic characterisation versus molecular methods 306
11.4.2 Physiology of filamentous bacteria 307
11.5 CURRENT GENERAL THEORIES TO EXPLAIN BULKING SLUDGE 307
11.5.1 Diffusion based selection 308
11.5.2 Kinetic selection theory 308
11.5.3 Storage selection theory 310
11.6 REMEDIAL ACTIONS 310
11.6.1 Selector 310
11.6.1.1 Aerobic selectors 311
11.6.1.2 Non-aerated selectors 312
11.6.1.3 Anoxic selectors 312
11.6.1.4 Anaerobic selectors 313
11.7 MATHEMATIC MODELLING 314
11.8 GRANULAR SLUDGE 315
11.9 CONCLUSIONS 315
REFERENCES 316
NOMENCLATURE 318
Chapter 12: Final Settling 320
12.1 INTRODUCTION 320
12.1.1 Objective of settling 320
12.1.2 Functions of a secondary settling tank 321
12.1.2.1 Clarification in secondary settlers 321
12.1.2.2 Thickening in secondary settlers 321
12.1.2.3 Sludge storage in secondary settlers 322
12.2 SETTLING TANK CONFIGURATIONS IN PRACTICE 322
12.2.1 Circular clarifiers with radial flow pattern 322
12.2.2 Rectangular clarifiers with horizontal flow pattern 323
12.2.3 Deep clarifiers with vertical flow pattern 324
12.2.4 Improvements common to all clarifier types 324
12.2.4.1 Flocculation well 324
12.2.4.2 Scum removal 324
12.2.4.3 Baffles 325
12.2.4.4 Lamellae 325
12.2.5 Operational problems 325
12.2.5.1 Shallow tanks 325
12.2.5.2 Uneven flow distribution 325
12.2.5.3 Uneven weir loading 326
12.2.5.4 Effect of wind 326
12.2.5.5 Sudden temperature changes 326
12.2.5.6 Freezing in cold weather 326
12.2.5.7 Recycle problems 327
12.2.5.8 Algae on weirs 327
12.2.5.9 Anaerobic clumps 327
12.2.5.10 Birds 327
12.2.5.11 Bulking sludge 327
12.2.5.12 Rising sludge 327
12.3 MEASURES OF SLUDGE SETTLEABILITY 327
12.3.1 Sludge Volume Index 327
12.3.2 Other test methods 328
12.4 FLUX THEORY FOR ESTIMATION OF SETTLING TANK CAPACITY 328
12.4.1 Zone Settling Velocity test 328
12.4.2 Discrete, flocculent, hindered (zone) and compression settling 329
12.4.3 The Vesilind settling function 330
12.4.4 Gravity, bulk and total flux curves 331
12.4.5 Solids handling criteria limits of the clarifier 332
12.4.5.1 Solids Handling Criterion I – minimum solids flux limiting 332
12.4.5.2 Solids Handling Criterion II – applied flux (overflow rate) limiting 333
12.4.6 State Point Analysis 333
12.5 OVERVIEW OF THE USE OF FLUX THEORY AND OTHER METHODS FOR DESIGN AND OPERATION 336
12.5.1 Design using flux theory 337
12.5.2 Empirical design 338
12.5.3 WRC design 338
12.5.4 ATV design 338
12.5.5 STOWA design 339
12.5.6 Comparison of settlers designed using different methods 340
12.6 MODELLING OF SECONDARY SETTLERS 340
12.6.1 Zero dimensional models 340
12.6.2 One-dimensional models 341
12.6.3 Computational Fluid Dynamic models 342
12.7 DESIGN EXAMPLES 342
REFERENCES 344
NOMENCLATURE 345
Chapter 13: Membrane Bio-reactors 346
13.1 MEMBRANE SEPARATION PRINCIPLES 346
13.2 THE MEMBRANE BIOREACTOR PROCESS 347
13.2.1 MBR process facets 347
13.2.2 Process and membrane configurations 348
13.2.3 Membrane fouling 350
13.2.4 MBR process operation 352
13.2.4.1 The membrane material 352
13.2.4.2 Cleaning 353
13.2.4.3 Feedwater and mixed liquor 354
13.2.4.4 Aeration 354
13.2.4.5 Sludge withdrawal and characteristics 356
13.3 MBR PLANT DESIGN 356
13.3.1 Liquid pumping 356
13.3.2 Membrane maintenance: cleaning 356
13.3.3 Aeration 357
13.3.3.1 Aerobic treatment dema 357
13.3.3.2 Membrane aeration demand 358
13.3.3.3 Design: summary 359
13.4 COMMERCIAL MEMBRANE TECHNOLOGIES 359
13.4.1 Kubota 360
13.4.2 GE Zenon 363
13.4.3 KMS (Korea Membrane Separation) 364
13.5 iMBR CASE STUDIES 365
13.5.1 Swanage, UK 365
13.5.2 Nordkanal wastewater treatment works at Kaarst, Germany 366
13.5.3 Sewage treatment plant at Sari, Korea 367
13.5.4 Summary data 368
REFERENCE 369
NOMENCLATURE 370
Chapter 14: Modelling Activated Sludge Processes 372
14.1 WHAT IS A MODEL? 372
14.2 WHY MODELLING? 376
14.3 MODELLING BASICS 378
14.3.1 Model building 378
14.3.2 General model set-up 378
14.3.3 Stoichiometry 380
14.3.4 Kinetics 381
14.3.5 Transport 382
14.3.6 Matrix notation 382
14.4 STEPWISE DEVELOPMENT OF BIOKINETIC MODEL: ASM1 385
14.5 ASM3 390
14.6 METABOLIC MODEL 392
14.7 ACTIVATED SLUDGE MODEL DEVELOPMENT HISTORY 393
14.8 SIMULATOR ENVIRONMENTS 396
14.9 CONCLUSIONS 396
REFERENCES 399
NOMENCLATURE 400
Chapter 15: Process Control 404
15.1 DRIVING FORCES AND MOTIVATIONS 404
15.2 DISTURBANCES INTO WASTEWATER TREATMENT SYSTEMS 405
15.3 THE ROLE OF CONTROL AND AUTOMATION 408
15.3.1 Setting the priorities 409
15.4 INSTRUMENTATION AND MONITORING 409
15.5 THE IMPORTANCE OF DYNAMICS 411
15.6 MANIPULATED VARIABLES ANDACTUATORS 413
15.6.1 Hydraulic variables 413
15.6.2 Chemical addition 414
15.6.3 Carbon addition 414
15.6.4 Air or oxygen supply 415
15.7 BASIC CONTROL CONCEPTS 415
15.8 EXAMPLES OF FEEDBACK INWASTE WATER TREATMENT SYSTEMS 416
15.9 OPERATING COST SAVINGS DUE TOCONTROL 420
15.10 INTEGRATION AND PLANT WIDECONTROL 421
15.11 CONCLUDING REMARKS 422
REFERENCES 424
NOMENCLATURE 425
Chapter 16: Anaerobic Wastewater Treatment 426
16.1 SUSTAINABILITY IN WASTEWATER TREATMENT 426
16.1.1 Definition and environmental benefits of anaerobic processes 426
16.2 MICROBIOLOGY OF ANAEROBICCONVERSIONS 428
16.2.1 Anaerobic degradation of organic polymers 428
16.2.1.1 Hydrolysis 429
16.2.1.2 Acidogenesis 430
16.2.1.3 Acetogenesis 431
16.2.1.4 Methanogenesis 433
16.3 PREDICTING THE CH4 PRODUCTION 434
16.3.1 COD 435
16.4 IMPACTS OF ALTERNATIVE ELECTRON ACCEPTORS 437
16.4.1 Bacterial conversions under anoxic conditions 437
16.4.1.1 Sulphate reduction 437
16.4.1.2 Denitrification 439
16.5 WORKING WITH THE COD BALANCE 440
16.6 IMMOBILISATION AND SLUDGE GRANULATION 441
16.6.1 Mechanism underlying sludge granulation 442
16.7 ANAEROBIC REACTOR SYSTEMS 444
16.7.1 High-rate anaerobic systems 444
16.7.2 Single stage anaerobic reactors 446
16.7.2.1 The Anaerobic Contact Process (ACP) 446
16.7.2.2 Anaerobic Filters (AF) 446
16.7.2.3 Anaerobic Sludge Bed Reactors (ASBR) 447
16.7.2.4 Anaerobic expanded and fluidized bed systems (EGSB and FB) 450
16.7.2.5 Other anaerobic high rate systems 452
16.7.2.6 Acidifying and hydrolytic reactors 453
16.8 UPFLOW ANAEROBIC SLUDGE BLANKET (UASB) REACTOR 453
16.8.1 Process description 453
16.8.2 Design considerations of the UASB reactor 453
16.8.2.1 Maximum hydraulic surface loading 453
16.8.2.2 Organic loading capacity 454
16.8.2.3 Reactor internals 456
16.8.3 UASB septic tank 456
16.9 ANAEROBIC PROCESS KINETICS 457
16.10 ANAEROBIC TREATMENT OF DOMESTIC AND MUNICIPAL SEWAGE 457
REFERENCES 462
NOMENCLATURE 465
Chapter 17: Modelling Biofilms 468
17.1 WHAT ARE BIOFILMS? 468
17.2 MOTIVATION FOR MODELING BIOFILMS AND HOW TO CHOOSE APPROPRIATE MATHEMATICAL MODELING APPROACHES? 469
17.3 MODELING APPROACH FOR A BIOFILM ASSUMING A SINGLE LIMITING SUBSTRATE AND NEGLECTING EXTERNAL MASS TRANSFER RESISTANCE 470
17.3.1 Basic equations 471
17.3.2 Solutions of the diffusion-reaction biofilm equation for different rate expressions 472
17.3.2.1 First order substrate removal rate within the biofilm 472
17.3.2.2 Zero order substrate removal rate within the biofilm 474
17.3.2.3 Monod kinetics within the biofilm 476
17.3.3 Summary of analytical solutions for a single limiting substrate 477
17.3.4 SIDEBAR: derivation of reaction diffusion equation (Eq. 17.1) from a mass balance within the biofilm 477
17.3.5 SIDEBAR: Overview of AQUASIM 479
17.4 EXAMPLE OF HOW JLF = F(CLF) CAN BE USED TO PREDICT BIOFILM REACTOR PERFORMANCE 480
17.4.1.1 Analytical solution 480
17.4.1.2 Trial and error or iterative approach 480
17.4.1.3 Graphical solution 481
17.4.1.4 Numerical solution (e.g., using AQUASIM) 481
17.5 EFFECT OF EXTERNAL MASS TRANSFER RESISTANCE 481
17.5.1 Substrate flux for first order reaction rate with external boundary layer 482
17.5.2 Substrate flux for Monod kinetics inside the biofilm with external boundary layer 482
17.6 COMBINING GROWTH AND DECAY WITH DETACHMENT 483
17.6.1 Influence of detachment (ud,S) on the steady state biofilm thickness (LF) and the substrate flux (JLF) 484
17.7 DERIVED PARAMETERS 485
17.7.1 Solids retention time 485
17.7.2 Smallest effluent substrate concentration supporting biomass growth (Cmin) 486
17.7.3 Characteristic times and non-dimensional numbers to describe biofilm dynamics 487
17.7.3.1. Application of characteristic times to estimate response times 488
17.7.3.2 Non-dimensional numbers: 489
17.8 MULTI-COMPONENT DIFFUSION 490
17.8.1 Two-component diffusion of electron donor and acceptor 490
17.8.2 General case of multi-component diffusion 492
17.8.3 Complications for multiple processesinside the biofilm 493
17.9 IMPLICATIONS OF SUBSTRATE AVAILABILITY ON LIMITING SUBSTRATES, MICROBIAL COMPETITION, AND REACTOR PERFORMANCE 493
17.10 HOW DOES 2D/3D STRUCTURE INFLUENCE BIOFILM PERFORMANCE? 497
17.11 MODEL PARAMETERS 497
17.11.1 Density (XF) 498
17.11.2 Diffusion coefficients (DW, DF) 498
17.11.3 External mass transfer (LL, RL) 498
17.11.4 Biofilm thickness (LF) and biofilm detachment (ud,S, ud,V, ud,M) 499
17.11.5 Caution when using parameters fromother types of models 500
17.12 MODELING TOOLS 500
REFERENCES 502
ACKNOWLEDGEMENTS 503
Chapter 18: Biofilm Reactors 504
18.1 BIOFILM REACTORS 504
18.1.1 Types of reactors 505
18.1.1.1 Trickling filters 505
18.1.1.2 Rotating biological contactors 506
18.1.1.3 Submerged fixed bed biofilm reactors 507
18.1.1.4 Fluidized and expanded bed biofilm reactors 508
18.1.1.5 Granular sludge reactors 509
18.1.1.6 Moving bed biofilm reactors 510
18.1.1.7 Hybrid biofilm/activated sludge systems 510
18.1.1.8 Membrane attached biofilm reactors 510
18.1.2 Choice of different filter material 511
18.2 DESIGN PARAMETERS 511
18.2.1 Substrate flux and loading rates 511
18.2.2 Hydraulic loading 512
18.3 HOW TO DETERMINE MAXIMUM DESIGN FLUXES OR DESIGN LOADINGS RATES? 512
18.3.1 Model based estimation of the maximum substrate flux 512
18.3.1.1 Level 1 design: The compound of interest is the rate limiting substrate 513
18.3.1.2 Level 2 design: Removal of the compound of interest is limited by the corresponding electron donor/acceptor 513
18.3.1.3 Level 3 design: Removal of the compound of interest is limited by growth processes and microbial competition within the biofilm for substrate and space 513
18.3.1.4 Level 4 design: Detailed modeling of concentration profiles and heterogeneous biofilm structure and design for dynamic environmental conditions 513
18.3.2 Empirical maximum loading rates 514
18.3.3 Design examples 514
18.4 OTHER DESIGN CONSIDERATIONS 518
18.4.1 Aeration 518
18.4.2 Flow distribution 518
18.4.3 Biofilm control 518
18.4.4 Solids removal 518
REFERENCES 518
ACKNOWLEDGEMENTS 519
NOMENCLATURE 520