Menu Expand
Modelling Aspects of Water Framework Directive Implementation

Modelling Aspects of Water Framework Directive Implementation

Peter A. Vanrolleghem

(2010)

Additional Information

Book Details

Abstract

Special Offer: Water Framework Directive Series Set. To buy all four titles including Volume 3 and save £100, visit: http://iwapublishing.com/books/9781780400013/water-framework-directive-series-set
Modelling Aspects of Water Framework Directive Implementation: Volume 1 is a concrete outcome from the Harmoni-CA concerted action as part of a 4-volume series of Guidance Reports that guide water professionals through the implementation process of the Water Framework Directive, with a focus on the use of ICT-tools (and in particular modelling). They are complementary to the Guidance Documents produced by the EU Directorate General for Environment. 
Water resources planning and management and the development of appropriate policies require methodologies and tools that are able to support systematic, integrative and multidisciplinary assessments at various scales. It also requires the quantification of various uncertainties in both data and models, and the incorporation of stakeholders participation and institutional mechanisms into the various tools and risk assessment methodologies, to help decision makers understand and evaluate alternative measures and decisions. 
The other three volumes in the Water Framework Directive Series are: 

  • Water Framework Directive: Model supported Implementation - A Water Manager’s Guide edited by Fred Hattermann and Zbigniew W Kundzewicz 
  • Integrated Assessment for WFD implementation: Data, economic and human dimension - Volume 2, edited by Peter A. Vanrolleghem
  • Decision support for WFD implementation - Volume 3, edited by Peter A. Vanrolleghem.   
Visit the IWA WaterWiki to read and share material related to this title: http://www.iwawaterwiki.org/xwiki/bin/view/Articles/IntegratedAssessmentforWaterFrameworkDirectiveImplementation  


Table of Contents

Section Title Page Action Price
Half title 1
Title 3
Copyright 4
Contents 5
Authors for this volume 13
Preface 15
Guidance Report I.1 19
Quality assurance in model-based water management: Better modelling practices 19
1. WHY QUALITY ASSURANCE FOR MODEL-BASED WATER MANAGEMENT? 19
1.1. Problems in modelling 19
1.2. Examples of poor quality of the modelling process 20
1.2.1. Bloopers in modelling 20
Blooper: Introducing the ‘ditch factor’ in the calibration 20
Blooper: Water sucked out of sea and disappeared up mountain 21
Blooper: Negative concentrations 21
Blooper: Algae refused to grow 21
Blooper: Phosphate and phosphor are two totally different things\". 21
1.2.2. Lack of documentation of model capabilities and limitations 22
1.2.3. Miscommunication and lack of public participation 22
Blooper: Model was too good 22
Motivation for developing quality assurance guidelines 23
1.3. Context and objectives of this guidance document 23
2. ON QUALITY ASSURANCE 27
2.1. On quality 27
2.2. Quality approaches in a historical perspective 27
2.3. Quality assurance and ISO 29
2.3.1. The International Organization for Standardization (ISO) 29
2.3.2. ISO standards history 29
2.3.3. ISO families of standards 30
2.3.4. ISO 9000 quality standards in general 31
2.3.5. Are ISO 9000 quality standards sufficient for modelling? 32
2.4. On standards and guidelines 33
2.4.1. Informal standards versus formal standards 33
2.4.2. ISO and modelling standards 33
3. STATE-OF-THE-ART QA FOR MODEL-BASED WATER MANAGEMENT 35
3.1. Quality assurance defined for modelling 35
3.2. Guiding principles – three different approaches 35
3.3. Type of QA guidelines for modelling 37
3.3.1. Classification 37
Type 1: Internal technical guidelines 37
Type 2: Public technical guidelines 38
Type 3: Public interactive guidelines 38
3.3.2. Development stage and prevalence of QA guidelines 38
3.4. Existing guidelines 39
3.5. Discussion of QA in water resources modelling 39
3.5.1. Key aspects in QA guidelines 39
Guiding principles 39
Interactive guidelines 39
Peer review 40
Transparency and reproducibility 40
Accuracy criteria 43
Uncertainty assessments 43
Model validation 44
Supporting software tools 44
3.5.2. Organisational requirements for QA guidelines to be effective 44
4. MODELLING KNOWLEDGE BASE AND SUPPORT TOOL 45
4.1. QA in the HarmoniQuA approach 45
4.2. Design considerations of modelling KB and MoST 47
4.3. Modelling KB in MoST 48
4.3.1. MoST and Quality Assurance (QA) 48
4.3.2. Structure and guiding principles of the Knowledge Base (KB) 49
4.3.3. Terminology and glossary 51
4.4. Modelling guidance 52
4.4.1. Decomposition 52
4.4.2. Steps and tasks 53
4.4.3. Examples of description of tasks 54
Task 1.4 Document Requirements (Appendix B.3) 55
Task 4.8 Validation (Appendix B.4) 56
4.4.4. Methods 57
4.5. Modelling Support Tool, MoST 58
4.5.1. Introduction to MoST 58
4.5.2. Starting MoST 58
4.5.3. Setting-up modelling projects 59
4.5.4. Guiding modelling projects 60
4.5.5. Monitor modelling projects 63
4.5.6. Reporting modelling projects 67
4.5.7. Training material and help 68
5. REFERENCES 69
6. APPENDICES 71
APPENDIX A FUNCTIONAL REQUIREMENTS AND DESIGN 71
A.1. Modelling KB and associated tools 71
A.2. Modelling Support Tool, MoST 76
APPENDIX B DETAILS OF HARMONIQUA’S MODELLING GUIDELINES 79
B.1. Terminology 79
B.2. Steps and tasks of HarmoniQuA’s modelling guidelines 83
B.3. Details of the task ‘Determine requirements’ (Step 1) 90
B.4. Details of the task ‘Validation’ (Step 4) 98
B.5. Methods described in HarmoniQuA’s modelling guidelines 101
Guidance Report I.2 111
Model calibration and validation in model-based water management 111
ABOUT THIS GUIDELINE 112
1. EXECUTIVE SUMMARY 113
2. CALIBRATION FRAMEWORK 117
3. MODEL PARAMETERISATION AND CHOICE OF CALIBRATION PARAMETERS 120
3.1. Principle of parameter parsimony 121
3.2. Parameterisation methodologies 122
3.3. Sensitivity analysis 124
3.4. Use of prior information 126
4. CALIBRATION DATA AND CHOICE OF CALIBRATION OBJECTIVES 127
4.1. Data requirements 128
4.2. Numerical performance measures 129
4.3. Scaling issues 133
4.4. Weighting observations and aggregating performance measures 134
5. CALIBRATION METHODS 137
5.1. Manual calibration 138
5.2. Automatic calibration 139
5.3. Expert systems 140
5.4. Recommendations 140
6. OPTIMISATION ALGORITHMS 141
6.1. Optimisation problem 142
6.2. Local optimisation procedures 142
6.3. Global optimisation procedures 144
6.4. Recommendations 147
6.5. Computational requirements 150
7. MULTI-OBJECTIVE OPTIMISATION 151
7.1. Optimisation problem 152
7.2. Optimisation using aggregation 153
7.3. Optimisation using Pareto dominance 154
7.4. Single vs. multi-objective optimisation 155
8. MODEL VALIDATION 156
8.1. Hierarchical test scheme 157
8.1.1. Split-sample test 157
8.1.2. Differential split-sample test 160
8.1.3. Proxy-basin test 160
8.1.4. Proxy-basin, differential split-sample test 161
8.2. Validation tests based on model residuals 161
9. UNCERTAINTY ASSESSMENT 162
9.1. Uncertainty sources 162
9.2. Parameter non-uniqueness 163
9.3. Uncertainty propagation 165
10. APPLICATION EXAMPLES 166
10.1. Lumped, conceptual rainfall-runoff model (MIKE 11/NAM) 166
10.1.1. Model description 166
10.1.2. Model setup 168
10.1.3. Calibration parameters 168
10.1.4. Calibration methods 169
SCE multi-objective calibration procedure 169
Knowledge-based expert system 170
10.1.5. Results 170
10.2. Groundwater model (MODFLOW) 172
10.2.1. Model description 172
10.2.2. Model parameterisation 173
10.2.3. Calibration objectives 175
10.2.4. Calibration parameters 175
10.2.5. Calibration method 176
10.2.6. Results 177
10.3. Distributed, integrated model (MIKE SHE) 178
10.3.1. Model description 178
10.3.2. Model parameterisation 179
10.3.3. Calibration objectives 181
10.3.4. Calibration parameters 181
10.3.5. Calibration method 182
10.3.6. Results 182
10.4. Water quality model (ESWAT) 183
10.4.1. Model description 184
10.4.2. Model setup 185
10.4.3. Calibration objectives 185
10.4.4. Calibration parameters 187
10.4.5. Calibration method 188
10.4.6. Results 189
Step 1: Random parameter sampling 189
Step 2: Optimisation 190
11. REFERENCES 193
12. SOFTWARE 199
12.1. PEST 199
Optimisation Algorithms 199
Key Features 199
Model Interface 200
References 200
Manuals 200
Scientific Journals 201
Download 201
12.2. UCODE_2005 202
Optimisation algorithms 202
Key features 202
Model interface 203
References 203
Key references: 203
Applications in different model domains 204
Download 204
12.3. AUTOCAL 204
Optimisation algorithms 204
Key features 204
Model interface 205
References 205
Download 206
12.4. GLOBE 206
Optimisation algorithms 206
Key features 206
Model interface 207
References 207
Download 207
Guidance Report I.3 209
Review of sensitivity analysis methods 209
1. INTRODUCTION 210
1.1. Aims and objectives 210
1.2. Target audience 210
1.3. Benefits of sensitivity analysis 210
1.4. What is sensitivity analysis? 211
1.5. Sensitivity analysis and the Water Framework Directive 212
1.6. Content and overview 213
2. DECISION TREE FOR CHOOSING A SENSITIVITY ANALYSIS 215
2.1.1. Sensitivity aim/setting 215
Factors prioritization (FP) 215
Factors fixing (FF) 215
Factors mapping (FM) 215
Calibration 216
2.1.2. Computational cost 217
Explanation of fields 219
Can model be run easily multiple times? 219
Model structure is ‘simple’ e.g. Manning equation 219
In depth model knowledge 219
Model has many areas of numerical instability 219
Model has a long runtime and/or many parameters 219
3. DETAILED METHODOLOGY 220
3.1. Examples 222
3.1.1. Example 1 222
3.1.2. Example 2 222
3.2. Experimental design of SA (sampling) 223
3.2.1. Screening design 223
3.2.2. Random sampling 223
3.2.3. Latin Hypercube sampling (LHS) 224
3.2.4. Correlation control 224
3.2.5. Quasi-random sampling with low-discrepancy sequences 224
3.3. Methods of sensitivity analysis 225
3.3.1. Graphical methods and visualisation 225
Scatter plots 226
Bar/Histogram/Tornado/Box-Whisker plots/Roses and radar graphs 227
Cobweb plots 232
Time series plots 232
Advantages 233
Disadvantages 233
Key references 233
3.3.2. Screening methods 233
One-factor-At-a-Time (OAT) 233
Morris 234
Advantages and disadvantages 235
Key References 235
3.3.3. Local methods 235
The finite difference method 235
Direct method for sensitivity analysis 236
Green function’s method 236
Automatic differentiation 236
Advantages and disadvantages 237
Key references 237
3.3.4. Global methods 237
Variance based methods 237
FAST 238
The Sobol’ method 239
Advantages 239
Disadvantages 239
Key references 239
Regression analysis 240
Advantages 242
Disadvantages 242
Key references 242
Regionalised sensitivity analysis 243
Advantages 245
Disadvantages 246
Key references 246
Entropy 246
Advantages 246
Disadvantage 247
Key references 247
3.3.5. Sensitivity and model emulators 247
cut-HDMR 248
RS-HDMR 248
Bayesian and kriging emulators 248
SDP 249
Splines 250
Advantages and disadvantages 250
4. CASE STUDIES 250
4.1. Modelling floodplain hydrological processes 250
Short description 251
4.2. Flood inundation models 251
Similar applications: 252
Short description 252
4.3. Water quality modelling 253
Short description 253
Conclusions 258
5. CONCLUSIONS 258
6. GLOSSARY 259
7. REFERENCES 265
8. APPENDIX 272
8.1. Screening methods 272
8.1.1. Morris 272
8.2. Local methods 273
8.2.1. The finite difference method 273
8.2.2. Direct method for sensitivity analysis 274
8.2.3. Green function’s method 275
8.3. Global methods 276
8.3.1. Variance based methods 276
FAST 278
Monte Carlo based estimation and the work of Sobol’ 279
8.3.2. Regression analysis 281
8.3.3. Regionalised sensitivity analysis 281
8.3.4. Entropy 282
8.3.5. Sensitivity and model emulators 283
Regression analysis and the HDMR 283
cut-HDMR 284
RS-HDMR 284
Bayesian emulator 285
SDP 286
Splines 287
Guidance Report I.4 289
Uncertainty analysis in model-based water management 289
1. WHY IS UNCERTAINTY ASSESSMENT IMPORTANT? 289
1.1. Uncertainty and risk in decision making 289
1.2. Water Framework Directive – requirements 292
1.3. A motivating example 293
1.4. Context and objective of this document 296
2. WHEN IS UNCERTAINTY ASSESSMENT REQUIRED? 300
2.1. The modelling process 300
2.2. Uncertainty aspects 302
A. Identify and characterise sources of uncertainty (Figure 1.3) 302
B. Modeller reconsiders uncertainty and performance criteria (Figure 1.3) 302
C. Reviews – dialogue – decisions (Figure 1.3) 303
D. Uncertainty assessment and propagation (Figure 1.3) 303
3. WHAT IS UNCERTAINTY? 304
3.1. Definitions 304
Uncertainty 304
Ignorance 305
Risk situations 305
Precaution 306
3.2. Taxonomy of imperfect knowledge 307
3.3. Sources of uncertainty 309
3.4. Nature of uncertainty 309
3.5. The uncertainty matrix 310
4. METHODOLOGIES FOR UNCERTAINTY ASSESSMENT 311
4.1. Data uncertainty 312
Description 312
Resources required 313
Strengths and limitations 313
References 313
4.2. Error propagation equations 314
Description 314
Resources required 315
Strengths and limitations 315
References 315
4.3. Expert elicitation 316
Description 316
Resources required 316
Strengths and limitations 317
References 317
4.4. Extended peer review (review by stakeholders) 318
Description 318
Resources required 318
Strengths and limitations 318
References 319
4.5. Inverse modelling (parameter estimation) 319
Description 319
Resources required 320
Strengths and limitations 320
References 320
4.6. Inverse modelling (predictive uncertainty) 321
Description 321
Resources required 321
Strenghts and limitations 321
References 322
4.7. Monte Carlo Analysis 322
Description 322
Resources required 323
Strengths and limitations 323
References 323
4.8. Multiple model simulation 325
Description 324
Resources required 325
Strengths and limitations 325
References 325
4.9. NUSAP 326
Description 326
Resources required 327
Strengths and limitations 327
References 327
4.10. Quality assurance 328
Description 328
Resources required 329
Strengths and limitations 329
References 329
4.11. Scenario analysis 330
Description 330
Resources required 331
Strengths and limitations 331
References 331
4.12. Sensitivity analysis 332
Description 332
Resources required 332
Strengths and limitations 333
References 333
4.13. Stakeholder involvement 333
Description 333
Resources required 334
Strengths and limitations 334
References 335
4.14. Uncertainty matrix 335
Description 335
Resources required 336
Strengths and limitations 336
References 337
5. HOW TO SELECT THE APPROPRIATE METHODOLOGY FOR UNCERTAINTY ASSESSMENT 337
5.1. Introduction 337
5.2 Methodologies according to modelling process and level of ambition 337
5.3. Methodologies according to source and type of uncertainty 339
6. Illustrative cases 339
6.1. Case 1: Designing measures – nutrient load/comprehensive modelling 339
6.2. Case 2: Designing measures – water scarcity/basic modelling 341
6.3. Case 3: Implementation – Real-time forecasting (of Case 2) 341
6.4. Case 4: Evaluation – Post project appraisal (of Case 1) 347
7. REFERENCES 347