Menu Expand
Handbook on Particle Separation Processes

Handbook on Particle Separation Processes

Arjen van Nieuwenhuijzen | Jaap van der Graaf

(2011)

Additional Information

Book Details

Abstract

Particles in water play an important role in all kinds of water quality and treatment issues. Since the early beginnings of centralised water production and treatment, the main goal of water purification was primarily the removal of water turbidity in order to produce clear water free from visible particles. 
The Handbook on Particle Separation Processes provides knowledge and expertise from a selected group of international experts with a wealth of experience in the field of particles and particle separation in water and wastewater treatment. The Handbook on Particle Separation Processes includes an edited selection of presentations and workshops held at the academic summer school Particle Separation in Water and Wastewater Treatment, organised under the supervision of the IWA Specialist Group Particle Separation.  

Table of Contents

Section Title Page Action Price
Cover page 1
Half title page 2
Title page 4
Copyright page 5
Contents 6
Preface 12
Chapter 1 16
1.1 INTRODUCTION 16
1.2 THIS HANDBOOK 17
1.3 FOCUS ON PARTICLES 18
1.4 OCCURRENCE OF PARTICLES IN WATER 18
1.4 PARTICLE SEPARATION PROCESSES 21
1.4.1 Removal of particles >30 µm 21
1.4.2 Removal of particles between 0.5 µm and 30 µm 21
1.4.3 Removal of particles <0.5 µm 23
1.4.4 Flocculation 23
1.4.5 NOM-removal 23
1.4.6 Flotation 25
1.5 CHARACTERISING THE MEMBRANE FILTRATION OF WASTEWATER 25
1.5.1 Particle characterisation for effluent filtration 25
1.5.2 Sludge particle characterisation for MBR-applications 26
1.6 SPECIAL APPLICATIONS OF PARTICLE SEPARATION 27
1.6.1 Jet-Mixed Separator 27
1.6.2 Rainwater treatment 27
1.6.3 Direct membrane filtration 28
1.7 REFERENCES 28
Chapter 2 30
2.1 INTRODUCTION 30
2.2 OCCURRENCE OF PARTICLES IN WATER 31
2.3 SCALE OF PARTICLE OBSERVATION 32
2.4 SINGLE PARTICLE CHARACTERIZATION 33
2.4.1 Size and shape 33
2.4.1.1 Definition of particle size 34
2.4.1.2 Shape factor 36
2.4.1.3 Particle agglomerates 38
2.4.2 Microscopic analysis 41
2.4.2.1 Optical microscopy 42
2.4.2.2 Electron microscopy 42
2.4.2.3 Sample preparation 45
2.4.2.4 Atomic Force Microscopy (AFM) 46
2.4.2.5 Overview on microscopic techniques 46
2.4.3 Particle density 48
2.4.4 Particle mobility 48
2.4.5 Sedimentation characteristics 48
2.4.6 Shear strength 50
2.4.7 Electrical surface charge 50
2.4.8 Chemical composition 51
2.5 SUSPENSION CHARACTERIZATION 51
2.5.1 Bulk parameters 52
2.5.1.1 Dry solids mass (TSS) 52
2.5.1.2 Turbidity 52
2.5.2 Particle size distribution 53
2.5.3 Particle shear strength distribution 59
2.5.4 Particle characterization including nanoparticles 59
2.5.4.1 Sampling for nanoparticle analysis by sedimentation and centrifugation 60
2.5.4.2 Field Flow Fractionation 60
2.5.4.3 Laser-Induced Breakdown Detection (LIBD) 62
2.5.5 Nanoparticles in drinking water treatment 63
2.5.5.1 Nanoparticles in conventional drinking water and in membrane treatment 63
2.5.5.2 AFM measurements 63
2.5.5.3 TEM investigation 64
2.5.5.4 LIBD measurements 66
2.5.5.5 Comparing TEM and LIBD measurements 66
2.5.5.6 Comparison between two different treatment schemes 66
2.5.6 Synthetic nanoparticles in surface runoff 69
2.6 OVERVIEW: PARTICLE SEPARATION PROCESSES 69
2.6.1 Removal of particles >30 μm 70
2.6.2 Removal of particles between 0.5 μm and 30 μm 71
2.6.3 Removal of particles <0.5 μm 71
2.7 ACKNOWLEDGEMENT 72
2.8 REFERENCES 72
Chapter 3 76
3.1 INTRODUCTION 76
3.1.1 Background 76
3.1.2 Types of NOM and their Sources 77
3.1.3 Methods for Removal of Different Types of NOM/EfOM during Water Treatment 77
3.2 NOM IN WATER AND WASTEWATER TREATMENT/REUSE 79
3.2.1 Relevance of NOM in Drinking Water Treatment 79
3.2.2 Relevance of EfOM in Wastewater Effluent Treatment/Reuse 80
3.3 QUANTIFICATION AND MEASUREMENT OF NOM 80
3.3.1 Sampling and Processing 80
3.3.2 TOC and DOC 81
3.3.3 UVA254 and SUVA 81
3.3.4 Differential UVA (ΔUVA) 83
3.3.5 XAD Resin Fractionation 84
3.3.6 Dissolved Organic Nitrogen (DON) 84
3.3.7 Fluorescence Excitation Emission Matrices (F-EEM) 85
3.3.8 Size Exclusion Chromatography (SEC-DOC) 85
3.3.9 Biodegradable Dissolved Organic Carbon (BDOC) 90
3.3.10 Polarity Rapid Assessment Method (PRAM) 92
3.4 CASE STUDIES OF NOM ANALYSIS FOR ASSESSMENT, IMPROVEMENT AND DESIGN AND OPERATION OF WATER TREATMENT SYSTEMS 92
3.4.1 Surface Water Treatment 92
3.4.2 Groundwater Treatment 93
3.4.3 Seawater Desalination 94
3.4.4 Bank Filtration and Artificial Recharge and Recovery 96
3.5 PERSPECTIVES AND RECOMMENDATIONS 98
3.6 REFERENCES 99
Chapter 4 104
4.1 INTRODUCTION 104
4.2 MEMBRANE (NANO) FILTRATION 105
4.3 COAGULATION/FILTRATION 106
4.3.1 General 106
4.3.2 Alternative filter configurations 108
4.3.3 Coagulation/membrane filtration 110
4.4 OXIDATION/BIOFILTRATION 111
4.4.1 Oxidation 111
4.4.2 Ozonation/biofiltration 112
4.4.3 The OBM-process 113
4.5 SORPTION PROCESSES 114
4.5.1 GAC adsorption 114
4.5.2 Chemisorption (Ion exchange) 114
4.6 CONCLUSIONS 115
4.7 REFERENCES 115
Chapter 5 118
5.1 INTRODUCTION 118
5.2 FUNDAMENTALS OF FLOCCULATION 119
5.2.1 Floc density function 119
5.2.2 Flocculation kinetics and GC0T value 120
5.3 FLOCCULATION IN MONOLITH CERAMIC MEMBRANE 122
5.3.1 Theoretical consideration 122
5.3.2 Experimental consideration 125
5.3.2.1 Experimental set-up 125
5.3.2.2 Experimental results 126
5.3.2.2.1 Visual experiment 126
5.3.2.2.2 Flocculation of coagulated micro-particles in the monolith channel 126
5.4 CONCLUSIONS 129
5.5 ACKNOWLEDGMENT 130
5.6 REFERENCES 130
Chapter 6 132
6.1 INTRODUCTION 132
6.2 HISTORY OF DEVELOPMENTS IN THE DAF PROCESS 133
6.3 MODELLING OF COLLISION EFFICIENCY BETWEEN MICROBUBBLES AND PARTICLES 135
6.4 CHARACTERIZATION OF BUBBLE SIZE 137
6.5 CHARACTERIZATION OF BUBBLE CHARGE 138
6.6 MECHANISM FOR PRODUCING POSITIVELY CHARGED BUBBLES 139
6.7 VERIFICATION OF REMOVAL USING POSITIVELY CHARGED BUBBLES 140
6.8 RESEARCH NEEDS 141
6.9 REFERENCES 143
Chapter 7 144
7.1 INTRODUCTION 144
7.2 THE SPECIFIC ULTRA FILTRATION RESISTANCE METHOD (SUR) 144
7.2.1 Introduction 144
7.2.2 Theoretical basis of the SUR 145
7.2.3 Experimental set-up and configuration 147
7.2.3.1 Membrane module for SUR measurement 148
7.2.3.2 Constant pressure difference device 148
7.2.3.3 Total filtration time 150
7.2.4 Influence of process parameters on the SUR 152
7.2.4.1 Experimental procedure for measuring SUR 152
7.2.4.2 Trans Membrane Pressure (TMP) 152
7.2.4.3 Temperature of the feedwater 155
7.2.5 SUR for evaluation of filtration characteristics 157
7.2.5.1 Foulants concentration 158
7.2.5.2 Evaluation of feedwater pre-treatment 159
7.2.5.3 SUR determination at various WWTP’s in the Netherlands 161
7.2.6 Discussion 161
7.2.6.1 Parameter for dead-end ultra filtration 161
7.2.6.2 Process conditions 163
7.2.7 Conclusion 166
7.3 THE DELFT FILTRATION CHARACTERISATION METHOD (DFCM) 166
7.3.1 Introduction 166
7.3.2 Methods and Materials 167
7.3.2.1 Filtration unit 167
7.3.2.2 Measuring protocol 168
7.3.2.3 Output 168
7.3.2.4 Sludge quality analyses 168
7.3.2.5 Possibilities and limitations of DFCm 169
7.2.3 DFCm results versus full-scale permeability development 170
7.3.4 Filterability results 172
7.3.4.1 Pilot comparison 173
7.3.4.2 Long term sludge quality monitoring 174
7.3.4.3 Batch experiments 175
7.4 REFERENCES 177
Chapter 8 180
8.1 INTRODUCTION 180
8.2 FUNDAMENTAL STUDY OF JMS 181
8.2.1 Phenomenon of simultaneous flocculation and sedimentation 181
8.2.2 Hydrodynamic characteristics of JMS 184
8.3 APPLICATION OF JMS TO WATER AND WASTEWATER TREATMENT 187
8.3.1 Pre-treatment for rapid sand filter 187
8.3.2 Pre-treatment for biofilm reactor 189
8.4 CONCLUSIONS 196
8.21 REFERENCES 197
Chapter 9 198
9.1 INTRODUCTION 198
9.2 MATERIALS AND METHODS 199
9.2.1 Rainwater utilization facility 199
9.2.2 Experimental conditions 200
9.3 RESULTS AND DISCUSSION 201
9.3.1 Water quality of “first-flush” runoff and stored rainwater in the tank 201
9.3.2 Particle behaviour and removal in a rainwater tank 202
9.3.3 Design considerations for a rainwater tank 206
9.4 CONCLUSIONS 206
9.5 REFERENCES 207
Chapter 10 208
10.1 INTRODUCTION 208
10.2 REVIEW ON DIRECT MEMBRANE SEPARATION (DMS) OF WASTEWATER 208
10.3 DIRECT ULTRAFILTRATION OF MUNICIPALWASTEATER 210
10.4 APPLICATIONS AND REUSE POSSIBILITIES OF DIRECT UF 211
10.5 RESEARCH STUDIES AT TU-DELFT 212
10.5.1 Background 212
10.5.1.1 Crossflow filtration 212
10.5.1.2 Fouling mechanisms 213
10.5.1.3 Filter cake compressibility 213
10.5.1.4 Filterability and reversibility 213
10.5.1.5 Critical flux concept 213
10.5.2 Experimental set-up 214
10.5.3 Fundamental role of operating conditions 214
10.5.3.1 Experiments 214
10.5.3.2 Results 215
10.5.3.3 Conclusions 218
10.5.4 Compressibility of filter cake 218
10.5.5 Feasibility of constant TMP and constant flux operations 219
10.5.5.1 Experimental 219
10.5.5.2 Results 220
10.5.6 Little effect of primary sedimentation 221
10.5.6.1 Experimental 221
10.5.6.2 Results 221
10.5.7 Little effect of coagulant dosage 223
10.5.7.1 Experimental 223
10.5.7.2 Results 224
10.6 COSTS 225
10.7 CONCLUSIONS 225
10.8 REFERENCES 226