Menu Expand
Handbook of Surface Plasmon Resonance

Handbook of Surface Plasmon Resonance

Richard B M Schasfoort

(2017)

Additional Information

Book Details

Abstract

Surface plasmon resonance (SPR) plays a dominant role in real-time interaction sensing of biomolecular binding events and with the biosensor field expanding more applications are being found. In response to the market, an update to the original title which was published in 2008 is now appropriate. With over fifty percent of the material being updated, this book provides a total system description including optics, fluidics and sensor surfaces.

Spanning theory, instrumentation and applications, it covers all the relevant issues for the practicing researcher. Unlocking the potential for SPR by showing highly exciting and unique opportunities for unraveling the functional relationships of complex biological processes, it is intended for a wide audience. A comprehensive and accessible source it contains expanded tutorial details to inspire students and guide them in this technology.


Table of Contents

Section Title Page Action Price
Cover\r Cover
Contents xix
Foreword to the 1st Edition v
Foreword to the 2nd Edition x
Preface to the 1st Edition xiii
Preface to the 2nd Edition xv
Chapter 1 Introduction to Surface Plasmon Resonance 1
1.1 Introduction to Surface Plasmon Resonance 1
1.2 What is a Biosensor? 2
1.2.1 A Simple Experiment 3
1.2.2 From Dip to Real-time Measurement 4
1.3 How to Construct an SPR Assay 5
1.3.1 The Steps of an Assay 5
1.3.2 Concentration Determination 9
1.3.3 Determination of Kinetic Parameters 11
1.3.4 Basics of Instrumentation 12
1.4 Kinetics of Biomolecular Interactions 13
1.4.1 Mass Transport-controlled Kinetics 14
1.4.2 Calibration-Free Concentration Analysis (CFCA) 16
1.4.3 Interaction-controlled Kinetics\r 17
1.4.4 Equilibrium Analysis 19
1.5 Buffer Solutions for Measuring the Analysis Cycle\r 20
1.5.1 Baseline or System Buffier\r 20
1.5.2 Regeneration Buffer\r 21
1.6 SPR-based Immunoassays 22
1.6.1 Direct Assay 22
1.6.2 Competition Assay 22
1.6.3 Inhibition Assay 24
1.6.4 Sandwich Assay with Secondary Antibody and Signal Enhancers 24
1.7 How to Read This Book 25
1.8 Questions 25
References 26
Chapter 2 History and Physics of Surface Plasmon Resonance 27
2.1 Introduction 27
2.2 History 29
2.2.1 Early History of SPR Biosensors 29
2.2.2 History of SPR Biosensors After 1990 30
2.3 Surface Plasmon Theory 31
2.3.1 The Evanescent Wave 31
2.3.2 Surface Plasmon Dispersion Equations; Resonance 33
2.3.3 Excitation of Surface Plasmons 35
2.3.4 Surface Plasmon Properties 37
2.3.5 Choice of Experimental Parameters 39
2.3.6 Optimizing SPR Imaging Performance 42
2.4 SPR Instrument Optics 46
2.4.1 Fixed Angle 47
2.4.2 Fan-shaped Beam 48
2.4.3 Scanning Angle 50
2.4.4 Grating Coupler 51
2.4.5 Fiber-based SPR Sensors 51
2.4.6 Other Optical Systems 54
2.4.7 SPR Imaging Instruments 55
2.5 Concluding Remarks 56
2.6 Questions 57
References 58
Chapter 3 Surface Plasmon Resonance Instruments 60
3.1 Introduction 60
3.2 The Cornerstones of SPR Technology 62
3.3 General Optical Requirements for SPR Instruments 63
3.4 SPR Liquid Handling Systems 65
3.4.1 Cuvette Systems 66
3.4.2 Flow Systems 68
3.5 SPR Instruments: State of the Art 71
3.5.1 Examples of Fan-shaped Beam SPR Instruments 71
3.5.2 Examples of Fixed- and Scanning-angle SPR Instruments 78
3.5.3 Examples of Other Label-free Biosensing Instruments 84
3.5.4 Examples of SPR Imaging Instruments 89
3.6 Biacore SPR Systems of GE Healthcare 97
3.6.1 Biacore T100, T200, and S200 98
3.6.2 Biacore A100/4000 100
3.6.3 Biacore 8K 101
3.7 Conclusions 102
3.8 Questions 103
References 103
Chapter 4 SPRpages – Getting a Feeling for the Curves\r 106
4.1 Introduction 106
4.2 The Exponential 106
4.3 A Curve 108
4.3.1 Baseline 108
4.3.2 Association 109
4.3.3 Steady State 109
4.3.4 Dissociation 109
4.3.5 Response Units 109
4.3.6 Equilibrium and Saturation 110
4.3.7 Rmax Value 110
4.3.8 Curve Response 112
4.3.9 Req value 112
4.3.10 Time to Reach Equilibrium 113
4.4 Curve Examples 114
4.4.1 Curve Shape 114
4.4.2 Exponential Curve 114
4.4.3 Mass Transport Limitation (MTL) 116
4.4.4 Biphasic Curves 118
4.4.5 Drift, Jumps and Spikes 119
4.5 Experimental Setup 121
4.5.1 Analyte Concentration Range 121
4.5.2 Blank Injections 122
4.5.3 Multi-cycle Kinetics 122
4.5.4 Single-cycle Kinetics 122
4.5.5 Equilibrium Analysis 123
4.5.6 Fast Kinetics 125
4.5.7 Decaying Surface 125
4.6 Sensorgram Quality 127
4.7 The Affinity Plot; Getting a Feeling for the Numbers 128
4.8 Curve Fitting 128
4.8.1 Residual Plot 130
4.8.2 Local and Global Fitting 131
4.8.3 Deviations from a 1 : 1 Interaction 131
4.9 Interaction Validation 132
4.10 Publications 132
4.10.1 Evaluating Published Results 133
4.10.2 Minimal Requirements for Describing a Biosensor Experiment 134
4.11 SPR Simulation 135
4.11.1 Different Analyte Concentration (Same Kinetics) 136
4.11.2 Different Association Rate (Different Affinity) 137
4.11.3 Different Dissociation Rate (Different Affinity) 137
4.11.4 Different Kinetics (Same Affinity) 139
4.11.5 Different Injection Times (Same Kinetics) 140
4.11.6 Different Dissociation Times (Same Kinetics) 140
4.12 Questions 141
4.13 Glossary 146
References 147
Chapter 5 Detailed Analysis of Kinetic Binding Traces with Distributions of Surface Sites 149
5.1 Introduction 149
5.2 The Physical Picture 151
5.3 Calculating Surface Site Distributions 153
5.3.1 Basic Principle 153
5.3.2 Mass Transport Limitation 155
5.3.3 Higher Order Reaction Schemes 157
5.4 Experimental Design 158
5.4.1 Information Content 158
5.4.2 Effect of Sensor Surface\r 161
5.4.3 Ligand Immobilization Process 161
5.4.4 Analyte Purity 164
5.5 Conclusions 167
5.6 Questions 167
Acknowledgements 168
References 168
Chapter 6 Surface Chemistry in SPR Technology 171
6.1 Introduction 171
6.1.1 Interaction Mechanisms on Biosensor Surfaces 172
6.1.2 The Surface Structure: Between Evanescent Field and Analyte Diffusion 175
6.2 The Metal Layer of SPR Sensor Chips 180
6.3 Adhesion Linking Layers for Noble Metals, Inorganic Dielectrics, and Plastics 183
6.3.1 Adhesion Linking Layers for Noble Metal Surfaces 184
6.3.2 Adhesion Linking Layers for Inorganic Dielectrics 186
6.3.3 Adhesion Linking Layers for Plastics and Carbon Surfaces 186
6.4 Bioinert Matrices 187
6.4.1 Non-specific Adsorption of Biomolecules 187
6.4.2 Functionalization Strategies for Ultralow-fouling Two-dimensional Surfaces 189
6.4.3 Bioinert Hydrogels 192
6.5 Choosing the Optimal Nanoarchitecture 194
6.5.1 Two-dimensional Surfaces 195
6.5.2 Three-dimensional Hydrogels 197
6.6 Coupling Procedures for Ligand Immobilization 202
6.6.1 Adsorptive Immobilization 202
6.6.2 Covalent Immobilization 203
6.6.3 Covalent Activation Chemistries 208
6.6.4 Immobilization via Molecular Linkers 225
6.6.5 Immobilization of Membrane Proteins 234
6.6.6 Overview and Selection of Immobilization Chemistries 238
6.7 Considerations for Spatially Resolved Immobilization 242
6.8 Conclusions and Outlook 247
6.9 Questions 248
References 249
Chapter 7 Fragment and Low Molecular Weight Compound Analysis 255
7.1 Introduction 255
7.2 Assay Formats for Low Molecular Weight Analysis 256
7.2.1 Direct Binding Assay (DBA) 256
7.2.2 Solution Competition or Inhibition in Solution Assay (ISA) 258
7.2.3 Surface Competition Assay (SCA) 258
7.2.4 Selection of Assay Format 258
7.3 Methodology 261
7.3.1 Immobilization of Proteins 262
7.3.2 Immobilization of Small Molecules 266
7.3.3 Protein Activity 267
7.3.4 Compound Solubility and Concentrations in Screening 268
7.3.5 Compound Refractive Index Increment 268
7.3.6 Buffer Selection\r 268
7.3.7 Sample Preparation 269
7.3.8 Solvent Correction 270
7.3.9 Z', Positive and Negative Controls\r 271
7.4 Target Considerations 272
7.4.1 GPCRs 272
7.4.2 Kinases 273
7.5 Fragment Screening Workflow 274
7.5.1 Fragment Libraries 274
7.5.2 Clean Screen 274
7.5.3 Binding Level Screen 276
7.5.4 Data Analysis – Report Points and Curve Shapes\r 276
7.5.5 Affinity Screen 282
7.5.6 Affinity Analysis 282
7.5.7 Site Specificity – Use of Blocked or Saturated Targets\r 285
7.6 Hit to Lead Workflow 287
7.6.1 Off-rate Screening\r 287
7.6.2 Lead Optimization 288
7.7 Tips 290
7.8 Questions 290
References 292
Chapter 8 Combined Antibody Characterization: High-throughput Ranking, Binning, and Mapping\r 295
8.1 General Introduction 295
8.2 Affinity Ranking 296
8.2.1 Experiment 1: Affinity Ranking of Human IgG Binding Hepatitis C Virus E2 Protein 297
8.2.2 Experiment 2: Affinity Ranking of Rabbit IgG Binding MHC–Peptide Complexes 303
8.2.3 Conclusions on Affinity Ranking and Outlook 307
8.3 Epitope Binning 307
8.3.1 Experiment 3: Epitope Binning of Antibodies Binding the Respiratory Syncytial Virus (RSV) Glycoprotein 309
8.3.2 Conclusions on Epitope Binning and Outlook 312
8.4 Epitope Mapping 313
8.4.1 Experiment 4: Epitope Mapping of Anti-RSVG Antibodies Using a Library of Overlapping Peptides\r 313
8.4.2 Experiment 5: Mapping the Epitope of Anti-human Parecho Virus Antibody AM 18
with Alanine Scanning SPR 320
8.4.3 Conclusions on Epitope Mapping and Outlook 323
8.5 General Conclusions and Outlook 324
8.6 Questions 324
References 325
Chapter 9 Treating Raw Data: Software for SPR Applications 328
9.1 Introduction 328
9.2 Software Tools for Designing and Executing Experiments 329
9.2.1 General Considerations 329
9.2.2 Pre-assay Studies 331
9.2.3 Software Tools for Pre-assay Planning 331
9.2.4 Takeaways for SPR Study Design and Execution 333
9.3 Data Analysis 333
9.3.1 Data Output 333
9.3.2 Data Analysis Software Packages 333
9.4 Fundamental Data Processing Techniques 335
9.4.1 Introduction 335
9.4.2 Normalization/Calibration 335
9.4.3 Excluded Volume Correction 335
9.4.4 Referencing 336
9.4.5 Blank Subtraction 337
9.4.6 x-Scale Alignment 337
9.4.7 y-Scale Zeroing 337
9.5 Example of Competitive Epitope Binning Data Analysis 338
9.5.1 Introduction 338
9.5.2 Epitope Binning Experimental Design 339
9.5.3 Preprocessing of Data Using SPRint 340
9.5.4 Epitope Characterization Using Epitope Binning 2.0 344
9.6 Example of Kinetic Data Analysis 349
9.6.1 Introduction 349
9.6.2 Experimental Design 349
9.6.3 Preprocessing of Data Using SPRint 349
9.6.4 Global Kinetic Analysis in Scrubber 2.0 HT 350
9.7 Conclusions 354
9.8 Questions 354
Acknowledgements 355
References 355
Chapter 10 Biolayer Interferometry (Octet) for Label-free Biomolecular Interaction Sensing 356
10.1 Introduction to Biolayer Interferometry (BLI) 356
10.2 BLI Platforms 358
10.3 BLI Biosensors 359
10.3.1 Biosensor Selection 361
10.3.2 Regeneration of Biosensors 365
10.4 Basics of Binding Kinetics Using BLI 367
10.4.1 Relationship Between Req, Rmax, and KD 370
10.5 Data Acquisition and Analysis on the Octet 370
10.5.1 Data Acquisition on the Octet 370
10.5.2 Data Analysis on the Octet 372
10.6 Determination of Affinity Constants Using BLI 378
10.6.1 Ligand Surface Immobilization 378
10.6.2 Binding Kinetics 379
10.6.3 Setting Up Kinetics Assays Using BLI 380
10.6.4 Protein Quantitation on the Octet 384
10.7 Emerging Applications 389
10.7.1 Octet Use in Epitope Binning 389
10.7.2 Octet in Virus Titer Studies 391
10.7.3 Analysis of FcRn–Antibody Interactions Using the Octet\r 393
10.8 Questions 396
References 397
Chapter 11 Strategies for Building Protein–Glycosaminoglycan Interaction Networks Combining SPRi, SPR, and BLI 398
11.1 Introduction 398
11.2 A Roadmap to Build Protein–Glycosaminoglycan Interaction Networks\r 400
11.3 Identification of Biomolecular Interactions by Surface Plasmon Resonance Imaging 401
11.4 Building and Functional Analysis of Protein–Glycosaminoglycan Interaction Networks 403
11.5 Contextualization of the Interaction Network with Kinetic Parameters and Affinity 407
11.5.1 Kinetic and Affinity Data Available in Interaction Databases 407
11.5.2 Kinetics and Affinity Calculated by Bio- Layer Interferometry 407
11.6 Conclusion 411
11.7 Abbreviations 411
11.8 Questions 412
Acknowledgements 412
References 412
Chapter 12 Future Trends in SPR Technology 415
12.1 Introduction 415
12.2 Trends in SPR Instrumentation 417
12.2.1 Nanoparticle-based Localized SPR (LSPR) 417
12.2.2 SPR Imaging 419
12.3 Trends in Fluidics 420
12.3.1 Microarray Spotting on SPR Sensor Chips 421
12.3.2 Gradient Printing for Multiplex Sensing 424
12.4 Trends in Sensor Surfaces 426
12.4.1 SensEyes® Sensor: Easy2Spot 427
12.4.2 SensEye Protein A/G, SensEye Anti-IgG, and Fixit Protocol\r 428
12.5 Hyphenated SPR Technology 430
12.5.1 SPR-MS 430
12.5.2 Other Hyphenated SPR Techniques 431
12.5.3 Implementation of ''Lab-on-a-Chip'' Devices for SPR Systems 432
12.5.4 Electrochemical SPR (E-SPR) Application 434
12.6 Prospects for SPR-based Point-of-care Devices 435
12.6.1 Point-of-care Theranostics 436
12.6.2 Signal Enhancement Cascade for Boosting the Dynamic Range 437
12.7 Trends in Measuring Reliable Kinetic Parameters 439
12.7.1 Affinity Ranking with the Interpolation Method 440
12.7.2 Affinity Ranking with the Interpolated Distribution Analysis Method 444
12.8 SPRi Cytometry 446
12.8.1 Label-free Cell Membrane Antigen Profiling 447
12.8.2 Quantifying the Ratio of Surface Antigens per Cell Population 452
12.8.3 Extracellular Vesicle Monitoring Using SPRi 459
12.8.4 Affinity Ranking of Cell Surface Antigens on Living Cells 463
12.8.5 Quantifying the Production Rate of Molecules per Individual Cell 465
12.8.6 Microwell Cell Selection Using SPRi: the McSPRinter 467
12.9 Conclusions 474
12.10 Questions 475
References 475
Appendix Questions and Answers 479
Subject Index 508