Menu Expand
Zeolites in Catalysis

Zeolites in Catalysis

Jiří ejka | Russell E Morris | Petr Nachtigall

(2017)

Additional Information

Book Details

Abstract

Covering the breadth of zeolite chemistry and catalysis, this book provides the reader with a complete introduction to field, covering synthesis, structure, characterisation and applications.

Beginning with the history of natural and synthetic zeolites, the reader will learn how zeolite structures are formed, synthetic routes, and experimental and theoretical structure determination techniques. Their industrial applications are covered in-depth, from their use in the petrochemical industry, through to fine chemicals and more specialised clinical applications. Novel zeolite materials are covered, including hierarchical zeolites and two-dimensional zeolites, showcasing modern developments in the field. This book is ideal for newcomers who need to get up to speed with zeolite chemistry, and also experienced researchers who will find this a modern, up-to-date guide.


Table of Contents

Section Title Page Action Price
Cover Cover
Contents ix
Chapter 1 Zeolite Science and Perspectives 1
1.1 Historical Background 1
1.2 Natural Zeolites 3
1.3 Synthesis 5
1.3.1 Role of the Organic Additives 7
1.3.2 Role of the Heteroatom 11
1.3.3 Two-dimensional (2D) Zeolites 13
1.3.4 Hierarchical Porous Structures 15
1.4 Applications 19
1.4.1 Zeolites as Heterogeneous Catalysts 19
1.4.2 Zeolites for Adsorption and Separations 23
1.5 Conclusions and Outlook 26
References 28
Chapter 2 Zeolite Structures 37
2.1 Introduction 37
2.2 Zeolite Framework Types 38
2.2.1 Classification 38
2.2.2 Database of Zeolite Structures 39
2.2.3 Channels 40
2.2.4 Building Units 41
2.2.5 Natural Tiles 46
2.2.6 Framework Density 47
2.2.7 Coordination Sequences 47
2.2.8 Vertex Symbols 48
2.3 Zeolite Structures 49
2.3.1 Framework Composition 49
2.3.2 Extra-framework Species 50
2.3.3 Stacking Faults and Disorder 50
2.4 Examples of Framework Structures 51
2.4.1 SOD 51
2.4.2 LTA 51
2.4.3 FAU 52
2.4.4 EMT 54
2.4.5 RHO 54
2.4.6 MOR 55
2.4.7 MFI 55
2.4.8 FER 56
2.4.9 CHA 57
2.4.10 MWW 57
2.4.11 *BEA 58
2.4.12 *–SSO 59
2.4.13 UTL 61
2.4.14 Zeolite Frameworks with Extra-large Pores 62
2.5 Structure Determination 63
2.5.1 Information in a Powder Diffraction Pattern 64
2.5.2 Powder Diffraction for Phase Identification 65
2.5.3 Structural Analysis using Powder Diffraction Data 66
2.5.4 Electron Diffraction 67
2.5.5 Structural Analysis using HRTEM Images 68
2.6 Conclusions 69
Acknowledgments 70
References 70
Chapter 3 Synthesis of Zeolites 73
3.1 Introduction 73
3.2 Basic Zeolite Synthesis 75
3.2.1 Mineralizing Agents 76
3.2.2 Effects of Water Concentration 78
3.3 Gel Preparation and Crystallization 79
3.4 Effects of Gel Composition 83
3.4.1 Isomorphous Substitution 84
3.4.2 Aluminophosphates 86
3.5 Structure Directing Agents 87
3.6 Molecular Modeling 90
3.7 Nonconventional Synthesis Approaches 92
3.8 Transformation of a Zeolite into a Catalyst 93
3.9 High-throughput Syntheses 95
3.10 Summary and Outlook 96
References 97
Chapter 4 Hierarchical Zeolites 103
4.1 Introduction 103
4.1.1 General Aspects and Definition 103
4.1.2 Diffusion Limitations 105
4.1.3 Reduction of Diffusion Path Length 107
4.1.4 Preparation Principles of Hierarchical Zeolites 108
4.2 Preparation Methods for Hierarchical All-zeolitic Materials 111
4.2.1 Bottom-up Approaches 112
4.2.2 Top-down Approaches 117
4.2.3 Summary and Comparison 121
4.3 Characterisation of Hierarchical Zeolites 122
4.3.1 Structural Properties 125
4.3.2 Textural Properties 127
4.3.3 Transport/Diffusion Properties 129
4.3.4 Mechanical and Hydrothermal Stability 130
4.3.5 Catalytic Test Reactions 133
4.4 Application of Hierarchical Systems Involving Zeolites 136
4.4.1 Hierarchy in Zeolitic Composites 136
4.4.2 Technical Applications of Hierarchical Zeolitic Composites 137
4.5 Summary/Conclusions 139
References 140
Chapter 5 Two-dimensional Zeolites 146
5.1 Introduction to 3D versus 2D Zeolites 146
5.2 Types of Layers Spatial Arrangement 148
5.2.1 2D Forms Prepared by Direct Synthesis 149
5.2.2 Forms of Layered Zeolites Prepared by Post-synthesis Modifications 154
5.2.3 Layer-like Materials 158
5.3 Synthesis of 2D Zeolites 160
5.3.1 Bottom-up – Hydrothermal Synthesis 160
5.3.2 Top-down – Disassembly of Germanosilicates into Layered Zeolite Precursors 168
5.4 Chemistry of 2D Zeolites – Modification of Interlamellar Space 171
5.4.1 Detemplation by Thermal Combustion and Chemical Extraction 172
5.4.2 Intercalation into Interlamellar Space 172
5.4.3 Delamination/Exfoliation and Colloidal Suspensions 179
5.5 Properties of 2D Zeolites and their Characterization 181
5.6 Application of 2D Zeolites 183
5.7 Conclusions 184
Acknowledgments 185
References 185
Chapter 6 Structure Determination 194
6.1 What Does ‘Structure' Mean? 194
6.2 X-ray Diffraction 196
6.2.1 Diffraction from Atoms and Arrangements of Atoms 197
6.2.2 Diffraction from Crystalline Materials 197
6.2.3 The Ewald Sphere 200
6.2.4 X-ray Generation and Synchrotrons 201
6.3 Single-crystal X-ray Diffraction (SCXRD) 202
6.3.1 Choosing a Good Crystal 202
6.3.2 Diffractometers 203
6.3.3 Initial Images and Calculation of the Orientation Matrix 204
6.3.4 Data Collection Strategies 205
6.3.5 Data Integration and Reduction 206
6.3.6 Solving the Structure – Getting around the Phase Problem 206
6.3.7 Refining the Structure 207
6.3.8 Residual Factors 208
6.3.9 Atomic Displacement Parameters and Occupancy Factors 209
6.3.10 Constraints and Restraints 210
6.3.11 Publication (CIFs and cifcheck) 210
6.4 Powder X-ray Diffraction 210
6.4.1 The Rietveld Method 212
6.4.2 Restraints 213
6.5 Pair Distribution Function (PDF) Analysis 214
6.5.1 Disorder and Crystallographically Challenging Materials 214
6.5.2 Total Scattering and Relation to the Functions S(Q), F(Q), and G(r) 215
6.5.3 The Pair Distribution Function, g(r), G(r), and R(r) 217
6.5.4 Data Collection 218
6.5.5 Data Processing 219
6.5.6 Interpretation and Modelling 219
6.6 Solid-state NMR 224
6.6.1 Interactions in NMR Spectroscopy 225
6.6.2 Important NMR Experiments 227
6.7 Gas Adsorption Measurements 233
6.7.1 Surface Area and Porosity Measurements 235
References 237
Chapter 7 Spectroscopy of Zeolites 240
7.1 Introduction 240
7.2 Routine Characterization Techniques 242
7.3 Zeolite Synthesis 242
7.3.1 Simultaneous Synchrotron-based Spectroscopy 243
7.3.2 NMR Spectroscopy 245
7.3.3 Raman Spectroscopy 247
7.4 Zeolite Modification 249
7.4.1 Fluorescence and UV-Vis Microscopy 250
7.4.2 Integrated Light and Electron Microscopy 251
7.4.3 NMR and X-ray Fluorescence 252
7.4.4 X-ray Microscopy and Tomography 252
7.4.5 Positron Annihilation Spectroscopy 253
7.5 Zeolite Catalysis 255
7.5.1 UV-Vis Spectroscopy 255
7.5.2 Single Molecule Fluorescence Microscopy 257
7.5.3 IR Spectroscopy 258
7.5.4 Raman Spectroscopy 258
7.5.5 NMR Spectroscopy 261
7.5.6 X-ray Absorption, Emission, and Diffraction 263
7.6 Zeolite Deactivation and Regeneration 263
7.6.1 IR, NMR, Raman and UV-Vis Spectroscopy 265
7.6.2 NMR and EPR Spectroscopy 265
7.6.3 Micro-spectroscopy and Fluorescence Microscopy 267
7.6.4 X-ray Microscopy and Tomography 267
7.6.5 IR Spectroscopy 271
7.6.6 NMR and UV-Vis Spectroscopy 272
7.7 Conclusions 272
List of Abbreviations 273
Acknowledgments 273
References 273
Chapter 8 Electron Microscopy of Zeolites 277
8.1 Introduction 277
8.2 Highlights of the Techniques 279
8.2.1 Electron Gun 279
8.2.2 Scanning Electron Microscopy 280
8.2.3 Transmission Electron Microscopy 283
8.2.4 Scanning Transmission Electron Microscopy 284
8.2.5 Energy Dispersive X-ray Spectroscopy 285
8.2.6 Electron Tomography 286
8.3 Electron Microscopic Imaging of Zeolites 286
8.3.1 Crystal Size and Morphology 286
8.3.2 Zeolite Structures 292
8.3.3 Defects in Zeolites 297
8.3.4 Catalytic Metal Nanoparticles in Zeolites 302
8.4 Summary 304
Acknowledgments 305
References 306
Chapter 9 Zeolites in Industrial Catalysis 310
9.1 Introduction 310
9.2 Economic Impact: Market Volumes and Sales 312
9.3 Overview of the Rich Variety of Synthetic Zeolite Applications 312
9.4 Catalytic Applications 314
9.5 Critical Properties for Catalysis 315
9.6 Common Secondary Synthesis and Stabilization Methods 316
9.6.1 Framework Stabilization 316
9.6.2 Acidity Control 317
9.6.3 Porosity Modification 318
9.7 Recap of Important Properties 321
9.8 Refining & Petrochemical Applications 322
9.8.1 Overview 322
9.8.2 FCC 323
9.8.3 Hydrocracking 327
9.8.4 Dewaxing and Hydroisomerization 333
9.8.5 Olefin Oligomerization and Conversion Technologies 334
9.8.6 Light Naphtha Isomerization 336
9.8.7 Aromatic Alkylation and Transalkylation 336
9.8.8 Paraffin Conversion into Aromatics 337
9.8.9 Methanol-to-Olefins (MTO) 338
9.8.10 NOx Selective Catalytic Reduction (SCR) - Acid Catalyst with Redox Active Metal 342
9.9 Remaining Challenges and Conclusions 344
References 344
Chapter 10 Application of Zeolites in the Production of Light Olefins and BTX Petrochemical Intermediates 351
10.1 Introduction 351
10.2 Production of Light Olefins 354
10.2.1 Catalytic Cracking 354
10.2.2 Methanol-to-olefins (MTO) 361
10.2.3 Oxidative Dehydrogenation (ODH) of Short-chain Alkanes 368
10.3 Production of BTX Aromatics 371
10.3.1 Aromatization of LPG 371
10.3.2 Catalytic Reforming of Naphtha 374
10.3.3 Non-oxidative Methane Dehydroaromatization (MDA) 377
10.4 Production of para-Xylene 383
10.4.1 Isomerization of C8-alkylaromatics 383
10.4.2 Disproportionation/Transalkylation of Toluene 388
10.4.3 Alkylation of Toluene with Methanol 392
10.5 Concluding Remarks 394
Acknowledgments 396
References 397
Chapter 11 Zeolites for Fine Chemistry 409
11.1 Introduction 409
11.2 Features of Zeolites as Catalysts – General Aspects 410
11.3 Electrophilic Aromatic Substitution 412
11.3.1 Acylation of Monocyclic Aromatic Hydrocarbons 414
11.3.2 Acylation of Monocyclic Arenes Containing Hydroxyl-/Alkoxy-groups 415
11.3.3 Acylation of Polycyclic Arenes 417
11.3.4 Alkylation of Aromatic Compounds 418
11.4 Reactions of Carbonyl Compounds 420
11.4.1 Acetalization 420
11.4.2 Hydroxyalkylation 421
11.4.3 Aldol Condensation 422
11.5 Cyclization and Cycloaddition 423
11.5.1 Diels-Alder Reaction 423
11.5.2 Other Cyclization Reactions 425
11.6 Isomerization 427
11.6.1 Terpenes 427
11.6.2 Carbohydrates 428
11.7 Red-ox Reactions 429
11.7.1 Epoxidation 430
11.7.2 Baeyer-Villiger Reaction 432
11.7.3 Oppenauer-Meerwein-Ponndorf-Verley Oxidation-Reduction 433
11.8 Concluding Remarks 435
References 436
Chapter 12 Biomass Conversion over Zeolite Catalysts 441
12.1 Introduction 441
12.2 Valorization of Oleaginous Feedstock over Zeolite Catalysts 444
12.2.1 Catalytic Cracking of Triglycerides 446
12.2.2 Hydrocracking/Hydroisomerization of Triglycerides 448
12.3 Thermocatalytic Valorization of Lignocellulosic Feedstock over Zeolites 450
12.3.1 Catalytic Pyrolysis 453
12.3.2 Catalytic Upgrading of Pyrolysis Bio-oil 455
12.4 Chemocatalytic Valorization of Lignocellulosic Biomass over Zeolites 458
12.4.1 From Sugars to Platform Molecules 459
12.4.2 From Platform Molecules to Valuable Chemicals 464
12.4.3 Cascade Reactions: Multifunctional Zeolites 468
12.5 Concluding Remarks 472
Acknowledgments 474
References 474
Chapter 13 Zeolite Membranes in Catalysis 481
13.1 Introduction 481
13.2 Zeolite Membranes 483
13.2.1 Synthesis 485
13.2.2 Supports 487
13.2.3 Characterization 490
13.3 Zeolite Membrane Reactors 492
13.3.1 Reactor Level 493
13.3.2 Particle Level 496
13.3.3 Crystal Level 509
13.4 Conclusion and Outlook 510
References 511
Subject Index 519