Menu Expand
Treatise on Geochemistry

Treatise on Geochemistry

Karl K. Turekian | Heinrich D. Holland

(2013)

Abstract

This extensively updated new edition of the widely acclaimed Treatise on Geochemistry has increased its coverage beyond the wide range of geochemical subject areas in the first edition, with five new volumes which include: the history of the atmosphere, geochemistry of mineral deposits, archaeology and anthropology, organic geochemistry and analytical geochemistry. In addition, the original Volume 1 on "Meteorites, Comets, and Planets" was expanded into two separate volumes dealing with meteorites and planets, respectively. These additions increased the number of volumes in the Treatise from 9 to 15 with the index/appendices volume remaining as the last volume (Volume 16). Each of the original volumes was scrutinized by the appropriate volume editors, with respect to necessary revisions as well as additions and deletions. As a result, 27% were republished without major changes, 66% were revised and 126 new chapters were added.

  • In a many-faceted field such as Geochemistry, explaining and understanding how one sub-field relates to another is key. Instructors will find the complete overviews with extensive cross-referencing useful additions to their course packs and students will benefit from the contextual organization of the subject matter
  • Six new volumes added and 66% updated from 1st edition. The Editors of this work have taken every measure to include the many suggestions received from readers and ensure comprehensiveness of coverage and added value in this 2nd edition
  • The esteemed Board of Volume Editors and Editors-in-Chief worked cohesively to ensure a uniform and consistent approach to the content, which is an amazing accomplishment for a 15-volume work (16 volumes including index volume)!

"This landmark 10-volume publication is a comprehensive review of the many-faceted field of geochemistry. (...)
The Treatise will be an indispensable reference not only to academics but to contamination cleanup professionals, resource managers, and environmental regulators as well." --David W. Morganwalp, U.S. Geological Survey, Reston, VA, USA

Table of Contents

Section Title Page Action Price
e9780080983004v1.pdf 1
Front Cover 1
Meteorites and Cosmochemical Processes 4
Copyright 5
In Memoriam 7
Heinrich Dieter Holland (1927–2012) 9
Karl Karekin Turekian (1927–2013) 11
References 13
Dedication 15
Contents 17
Executive Editors’ Foreword to the Second Edition 19
Contributors 23
Volume Editor’s Introduction 25
References 26
Chapter 1.1: Classification of Meteorites and Their Genetic Relationships 27
1.1.1. Introduction 28
1.1.2. Classification of Chondritic Meteorites 29
1.1.2.1. Taxonomy 29
1.1.2.2. Primary Classification Parameters 31
1.1.2.2.1. Bulk chemical compositions 31
1.1.2.2.2. Bulk oxygen isotopic compositions 32
1.1.2.2.3. Bulk carbon and nitrogen abundances and isotopic compositions 32
1.1.2.2.4. Bulk stable-isotope anomalies 32
1.1.2.2.5. Oxidation state 32
1.1.2.3. Secondary Classification Parameters 33
1.1.2.3.1. Petrologic type 33
1.1.2.3.2. Shock metamorphism stages 35
1.1.2.3.3. Classification of breccias 35
1.1.2.3.4. Degree of terrestrial weathering 35
1.1.2.4. Mineralogical and Geochemical Characteristics of Chondrite Groups 36
1.1.2.4.1. Carbonaceous chondrites 36
1.1.2.4.1.1. CI (Ivuna-like) chondrites 36
1.1.2.4.1.2. CM (Mighei-like) chondrites 36
1.1.2.4.1.3. Ungrouped CM/CI-like chondrites 38
1.1.2.4.1.4. CO (Ornans-like) chondrites 38
1.1.2.4.1.5. Ungrouped CO/CM-like chondrites 38
1.1.2.4.1.6. CR (Renazzo-like) chondrites 40
1.1.2.4.1.7. Ungrouped CR-related chondrites 40
1.1.2.4.1.8. CH (ALH 85085-like) chondrites 40
1.1.2.4.1.9. CB (Bencubbin-like) chondrites 40
1.1.2.4.1.10. CV (Vigarano-like) chondrites 42
1.1.2.4.1.11. Ungrouped CV-like chondrites 45
1.1.2.4.1.12. CK (Karoonda-like) chondrites 46
1.1.2.4.2. Ordinary chondrites and related meteorites 47
1.1.2.4.2.1. H, L, and LL chondrites 47
1.1.2.4.2.2. Low-FeO ordinary chondrites 48
1.1.2.4.2.3. Metal-rich chondrites 48
1.1.2.4.3. Enstatite chondrites 48
1.1.2.4.4. K (Kakangari-like) chondrites 50
1.1.2.4.5. R (Rumuruti-like) chondrites 51
1.1.3. Classification of Interplanetary Dust Particles (IDPs) 51
1.1.4. Classification of Nonchondritic Meteorites 51
1.1.4.1. Winonaites and the Silicate-Bearing IAB Irons 52
1.1.4.2. Acapulcoites and Lodranites 52
1.1.4.3. Ungrouped primitive achondrites 55
1.1.4.3.1. Primitive enstatite achondrites 55
1.1.4.3.2. Tafassasset 56
1.1.4.4. Brachinites and Brachinite-Like Ultramafic Achondrites 56
1.1.4.5. Ungrouped Achondrites 58
1.1.4.5.1. Divnoe 58
1.1.4.5.2. Ungrouped felsic achondrite 58
1.1.4.6. Ureilites 59
1.1.4.6.1. Almahata Sitta 61
1.1.4.7. Angrites 61
1.1.4.8. Aubrites 62
1.1.4.9. HED Meteorites: Howardites, Eucrites, and Diogenites 62
1.1.4.9.1. Eucrites 62
1.1.4.9.2. Diogenites 64
1.1.4.9.3. Howardites and other eucrite-diogenite breccias 64
1.1.4.9.4. Anomalous eucrites 64
1.1.4.9.4.1. Ungrouped eucrites 66
1.1.4.9.4.2. Anomalous metal-rich eucrites 66
1.1.4.9.4.3. Other anomalous eucrites 66
1.1.4.10. Mesosiderites 67
1.1.4.11. Pallasites 68
1.1.4.11.1. Main-group pallasites 68
1.1.4.11.2. Eagle Station pallasite grouplet 69
1.1.4.11.3. Other pallasites 69
1.1.4.12. Iron Meteorites 69
1.1.4.12.1. Chemical groups 70
1.1.4.12.2. Groups IAB and IIICD 72
1.1.4.12.3. Group IIAB 73
1.1.4.12.4. Group IIE 74
1.1.4.12.5. Group IIIAB 75
1.1.4.12.6. Group IVA 75
1.1.4.12.7. Group IVB 75
1.1.4.12.8. Ungrouped irons 75
1.1.4.13. Martian Meteorites 75
1.1.4.13.1. Shergottites 75
1.1.4.14. Nakhlites (Clinopyroxenites/Wehrlites) 78
1.1.4.14.1. Chassignites (Dunites) 78
1.1.4.14.2. Allan Hills 84001 (Orthopyroxenite) 78
1.1.4.15. Lunar Meteorites 78
1.1.5. Genetic Relations Among Meteorite Groups 78
Acknowledgments 79
References 79
Chapter 1.2: Chondrites and Their Components 91
1.2.1. Introduction 92
1.2.1.1. What Are Chondrites? 92
1.2.1.2. Why Study Chondrites? 92
1.2.1.3. Historical Views on Chondrite Origins 93
1.2.1.4. Chondrites and the Solar Nebula 94
1.2.2. Classification and Parent Bodies of Chondrites 94
1.2.2.1. Chondrite Groups, Clans, and Parent Bodies 94
1.2.2.2. Ordinary Chondrites 96
1.2.2.3. Carbonaceous Chondrites 96
1.2.2.4. Enstatite Chondrites 96
1.2.3. Bulk Composition of Chondrites 97
1.2.3.1. Cosmochemical Classification of Elements 97
1.2.3.2. Chemical Compositions of Chondrites 97
1.2.3.3. Isotopic Compositions of Chondrites 98
1.2.3.4. Oxygen Isotopic Compositions 99
1.2.4. Metamorphism, Alteration, and Impact Processing 99
1.2.4.1. Petrologic Types 100
1.2.4.1.1. Type 1-2 chondrites 100
1.2.4.1.2. Type 3 chondrites 101
1.2.4.1.3. Type 4-6 chondrites 101
1.2.4.2. Thermal History and Modeling 102
1.2.4.3. Impact Processing of Chondritic Asteroids 102
1.2.5. Chondritic Components 103
1.2.5.1. Calcium- and Aluminum-Rich Inclusions 103
1.2.5.1.1. Comparison of CAIs from different chondrite groups 103
1.2.5.1.2. Oxygen-isotope compositions of CAIs 104
1.2.5.2. Forsterite-Rich Accretionary Rims around CAIs 106
1.2.5.3. Amoeboid Olivine Aggregates 108
1.2.5.3.1. Mineralogy and petrology of AOAs 108
1.2.5.3.2. Trace elements and isotopic composition of AOAs• 109
1.2.5.3.3. Origin of AOAs 110
1.2.5.4. Aluminum-Rich Chondrules 112
1.2.5.4.1. Isotopic and trace element studies of aluminum-rich chondrules 113
1.2.5.4.2. Origin of aluminum-rich chondrules 115
1.2.5.4.3. Relict CAIs and AOAs in ferromagnesian chondrules 116
1.2.5.4.4. Relict chondrules in igneous CAIs and igneous CAIs overgrown by chondrule material 116
1.2.5.5. Refractory Forsterite-Rich Objects 119
1.2.5.6. Chondrules 121
1.2.5.6.1. Chondrule textures, types, and thermal histories 121
1.2.5.6.2. Chemical compositions of chondrules 122
1.2.5.6.3. Oxygen-isotope compositions of chondrules 122
1.2.5.6.4. Stable isotope anomalies and aluminum-magnesium isotope systematics of chondrules 123
1.2.5.6.5. Noble gas abundances in chondrules 123
1.2.5.6.6. Compound chondrules, relict grains, and chondrule rims 124
1.2.5.6.7. Chondrule forming environment 126
1.2.5.6.8. Chondrules that formed by condensation 129
1.2.5.6.9. Chondrules that formed on asteroids 130
1.2.5.7. Metal and Troilite 132
1.2.5.7.1. CR chondrite metallic Fe,Ni 133
1.2.5.7.2. CH and CB chondrite metallic Fe,Ni 133
1.2.5.7.3. Troilite 134
1.2.5.8. Matrix Material 134
1.2.5.8.1. CI1 chondrites 136
1.2.5.8.2. CM2 chondrite matrices 136
1.2.5.8.3. CR2-3 chondrite matrices 137
1.2.5.8.4. CO3 chondrite matrices 137
1.2.5.8.5. CK3-6 chondrite matrices 140
1.2.5.8.6. CV3 chondrite matrices 140
1.2.5.8.7. Matrix of ungrouped C chondrites, Acfer 094, and Adelaide 141
1.2.5.8.8. H-L-LL3 chondrite matrices 142
1.2.5.8.9. EH3 and EL3 chondrite matrices 142
1.2.5.8.10. K3 chondrite matrices (Kakangari and LEW 87232) 142
1.2.5.8.11. Matrix-rich lithic clasts 144
1.2.5.8.12. Origins of matrix phases 145
1.2.6. Formation and Accretion of Chondritic Components 148
1.2.7. Heating Mechanisms in the Early Solar System 148
1.2.7.1. Nebular Shocks 150
1.2.7.2. Jets and Outflows 150
1.2.7.3. Impacts on Planetesimals 150
Acknowledgments 151
References 151
Chapter 1.3: Calcium-Aluminum-Rich Inclusions in Chondritic Meteorites 165
1.3.1. Introduction 165
1.3.2. Changes in this Revision 166
1.3.3. Some Essential Terminology: Structural Elements of a CAI 166
1.3.3.1. The Generic CAI 166
1.3.3.2. Comments on Primary and Secondary Mineralogy 167
1.3.3.3. Rim Sequences 167
1.3.3.4. Metal Grains and Fremdlinge 168
1.3.4. Mineralogy and Mineral Chemistry 168
1.3.4.1. Melilite 170
1.3.4.2. Spinel 171
1.3.4.3. Pyroxene 171
1.3.4.4. Hibonite 172
1.3.4.5. Perovskite 173
1.3.4.6. Grossite (CaAl4O7) and Krotite/Dmitryivanovite (CaAl2O4) 173
1.3.4.7. Anorthite 173
1.3.5. Diversity and Major Element Bulk Chemistry 173
1.3.6. Type C CAIs, Compound Objects, and the Chondrule-CAI Connection 180
1.3.7. Fun CAIs and Hibonite Grains 180
1.3.8. Distribution Among Chondrite Types 182
1.3.8.1. CV3 Chondrites 183
1.3.8.2. CO3 Chondrites 183
1.3.8.3. CM Chondrites 183
1.3.8.4. CR Clan Chondrites 184
1.3.8.5. CAIs in Acfer 094 185
1.3.8.6. Ordinary Chondrites 186
1.3.8.7. Enstatite Chondrites 186
1.3.8.8. Stardust CAIs 188
1.3.9. Ages 188
1.3.10. Trace Elements 188
1.3.11. Oxygen Isotopes 190
1.3.11.1. General 190
1.3.11.2. The Data 190
1.3.11.3. Nebular and Intra-CAI heterogeneity: Progress on Two Great Debates 193
1.3.12. Short-Lived Radionuclides in CAIs 194
1.3.12.1. 26Al 194
1.3.12.2. 41Ca 198
1.3.12.3. 10Be 198
1.3.13. CAIS, Chondrules, Condensation, and Melt Distillation 198
1.3.14. Wark-Lovering Rim Sequences: One Terminal Event or Many? 199
1.3.15. Conclusions and Reflections: Technology, the Big Picture, and the Convergence of Cosmochemistry and Astronomy 199
Acknowledgments 199
References 200
Chapter 1.4: Presolar Grains 207
1.4.1. Introduction 207
1.4.2. Historical Background 208
1.4.3. Types of Presolar Grains 208
1.4.4. Analysis Techniques 209
1.4.5. Astrophysical Implications of the Study of Presolar Grains 210
1.4.6. Silicon Carbide 210
1.4.6.1. Mainstream Grains 213
1.4.6.2. Type Y and Z Grains 216
1.4.6.3. Type AB Grains 217
1.4.6.4. Type X Grains 217
1.4.6.5. Nova Grains 220
1.4.6.6. Type C Grains 220
1.4.6.7. Abundances and Grain-Size Effect 220
1.4.7. Silicon Nitride 221
1.4.8. Graphite 221
1.4.8.1. Physical Properties 221
1.4.8.2. Isotopic Compositions 222
1.4.9. Oxygen-Rich Grains 225
1.4.9.1. Oxide Grains 225
1.4.9.2. Silicate Grains 228
1.4.10. Diamond 230
1.4.11. Conclusion and Future Prospects 231
Acknowledgments 231
References 231
Chapter 1.5: Structural and Isotopic Analysis of Organic Matter in Carbonaceous Chondrites 241
1.5.1. Introduction 241
1.5.2. Organic Material in Carbonaceous Chondrites 242
1.5.3. Extractable Organic Matter 242
1.5.3.1. Abundance and Distribution of Extractable Compounds 242
1.5.3.1.1. Carboxylic acids 242
1.5.3.1.2. Sulfonic and phosphonic acids 243
1.5.3.1.3. Amino acids 244
1.5.3.1.4. Aromatic hydrocarbons 245
1.5.3.1.5. Heterocyclic compounds 245
1.5.3.1.6. Aliphatic hydrocarbons 246
1.5.3.1.7. Amines and amides 246
1.5.3.1.8. Alcohols, aldehydes, ketones, and sugar-related compounds 246
1.5.3.2. Stable-Isotopic Investigations of Classes of Organic Compounds 247
1.5.3.3. Compound-Specific Isotopic Studies 247
1.5.3.3.1. Carbon 248
1.5.3.3.2. Nitrogen 249
1.5.3.3.3. Hydrogen 249
1.5.3.3.4. Sulfur 249
1.5.4. Macromolecular Material 251
1.5.4.1. Structural Studies Using Pyrolysis and Chemical Degradation 251
1.5.4.2. NMR and Electron Spin Resonance Studies 251
1.5.4.3. Stable-Isotopic Studies 253
1.5.5. In Situ Examination of Meteoritic Organic Matter 254
1.5.6. Environments of Formation 255
References 257
Chapter 1.6: Achondrites 261
1.6.1. Introduction 261
1.6.2. Primitive Achondrites 262
1.6.2.1. Acapulcoite-Lodranite Clan 262
1.6.2.2. Winonaite-IAB-Iron Silicate Inclusion Clan 272
1.6.2.3. Zag (b) 273
1.6.3. Differentiated Achondrites 273
1.6.3.1. Angrites 273
1.6.3.2. Aubrites 276
1.6.3.3. Brachinites 277
1.6.3.4. Howardite-Eucrite-Diogenite Clan 279
1.6.3.5. Mesosiderite Silicates 280
1.6.3.6. Ureilites 282
1.6.3.7. Ibitira 284
1.6.3.8. Itqiy 284
1.6.3.9. Northwest Africa 011 285
1.6.4. Uncategorized Achondrites 285
1.6.4.1. IIE Iron Meteorite Silicates 285
1.6.5. Summary 286
Acknowledgments 286
References 287
Chapter 1.7: Iron and Stony-Iron Meteorites 293
1.7.1. Introduction 293
1.7.2. Classification and Chemical Composition of Iron Meteorites 294
1.7.2.1. Group IIAB Iron Meteorites 295
1.7.2.2. Group IIIAB Iron Meteorites 295
1.7.2.3. Group IVA Iron Meteorites 295
1.7.2.4. Group IVB Iron Meteorites 296
1.7.2.5. Silicate-Bearing IAB Complex and IIE Iron Meteorites 296
1.7.2.6. Mesosiderites 296
1.7.2.7. Ungrouped Iron Meteorites 297
1.7.3. Accretion and Differences in Bulk Chemistry Between Groups of Iron Meteorites 297
1.7.4. Heating and Differentiation 298
1.7.5. Fractional Crystallization of Metal Cores 300
1.7.5.1. Imperfect Mixing During Crystallization 301
1.7.5.2. Late-Stage Crystallization and Immiscible Liquid 301
1.7.5.3. The Missing Sulfur-Rich Meteorites 302
1.7.6. Cooling Rates and Sizes of Parent Bodies 303
1.7.7. Pallasites 304
1.7.8. Parent Bodies of Iron and Stony-Iron Meteorites 305
1.7.9. Future Research Directions 306
References 307
Chapter 1.8: Early Solar Nebula Grains - Interplanetary Dust Particles 313
1.8.1. Introduction 313
1.8.2. Particle Size, Morphology, Porosity, and Density 315
1.8.3. Mineralogy 315
1.8.3.1. CPIDPs 316
1.8.3.2. Glass with Embedded Metal and Sulfides 320
1.8.3.3. CSIDPs 323
1.8.4. Optical Properties 324
1.8.5. Compositions 325
1.8.5.1. Major Elements 325
1.8.5.2. Trace Elements 327
1.8.5.3. Isotopes 329
1.8.5.4. Noble Gases 330
1.8.6. Conclusions 330
Acknowledgments 332
References 332
Chapter 1.9: Nebular Versus Parent Body Processing 335
1.9.1. Introduction 335
1.9.2. Nebular or Asteroidal Processing: Some Criteria 336
1.9.3. Aqueous Alteration 336
1.9.3.1. CI Carbonaceous Chondrites 336
1.9.3.1.1. Evidence for asteroidal alteration 336
1.9.3.1.2. Timing of alteration 337
1.9.3.1.3. Summary 338
1.9.3.2. CM Carbonaceous Chondrites 338
1.9.3.2.1. Timing of alteration 339
1.9.3.2.2. Appraisal of the evidence for preaccretionary alteration 340
1.9.3.2.3. Evidence for asteroidal alteration 341
1.9.3.2.3.1. Veining in CM chondrites 341
1.9.3.2.3.2. Fe-rich aureoles 341
1.9.3.2.3.3. Bulk compositional homogeneity of CM chondrites 341
1.9.3.2.3.4. Elemental exchange between chondrules and matrix during progressive alteration 342
1.9.3.2.3.5. Homogeneity of chondrule alteration 342
1.9.3.2.3.6. Presence of oriented aragonite clusters in CM chondrites 342
1.9.3.2.3.7. Microchemical environments 342
1.9.3.2.3.8. Oxygen isotopic compositions 343
1.9.3.2.4. Summary 343
1.9.3.3. CR Carbonaceous Chondrites 343
1.9.3.4. CO Carbonaceous Chondrites 344
1.9.3.5. CV Carbonaceous Chondrites 345
1.9.3.5.1. Evidence for preaccretionary alteration 346
1.9.3.5.2. Evidence for parent body alteration 346
1.9.3.6. Unequilibrated Ordinary Chondrites 346
1.9.4. Oxidation and Metasomatism 347
1.9.4.1. CV Carbonaceous Chondrites 347
1.9.4.1.1. Iron-alkali-halogen metasomatism 347
1.9.4.1.2. Fayalitic rims on chondrules, CAIs, etc. 348
1.9.4.1.3. Oxidation and sulfidization of opaque assemblages 348
1.9.4.2. Dark Inclusions in CV Chondrites 348
1.9.4.3. Nebular and Parent Body Alteration Models for CV Chondrites 348
1.9.4.3.1. Nebular alteration 348
1.9.4.3.2. Parent body alteration 349
1.9.4.3.3. Problems with the nebular alteration model 349
1.9.4.3.3.1. Origin of platy matrix olivine grains 349
1.9.4.3.3.2. Presence of veins in dark inclusions 349
1.9.4.3.3.3. Formation of calcium-iron pyroxenes 349
1.9.4.3.3.4. Rims of calcium-iron pyroxene around dark inclusions 350
1.9.4.3.3.5. Calcium-rich halos around altered CAIs 350
1.9.4.3.3.6. Timing of alteration 350
1.9.4.3.4. Problems with the asteroidal alteration model 351
1.9.4.3.4.1. Oxygen isotopes 351
1.9.4.3.4.2. Formation of platy olivines 351
1.9.4.3.4.3. Timing of metasomatism and aqueous alteration 351
1.9.4.4. CO Carbonaceous Chondrites 352
1.9.4.4.1. Evidence for parent body alteration of CO chondrites 353
1.9.4.4.2. Evidence for nebular alteration of CO chondrites 354
1.9.4.5. Unequilibrated Ordinary Chondrites 354
1.9.4.5.1. Carbide-magnetite assemblages 354
1.9.5. Future Work 355
Acknowledgments 355
References 355
Chapter 1.10: Condensation and Evaporation of Solar System Materials 361
1.10.1. Introduction 361
1.10.2. Theoretical Framework 362
1.10.2.1. Thermodynamic Equilibrium 363
1.10.2.1.1. Condensation of the major elements 363
1.10.2.1.2. Condensation of trace elements 364
1.10.2.1.3. High-temperature equilibrium isotopic fractionation 365
1.10.2.2. Kinetic Effects 365
1.10.3. Laboratory Experiments 368
1.10.3.1. Evaporation of Metals and Simple Oxides 368
1.10.3.2. Evaporation of Olivine 369
1.10.3.3. Evaporation of CMAS Melts 369
1.10.3.4. Evaporation of Chondritic Meteorites and Chondritic Melts 373
1.10.3.5. Kinetic Isotope Fractionation Factors for Molten Oxides and Silicates 373
1.10.4. Applications 375
1.10.4.1. Bulk Compositions of Planets and Meteorite Parent Bodies 375
1.10.4.2. Calcium- and Aluminum-Rich Inclusions 376
1.10.4.2.1. Ultrarefractory inclusions 376
1.10.4.2.2. Textural evidence 377
1.10.4.2.3. Bulk elemental and isotopic compositions of type B CAIs 377
1.10.4.2.4. Reheating mechanisms for the type B CAIs 379
1.10.4.2.5. Isotopic fractionation of refractory elements in CAIs 380
1.10.4.2.6. Refractory metal inclusions 380
1.10.4.2.7. FUN CAIs 381
1.10.4.2.8. Hibonites with cerium anomalies 381
1.10.4.3. Chondrites 381
1.10.4.3.1. Chondrules 381
1.10.4.3.2. Metal Grains 382
1.10.4.4. Deep-Sea Spherules 382
1.10.5. Outlook 382
Acknowledgments 382
References 382
Chapter 1.11: Short-Lived Radionuclides and Early Solar System Chronology 387
1.11.1. Introduction 387
1.11.1.1. Chondritic Meteorites as Probes of Early Solar System Evolution 387
1.11.1.2. Short-Lived Radioactivity at the Origin of the Solar System 388
1.11.1.3. A Brief History and the Scope of the Present Review 388
1.11.2. Dating with Ancient Radioactivity 390
1.11.3 ‘Absolute’ and ‘Relative’ Timescales 391
1.11.3.1. An Absolute Timescale for Solar System Formation 391
1.11.3.2. An Absolute Timescale for Chondrule Formation 393
1.11.3.3. An Absolute Timescale for Early Differentiation of Planetesimals 394
1.11.4. The Record of Short-Lived Radionuclides in Early Solar System Materials 394
1.11.4.1. Beryllium-7 395
1.11.4.2. Calcium-41 395
1.11.4.3. Chlorine-36 396
1.11.4.4. Aluminum-26 396
1.11.4.4.1. Bulk and internal isochrons and the solar system initial 26Al/27Al 396
1.11.4.4.2. Mass fractionation correction 397
1.11.4.4.3. Magnesium isotopic evolution in the early solar system 398
1.11.4.4.4. 26Al-26Mg systematics in CAIs 399
1.11.4.4.5. 26Al-26Mg systematics in chondrules 400
1.11.4.4.6. 26Al-26Mg systematics in achondrites 401
1.11.4.5. Beryllium-10 401
1.11.4.6. Cesium-135 402
1.11.4.7. Iron-60 402
1.11.4.8. Manganese-53 404
1.11.4.9. Palladium-107 406
1.11.4.10. Hafnium-182 406
1.11.4.11. Curium-247 409
1.11.4.12. Iodine-129 409
1.11.4.13. Lead-205 409
1.11.4.14. Niobium-92 410
1.11.4.15. Samarium-146 410
1.11.4.16. Plutonium-244 410
1.11.5. Origins of the Short-Lived Nuclides 410
1.11.5.1. Sources of Short-Lived Nuclides 410
1.11.6. Short-Lived Nuclides as Chronometers 411
1.11.6.1. Formation Timescales of Nebular Materials 412
1.11.6.2. Timescales of Planetesimal Accretion and Early Chemical Differentiation 413
1.11.7. Conclusions 413
1.11.7.1. Implications for Solar Nebula Origin and Evolution 414
1.11.7.2. Future Directions 415
Acknowledgments 415
References 415
Chapter 1.12: Solar System Time Scales from Long-Lived Radioisotopes in Meteorites and Planetary Materials 423
1.12.1. Introduction 423
1.12.1.1. Basic Principles 423
1.12.1.2. Application to Meteorites and Planetary Materials: A Historical Perspective and Some New Developments 424
1.12.2. Chondrites and Their Components 425
1.12.2.1. Formation Ages of Chondritic Components 425
1.12.2.1.1. Calcium-aluminum-rich inclusions 425
1.12.2.1.2. Chondrules 427
1.12.2.2. Ages of Secondary Events Recorded in Chondrites 427
1.12.2.2.1. Aqueous alteration 427
1.12.2.2.2. Thermal metamorphism 428
1.12.2.2.3. Shock metamorphism 429
1.12.3. Differentiated Meteorites 429
1.12.3.1. Primitive Achondrites: Timing of Incipient Differentiation on Planetesimals 429
1.12.3.2. Basaltic and Other Achondrites: Timing of Asteroidal Differentiation and Cataclysm 430
1.12.3.2.1. Crust formation time scales from chronology of achondrites and their components 430
1.12.3.2.2. Global differentiation time scales based on whole-rock isochrons and initial 87S/86Sr 432
1.12.3.2.3. Inner solar system bombardment history based on reset ages 434
1.12.3.3. Iron Meteorites and Pallasites: Time Scales of Core Crystallization on Planetesimals 434
1.12.4. Planetary Materials 436
1.12.4.1. Timing of Lunar Differentiation and Cataclysm from Chronology of Lunar Samples 437
1.12.4.1.1. Lunar differentiation history 437
1.12.4.1.2. Lunar bombardment history 438
1.12.4.2. Time Scales for the Evolution of Mars from Chronology of Martian Meteorites 438
1.12.5. Conclusions 439
1.12.5.1. A Timeline for Solar System Events 439
1.12.5.2. Outlook and Future Prospects 440
Acknowledgments 440
References 441
Chapter 1.13: Cosmic-Ray Exposure Ages of Meteorites 445
1.13.1. Introduction 446
1.13.2. Calculation of Exposure Ages 447
1.13.2.1. Basic Equations 447
1.13.2.2. Factors Influencing Production Rates 447
1.13.2.3. Measurement Units and Quantities 448
1.13.2.4. Determination of Production Rates 448
1.13.2.4.1. Radionuclide production rates 448
1.13.2.4.2. 26Al and 21Ne 449
1.13.2.4.3. 83Kr/81Kr calibration 449
1.13.2.5. Equations for Calculating One-Stage CRE Ages 450
1.13.2.5.1. 21Ne-22Ne/21Ne ages 450
1.13.2.5.2. 38Ar-22Ne/21Ne ages 450
1.13.2.5.3. 3He ages 451
1.13.2.5.4. 36Cl/ 36Ar ages 451
1.13.2.5.5. 81Kr/Kr ages 452
1.13.2.5.6. 40K/K ages of meteoritic metal 452
1.13.2.6. The Importance of Half-Lives 453
1.13.2.7. CRE Ages and Long-Lived Chronometers 454
1.13.3. Carbonaceous Chondrites 454
1.13.3.1. CI, CM, CO, CV, and CK Chondrites 454
1.13.3.2. The CR Clan 455
1.13.4. H Chondrites 456
1.13.5. L Chondrites 456
1.13.6. LL Chondrites 457
1.13.7. E Chondrites 457
1.13.8. R Chondrites 458
1.13.9. Lodranites and Acapulcoites 458
1.13.10. Lunar Meteorites 459
1.13.10.1. Overview 459
1.13.10.2. Construction of CRE Histories 459
1.13.10.3. Production Rate of Lunar Meteorites 461
1.13.11. Howardite-Eucrite-Diogenite (HED) Meteorites 461
1.13.11.1. Eucrites 461
1.13.11.2. Diogenites 462
1.13.11.3. Howardites 462
1.13.11.4. Kapoeta 463
1.13.12. Angrites 463
1.13.13. Ureilites 463
1.13.14. Aubrites (Enstatite Achondrites) 464
1.13.15. Brachinites 465
1.13.16. Martian Meteorites 465
1.13.17. Mesosiderites 467
1.13.18. Pallasites 468
1.13.19. Irons 468
1.13.20. The Smallest Particles: Micrometeorites, Interplanetary Dust Particles, and Interstellar Grains 470
1.13.20.1. Background 470
1.13.20.2. Exposure Histories from Noble Gases 470
1.13.20.3. Exposure Histories from 10Be and 26Al 470
1.13.20.4. Interstellar (Presolar) Grains 471
1.13.21. Conclusions 472
Acknowledgments 473
References 473
e9780080983004v2 481
Front Cover 481
Planets, Asteroids, Comets and the Solar System 484
Copyright 485
In Memoriam 486
Heinrich Dieter Holland (1927–2012) 488
Karl Karekin Turekian (1927–2013) 490
References 492
Dedication 494
Contents 496
Executive Editors’ Foreword to the Second Edition 498
Contributors 502
Volume editor’s Introduction 504
References 505
Chapter 2.1: Origin of the Elements 506
2.1.1. Introduction 506
2.1.2. Abundances and Nucleosynthesis 507
2.1.3. IMS: Evolution and Nucleosynthesis 508
2.1.3.1. Shell Helium Burning and 12C Production 509
2.1.3.2. s-Process Synthesis in Red Giants 509
2.1.4. Massive Star Evolution and Nucleosynthesis 509
2.1.4.1. Nucleosynthesis in Massive Stars 511
2.1.4.1.1. Hydrogen burning 511
2.1.4.1.2. Helium burning and the s-process 511
2.1.4.1.3. Hydrogen and helium shell burning 512
2.1.4.1.4. Carbon burning 512
2.1.4.1.5. Neon and oxygen burning 512
2.1.4.1.6. Silicon burning 512
2.1.4.1.7. Explosive nucleosynthesis 512
2.1.4.1.8. The p-process 513
2.1.4.1.9. The r-process 514
2.1.5. Type Ia Supernovae: Progenitors and Nucleosynthesis 514
2.1.6. Nucleosynthesis and Galactic Chemical Evolution 515
References 517
Chapter 2.2: Solar System Abu 520
2.2.1. Abundances of the Elements in the Solar Nebula 520
2.2.1.1. Historical Remarks 520
2.2.1.2. Solar System Abundances of the Elements 521
2.2.1.2.1. Is the solar nebula compositionally uniform? 521
2.2.1.2.2. The composition of the solar photosphere 522
2.2.1.3. Abundances of Elements in Meteorites 524
2.2.1.3.1. Differentiated and undifferentiated meteorites 524
2.2.1.3.2. Cosmochemical classification of elements 524
2.2.1.4. CI Chondrites as the Standard for Solar Abundances 526
2.2.1.4.1. Chemical variations among chondritic meteorites 526
2.2.1.4.2. CI chondrites 529
2.2.1.4.3. The CI chondrite abundance table 530
2.2.1.5. Solar System Abundances of the Elements 533
2.2.1.5.1. Comparison of meteorite and solar a& 533
2.2.1.5.2. Solar system abundances versus mass number 535
2.2.1.5.3. Other sources for solar system abundances 535
2.2.2. The Abundances of the Elements in the ISM 536
2.2.2.1. Introduction 536
2.2.2.2. The Nature of the ISM 536
2.2.2.3. The Chemical Composition of the ISM 537
2.2.2.3.1. The composition of the interstellar gas and elemental depletions 537
2.2.2.3.2. The composition of interstellar dust 537
2.2.2.3.3. Interstellar oxygen problems 538
2.2.3. Summary 539
References 539
Chapter 2.3: The Solar Nebula 542
2.3.1. Introduction 542
2.3.2. Formation of the Solar Nebula 543
2.3.2.1. Observations of Precollapse Clouds 543
2.3.2.1.1. Cloud properties 543
2.3.2.1.1.1. Density profiles 544
2.3.2.1.1.2. Cloud shapes 544
2.3.2.1.1.3. Angular momentum distributions 544
2.3.2.1.2. Onset of collapse phase 544
2.3.2.1.2.1. Ambipolar diffusion and loss of magnetic support 544
2.3.2.1.2.2. Shock-triggered collapse 545
2.3.2.1.3. Outcome of collapse phase 545
2.3.2.1.3.1. Fragmentation leading to ejection of single stars 545
2.3.2.1.3.2. Collapse leading to single star formation 546
2.3.2.1.4. Ubiquity of bipolar outflows from earliest phases 546
2.3.2.1.5. The chemistry of infall and outflows 546
2.3.3. Solar Nebula Structure and Evolution 547
2.3.3.1. Search for Astrophysical Analogues for the Solar Nebula 547
2.3.3.1.1. Optical and IR-wave observations 547
2.3.3.1.1.1. Mass accretion rates – episodicity and outbursts 547
2.3.3.1.1.2. Temperature profiles from spectral energy distributions 548
2.3.3.1.2. Millimeter-wave observations 548
2.3.3.1.2.1. Disk masses 549
2.3.3.1.2.2. Keplerian rotation 549
2.3.3.2. Angular Momentum Transport Mechanisms in Protoplanetary Disks 549
2.3.3.2.1. Magnetorotational-driven turbulence 549
2.3.3.2.1.1. Balbus–Hawley instability 550
2.3.3.2.1.2. Ionization structure and layered accretion 550
2.3.3.2.2. Gravitational torques in a marginally unstable disk 550
2.3.3.2.2.1. Rapid mass and angular momentum transport 551
2.3.3.2.2.2. Global process versus local viscosity 551
2.3.3.3. Evolution of the Solar Nebula 551
2.3.3.3.1. Viscous accretion disk models 551
2.3.3.3.2. Turbulent and gas drag transport 553
2.3.3.3.3. Volatility patterns and transport in inner solar system 553
2.3.3.4. Clump Formation in a Marginally Gravitationally Unstable Disk 554
2.3.3.4.1. Chondrule formation in nebular shock fronts 554
2.3.3.4.2. Mixing processes in marginally gravitationally unstable disks 554
2.3.4. Solar Nebula Removal 555
2.3.4.1. Observational Constraints on Disk Lifetimes 555
2.3.4.2. Removal Mechanisms 555
2.3.4.2.1. Inward flow onto protosun 555
2.3.4.2.2. UV photoevaporation by protosun 555
2.3.4.2.3. UV photoevaporation in Orion-like regions 556
2.3.4.2.4. Final scouring by widened stellar outflow 556
2.3.5. Summary 556
References 556
Chapter 2.4: Planet Formation 560
2.4.1. Introduction 560
2.4.2. The Protoplanetary Nebula and the First Solids 561
2.4.2.1. Protoplanetary Disks 561
2.4.2.2. Disk Evolution 561
2.4.2.3. The Solar Nebula 562
2.4.3. Planetesimals and the First Solids 562
2.4.3.1. Particle Motions 562
2.4.3.2. Chondritic Meteorites and their Components 563
2.4.3.3. Short-Lived Isotopes 564
2.4.3.4. Planetesimal Formation 564
2.4.4. Terrestrial Planet Formation 565
2.4.4.1. Runaway and Oligarchic Growth 565
2.4.4.2. Late-Stage Accretion and Giant Impacts 566
2.4.4.3. Planetary Compositions and Core Formation 566
2.4.4.4. Formation of the Moon 567
2.4.4.5. Water and the Terrestrial Planets 567
2.4.5. The Asteroid Belt 568
2.4.5.1. Formation of the Asteroid Belt 568
2.4.5.2. Asteroid Physical Evolution 569
2.4.6. Giant-Planet Formation 569
2.4.6.1. Giant-Planet Compositions 569
2.4.6.2. Formation of Gas Giant Planets 569
2.4.6.3. Formation of Uranus and Neptune 570
2.4.6.4. Planetary Migration and Scattering 570
2.4.6.5. Planetesimal-Driven Migration and the Nice Model 571
References 572
Chapter 2.5: The Geochemistry and Cosmochemistry of Impacts 578
2.5.1. Introduction: The Use of Geochemistry in Impact Studies 578
2.5.2. Background on Impact Craters and Processes 579
2.5.3. Methods 584
2.5.3.1. General Geochemistry: Major and Trace Elements 584
2.5.3.1.1. Sample preparation 585
2.5.3.2. Rb–Sr, Sm–Nd, and Pb Isotopes 585
2.5.3.3. Siderophile Element Studies 586
2.5.3.4. Osmium Isotopes 588
2.5.3.5. Chromium Isotopes 590
2.5.3.6. Tungsten Isotopes 591
2.5.3.7. Stable Isotopes 591
2.5.3.8. Other Methods 592
2.5.3.8.1. Helium-3 592
2.5.3.8.2. Beryllium-10 593
2.5.3.8.3. Remote sensing 593
2.5.3.8.4. Chromian spinels 593
2.5.3.8.5. x-Ray absorption near-edge spectroscopy 593
2.5.4. Examples 595
2.5.4.1. Meteorite Craters: Source Rocks and Impactites 595
2.5.4.2. Extraterrestrial Components in Impactites 596
2.5.4.2.1. Vredefort impact structure (South Africa) 599
2.5.4.2.2. Morokweng impact structure (South Africa) 600
2.5.4.2.3. Bosumtwi crater, Ghana 601
2.5.4.2.4. Other examples 602
2.5.4.3. Tektites 603
2.5.4.4. Libyan Desert Glass 606
2.5.4.5. K–T Boundary 607
2.5.4.6. Permian–Triassic Boundary 609
2.5.4.7. Early Archean Spherule Layers 610
2.5.4.8. The Earth's Earliest Impact History 612
2.5.5. Summary 614
Acknowledgments 615
References 615
Chapter 2.6: Mercury 624
2.6.1. Introduction: The Importance of Mercury 624
2.6.2. Pre-MESSENGER View of the Chemical Composition of Mercury 624
2.6.3. Pre-MESSENGER Models for the Origin of Mercury 625
2.6.3.1. Physical Models for Metal Enrichment in Mercury 625
2.6.3.2. High-Temperature Evaporation and Condensation Models for Mercury 625
2.6.3.3. Refractory-Volatile Mixtures 626
2.6.3.4. Formation of Mercury from Known Chondritic Meteorites 626
2.6.4. Results from the MESSENGER Mission 626
2.6.5. Evaluating Models for the Origin of Mercury 629
2.6.6. The Future for the Exploration of Mercury 629
Acknowledgments 630
References 630
Chapter 2.7: Venus 632
2.7.1. Brief History of Observations 632
2.7.1.1. Pre-Twentieth Century 632
2.7.1.2. The Twentieth Century to the Present Day 632
2.7.2. Overview of Important Orbital Properties 634
2.7.3. Atmosphere 635
2.7.3.1. Composition 635
2.7.3.1.1. Basic definitions and general remarks 635
2.7.3.1.2. Carbon, sulfur, and halogen gases 635
2.7.3.1.3. Water vapor 639
2.7.3.1.4. Nitrogen and noble gases 639
2.7.3.1.5. Isotopic composition 640
2.7.3.2. Thermal Structure and Greenhouse Effect 641
2.7.3.3. Clouds and Photochemical Cycles 641
2.7.3.4. Atmospheric Dynamics 643
2.7.3.5. Upper Atmosphere and Solar Wind Interactions 643
2.7.4. Surface and Interior 643
2.7.4.1. Geochemistry and Mineralogy 643
2.7.4.2. Atmosphere–Surface Interactions 645
2.7.4.2.1. Carbonate–silicate equilibria 646
2.7.4.2.2. Equilibria involving HCl and HF 646
2.7.4.2.3. Redox reactions involving Fe-bearing minerals 647
2.7.4.2.4. Minerals present in low radar emissivity regions 647
2.7.4.3. The Venus Sulfur Cycle and Climate Change 647
2.7.4.4. Topography and Geology 648
2.7.4.5. Interior 649
2.7.5. Summary of Key Questions 650
Acknowledgments 651
References 651
Chapter 2.8: The Origin and Earliest History of the Earth 654
2.8.1. Introduction 655
2.8.2. Observational Evidence and Theoretical Constraints Pertaining to the Nebular Environment from Which Earth Originated 655
2.8.2.1. Circumstellar Disks and the Solar Nebula 655
2.8.2.2. Earth-Like and Jupiter-Like Planets 656
2.8.2.3. Longevity of the Solar Nebula 657
2.8.2.4. Solar Mass Stars and Heating of the Inner Disk 658
2.8.3. The Dynamics of Accretion of the Earth 660
2.8.3.1. Introduction 660
2.8.3.2. Starting Accretion: Settling and Sticking of Dust at 1AU 660
2.8.3.3. Starting Accretion: Gravitational Instabilities 661
2.8.3.4. Runaway Growth 661
2.8.3.5. Migration 661
2.8.3.5.1. The Nice model 661
2.8.3.5.2. The Grand Tack hypothesis 662
2.8.3.6. Larger Collisions 662
2.8.4. Chemical and Isotopic Constraints on the Nature of the Components That Accreted to Form the Earth 663
2.8.4.1. Chondrites and the Composition of the Disk from Which Earth Accreted 663
2.8.4.2. Chondritic Component Models 665
2.8.4.3. Nonchondritic Refractory Lithophile Elements 666
2.8.4.4. Nonchondritic Moderately Volatile Lithophile Elements 666
2.8.4.5. Oxygen Isotopic Models and Volatile Losses 668
2.8.4.6. Compositional Models Based on Simple Theoretical Components 669
2.8.4.7. The `Hot Nebula´ Model 669
2.8.4.8. The `Hot Nebula´ Model and Heterogeneous Accretion 671
2.8.4.9. Nonradiogenic Isotopic Differences Between Silicate Reservoirs and Chondrites 672
2.8.4.9.1. Nucleosynthetic variations in nonvolatile elements 672
2.8.4.9.2. Mass-dependent fractionations in strongly lithophile elements 672
2.8.4.9.3. Mass-dependent fractionations in siderophile elements 673
2.8.5. Core Formation 674
2.8.5.1. Introduction 674
2.8.5.2. Magma Oceans 674
2.8.5.3. Early Core Growth 675
2.8.5.4. Core Formation Mechanisms 676
2.8.6. Lead and Tungsten Isotopes and the Timing, Rates, and Mechanisms of Accretion and Core Formation 677
2.8.6.1. Introduction: Uses and Abuses of Isotopic Models 677
2.8.6.2. Lead Isotopes 679
2.8.6.3. Tungsten Isotopes 680
2.8.7. Earth's Earliest Atmospheres and Hydrospheres 685
2.8.7.1. Introduction 685
2.8.7.2. Did Earth Once Have a Nebular Protoatmosphere? 685
2.8.7.3. Earth's Degassed Protoatmosphere 687
2.8.7.4. Loss of Earth's Earliest Atmosphere(s) 689
2.8.8. The Formation of the Moon 691
2.8.8.1. Background to Theories 691
2.8.8.2. Isotopic Evidence That the Moon Formed Late 692
2.8.8.3. Poorly Understood Facets of the Giant Impact Theory 692
2.8.8.4. A More Exact Age of the Moon 694
2.8.9. Mass Loss and Compositional Changes During Accretion 695
2.8.10. The Late Veneer 696
2.8.10.1. The Evidence for the Late Veneer 696
2.8.10.2. A Volatile-Depleted Late Veneer 698
2.8.10.3. Water and the Late Veneer 698
2.8.10.4. Earth–Moon Isotopic Similarities and the Late Veneer 699
2.8.11. Early Mantle and Crust 700
2.8.11.1. Introduction 700
2.8.11.2. Earth's Hadean Environment 700
2.8.11.3. Earth’s Hadean Crust – The Zircon Archive 701
2.8.11.4. Hafnium Isotopes 702
2.8.11.5. Early Mantle Heterogeneity Recorded in the 146Sm–142Nd and 182Hf–182W Systems 703
Acknowledgments 704
References 704
Chapter 2.9: The Moon 718
2.9.1. Introduction: The Lunar Context 718
2.9.2. The Lunar Geochemical Database 719
2.9.2.1. Artificially Acquired Samples 719
2.9.2.2. Lunar Meteorites 719
2.9.2.3. Remote-Sensing Data 720
2.9.3. Mare Volcanism 721
2.9.3.1. Classification of Mare Rocks 721
2.9.3.2. Chronology and Styles of Mare Volcanism 723
2.9.3.3. Mare Basalt Trace Element and Isotopic Trends 729
2.9.4. The Highland Crust: Impact Bombardment and Early Differentiation 732
2.9.4.1. Polymict Breccias and the KREEP Component 732
2.9.4.2. Bombardment History of the Moon 734
2.9.4.3. Impactor Residues: Siderophile and Fragmental 735
2.9.4.4. Pristine Highland Rocks: Distinctiveness of the Ferroan Anorthositic Suite 736
2.9.4.5. The Magma Ocean Hypothesis 740
2.9.4.6. Alternative Models 742
2.9.5. Water in the Moon 743
2.9.5.1. Traditional View of a Dry Moon 743
2.9.5.2. Water in Pyroclastic Glasses 744
2.9.5.3. Water in Apatite in Mare Basalts and KREEP-Related Samples 744
2.9.5.4. Water in the Lunar Mantle 745
2.9.5.5. Implications of Water in the Lunar Interior 745
2.9.6. The Bulk Composition and Origin of the Moon 746
Acknowledgments 747
References 747
Chapter 2.10: Mars 756
2.10.1. Geochemical Exploration of Mars 756
2.10.1.1. The Pace of Discovery 756
2.10.1.2. Planetary Geology Overview 757
2.10.2. Sources of Geochemical Data 757
2.10.2.1. Geologic Context for Geochemical Data Sets 757
2.10.2.2. Global Surface Chemistry from Orbiter Measurements 759
2.10.2.3. In Situ Chemical Analyses of Rocks and Soils by Landers and Rovers 760
2.10.2.4. Chemical Analyses of the Atmosphere 761
2.10.2.5. Chemical Analyses of Martian Meteorites 761
2.10.2.6. Geophysical Constraints on Chemistry of the Planet's Interior 762
2.10.3. Geochemistry of Planetary Differentiation 762
2.10.3.1. Bulk Planet Composition and Consistency with Geophysical Constraints 762
2.10.3.2. Geochemical Models for the Mantle 764
2.10.3.3. Geochemical Models for the Core 765
2.10.3.4. Geochemistry of the Crust 766
2.10.3.5. Radioisotope Ages of Planet Formation and Differentiation 770
2.10.4. Geochemistry of Magmatic Processes 771
2.10.4.1. Orbital Analyses of Volcanic Rock Compositions 771
2.10.4.2. Gusev, the Best Studied Igneous Province on Mars 772
2.10.4.3. Other Mars Igneous Rocks – Bounce Rock and Mars Pathfinder 772
2.10.4.4. Geochemistry and Geochronology of Martian Meteorites 773
2.10.4.5. Magma Petrogenesis 778
2.10.5. Geochemistry of Sedimentary and Alteration Processes 780
2.10.5.1. Some Sedimentological Context 780
2.10.5.2. Low-Temperature Weathering and Alteration 781
2.10.5.3. Geochemistry of Depositional Processes 783
2.10.5.4. Chemical Diagenesis 783
2.10.5.5. Hydrothermal Processes 784
2.10.5.6. The Burns Formation 785
2.10.5.7. Other Sediments and Sedimentary Rocks 787
2.10.5.8. Aqueous Geochemistry of Martian Soils 789
2.10.6. Organic Matter, Volatile Reservoirs, and Geochemical Cycles 789
2.10.6.1. Organic Compounds 789
2.10.6.2. Volatile Inventories and Reservoirs 791
2.10.6.3. Outgassing and Atmospheric Loss 792
2.10.6.4. Geochemical Cycles on Mars 793
2.10.7. Geochemical Changes with Time and Comparison with Earth 794
2.10.7.1. Magmatic Evolution 794
2.10.7.2. Sedimentary Evolution 794
2.10.7.3. Comparisons of Mars and Earth 796
2.10.8. Major Unresolved Problems 798
References 798
Chapter 2.11: Giant Planets 806
2.11.1. The Giant Planets in Relation to the Solar System 806
2.11.1.1. Basic Physical and Orbital Parameters 806
2.11.1.2. Discovery and Historical Investigation of the Giant Planets 807
2.11.2. Essential Determinants of the Physical Properties of the Giant Planets 808
2.11.2.1. How We Know the Giant Planets Contain Hydrogen and Helium 808
2.11.2.2. The Equation of State of Hydrogen and Helium as a Determinant of the Structure 809
2.11.2.3. The Thermal Infrared Emission of the Giant Planets and Implications for Evolution 810
2.11.2.4. The Interior Structure of the Giant Planets 812
2.11.2.5. Elemental and Isotopic Abundances 812
2.11.2.6. Atmospheric Dynamics and Magnetic Fields 813
2.11.3. Origin and Evolution of the Giant Planets 814
2.11.3.1. Basic Model for the Formation of the Planets from a Disk of Gas and Dust 814
2.11.3.2. Constraints from the Composition of the Giant Planets 814
2.11.4. Extrasolar Giant Planets 815
2.11.5. Major Unsolved Problems and Future Progress 815
References 816
Chapter 2.12: Major Satellites of the Giant Planets 818
2.12.1. Introduction 818
2.12.2. Cosmochemical Context 819
2.12.3. Bulk Composition 819
2.12.3.1. Bulk Density 819
2.12.3.2. Sources of Data 820
2.12.4. Surface Composition 820
2.12.4.1. Spectral Reflectance 820
2.12.4.2. Temperature and Atmospheres 821
2.12.4.3. Radiation Effects 821
2.12.5. The Jupiter System 821
2.12.5.1. General 821
2.12.5.2. Io 822
2.12.5.2.1. Surface composition and volcanism 822
2.12.5.2.2. Atmosphere and magnetospheric interactions 823
2.12.5.3. Ganymede and Callisto 824
2.12.5.3.1. Surface composition 824
2.12.5.3.2. Atmospheres and magnetospheric interactions 826
2.12.5.4. Europa 826
2.12.5.4.1. Surface composition 826
2.12.5.4.2. Atmosphere and magnetospheric interactions 827
2.12.6. The Saturn System 827
2.12.6.1. General 827
2.12.6.2. Iapetus 829
2.12.6.3. Titan 829
2.12.6.4. Enceladus 830
2.12.6.5. Magnetospheric Interactions 831
2.12.7. The Uranus System 831
2.12.7.1. General 831
2.12.8. The Neptune System – Triton 833
2.12.8.1. General 833
2.12.8.2. Composition 834
2.12.8.3. Atmosphere 835
2.12.9. Major Issues and Future Directions 835
References 836
Chapter 2.13: Comets 840
2.13.1. Introduction 840
2.13.2. Comet and Asteroid Comparisons 841
2.13.3. Comet Activity 842
2.13.4. Comet Types – Orbital Distinction 842
2.13.4.1. Major Comet Source Regions 843
2.13.4.2. The Oort Cloud 843
2.13.4.3. The Kuiper Belt 844
2.13.4.3.1. KBO terminology 844
2.13.4.3.2. KBO orbital distribution 844
2.13.5. Physical Evolution of Comets 845
2.13.5.1. Fragmentation 845
2.13.5.2. Crust/Mantle Formation 846
2.13.5.3. Strength and Structure of Cometary Materials 849
2.13.6. Major Component Composition 849
2.13.6.1. Water Ice 849
2.13.6.2. CO and Very Volatile Compounds 850
2.13.6.2.1. Full volatile composition 851
2.13.6.3. Dust and Rocks 852
2.13.6.3.1. Information from astronomical observations 852
2.13.6.3.2. Information from collected samples 853
2.13.6.3.2.1. Samples collected from active comets 854
2.13.6.3.2.2. Meteoritic samples 858
2.13.6.3.3. Information from in situ measurements at comet Halley 860
2.13.7. Diversity Among Comets 861
2.13.8. Conclusions 863
References 864
Chapter 2.14: Asteroids 870
2.14.1. Introduction 871
2.14.2. Background 871
2.14.3. Remote Observations 873
2.14.3.1. Reflectance Spectroscopy 873
2.14.3.2. Mineral Spectroscopy 874
2.14.3.3. Electronic Transitions 874
2.14.3.4. Vibrational Bands 875
2.14.3.5. Visual Albedo 876
2.14.3.6. Metallic Iron 877
2.14.3.7. Organics 877
2.14.3.8. Space Weathering 877
2.14.3.9. Determining Mineralogies 878
2.14.4. Taxonomy 879
2.14.4.1. A-Types 881
2.14.4.2. C-Complex 882
2.14.4.2.1. B-types 882
2.14.4.2.2. C-types 883
2.14.4.3. D-Types 884
2.14.4.4. K-Types 885
2.14.4.5. L-Types 885
2.14.4.6. O-Types 886
2.14.4.7. Q-Types 886
2.14.4.8. R-Types 886
2.14.4.9. S-Complex 887
2.14.4.9.1. S-types 887
2.14.4.9.2. Sa-types 888
2.14.4.9.3. Sq-types 888
2.14.4.9.4. Sr-types 889
2.14.4.9.5. Sv-types 889
2.14.4.10. T-Types 889
2.14.4.11. V-Types 889
2.14.4.12. X-Complex (E-Types, M-Types, and P-Types) 891
2.14.4.12.1. E-types 891
2.14.4.12.2. M-types 892
2.14.4.12.3. P-types 893
2.14.5. Spacecraft Missions 893
2.14.5.1. Galileo 893
2.14.5.2. Deep Space 1 894
2.14.5.3. NEAR Shoemaker 894
2.14.5.4. Stardust 896
2.14.5.5. Hayabusa 896
2.14.5.6. Rosetta 897
2.14.5.7. Dawn 898
2.14.5.8. OSIRIS-REx 898
2.14.5.9. 2008 TC3 and Almahata Sitta 899
2.14.6. Interesting Groups of Asteroids 899
2.14.6.1. Earth and Martian Trojans 899
2.14.6.2. Near-Earth Asteroids 899
2.14.6.3. Asteroid Families 900
2.14.6.3.1. Inner belt (∼2.06-2.50AU) 900
2.14.6.3.2. Middle belt (∼2.50-2.82AU) 902
2.14.6.3.3. Outer belt (~2.82-3.28AU) 903
2.14.6.3.4. Trojan region (~5.2AU) 904
2.14.7. Taxonomic Distribution of Taxonomic Types 904
2.14.7.1. Earlier Work 904
2.14.7.2. Recent Work 905
2.14.7.3. Formation of Material in the Solar Nebula 905
2.14.7.4. Origin of the Taxonomic Distribution 906
2.14.8. Conclusions and Future Work 907
Acknowledgments 908
References 909
e9780080983004v3 921
e9780080983004v4 1525
e9780080983004v5 2358
Cover 2358
The Atmosphere 2361
Copyright 2362
In Memoriam 2363
Heinrich Dieter Holland (1927–2012) 2365
Karl Karekin Turekian (1927–2013) 2367
References 2369
Dedication 2371
Contents 2373
Executive Editors’ Foreword to the Second Edition 2375
Contributors 2379
Volume Editor’s Introduction 2381
Chapter 5.1: Ozone, Hydroxyl Radical, and Oxidative Capacity 2385
5.1.1. Introduction 2385
5.1.2. Evolution of Oxidizing Capability 2387
5.1.2.1. Prebiotic Atmosphere 2387
5.1.2.2. Preindustrial Atmosphere 2387
5.1.3. Fundamental Reactions 2388
5.1.3.1. Troposphere 2388
5.1.3.2. Stratosphere 2390
5.1.4. Meteorological Influences 2391
5.1.5. Human Influences 2391
5.1.5.1. Industrial Revolution 2391
5.1.5.2. Future Projections 2392
5.1.6. Measuring Oxidation Rates 2393
5.1.6.1. Direct Measurement 2393
5.1.6.2. Indirect Measurement 2395
5.1.7. Atmospheric Models and Observations 2399
5.1.8. Conclusions 2400
References 2400
Chapter 5.2: Tropospheric Halogen Chemistry 2403
5.2.1. Introduction 2403
5.2.2. Main Reaction Mechanisms 2405
5.2.3. Tropospheric Ozone Depletion at Polar Sunrise 2410
5.2.3.1. Main Features of Polar ODEs 2411
5.2.3.2. Satellite Observations 2413
5.2.3.3. Sources of Active Bromine 2414
5.2.3.4. Chlorine Chemistry in ODEs and Br-Cl Interactions 2416
5.2.3.5. The Role of Iodine in ODEs 2417
5.2.3.6. Halogen-Mercury Interactions 2418
5.2.3.7. Model Studies 2418
5.2.4. Marine Boundary Layer 2419
5.2.4.1. Sea Salt Aerosol 2419
5.2.4.2. Reactive Chlorine 2422
5.2.4.3. Reactive Bromine 2423
5.2.4.3.1. Field observations 2423
5.2.4.3.2. Model results 2425
5.2.4.4. Reactive Iodine 2427
5.2.4.5. Surface-Segregation Effects 2432
5.2.4.6. Halogen-Sulfur Interactions 2433
5.2.5. Salt Lakes 2435
5.2.6. Volcanoes 2436
5.2.7. Free Troposphere 2438
5.2.8. Additional Sources of Reactive Halogens 2441
5.2.8.1. Industry and Fossil Fuel Burning 2441
5.2.8.2. Biomass Burning and Dust Plumes 2441
5.2.8.3. Organic Halogen Compounds 2442
5.2.8.4. Inventories 2443
5.2.9. Summary 2443
Acknowledgments 2444
References 2444
Chapter 5.3: Global Methane Biogeochemistry 2455
5.3.1. Introduction 2455
5.3.2. Global Methane Budget 2456
5.3.2.1. Global Methane Increase 2456
5.3.2.2. Methane Budget with Constraints 2458
5.3.2.3. Gross Methane Budget 2459
5.3.2.4. Atmospheric Models 2459
5.3.2.5. Stable Isotopes 2460
5.3.3. Terrestrial Studies 2462
5.3.3.1. Flux Time Series 2462
5.3.3.2. Flux Transects 2462
5.3.3.3. Process-Level Studies 2462
5.3.3.3.1. Vegetation removal experiments 2462
5.3.3.3.2. Methane flux: net ecosystem exchange relationship 2463
5.3.3.4. Scaling Up 2463
5.3.3.5. Wetland Soil Models 2463
5.3.3.6. Animals and Landfills 2464
5.3.3.7. Microbial Soil Oxidation 2464
5.3.3.7.1. Moist soils 2464
5.3.3.7.2. Waterlogged soils 2466
5.3.3.7.3. Nitrogen fertilization and disturbance 2466
5.3.3.7.4. Effects of drying on paddy soils 2466
5.3.3.8. New Techniques 2466
5.3.4. Marine Studies 2467
5.3.4.1. Ocean Methane Source 2467
5.3.4.2. Aerobic Methane Oxidation 2467
5.3.4.3. Anaerobic Methane Oxidation 2468
5.3.4.4. Methane Clathrate Hydrates 2469
5.3.4.4.1. Methane hydrate reservoir 2469
5.3.4.4.2. Methane hydrate decomposition rates 2469
5.3.4.4.3. How can we estimate the rate of CH4 clathrate decomposition? 2469
5.3.4.4.4. Natural 14C-CH4 measurements 2470
5.3.4.5. Other Ocean Methane Sources 2470
5.3.5. Ice Cores 2472
5.3.6. Future Work 2473
Acknowledgments 2473
References 2474
Chapter 5.4: Tropospheric Aerosols 2479
5.4.1. Introduction 2480
5.4.1.1. Overview 2480
5.4.1.2. Sources 2482
5.4.1.3. Atmospheric Residence, Transport, and Removal 2483
5.4.1.4. Primary versus Secondary Particles and Particle Nucleation 2483
5.4.1.5. Spatial Homogeneity 2483
5.4.2. Aerosol Properties 2485
5.4.2.1. Number and Mass Distributions 2485
5.4.2.2. Composition 2489
5.4.2.3. Optical Properties 2489
5.4.3. Measurement of Aerosol Properties 2490
5.4.3.1. Particle Sizes, Size Distributions, and Number and Mass Concentrations 2490
5.4.3.2. Composition 2493
5.4.3.2.1. Bulk composition 2493
5.4.3.2.2. Off-line measurements of single-particle compositions 2495
5.4.3.2.3. On-line measurements 2497
5.4.3.3. Hygroscopicity 2498
5.4.3.4. Optical Properties 2501
5.4.4. Spatial and Temporal Variation of Tropospheric Aerosols 2501
5.4.4.1. Remote Sensing of Aerosol Using Passive Light Sources 2501
5.4.4.2. Remote Sensing of Aerosol Using an Active Light Source 2503
5.4.5. Aerosol Processes 2506
5.4.5.1. Emissions 2506
5.4.5.2. Gas-to-Particle Conversions and other Atmospheric Reactions 2507
5.4.5.3. Long-Range Transport 2509
5.4.5.4. Removal of Particles from the Atmosphere 2509
5.4.6. Representation of Aerosol Processes in Chemical Transport and Transformation Models 2509
5.4.7. Aerosol Influences on Climate and Climate Change 2512
5.4.7.1. Background 2512
5.4.7.2. Direct Aerosol Shortwave Radiative Forcing 2513
5.4.7.3. Clouds and Indirect Effects 2515
5.4.7.4. Aerosol Forcing Relative to other Forcings of Climate Change over the Industrial Period 2516
5.4.8. Final Thoughts 2517
Acknowledgments 2517
References 2518
Chapter 5.5: Biomass Burning: The Cycling of Gases and Particulates from the Biosphere to the Atmosphere 2523
5.5.1. Introduction: Biomass Burning, Geochemical Cycling, and Global Change 2523
5.5.2. Global Impacts of Biomass Burning 2524
5.5.3. Enhanced Biogenic Soil Emissions of Nitrogen and Carbon Gases: A Postfire Effect 2525
5.5.4. The Geographical Distribution of Biomass Burning 2525
5.5.5. Biomass Burning in the Boreal Forests 2526
5.5.6. Estimates of Global Burning and Global Gaseous and Particulate Emissions 2528
5.5.7. Calculation of Gaseous and Particulate Emissions from Fires 2528
5.5.8. Biomass Burning and Atmospheric Nitrogen and Oxygen 2529
5.5.9. Atmospheric Chemistry Resulting from Gaseous Emissions from the Fires 2529
5.5.9.1. Chemistry of the Hydroxyl Radical (OH) in the Troposphere 2529
5.5.9.2. Production of O3 in the Troposphere 2530
5.5.9.2.1. CO oxidation chain 2530
5.5.9.2.2. Methane oxidation chain 2530
5.5.9.3. Chemistry of Nitrogen Oxides in the Troposphere 2530
5.5.9.4. Chemistry of the Stratosphere 2530
5.5.10. A Case Study of Biomass Burning: The 1997 Wildfires in Southeast Asia 2530
5.5.11. Results of Calculations: Gaseous and Particulate Emissions from the Fires in Kalimantan and Sumatra, Indonesia, Augus 2531
5.5.12. The Impact of the Southeastern Asia Fires on the Composition and Chemistry of the Atmosphere 2532
5.5.12.1. Modeling O3 and CO over Indonesia 2532
5.5.12.2. Measurements over Indonesia 2533
5.5.12.3. Measurements between Singapore and Japan 2533
5.5.12.4. Measurements over Hawaii 2533
References 2533
Chapter 5.6: Mass-Independent Isotopic Composition of Terrestrial and Extraterrestrial Materials 2535
5.6.1. General Introduction 2535
5.6.2. Applications of Mass-Independent Isotopic Effects 2536
5.6.3. Isotopic Anomalies in Extraterrestrial Atmospheres a 2541
5.6.3.1. Physical Chemistry of Mass-Independent Isotope Effects 2542
5.6.4. Atmospheric Observations of Mass-Independent Isotopic Compositions 2544
5.6.4.1. Stratospheric and Tropospheric Ozone 2544
5.6.4.2. Stratospheric Carbon Dioxide 2545
5.6.5. Atmospheric Aerosol Sulfate: Present Earth's Atmosphere 2546
5.6.6. Mass-Independent Oxygen Isotopic Composition of Paleosulfates 2547
5.6.7. Atmospheric Mass-Independent Molecular Oxygen 2549
5.6.8. The Atmospheric Aerosol Nitrate and the Nitrogen Cycle 2549
5.6.9. Mass-Independent Oxygen Isotopic Compositions in Solids to Reflect Atmospheric Change: Earth and Mars 2550
5.6.10. Sulfur in the Earth's Earliest Atmosphere: The Rise of Oxygen 2553
5.6.11. Sulfur Isotopic Fractionation Processes in other Solar System Objects 2555
5.6.12. Concluding Comments 2555
Acknowledgments 2556
References 2556
Chapter 5.7: The Stable Isotopic Composition of Atmospheric CO2 2563
5.7.1. Introduction 2563
5.7.2. Methodology and Terminology 2564
5.7.3. delta13C in Atmospheric CO2 2566
5.7.3.1. Fossil Fuel Input 2569
5.7.3.2. Exchange with the Ocean 2570
5.7.3.3. Ocean Biology 2570
5.7.3.4. Atmosphere-Ocean Disequilibrium 2571
5.7.3.5. Photosynthetic CO2 Uptake on Land 2572
5.7.3.6. CO2 Release in Respiration 2575
5.7.3.7. The Land Disequilibrium 2576
5.7.3.8. Ecosystem Discrimination 2576
5.7.3.9. Incorporating Isotopes in Flux Measurements 2579
5.7.4. delta18O in CO2 2579
5.7.4.1. The Soil Component 2581
5.7.4.2. The Leaf Component 2582
5.7.4.3. The Minor Components 2584
5.7.4.3.1. The ocean component 2584
5.7.4.3.2. Anthropogenic emissions 2584
5.7.4.3.3. Troposphere-stratosphere exchange 2585
5.7.4.4. Spatial and Temporal Patterns 2585
5.7.5. Clumped Isotopes 2587
5.7.5.1. Clumped Isotopes in Atmospheric CO2 2588
5.7.5.1.1. Delta47 in combustion and background air 2588
5.7.5.1.2. Seasonal variations in Delta47 2589
5.7.5.1.3. Delta47 in stratospheric CO2 2589
5.7.6. Concluding Remarks 2589
Acknowledgments 2590
References 2590
Chapter 5.8: Water Stable Isotopes: Atmospheric Composition and Applications in Polar Ice Core Studies 2597
5.8.1. Introduction 2598
5.8.2. Present-Day Observations 2601
5.8.2.1. Deuterium and Oxygen-18 in Precipitation 2601
5.8.2.2. Oxygen-17 and 17O-Excess 2602
5.8.2.3. Water Isotopes in the Atmosphere 2603
5.8.3. Physics of Water Isotopes 2605
5.8.3.1. Fractionation Processes 2605
5.8.3.2. Growth of Individual Elements 2606
5.8.3.3. Isotopic Processes in Clouds 2607
5.8.4. Modeling the Water Isotope Atmospheric Cycle 2609
5.8.4.1. Rayleigh-Type Models 2609
5.8.4.2. Isotopic Models of Higher Complexity 2610
5.8.4.3. Isotope Modeling with GCMs 2610
5.8.4.3.1. Early IGCMs 2611
5.8.4.3.2. Recent simulations 2612
5.8.4.3.3. Nudged and regional isotopic models 2615
5.8.5. Ice Core Isotopic Records 2617
5.8.6. The Conventional Approach for Interpreting Water Isotopes in Ice Cores 2621
5.8.7. Alternative Estimates of Temperature Changes in Greenland and Antarctica 2622
5.8.7.1. Greenland 2623
5.8.7.2. Antarctica 2624
5.8.8. What Do People Learn from GCMs? 2625
5.8.8.1. Influence of the Seasonality of Precipitation 2625
5.8.8.2. Estimating the Temporal Slope from IGCMs 2626
5.8.9. Influence of the Oceanic Source of Polar Precipitation 2629
5.8.10. Conclusion 2632
Acknowledgments 2633
References 2633
Chapter 5.9: Radiocarbon 2641
5.9.1. Introduction 2641
5.9.2. Production and Distribution of 14C 2641
5.9.3. Measurements of Radiocarbon 2641
5.9.4. Timescale Calibration 2642
5.9.4.1. Calibration Based on Tree Rings 2642
5.9.4.2. Calibration Based on Corals 2645
5.9.4.3. Other Calibration Schemes 2645
5.9.4.4. Cause of the Long-Term 14C Decline 2645
5.9.4.5. Change in Ocean Operation 2646
5.9.5. Radiocarbon and Solar Irradiance 2647
5.9.6. The `Bomb´ 14C Transient 2649
5.9.6.1. Radiocarbon as a Tracer for Ocean Uptake of Fossil Fuel CO2 2650
5.9.6.2. Ocean Uptake of 14CO2 and CO2 2650
5.9.6.3. Terrestrial Uptake of 14CO2 and CO2 2652
5.9.7. Future Applications 2653
References 2653
Chapter 5.10: Natural Radionuclides in the Atmosphere 2657
5.10.1. Introduction 2657
5.10.2. Radon and Its Daughters 2657
5.10.2.1. Flux of Radon from Soils to the Atmosphere 2657
5.10.2.2. Flux of Radon from the Oceans 2660
5.10.2.3. Distribution of Radon in the Atmosphere 2660
5.10.2.4. Short-Lived Daughters of 222Rn in the Atmosphere 2661
5.10.2.5. 210Pb and Its Progeny 2661
5.10.2.5.1. Distribution of 210Pb in the atmosphere 2661
5.10.2.5.2. Flux of 210Pb to the Earth's surface 2662
5.10.2.5.3. Residence time of 210Pb and associated species in the atmosphere 2663
5.10.2.5.4. Use of 210Pb as surrogate for other atmospheric components 2665
5.10.3. Cosmogenic Nuclides 2667
5.10.3.1. Atmospheric Production of Cosmogenic Nuclides 2667
5.10.3.2. 7Be and 10Be 2668
5.10.3.3. 35S and the Kinetics of SO2 Oxidation and Deposition 2668
5.10.3.4. Phosphorus Isotopes 2670
5.10.4. Coupled Lead-210 and Beryllium-7 2670
5.10.4.1. Temporal and Spatial Variation 2670
5.10.4.2. Application of the Coupled 7Be-210Pb System to Sources of Atmospheric Species 2671
References 2672
Chapter 5.11: Carbonaceous Particles: Source-Based Characterization of Their Formation, Composition, and Structures 2675
5.11.1. Introduction 2676
5.11.1.1. Classifying Types of Carbonaceous Particles by Source 2676
5.11.1.2. Four Categories of Carbonaceous Particles 2678
5.11.2. Carbonaceous Particles from Fossil Fuel Combustion 2681
5.11.2.1. FFC Carbonaceous Particle Formation 2682
5.11.2.2. FFC Carbonaceous Particle Chemical Composition 2683
5.11.2.3. FFC Carbonaceous Particle Structure 2684
5.11.3. Biofuel and Biomass Burning Carbonaceous Particles 2684
5.11.3.1. BBB Carbonaceous Particle Formation 2684
5.11.3.2. BBB Carbonaceous Particle Chemical Composition 2685
5.11.3.3. BBB Carbonaceous Particle Structure 2686
5.11.4. Carbonaceous Particles from Biogenic Vapor Fluxes 2687
5.11.4.1. BVF Carbonaceous Particle Formation 2687
5.11.4.2. BVF Carbonaceous Particle Chemical Composition 2687
5.11.4.3. BVF Carbonaceous Particle Structure 2689
5.11.5. Carbonaceous Particles from Mechanically Lofted Biological Componen 2689
5.11.5.1. MBC Carbonaceous Particle Formation 2689
5.11.5.2. MBC Carbonaceous Particle Chemical Composition 2690
5.11.5.3. MBC Carbonaceous Particle Structures 2691
5.11.6. Impacts of Carbonaceous Particle on the Earth System 2691
5.11.6.1. Physical Properties of Carbonaceous Particles 2691
5.11.6.2. Global and Regional Modeling of Current and Future Carbonaceous Particles 2692
Appendix A. Measurement Techniques for Carbonaceous Particles 2692
Acknowledgments 2694
References 2695
Chapter 5.12: Ocean-Derived Aerosol and Its Climate Impacts 2701
5.12.1. Introduction 2701
5.12.2. Ocean-Derived Aerosol Production Mechanisms 2701
5.12.3. Radiative Effects of Ocean-Derived Aerosol 2703
5.12.3.1. Aerosol Direct Effects 2703
5.12.3.2. Aerosol-Cloud Interactions 2703
5.12.4. Sources and Composition of Ocean-Derived CCN 2704
5.12.4.1. The Dimethylsulfide Source of Ocean-Derived CCN 2704
5.12.4.1.1. Production of DMS-derived CCN 2705
5.12.4.2. The Sea Spray Source of Ocean-Derived CCN 2706
5.12.4.2.1. Sea salt aerosol 2706
5.12.4.2.2. Organic aerosol 2706
5.12.5. The MBL CCN Budget 2709
5.12.5.1. Production Fluxes of Sea Spray Aerosol 2709
5.12.6. The CLAW Hypothesis 2711
5.12.7. Concluding Comments 2712
Acknowledgments 2712
References 2712
Chapter 5.13: Aerosol Hygroscopicity: Particle Water Content and Its Role in Atmospheric Processes 2715
5.13.1. Introduction 2716
5.13.2. Methods for the Measurement of Aerosol Water Contents 2717
5.13.2.1. Instruments Operating Below Water Saturation 2717
5.13.2.1.1. Approaches using microscopy 2718
5.13.2.1.2. Electrodynamic balance 2719
5.13.2.1.3. Humidified tandem differential mobility analyzers 2719
5.13.2.1.4. Optical humidified/dry measurements (f(RH)) 2720
5.13.2.2. Instruments Operating Above Water Saturation 2722
5.13.2.3. Water Uptake by Adsorption 2723
5.13.3. Parameterizations of Aerosol Hygroscopicity 2724
5.13.3.1. Diameter Growth Factor (g(RH)) Fits 2724
5.13.3.2. The Hygroscopicity Parameter, kappa 2725
5.13.3.3. Fits for f(RH) 2726
5.13.3.4. Fits for Adsorbed Water Contents 2726
5.13.4. Laboratory Measurements for Selected Aerosol Types 2727
5.13.4.1. Measurements of Aerosol Water Contents 2727
5.13.4.1.1. Inorganic ionic species 2727
5.13.4.1.2. Organic species 2728
5.13.4.1.3. Multicomponent particles 2729
5.13.4.1.4. Dust 2730
5.13.4.1.5. Soot particles 2730
5.13.4.1.6. Biological particles 2733
5.13.4.2. Optical Measurements 2733
5.13.5. Observations of Aerosol Water Content and Atmospheric Implications 2734
5.13.5.1. g(RH) Observations 2734
5.13.5.2. CCN-Derived kappa Observations 2736
5.13.5.3. f(RH) Observations 2736
5.13.5.4. Atmospheric Implications 2738
Acknowledgments 2739
References 2739
Chapter 5.14: The Stable Isotopic Composition of Atmospheric O2 2747
5.14.1. Introduction 2747
5.14.2. Methodology and Terminology 2748
5.14.2.1. Abundance and Fractionation of Oxygen Isotopes 2748
5.14.2.1.1. Isotopic fractionation 2748
5.14.2.2. Relationships between Fractionations of 17O/16O and 18O/16O 2749
5.14.3. 18O/16O Ratios in Atmospheric O2 2750
5.14.3.1. The Dole Effect and Its Magnitude 2750
5.14.3.2. Processes Influencing the Dole Effect 2750
5.14.3.2.1. Biological O2 consumption 2750
5.14.3.2.2. Photosynthetic O2 production 2753
5.14.3.2.3. Hydrologic processes 2755
5.14.3.2.4. Stratospheric photochemical reactions 2756
5.14.3.3. Global Budgets of Processes Influencing the Dole Effect 2757
5.14.3.4. Temporal Variations in the Dole Effect 2758
5.14.4. Oxygen-17 and Oxygen-18 in Atmospheric O2 2760
5.14.4.1. Mass-Independent Fractionation and Biological Normalization 2760
5.14.4.2. Temporal Variations in 17O/16O and 18O/16O 2762
References 2764
Chapter 5.15: Studies of Recent Changes in Atmo 2769
5.15.1. Introduction 2769
5.15.2. Overview of the Large-Scale Varia 2770
5.15.2.1. Long-Term Trends 2770
5.15.2.2. Seasonal Cycles 2772
5.15.2.3. Atmospheric Potential Oxygen 2773
5.15.3. Measurement Methods 2773
5.15.4. O2-Based Global Carbon Budgets 2774
5.15.4.1. Budget Equations 2774
5.15.4.2. Updated Budget for Recent Deca 2775
5.15.4.3. Updated Budgets Discussion 2776
5.15.4.4. Oxidative Ratios of the Long-T 2777
5.15.4.5. Nitrogen Cycle Perturbations 2778
5.15.4.6. Ocean O2 and N2 Outgassing 2779
5.15.5. Seasonal Cycles in APO 2780
5.15.6. Interannual Variability in APO 2781
5.15.7. Interhemispheric Gradient in O2/N2 and APO 2782
5.15.8. Diurnal and Other Shorter-Term 2784
5.15.9. Future Outlook 2785
Acknowledgments 2786
References 2786
Chapter 5.16: Fluorine-Containing Greenhouse Gases 2789
5.16.1. Introduction 2789
5.16.2. Global Observations 2789
5.16.2.1. Surface-Based Observational Networks 2789
5.16.2.2. Instruments and Calibration 2791
5.16.2.3. Observed Mole Fractions and Trends 2792
5.16.2.3.1. Trends in Montreal Protocol gases and their replacements 2792
5.16.2.3.2. Trends in Kyoto Protocol gases 2792
5.16.3. Global Cycles 2793
5.16.3.1. Anthropogenic Sources, Atmospheric Circulation and Atmospheric Chemistry 2793
5.16.3.2. Flux Estimation Techniques Using Models and Observations 2795
5.16.3.3. Source, Sink, and Lifetime Estimates 2796
5.16.4. Environmental Impacts, Current Trends and Emission Policies 2797
5.16.4.1. Climate Forcing and the Montreal and Kyoto Protocols 2797
5.16.4.2. Ozone Destruction and Montreal Protocol 2798
5.16.5. Verification of Future National Emission Reports Using Observations 2798
5.16.6. Conclusions 2799
Acknowledgments 2799
References 2799
e9780080983004v6 2803
e9780080983004v7 3238
Front Cover 3238
Surface and Ground Water, Weathering and Soils 3241
Copyright 3242
In Memoriam 3243
Heinrich Dieter Holland (1927–2012) 3245
Karl Karekin Turekian (1927–2013) 3247
References 3249
Dedication 3251
Contents 3253
Executive Editors’ Foreword to the Second Edition 3255
Contributors 3259
Volume Editor’s Introduction 3261
Chapter 7.1: Soil Formation 3263
7.1.1. Introduction 3263
7.1.2. What Is Soil? 3263
7.1.3. Geographical Access to Soil Data 3264
7.1.4. Conceptual Partitioning of the Earth Surface 3265
7.1.4.1. Stable Landforms 3265
7.1.4.2. Erosional Landscapes 3271
7.1.5. The Human Dimension of Soil Formation 3274
7.1.5.1. Accelerated Soil Formation Under Agriculture 3277
7.1.6. Soil Geochemistry in Deserts 3280
7.1.7. Soil Formation on Mars 3283
7.1.8. Concluding Remarks 3287
References 3287
Chapter 7.2: Modeling Low-Temperature Geochemical Processes 3289
7.2.1. Introduction 3289
7.2.1.1. What Is a Model? 3290
7.2.2. Modeling Concepts and Definitions 3291
7.2.2.1. Modeling Concepts 3291
7.2.2.2. Modeling Definitions 3291
7.2.2.3. Inverse Modeling, Mass Balancing, and Mole Balancing 3291
7.2.3. Solving the Chemical Equilibrium Problem 3293
7.2.4. Historical Background to Geochemical Modeling 3294
7.2.5. The Problem of Activity Coefficients 3295
7.2.5.1. Activity Coefficients 3295
7.2.5.2. Saturation Indices 3296
7.2.6. Geochemical Databases 3296
7.2.6.1. Thermodynamic Databases 3297
7.2.6.2. Kinetic Databases 3298
7.2.6.3. Electrolyte Databases 3298
7.2.7. Geochemical Codes 3298
7.2.7.1. USGS Codes 3298
7.2.7.2. LLNL/LBNL Codes 3299
7.2.7.3. Miami Code 3299
7.2.7.4. The Geochemist's Workbench™ 3300
7.2.7.5. REDEQL–MINTEQ Codes 3300
7.2.7.6. Waterloo Codes 3301
7.2.7.7. Harvie–Møller–Weare Code 3301
7.2.7.8. FREZCHEM Code 3301
7.2.7.9. Windermere Humic Aqueous Model Codes 3301
7.2.7.10. Additional Codes 3302
7.2.8. Water–Rock Interactions 3303
7.2.8.1. Aqueous Speciation 3303
7.2.8.2. Sorption Reactions 3304
7.2.8.3. Aqueous Redox Kinetics and Microbial Growth 3304
7.2.8.4. Model Simulations of Mineral Reactions 3306
7.2.8.4.1. Which minerals reach solubility equilibrium? 3306
7.2.8.4.2. Calcite solubility 3308
7.2.8.4.3. Pyrite oxidation 3308
7.2.8.4.4. Pyrite oxidation with calcite dissolution and neutralization 3310
7.2.8.4.5. Seawater–groundwater mixing 3312
7.2.8.4.6. Madison regional limestone aquifer 3312
7.2.8.5. Reactive-Transport Modeling in Streams 3315
7.2.8.6. Reactive-Transport Modeling in Groundwater 3317
7.2.8.7. Geochemical Modeling of Catchments 3317
7.2.8.8. Evaporation of Seawater 3318
7.2.8.9. Reliability of Geochemical Model Simulations 3318
7.2.9. Final Comments 3320
Acknowledgments 3322
References 3322
Chapter 7.3: Reaction Kinetics of Primary Rock-Forming Minerals under Ambient Conditions 3331
7.3.1. Introduction 3331
7.3.2. Experimental Techniques for Dissolution Measurements 3334
7.3.2.1. Chemical Reactors 3334
7.3.2.2. Interpretation and Extrapolation of Rate Data 3335
7.3.3. Mechanisms of Dissolution 3338
7.3.3.1. Models for Dissolution Based on Surface Topography 3338
7.3.3.2. Carbonate Dissolution Mechanism 3338
7.3.3.3. Silicate and Oxide Dissolution Mechanisms 3339
7.3.3.3.1. Nonstoichiometric dissolution 3339
7.3.3.3.2. Surface complexation models 3341
7.3.3.3.3. Oelkers–Schott model 3344
7.3.3.3.4. Mechanism of dissolution of redox-sensitive silicates 3345
7.3.4. Surface Area 3345
7.3.4.1. BET and Geometric Surface Area 3345
7.3.4.2. Reactive Surface Area 3347
7.3.5. Rate Constants as a Function of Mineral Composition 3348
7.3.5.1. Silica 3349
7.3.5.2. Feldspars 3349
7.3.5.3. Nonframework Silicates 3349
7.3.5.4. Carbonates 3351
7.3.6. Temperature Dependence 3352
7.3.6.1. Activation Energy 3352
7.3.6.2. Temperature and the Effect of Solution Chemistry 3354
7.3.7. Chemistry of Dissolving Solutions 3354
7.3.7.1. Inorganic Species 3354
7.3.7.2. Dissolved Carbon Dioxide 3357
7.3.7.3. Ligand Effects 3358
7.3.7.3.1. Models of ligand-promoted dissolution 3358
7.3.7.3.2. Ligand-promoted dissolution of individual minerals 3359
7.3.7.3.3. Complex ligands 3360
7.3.8. Chemical Affinity 3360
7.3.8.1. Rate Laws Linear in ∆G near Equilibrium 3360
7.3.8.2. Rate Laws Nonlinear in ∆G near Equilibrium 3361
7.3.8.3. Models Based on Surface Topography 3363
7.3.9. Duration of Dissolution 3365
7.3.10. Conclusion 3366
Acknowledgments 3367
References 3367
Chapter 7.4: Natural Weathering Rates of Silicate Minerals 3377
7.4.1. Introduction 3378
7.4.2. Defining Natural Weathering Rates 3379
7.4.3. Mass Changes Related to Chemical Weathering 3380
7.4.3.1. Bulk Compositional Changes in Regoliths 3381
7.4.3.1.1. Weathering indices 3381
7.4.3.1.2. Mass transfer 3383
7.4.3.1.3. Profile categories 3385
7.4.3.1.4. Time evolution of profiles 3386
7.4.3.1.5. Utilization of soil chronosequences 3387
7.4.3.1.6. Steady-state denudation and weathering profile development 3389
7.4.3.2. Changes Based on Solute Compositions 3390
7.4.3.2.1. Characterization of fluid transport 3390
7.4.3.2.2. Weathering based on solutes in soils 3391
7.4.3.2.3. Weathering based on solutes in groundwater 3392
7.4.3.2.4. Weathering based on surface water solutes 3393
7.4.4. Normalization of Weathering to Regolith Surface Area 3393
7.4.4.1. Definitions of Natural Surface Areas 3394
7.4.4.2. Measurements of Specific Surface Areas 3396
7.4.4.3. Surface Roughness 3397
7.4.5. Tabulations of Weathering Rates of Some Common Silicate Minerals 3397
7.4.5.1. Elemental Weathering Fluxes 3397
7.4.5.2. Mineral Weathering Fluxes 3397
7.4.5.3. Specific Mineral Weathering Rates 3398
7.4.6. Time as a Factor in Natural Weathering 3398
7.4.6.1. Comparison of Contemporary and Geologic Rates 3398
7.4.7. Factors Influencing Natural Weathering Rates 3402
7.4.7.1. Mineral Weatherability 3402
7.4.7.2. Solute Chemistry and Saturation States 3403
7.4.7.3. Coupling the Effect of Hydrology and Chemical Weathering 3405
7.4.7.3.1. Low permeability 3406
7.4.7.3.2. High permeability 3408
7.4.7.4. Role of Climate on Chemical Weathering 3409
7.4.7.4.1. Temperature 3409
7.4.7.4.2. Precipitation and recharge 3410
7.4.7.4.3. Coupling climate effects 3410
7.4.7.5. Role of Physical Weathering 3410
7.4.8. Summary 3412
References 3413
Chapter 7.5: Geochemical Weathering in Glacial and Proglacial Environments 3419
7.5.1. Introduction 3419
7.5.2. Basic Glaciology and Glacier Hydrology 3420
7.5.2.1. Glaciers, Ice Caps, and Ice Sheets 3421
7.5.2.1.1. Cold or warm ice at the bed? 3422
7.5.2.1.2. Sources of water and flow paths 3422
7.5.2.1.3. Rock:water ratios and rock-water contact times 3423
7.5.2.2. The Proglacial Zone 3423
7.5.2.2.1. Broad definition – zone of ice advance and retreat 3423
7.5.2.2.2. Permafrost 3424
7.5.2.2.3. Seasonal freezing 3424
7.5.2.2.4. Evapoconcentration 3424
7.5.3. Composition of Glacial Runoff 3424
7.5.3.1. General Features in Comparison with Global Riverine Runoff 3424
7.5.3.2. Relation to Lithology 3425
7.5.3.3. Chemical Erosion Rates 3425
7.5.3.4. pH, pCO2 and pO2 3425
7.5.3.5. 87Sr/86Sr Ratios 3425
7.5.3.6. Ge/Si Ratios 3425
7.5.3.7. δ18O, δ13CDIC, δ34S, and δ18O–SO4 3427
7.5.3.8. Nutrients 3428
7.5.4. Geochemical Weathering Reactions in Glaciated Terrain 3428
7.5.4.1. Trace Reactive Bedrock Components are Solubilized 3428
7.5.4.2. Carbonate and Silicate Hydrolysis 3428
7.5.4.3. Cation Exchange 3428
7.5.4.4. Carbonate and Silicate Dissolution – Sources of CO2 and Strong Acids 3428
7.5.4.5. Sulfide Oxidation – Using O2 and Fe(III) 3428
7.5.4.6. Oxidation of Bedrock Organic Matter, Sulfate Reduction, and Onward to Methanogenesis&DEL i 3429
7.5.4.7. Nutrients from Glacial Flour 3429
7.5.4.8. Other Lithologies 3430
7.5.4.9. Little Necessity for Atmospheric CO2 3430
7.5.5. Geochemical Weathering Reactions in the Proglacial Zone 3430
7.5.5.1. Similarities with Subglacial Environments 3430
7.5.5.2. Evapoconcentration and Freeze Concentration 3430
7.5.5.3. Ingress of Water from Channels into the Proglacial Zone 3430
7.5.5.4. Enhancement of Glacial Solute Fluxes 3431
7.5.6. Composition of Subglacial Waters Beneath Antarctica 3431
7.5.7. Concluding Remarks 3433
References 3433
Chapter 7.6: Chemical Weathering Rates, CO2 Consumption, and Control Parameters Deduced from the Chemical Composition of Rivers 3437
7.6.1. Introduction 3437
7.6.2. Definition of Chemical Weathering 3439
7.6.3. Calculation of CWRs from Field Data 3439
7.6.3.1. The Vegetation Compartment 3441
7.6.3.2. Role of Atmospheric Deposition 3441
7.6.4. Parameters Controlling CWRs 3442
7.6.5. Control Parameters Deduced from the Chemical Composition of Rivers 3443
7.6.5.1. Field Studies on Small Watersheds 3443
7.6.5.1.1. Effect of lithology 3443
7.6.5.1.2. Effect of climate (temperature, runoff) 3446
7.6.5.1.3. The role of mechanical erosion 3447
7.6.5.1.4. Role of organic matter 3448
7.6.5.2. Field Studies on Large Watersheds 3450
7.6.5.2.1. The direct method 3450
7.6.5.2.2. The inversion method 3451
7.6.6. Conclusion 3452
References 3453
Chapter 7.7: Trace Elements in River Waters 3457
7.7.1. Introduction 3457
7.7.2. Natural Abundances of Trace Elements in River Water 3458
7.7.2.1. Range of Concentrations of Trace Elements in River Waters 3469
7.7.2.2. Crustal Concentrations versus Dissolved Concentrations in Rivers 3469
7.7.2.3. Correlations between Elements 3471
7.7.2.4. Temporal Variability 3472
7.7.2.5. Conservative Behavior of Trace Elements in River Systems 3473
7.7.2.6. Transport of Elements 3473
7.7.3. Sources of Trace Elements in Aquatic Systems 3474
7.7.3.1. Rock Weathering 3474
7.7.3.2. Atmosphere 3476
7.7.3.3. Other Anthropogenic Contributions 3476
7.7.4. Aqueous Speciation 3477
7.7.5. The ``Colloidal World´´ 3479
7.7.5.1. Nature of the Colloids 3479
7.7.5.2. Ultrafiltration of Colloids and Speciation of Trace Elements in Organic-rich Rivers 3480
7.7.5.3. The Nonorganic Colloidal Pool 3482
7.7.5.4. Fractionation of REEs in Rivers 3483
7.7.5.5. Colloid Dynamics 3485
7.7.6. Interaction of Trace Elements with Solid Phases 3486
7.7.6.1. Equilibrium Solubility of Trace Elements 3486
7.7.6.2. Reactions on Surfaces 3487
7.7.6.3. Experimental Adsorption Studies 3487
7.7.6.4. Adsorption on Hydrous Oxides in River Systems 3488
7.7.6.5. The Sorption of REEs: Competition between Aqueous and Surface Complexation 3489
7.7.6.6. Importance of Adsorption Processes in Large River Systems 3490
7.7.6.7. Anion Adsorption in Aquatic Systems 3491
7.7.6.8. Adsorption and Organic Matter 3491
7.7.6.9. Particle Dynamics 3492
7.7.7. Conclusion 3493
Acknowledgments 3494
References 3494
Chapter 7.8: Dissolved Organic Matter in Freshwaters 3499
7.8.1. Introduction 3499
7.8.1.1. Terminology 3499
7.8.1.2. Analytical Measurements 3500
7.8.1.3. The Major Areas of Research Interest 3500
7.8.2. Inventories and Fluxes 3501
7.8.2.1. Estimates of Carbon Fluxes – 1970s 3501
7.8.2.2. Estimates of Carbon Fluxes – 1980s 3502
7.8.2.3. Estimates of Carbon Fluxes – 1990s and 2000s 3502
7.8.3. Chemical and Biological Interactions 3503
7.8.3.1. DOM and the Acid–Base Chemistry of Freshwaters 3503
7.8.3.2. DOM and UV–Visible Radiation 3504
7.8.3.3. DOM and Chemical Speciation of Trace Metal Cations 3505
7.8.3.4. DOM and Biological Activity of Trace Metal Cations 3506
7.8.3.5. Bioavailability of DOM 3506
7.8.3.6. DOM and Disinfection By-Products 3507
7.8.4. Chemical Properties 3507
7.8.4.1. Shapiro's Yellow Organic Acids 3508
7.8.4.2. Isolation and Fractionation of DOM 3508
7.8.4.2.1. Isolation and fractionation by XAD resins 3508
7.8.4.2.2. Isolation and fractionation by membranes 3510
7.8.4.3. Average Molecular Weights 3511
7.8.4.3.1. Molecular weight distributions and averages 3511
7.8.4.3.2. Colligative and noncolligative methods 3512
7.8.4.3.3. Statistical summary of average molecular weights 3512
7.8.4.3.4. Mass spectrometric analysis of molecular weight distributions 3514
7.8.4.4. Elemental Composition 3514
7.8.4.4.1. Mass percentages of carbon, hydrogen, nitrogen, oxygen, and sulfur 3514
7.8.4.4.2. Atomic ratios 3516
7.8.4.4.3. Average oxidation state of organic carbon 3517
7.8.4.4.4. Unsaturation and aromaticity 3517
7.8.4.5. Acidic Functional Groups 3517
7.8.4.5.1. Indirect titration methods 3517
7.8.4.5.2. Direct titration methods 3519
7.8.4.5.3. Carboxyl and phenolic contents of DOM 3519
7.8.4.6. Carbon Distribution from 13C NMR Spectrometry 3520
7.8.4.6.1. Processing source data 3520
7.8.4.6.2. Statistical summary of 13C NMR results 3520
7.8.4.7. Biomolecules in DOM 3520
7.8.4.7.1. Amino acids 3522
7.8.4.7.2. Sugars 3522
7.8.4.7.3. Lignin-derived phenols 3524
7.8.4.8. Overall Summary of the Chemical Properties of DOM 3526
7.8.5. Summary and Conclusions 3528
References 3529
Chapter 7.9: Environmental Isotope Applications in Hydrologic Studies 3535
7.9.1. Introduction 3536
7.9.1.1. Environmental Isotopes as Tracers 3536
7.9.1.2. Isotope Fundamentals 3537
7.9.1.2.1. Basic principles 3537
7.9.1.2.2. Isotope fractionation 3537
7.9.1.2.3. Rayleigh fractionation 3538
7.9.1.2.4. Terminology 3538
7.9.1.3. Causes of Isotopic Variation 3539
7.9.1.3.1. Isotope fractionations during phase changes 3539
7.9.1.3.2. Mixing of waters and/or solutes 3539
7.9.1.3.3. Geochemical and biological reactions 3540
7.9.2. Water Sources, Ages, and Cycling 3541
7.9.2.1. Deuterium and Oxygen-18 3541
7.9.2.1.1. Basic principles 3541
7.9.2.1.2. Precipitation 3541
7.9.2.1.3. Shallow groundwaters 3542
7.9.2.1.4. Deep groundwaters and paleorecharge 3543
7.9.2.1.5. Surface waters 3543
7.9.2.2. Tritium 3545
7.9.2.2.1. Basic principles 3545
7.9.2.2.2. Applications to hydrologic studies 3545
7.9.2.3. Determination of Runoff Mechanisms 3546
7.9.2.3.1. Mixing models 3546
7.9.2.3.2. Isotope hydrograph separation 3546
7.9.2.3.2.1. Two-component mixing models 3547
7.9.2.3.2.2. Three-component mixing models 3547
7.9.2.3.3. Temporal and spatial variability in end-members 3549
7.9.2.3.3.1. The ‘event’ water component 3549
7.9.2.3.3.2. The ‘pre-event’ groundwater component 3550
7.9.2.3.3.3. The soil water component 3550
7.9.2.4. Estimation of MRT 3551
7.9.3. Solute Isotope Hydrology and Biogeochemistry 3552
7.9.3.1. Carbon 3552
7.9.3.1.1. Carbon isotope fundamentals 3553
7.9.3.1.2. δ13C of soil CO2 and DIC 3553
7.9.3.1.3. Tracing sources of carbonate alkalinity in rivers 3554
7.9.3.1.4. Tracing sources of carbonate alkalinity in catchments 3556
7.9.3.1.5. Carbon-14 3557
7.9.3.1.6. Sources of DOC 3557
7.9.3.2. Nitrogen 3558
7.9.3.2.1. Nitrogen isotope fundamentals 3558
7.9.3.2.2. Oxygen isotope fundamentals 3559
7.9.3.2.3. Tracing atmospheric sources of nitrate 3559
7.9.3.2.3.1. Using δ15N 3559
7.9.3.2.3.2. Using δ18O 3561
7.9.3.2.3.3. Using δ17O (or ∆17O) 3561
7.9.3.2.4. Fertilizer and animal waste sources of N 3562
7.9.3.2.5. Soil sources of N 3563
7.9.3.2.6. Processes affecting the δ15N of nitrate 3563
7.9.3.2.6.1. N-fixation 3563
7.9.3.2.6.2. Assimilation 3563
7.9.3.2.6.3. Mineralization 3564
7.9.3.2.6.4. Nitrification 3564
7.9.3.2.6.5. Volatilization 3564
7.9.3.2.6.6. Denitrification 3564
7.9.3.2.7. Processes affecting the δ18O of nitrate 3565
7.9.3.2.7.1. Assimilation 3565
7.9.3.2.7.2. Nitrification 3565
7.9.3.2.7.3. Denitrification 3566
7.9.3.2.8. Nitrate isotope applications to hydrologic studies 3566
7.9.3.2.9. Small catchment studies 3567
7.9.3.2.10. Large river studies 3568
7.9.3.2.11. Subsurface waters 3568
7.9.3.3. Sulfur 3569
7.9.3.3.1. Sulfur isotope fundamentals 3570
7.9.3.3.2. Oxygen isotopes of sulfate 3571
7.9.3.3.3. Tracing atmospheric deposition of sulfate 3571
7.9.3.3.3.1. Using δ34S and δ18O 3571
7.9.3.3.3.2. Using δ17O (or ∆17O) 3572
7.9.3.3.3.3. Using Sulfur-35 3572
7.9.3.3.4. Sulfate in catchment surface waters 3573
7.9.3.3.5. Sulfate in groundwater 3573
7.9.3.4. Phosphorus 3574
7.9.3.4.1. Analytical methods 3574
7.9.3.4.2. Factors controlling δ18OPO4 in aquatic ecosystems 3575
7.9.3.4.3. Oxygen isotopic compositions of phosphate sources 3575
7.9.3.4.3.1. δ18O of phosphate fertilizers 3575
7.9.3.4.3.2. δ18O of WWTP phosphate 3575
7.9.3.4.3.3. δ18O of soil phosphate 3576
7.9.3.4.3.4. δ18O of organic phosphate 3576
7.9.3.4.4. Application studies in aquatic ecosystems 3576
7.9.4. Use of a Multi-Isotope Approach 3577
7.9.4.1. Determination of Flowpaths and Reaction Paths 3577
7.9.4.2. Multi-Isotope Studies of Hot Spots and Hot Moments 3578
7.9.4.2.1. Isoscapes of nitrate isotope data 3578
7.9.4.2.2. Organic matter isotopes 3579
7.9.5. Summary and Conclusions 3579
Acknowledgments 3580
References 3580
Chapter 7.10: Metal Stable Isotopes in Weathering and Hydrology 3591
7.10.1. Introduction 3591
7.10.2. Essential Background Information 3592
7.10.2.1. Metal Stable Isotope Fractionation Processes 3592
7.10.2.2. Instrumentation 3593
7.10.2.2.1. Data: Acquisition, reduction, and accuracy 3594
7.10.3. Li, Mg, Ca, and Fe Stable Isotope Signals in the Environment 3595
7.10.3.1. Lithium 3596
7.10.3.2. Magnesium 3598
7.10.3.3. Calcium 3602
7.10.3.4. Iron 3605
7.10.4. Frontier Metal Stable Isotope Systems 3609
7.10.4.1. Strontium 3610
7.10.4.2. Copper 3610
7.10.4.3. Zinc 3611
7.10.4.4. Chromium 3613
7.10.5. Directions Forward 3614
7.10.5.1. Other Potential Metal Stable Isotope Tracers: The Logical Next Steps 3615
7.10.5.2. Getting the Handle on Isotope Fractionation Factors 3616
7.10.5.3. Developing Robust Multitracer Approaches 3616
References 3617
Chapter 7.11: Groundwater Dating and Residence-Time Measurements 3623
7.11.1. Introduction 3624
7.11.2. Nature of Groundwater Flow Systems 3624
7.11.2.1. Driving Forces 3624
7.11.2.2. Topographic Control on Flow 3624
7.11.2.3. Hydraulic Conductivity and Its Variability 3625
7.11.2.4. Scales of Flow Systems 3625
7.11.2.4.1. Vadose-zone scale 3625
7.11.2.4.2. Local scale 3625
7.11.2.4.3. Aquifer scale 3625
7.11.2.4.4. Regional scale 3626
7.11.2.5. Sources of Solutes at Various Scales 3626
7.11.2.5.1. Meteoric (recharge) 3626
7.11.2.5.2. Weathering 3627
7.11.2.5.3. Diagenetic 3627
7.11.2.5.4. Connate 3627
7.11.2.5.5. `Basement waters´ 3627
7.11.3. Solute Transport in Subsurface Water 3627
7.11.3.1. Fundamental Transport Processes 3628
7.11.3.1.1. Advection 3628
7.11.3.1.2. Diffusion 3628
7.11.3.1.3. Dispersion 3628
7.11.3.2. Advection–Dispersion Equation 3628
7.11.3.3. Interaction between Hydrogeological Heterogeneity and Transport 3629
7.11.3.3.1. Small-scale transport and effective dispersion 3629
7.11.3.3.2. Large-scale transport and mixing 3629
7.11.3.4. Groundwater Dating and the Concept of `Groundwater Age´ 3629
7.11.4. Summary of Groundwater Age Tracers 3630
7.11.4.1. Introduction 3630
7.11.4.2. Radionuclides for Age Tracing of Subsurface Water 3630
7.11.4.2.1. Argon-37 3630
7.11.4.2.2. Sulfur-35 3631
7.11.4.2.3. Krypton-85 3631
7.11.4.2.4. Tritium 3631
7.11.4.2.5. Silicon-32 3633
7.11.4.2.6. Argon-39 3633
7.11.4.2.7. Carbon-14 3633
7.11.4.2.8. Krypton-81 3634
7.11.4.2.9. Chlorine-36 3634
7.11.4.2.10. Iodine-129 3635
7.11.4.3. Stable, Transient Tracers 3635
7.11.4.3.1. Chlorofluorocarbons and sulfur hexafluoride 3635
7.11.4.3.2. Atmospheric noble gases and stable isotopes 3635
7.11.4.3.3. Nonatmospheric noble gases 3636
7.11.5. Lessons from Applying Geochemical Age Tracers to Subsurface Flow and Transport 3637
7.11.5.1. Introduction 3637
7.11.5.2. Approaches 3638
7.11.5.2.1. Direct groundwater age estimation 3638
7.11.5.2.2. Modeling techniques: analytical versus numerical 3638
7.11.5.2.3. Identification of sources and sinks of a particular tracer 3639
7.11.5.2.4. Defining boundary conditions (modeling approach) 3639
7.11.6. Tracers at the Regional Scale 3639
7.11.6.1. Introduction 3639
7.11.6.2. Examples of Applications 3640
7.11.6.2.1. Noble-gas isotopes – Paris Basin 3640
7.11.6.2.2. Great Artesian Basin – noble-gas isotopes, 36Cl, and 81Kr 3642
7.11.6.2.3. Implications at the regional scale 3644
7.11.7. Tracers at the Aquifer Scale 3645
7.11.7.1. Introduction 3645
7.11.7.2. Carrizo Aquifer 3646
7.11.7.3. Implications at the Aquifer Scale 3648
7.11.8. Tracers at the Local Scale 3649
7.11.8.1. Introduction 3649
7.11.8.2. 3H/3He, CFC-11, CFC-12, 85Kr – Delmarva Peninsula 3650
7.11.8.3. Implications at the Local Scale 3653
7.11.9. Tracers in Vadose Zones 3653
7.11.10. Conclusions 3657
References 3657
Chapter 7.12: Cosmogenic Nuclides in Weathering and Erosion 3663
7.12.1. Introduction 3664
7.12.1.1. Definitions and Nomenclature 3664
7.12.1.2. Quantifying Weathering and Erosion 3664
7.12.1.2.1. Quantifying physical erosion rates 3665
7.12.1.2.2. Quantifying chemical erosion rates 3665
7.12.1.2.3. The advent of cosmogenic nuclide methods 3665
7.12.2. Cosmogenic Nuclide Systematics at Earth's Surface 3666
7.12.2.1. Cosmic Rays 3666
7.12.2.2. Cosmogenic Nuclide Production 3666
7.12.2.3. Cosmogenic Nuclide Production Profiles 3667
7.12.3. Using Cosmogenic Nuclides to Determine Rates of Surface Lowering and Denudation 3668
7.12.3.1. No Erosion (Surface Exposure Dating) 3668
7.12.3.1.1. Theory 3668
7.12.3.1.2. Examples 3669
7.12.3.1.2.1. Dating strath terraces 3669
7.12.3.1.2.2. Dating glacial moraines 3669
7.12.3.2. Rock Erosion 3670
7.12.3.2.1. Theory 3670
7.12.3.2.1.1. Steady erosion 3670
7.12.3.2.1.2. Complications due to unsteady denudation 3671
7.12.3.2.2. Examples 3671
7.12.3.2.2.1. Denudation of bedrock surfaces 3671
7.12.3.2.2.1. Rock erosion under soil cover 3672
7.12.3.3. Cosmogenic Nuclides in Vertically Mixed Soils 3673
7.12.3.3.1. Theory 3673
7.12.3.3.1.1. Exposure dating of vertically mixed sediment 3674
7.12.3.3.1.2. Denudation rates in vertically mixed soils 3674
7.12.3.3.1.3. Complications due to saprolite weathering and quartz enrichment 3675
7.12.3.3.2. Examples 3676
7.12.3.3.2.1. Exposure dating marine terraces 3676
7.12.3.4. Spatially Averaged Denudation Rates 3677
7.12.3.4.1. Theory 3677
7.12.3.4.1.1. Complications 3678
7.12.3.4.2. Examples 3678
7.12.3.4.2.1. Test of the method: comparing cosmogenic rates to absolute erosion rates 3678
7.12.3.4.2.2. Transient versus dynamic equilibrium landscapes 3679
7.12.4. Chemical Erosion Inferred from Cosmogenic Nuclides 3681
7.12.4.1. Chemical Erosion from Physically Stable Soils 3681
7.12.4.1.1. Theory 3681
7.12.4.1.1.1. Complications 3682
7.12.4.1.2. Example 3683
7.12.4.1.2.1. Chemical erosion rates of glacial moraines 3683
7.12.4.2. Chemical Erosion Rates of Soil Along a Physically Eroding Slope 3684
7.12.4.2.1. Theory 3684
7.12.4.1.2.1.1. Complications 3684
7.12.4.2.2. Example 3685
7.12.4.2.2.1. Chemical erosion rates on a hillslope in Australia 3685
7.12.4.3. Chemical Erosion Rates of Soils and Landscapes 3686
7.12.4.3.1. Theory 3686
7.12.4.3.1.1. Complications 3688
7.12.4.3.2. Examples 3689
7.12.4.3.2.1. Test of the mass balance approach 3689
7.12.4.3.2.2. Chemical erosion as a function of altitude 3689
7.12.4.3.2.3. Quantifying how chemical and physical erosion interrelate 3690
7.12.4.3.2.4. Climatic effects on chemical erosion rates 3691
7.12.5. Summary 3693
References 3695
Chapter 7.13: Geochemistry of Saline Lakes 3699
7.13.1. Introduction 3699
7.13.2. Origin and Occurrence 3699
7.13.3. Environmental Context 3701
7.13.3.1. Hydrology 3701
7.13.3.2. Climate 3702
7.13.3.3. Geology 3703
7.13.4. Compositional Controls 3704
7.13.4.1. Major Solutes 3704
7.13.4.2. Stable Isotopes 3705
7.13.5. Evaporative Brine Evolution 3706
7.13.6. Examples of Saline Lake Systems 3712
7.13.6.1. Chloride – Great Salt Lake 3718
7.13.6.2. Carbonate – East Africa 3719
7.13.6.3. Sulfate – Northern Great Plains, North America 3720
7.13.6.4. Mixed Anions – Death Valley 3721
7.13.6.5. Acid Lakes – Australia 3723
7.13.7. Economic Minerals in Saline Lakes 3724
7.13.8. Summary 3724
References 3725
Chapter 7.14: Deep Fluids in Sedimentary Basins 3733
7.14.1. Introduction 3734
7.14.2. Field and Laboratory Methods 3735
7.14.2.1. Water from Gas Wells 3736
7.14.2.2. Information from Wire-Line Logs 3737
7.14.3. Chemical Composition of Subsurface Waters 3737
7.14.3.1. Water Salinity 3737
7.14.3.1.1. Origin of elevated salinities 3737
7.14.3.1.1.1. Subaerial evaporation of seawater 3737
7.14.3.1.1.2. Subsurface dissolution of evaporites 3737
7.14.3.1.1.3. Marine aerosols: brines from rainwater 3737
7.14.3.1.1.4. Freezing 3737
7.14.3.1.1.5. Boiling 3738
7.14.3.1.2. Controls on salinity 3739
7.14.3.1.3. The role of formation waters in crustal cycling 3739
7.14.3.2. Major Cations 3739
7.14.3.2.1. Dissolved aluminum 3741
7.14.3.2.2. Water pH 3741
7.14.3.2.3. Dissolved silica 3743
7.14.3.2.4. Boron 3743
7.14.3.3. Water–Rock Reactions Controlling Cation Concentrations 3744
7.14.3.3.1. Cation geothermometry 3744
7.14.3.4. Major Anions 3745
7.14.3.4.1. Chloride and bromide 3745
7.14.3.4.2. Iodide 3746
7.14.3.4.3. Fluoride 3746
7.14.3.4.4. Inorganic carbon species 3747
7.14.3.4.5. Sulfate 3747
7.14.3.5. Reactive Organic Species 3747
7.14.3.5.1. Monocarboxylic acid anions 3747
7.14.3.5.2. Dicarboxylic acid anions 3748
7.14.3.5.3. Other reactive organic species 3748
7.14.3.5.4. Origin of major reactive species 3749
7.14.4. Isotopic Composition of Water 3749
7.14.4.1. Formation Waters Derived from Holocene Meteoric Water 3750
7.14.4.2. Formation Waters from `Old´ Meteoric Water 3750
7.14.4.3. Formation Waters of Connate Marine Origin 3750
7.14.4.4. Bittern Connate Water in Evaporites 3752
7.14.4.5. Brines from Mixing of Different Waters 3752
7.14.4.6. Do the Compositions of Basinal Brines Reflect Secular Variations in Seawater Chemistry? 3753
7.14.5. Isotopic Composition of Solutes 3754
7.14.5.1. Boron Isotopes 3754
7.14.5.2. Lithium Isotopes 3754
7.14.5.3. Carbon Isotopes 3755
7.14.5.4. Sulfur Isotopes 3755
7.14.5.5. Chlorine Isotopes 3756
7.14.5.6. Bromine Isotopes 3756
7.14.5.7. Strontium Isotopes 3756
7.14.5.8. Radioactive Isotopes and Age Dating 3756
7.14.6. Basinal Brines as Ore-Forming Fluids 3757
7.14.6.1. Metal-Rich Brines 3757
7.14.6.2. Solubilization of Heavy Metals 3757
7.14.6.3. Bisulfide Complexing 3757
7.14.6.4. Organic Complexing 3758
7.14.6.5. Chloride Complexing 3758
7.14.6.6. Geochemical Modeling of Ore Fluids 3758
7.14.6.7. Fluoride 3759
7.14.6.8. Barium and Strontium 3759
7.14.7. Dissolved Gases 3759
7.14.7.1. Methane 3759
7.14.7.2. Carbon Dioxide 3760
7.14.7.2.1. Storage of CO2 in sedimentary basins 3760
7.14.7.2.2. Storage of CO2 in the Frio Formation 3761
7.14.7.2.3. Potential impacts and risks of geologic storage of CO2 3764
7.14.7.3. Hydrogen Sulfide 3767
7.14.7.4. Noble Gases 3767
7.14.8. The Influence of Geologic Membranes 3768
7.14.9. Summary and Conclusions 3769
Acknowledgments 3769
References 3770
Chapter 7.15: Deep Fluids in the Continents 3779
7.15.1. Introduction 3780
7.15.1.1. The Crystalline Rock Environment 3780
7.15.1.1.1. The rocks 3780
7.15.1.1.2. Structural and geomechanical characteristics 3780
7.15.1.1.3. Hydrogeology 3781
7.15.2. Field Sampling Methods 3782
7.15.3. Chemistry and Isotopic Composition of Groundwaters from Crystalline Environments 3783
7.15.3.1. Trends in Major Ions and the Stable Isotopes of Water 3783
7.15.3.1.1. Bicarbonate and depth 3783
7.15.3.1.2. Sulfate and depth 3783
7.15.3.1.3. Chloride and depth 3789
7.15.3.1.4. Bromide and depth 3789
7.15.3.1.5. Fluoride 3789
7.15.3.1.6. Strontium and depth 3789
7.15.3.1.7. Oxygen-18 and depth 3789
7.15.3.1.8. Oxygen-18 and deuterium 3789
7.15.3.2. Strontium Isotopes 3790
7.15.3.3. Boron Isotopes 3792
7.15.3.4. Stable Chlorine Isotopes (37/35) 3792
7.15.3.5. Stable Bromine Isotopes (81/79) 3793
7.15.4. Gases from Crystalline Environments 3793
7.15.5. The Origin and Evolution of Fluids in Crystalline Environments 3794
7.15.5.1. The Origin of Salinity: The Influence of the Rock 3795
7.15.5.1.1. Halogen-bearing mineral and fluid inclusions 3795
7.15.5.1.2. The role of water/rock interaction 3796
7.15.5.1.3. Mineral/fluid reactions 3797
7.15.5.1.4. The role of strontium isotopes and water/rock interaction 3798
7.15.5.2. The Origin of Salinity: Fluids from External Sources 3800
7.15.5.2.1. Sources and concentration mechanisms for fluids from external sources 3800
7.15.5.2.1.1. Evaporation of surface waters 3800
7.15.5.2.1.2. Freezing of surface and subsurface waters 3801
7.15.5.2.2. Emplacement of fluids into crystalline rocks 3801
7.15.5.2.3. Major ions and stable isotopes 3802
7.15.5.2.4. Evidence for external sources from B, Sr, and Li isotopes 3802
7.15.5.3. Examples of Multiple Sources of Salinity 3803
7.15.5.3.1. Potential mixing of freeze-out fluids, shield brines, and the influence of gas hydr 3803
7.15.5.3.2. Stable chlorine isotope data from the Canadian and Fennoscandian Shields 3804
7.15.5.3.3. Interpreting Ca/Na versus Br/Cl trends for data from crystalline environments 3806
7.15.6. Examples from Research Sites Found in Crystalline Environments 3807
7.15.6.1. Groundwater Composition and Saline Fluids in the Lac du Bonnet Granite Batholith, Manitoba, Canada 3808
7.15.6.2. Groundwater Composition at the Palmottu Site in Finland 3809
7.15.6.3. Groundwater Composition and Hydrogeochemical Aspects of the Äspö Site, Sweden 3811
7.15.6.4. The KTB (Continental Deep Drilling Project of Germany) 3812
7.15.6.5. Hydrogeological and Hydrogeochemical Investigations in the Outokumpu Deep Drill Hole in Finlan 3813
7.15.6.6. The Hydrogeology and Geochemistry of the Kola Superdeep Well 3815
7.15.7. Summary and Conclusions 3816
References 3816
e9780080983004v8 3825
Front Cover 3825
The Oceans and Marine Geochemistry 3828
Copyright 3829
In Memoriam 3830
Heinrich Dieter Holland (1927–2012) 3832
Karl Karekin Turekian (1927–2013) 3834
References 3836
Dedication 3838
Contents 3840
Executive Editors’ Foreword to the Second Edition 3842
Contributors 3846
Volume Editor’s Introduction 3848
References 3850
Chapter 8.1: Physico-Chemical Controls on Seawater 3852
8.1.1. Composition of Seawater 3852
8.1.2. Thermodynamic Properties of Seawater 3853
8.1.3. Thermodynamic Equilibria in Seawater 3855
8.1.3.1. The Carbonate System in Seawater 3855
8.1.3.2. Other Ionic Equilibrium Processes 3856
8.1.4. Kinetic Processes in Seawater 3857
8.1.5. Modeling the Ionic Interactions in Natural Waters 3857
8.1.5.1. Estimating Activity Coefficients 3857
8.1.5.2. Estimating Physical-Chemical Properties 3858
8.1.6. Effect of Ocean Acidification 3859
Acknowledgments 3865
References 3865
Chapter 8.2: Controls of Trace Metals in Seawater 3870
8.2.1. Introduction 3870
8.2.1.1. Concentrations 3871
8.2.1.2. Distributions 3874
8.2.1.2.1. Conservative-type distributions 3874
8.2.1.2.2. Nutrient-type distributions 3875
8.2.1.2.3. Scavenged-type distributions 3876
8.2.1.2.4. Hybrid distributions 3876
8.2.1.2.5. Mixed distributions 3877
8.2.1.2.6. Data emerging from the GEOTRACES program 3878
8.2.2. External Inputs of Trace Metals to the Oceans 3880
8.2.2.1. Rivers 3880
8.2.2.2. Benthic Inputs 3881
8.2.2.3. Atmosphere 3881
8.2.2.4. Hydrothermal 3884
8.2.3. Removal Processes 3886
8.2.3.1. Active Biological Uptake in the Surface Waters 3886
8.2.3.1.1. Lessons from laboratory studies 3886
8.2.3.1.2. Non-Redfieldian assimilation 3887
8.2.3.2. Passive Scavenging 3888
8.2.3.2.1. Adsorption/desorption processes 3888
8.2.3.2.2. Lessons from radionuclides 3888
8.2.4. Internal Recycling 3890
8.2.4.1. Recycling within the Water Column 3890
8.2.4.2. Recycling at the Sediment/Seawater Interface 3890
8.2.5. Complexation with Organic Ligands 3891
8.2.5.1. Copper 3892
8.2.5.2. Iron 3893
8.2.5.3. Zinc 3894
8.2.5.4. Summary of Speciation 3894
8.2.6. Future Directions 3895
8.2.6.1. The Use of Trace Element Isotopes 3895
8.2.6.2. Ocean Acidification 3895
References 3896
Relevant Websites 3902
Chapter 8.3: Air-Sea Exchange of Marine Trace Gases 3904
8.3.1. Introduction 3905
8.3.2. Gas Exchange Processes and Parameterizations 3905
8.3.2.1. Gas Flux Theory 3905
8.3.2.1.1. Mass boundary layers at the interface 3905
8.3.2.1.2. Turbulent forcing: wind speed-based parameterizations of transfer velocity 3906
8.3.2.1.3. Interfacial models and the Schmidt number exponent on the water side 3907
8.3.2.1.4. Air-side transfer 3908
8.3.2.2. Processes Driving Gas Exchange 3908
8.3.2.2.1. The effect of wind 3908
8.3.2.2.2. The effect of waves 3908
8.3.2.2.3. The effect of bubbles and sea spray 3909
8.3.2.2.4. Heat and water fluxes 3910
8.3.2.2.5. The effect of surface films 3911
8.3.2.2.6. Chemical enhancement 3912
8.3.2.2.7. Biological effects 3912
8.3.2.3. Wind Speed Parameterizations 3913
8.3.2.3.1. Global 14C constraint 3913
8.3.2.3.2. Local-scale natural tracer experiments 3914
8.3.2.3.2.1. Radon-deficit technique 3914
8.3.2.3.2.2. Noble gas technique 3914
8.3.2.3.2.3. Biogenic gas mass balance 3915
8.3.2.3.3. Deliberate tracer experiments 3915
8.3.2.3.4. Direct flux measurements 3916
8.3.2.3.5. NOAA/COARE 3917
8.3.2.3.6. Reconciling observations 3918
8.3.2.3.7. Remote sensing of kw 3919
8.3.2.3.8. Air-side transfer velocity 3920
8.3.2.4. Estimating Trace Gas Fluxes in Biogeochemical Studies 3920
8.3.2.4.1. Gas-specific effects on transfer 3920
8.3.2.4.2. Selection of wind speed parameterization 3921
8.3.2.4.3. Averaging and interpolation/extrapolation 3922
8.3.2.4.4. Uncertainty in estimates 3923
8.3.2.5. Future Developments 3923
8.3.3. The Cycling of Trace Gases Across the Air-Sea Interface 3923
8.3.3.1. Greenhouse Gases 3924
8.3.3.1.1. Carbon dioxide 3924
8.3.3.1.2. Methane 3925
8.3.3.1.3. Nitrous oxide 3925
8.3.3.1.4. Ozone 3925
8.3.3.1.5. Carbon monoxide 3926
8.3.3.2. Nitrogen-Containing Gases 3926
8.3.3.2.1. Ammonia and methylamines 3926
8.3.3.2.2. Alkyl nitrates 3926
8.3.3.2.3. Hydrogen cyanide and methyl cyanide 3927
8.3.3.3. Sulfur-Containing Gases 3927
8.3.3.3.1. Dimethyl sulfide 3927
8.3.3.3.2. Methyl mercaptan 3930
8.3.3.3.3. Carbonyl sulfide 3930
8.3.3.3.4. Carbon disulfide 3930
8.3.3.3.5. Hydrogen sulfide 3930
8.3.3.3.6. Sulfur dioxide 3930
8.3.3.4. Nonmethane Hydrocarbons 3930
8.3.3.5. Oxygenated Volatile Organic Compounds 3931
8.3.3.6. Organohalogens 3931
8.3.3.6.1. The mono-organohalogens: methyl, ethyl, and propyl iodide&INS id= 3931
8.3.3.6.2. The di-organohalogens: diiodomethane, chloroiodomethane, bromoiodomethane,& 3933
8.3.3.6.3. The tri-organohalogens: bromoform and chloroform 3933
8.3.3.7. Miscellaneous Gases 3934
8.3.3.7.1. Chlorofluorocarbons 3934
8.3.3.7.2. Synthetic organic compounds 3934
8.3.3.7.3. Mercury 3934
8.3.3.7.4. Selenium and polonium 3934
8.3.3.7.5. Hydrogen 3935
8.3.4. Effects of Climate Change on Marine Trace Gases 3935
8.3.4.1. Effect on Air-Sea Gas Transfer 3935
8.3.4.2. Effect on Dissolved Gas Concentrations 3935
8.3.4.2.1. Carbon dioxide 3935
8.3.4.2.2. Dimethyl sulfide 3935
8.3.4.2.3. Other gases 3935
References 3936
Chapter 8.4: The Biological Pump 3944
List of Symbols 3945
8.4.1. Introduction 3945
8.4.2. Description of the Biological Pump 3946
8.4.2.1. Photosynthesis and the Incorporation of Nutrients and Trace Elements into Biogenic Materials 3947
8.4.2.1.1. Levels of primary production 3948
8.4.2.1.2. Patterns in time and space 3948
8.4.2.1.3. Nutrient limitation 3949
8.4.2.2. Formation of Sinking Particles 3949
8.4.2.2.1. Marine snow 3949
8.4.2.2.2. Aggregation and exopolymers 3949
8.4.2.2.3. Role of zooplankton 3950
8.4.2.2.3.1. Mucus feeding structures 3950
8.4.2.2.3.2. Fecal pellets 3950
8.4.2.3. Transport of Material to Depth 3950
8.4.2.3.1. The flux of POC 3950
8.4.2.3.1.1. Controls on particle sinking velocities 3951
8.4.2.3.2. Diel vertical migration of zooplankton 3951
8.4.2.4. Particle Decomposition, Fragmentation, and Repackaging 3951
8.4.2.4.1. Impacts of zooplankton 3953
8.4.2.4.2. Impact of bacteria 3953
8.4.2.5. Sedimentation and Burial 3954
8.4.2.6. Dissolved Organic Matter, the Microbial Loop, and the Microbial Carbon Pump 3954
8.4.2.7. New, Export, and Regenerated Production 3955
8.4.2.8. The Ballast Hypothesis 3955
8.4.3. Impact of the Biological Pum 3955
8.4.3.1. Carbon 3955
8.4.3.2. Nitrogen 3956
8.4.3.2.1. Nitrogen fixation versus denitrification 3956
8.4.3.3. Phosphorus 3957
8.4.3.4. Silicon 3957
8.4.3.4.1. The impact of the appearance of the diatoms on the marine silica cycle 3957
8.4.3.4.2. Excessive pumping of silicon 3958
8.4.4. Quantifying the Biological Pump 3958
8.4.4.1. Measurement of New Production and Export Production 3959
8.4.4.2. Measurement of Particle Flux 3959
8.4.4.2.1. Sediment traps 3959
8.4.4.2.2. Particle-reactive nuclides 3960
8.4.4.2.3. Oxygen utilization rates 3960
8.4.5. The Efficiency of the Biological Pump 3961
8.4.5.1. Definition of the Efficiency of the Biological Pump 3961
8.4.5.2. Geographic Variability in the Efficiency of the Biological Pump 3961
8.4.5.3. Altering the Efficiency of the Biological Pump 3962
8.4.5.3.1. Fertilization with micronutrients in HNLC areas 3962
8.4.5.3.2. Translocation of nutrients 3963
8.4.5.3.3. Changes in community composition 3963
8.4.5.3.4. Effects of the calcium carbonate counter-pump 3963
8.4.5.3.5. Enhancing particle transport 3964
8.4.5.3.6. Carbon overconsumption 3964
8.4.5.3.7. The C:N:P ratios of sinking material 3964
8.4.6. The Biological Pump in the Immediate Future 3965
References 3966
Chapter 8.5: Marine Bioinorganic Chemistry: The Role of Trace Metals in the Oceanic Cycles of Major Nutrients 3974
8.5.1. Introduction: The Scope of Marine Bioinorganic Chemistry 3974
8.5.2. Trace Metals in Marine Microorganisms 3975
8.5.2.1. Concentrations 3975
8.5.2.2. Uptake 3977
8.5.2.3. Trace Element Storage 3982
8.5.3. The Biochemical Functions of Trace Elements in the Uptake and Transformations of Nutrients 3982
8.5.3.1. Trace Metals and the Marine Carbon Cycle 3983
8.5.3.1.1. Light reaction of photosynthesis 3983
8.5.3.1.2. Dark reaction of photosynthesis 3983
8.5.3.1.3. Carbon concentrating mechanisms 3984
8.5.3.1.4. Respiration 3986
8.5.3.2. Trace Metals and the Nitrogen Cycle 3986
8.5.3.2.1. Acquisition of fixed nitrogen by phytoplankton 3986
8.5.3.2.2. N2 fixation and the nitrogen cycle 3987
8.5.3.3. Phosphorus Uptake 3987
8.5.3.4. Silicon Uptake 3988
8.5.4. Effects of Trace Metals on Marine Biogeochemical Cycles 3988
8.5.4.1. Iron 3988
8.5.4.1.1. Iron and growth rates 3988
8.5.4.1.2. Iron uptake 3990
8.5.4.1.3. Iron and electron transfer 3990
8.5.4.1.4. Iron and nitrogen acquisition 3990
8.5.4.2. Manganese 3990
8.5.4.3. Zinc, Cobalt, and Cadmium 3991
8.5.4.4. Copper 3994
8.5.4.5. Nickel 3996
8.5.5. Epilogue 3997
8.5.5.1. Paleoceanographic Aspects 3997
8.5.5.2. A View to the Future 3997
Acknowledgments 3998
References 3998
Chapter 8.6: Organic Matter in the Contemporary Ocean 4002
8.6.1. Introduction 4002
8.6.2. Reservoirs and Fluxes 4003
8.6.2.1. Reservoirs 4003
8.6.2.2. Fluxes 4004
8.6.2.2.1. Terrigenous OM fluxes to the oceans 4004
8.6.2.2.1.1. Riverine fluxes 4004
8.6.2.2.1.2. Eolian fluxes 4005
8.6.2.2.2. Water-column fluxes and the burial of OC in sedimen 4005
8.6.3. The Nature and Fate of TOC Delivered to the Oceans 4005
8.6.3.1. Background 4005
8.6.3.2. Terrestrial OM in River Systems 4006
8.6.3.3. Quantitative Importance of TOC in Marine Sediments 4008
8.6.3.3.1. Black carbon 4010
8.6.4. Origin, Cycling, Composition, and Fate of DOC in the Ocean 4011
8.6.4.1. Background 4011
8.6.4.2. Transport and Cycling of DOC in the Ocean 4011
8.6.4.3. Recalcitrant DOC 4013
8.6.4.4. The Composition of Semilabile HMW DOM: Biopolymers or Geopolymers? 4014
8.6.4.4.1. Acylpolysaccharides as major components of HMW DOM 4015
8.6.4.4.2. Proteins in HMW DOM 4018
8.6.4.4.3. Gel polymers and the cycling of HMW DOM 4018
8.6.4.5. Labile DOC and the Microbial Loop 4019
8.6.5. Emerging Perspectives on OM Preservation 4022
8.6.5.1. Background 4022
8.6.5.2. Compositional Transformations Associated with Sedimentation and Burial of OM 4022
8.6.5.3. Controls on OM Preservation 4025
8.6.5.3.1. Physical protection 4026
8.6.5.3.2. Role of oxygen 4027
8.6.5.3.3. Chemical protection 4029
8.6.5.3.3.1. Intrinsically refractory biomolecules 4029
8.6.5.3.3.2. Formation of organosulfur compounds 4029
8.6.6. Microbial OM Production and Processing: New Insights 4030
8.6.6.1. Background 4030
8.6.6.2. Planktonic Archaea 4031
8.6.6.3. Anaerobic Oxidation of Methane 4031
8.6.7. Summary and Future Research Directions 4032
Acknowledgments 4034
References 4034
Chapter 8.7: Hydrothermal Processes 4042
8.7.1. Introduction 4043
8.7.1.1. What Is Hydrothermal Circulation? 4043
8.7.1.2. Where Does Hydrothermal Circulation Occur? 4045
8.7.1.3. Why Should Hydrothermal Fluxes Be Considered Important? 4046
8.7.1.4. Outline Structure for Rest of this Chapter 4047
8.7.2. Vent-Fluid Geochemistry 4048
8.7.2.1. Why Are Vent-Fluid Compositions of Interest? 4048
8.7.2.2. Processes Affecting Vent-Fluid Compositions 4048
8.7.2.3. Compositions of Hydrothermal Vent Fluids 4052
8.7.2.3.1. Major element chemistry 4052
8.7.2.3.2. Trace element and isotope chemistry 4053
8.7.2.3.3. Gas chemistry of hydrothermal fluids 4054
8.7.2.3.4. Organic geochemistry of hydrothermal vent fluids 4055
8.7.2.4. Geographic Variations in Vent-Fluid Compositions 4056
8.7.2.4.1. Basalt-hosted hydrothermal systems 4056
8.7.2.4.2. Ultramafic-hosted systems 4058
8.7.2.4.3. Back-arc systems 4059
8.7.2.5. Temporal Variability in Vent-Fluid Compositions 4061
8.7.2.5.1. Temporal variability 4061
8.7.2.5.2. Effect on flux estimates 4062
8.7.3. The Net Impact of Hydrothermal Activity 4063
8.7.4. Near-Vent Deposits 4064
8.7.4.1. Alteration and Mineralization of the Upper Ocean Crust 4064
8.7.4.2. Near-Vent Hydrothermal Deposits 4064
8.7.5. Hydrothermal Plume Processes 4066
8.7.5.1. Dynamics of Hydrothermal Plumes 4066
8.7.5.2. Modification of Gross Geochemical Fluxes 4067
8.7.5.2.1. Dissolved noble gases 4067
8.7.5.2.2. Dissolved reduced gases (H2S, H2, and CH4) 4068
8.7.5.2.3. Fe and Mn geochemistry in hydrothermal plumes 4068
8.7.5.2.4. Coprecipitation and uptake with Fe in buoyant and nonbuoyant plumes 4071
8.7.5.2.5. Hydrothermal scavenging by Fe oxyhydroxides 4071
8.7.5.3. Physical Controls on Dispersing Plumes 4072
8.7.5.4. Biogeochemical Cycling in Hydrothermal Plumes 4073
8.7.5.5. Impact of Hydrothermal Plumes on Ocean Geochemical Cycles 4074
8.7.6. Hydrothermal Sediments 4075
8.7.6.1. Near-Vent Sediments 4075
8.7.6.2. Deposition from Hydrothermal Plumes 4075
8.7.6.3. Hydrothermal Sediments in Paleoceanography 4076
8.7.6.4. Hydrothermal Sediments and Boundary Scavenging 4076
8.7.7. Conclusion 4076
8.7.7.1. What Are the Integrated Fluxes of Hydrothermal Heat and Mass from a Single Vent System to the Surrounding Ocean? 4077
8.7.7.2. What Role Does Protolith Composition Play in Hydrothermal Vent-Fluid Chemistry? 4077
8.7.7.3. What Is the Impact of Seafloor Hydrothermal Venting on Global Ocean Biogeochemical Budgets? 4077
Remembrance 4077
References 4078
Chapter 8.8: Tracers of Ocean Mixing 4086
8.8.1. Introduction 4086
8.8.2. Theoretical Framework 1: Advection–Diffusion Equations 4088
8.8.3. The Nature of Oceanic Mixing 4089
8.8.3.1. Diapycnal Mixing in the Ocean 4090
8.8.3.2. Isopycnal Mixing in the Ocean: 4091
8.8.4. Theoretical Framework 2: Tracer Ages 4091
8.8.4.1. Radiometric Dating 4092
8.8.4.2. Transient Concentration Dating 4093
8.8.5. Theoretical Framework 3: Diagnostic Methods 4094
8.8.5.1. Optimum Multiparameter Analysis 4094
8.8.5.2. Transit Time Distributions 4095
8.8.5.3. Tracer Contour Inverse Analysis 4096
8.8.6. Steady-State Tracers 4097
8.8.6.1. Radiocarbon 4097
8.8.6.2. Radon-222 4098
8.8.6.3. Radium 4098
8.8.6.4. Argon-39 4099
8.8.6.5. Dissolved Noble Gas Saturation Anomalies 4099
8.8.7. Transient Tracers 4100
8.8.8. Tracer Age Dating 4103
8.8.9. Tracer Release Exp 4104
8.8.10. Concluding Remarks 4104
References 4105
Chapter 8.9: Chemical Tracers of Particle Transport 4110
8.9.1. Particle Transport and Ocean Biogeochemistry 4110
8.9.2. Tracers of Particle Transport 4111
8.9.3. Transfer from Solution to Particles (Scavenging) 4111
8.9.4. Colloidal Intermediaries 4113
8.9.4.1. Development of the Colloidal Pumping Hypothesis 4113
8.9.4.2. Important Features of Colloids 4114
8.9.4.3. Evidence for Coagulation of Colloids and of Colloidal Thorium (and other Metals) 4115
8.9.4.4. Rate Constants for Colloid Coagulation 4115
8.9.4.5. Limitations and Questions 4117
8.9.5. Export of Particles from Surface Ocean Waters 4117
8.9.5.1. Scavenging Rates and Particle Flux 4117
8.9.5.2. Export Flux of POC 4118
8.9.5.3. Non-Steady-State Conditions and Advected Fluxes 4118
8.9.5.4. Limitations and Prospects 4119
8.9.6. Particle Dynamics and Regeneration of Labile Particles 4120
8.9.6.1. Particle Dynamics, Fluxes, and Regeneration 4120
8.9.6.2. Conceptual Models of Aggregation and Disaggregation 4120
8.9.6.3. Strategies to Evaluate Rate Constants 4121
8.9.7. Lateral Redistribution of Sediments 4123
8.9.7.1. Focusing and Winnowing of Sediments 4123
8.9.7.2. Lead-210 4124
8.9.7.3. Thorium-230 4124
8.9.7.4. Helium-3 4126
8.9.8. Summary 4128
References 4128
Chapter 8.10: Biological Fluxes in the Ocean and Atmospheric pCO2 4132
8.10.1. Introduction 4132
8.10.2. How Atmospheric CO2 is Affected by the Biological Pump 4133
8.10.2.1. By Internal Rearrangement of the Chemis 4133
8.10.2.2. Changes to the Mean Chemical State of the Ocean 4134
8.10.3. Visions of the Biological Pump in the Ocean 4135
8.10.3.1. Global Rate of Carbon Export from the Euphotic Zone 4135
8.10.3.1.1. Sediment traps 4135
8.10.3.1.2. Bottles 4135
8.10.3.1.3. Ocean carbon cycle GCMs 4135
8.10.3.2. Organic Carbon Sinking Depth 4135
8.10.3.2.1. Observations 4135
8.10.3.2.2. Theory 4136
8.10.3.2.2.1. Zooplankton 4136
8.10.3.2.2.2. Aggregation 4136
8.10.3.2.2.3. Ballast 4137
8.10.3.2.2.4. Water column dissolution 4137
8.10.3.3. The CaCO3 Pump 4137
8.10.3.4. The SiO2 Pump 4138
8.10.4. How the Biological Pump Could Change 4139
8.10.4.1. Iron 4139
8.10.4.2. pH 4140
8.10.4.3. Transparent Exopolymers 4140
8.10.4.4. Climate Change Impacts 4140
8.10.4.5. Global Nutrient Inventories 4140
8.10.5. Conclusion 4141
References 4141
Chapter 8.11: Sedimentary Diagenesis, Depositional Environments, and Benthic Fluxes 4144
8.11.1. Introduction 4144
8.11.1.1. Early Diagenesis and the Global Sedimentary Cycle 4144
8.11.1.2. General Classes of Conceptual Models 4145
8.11.1.3. Diagenetic Regimes and Depositional Environments 4145
8.11.2. Diagenetic Oxidation-Reduction Reactions 4149
8.11.2.1. Biogeochemical Redox Reaction Sequence 4149
8.11.2.1.1. Coupled stoichiometric relations 4150
8.11.2.1.2. Pore water solutes as reaction indicators 4151
8.11.2.2. Reaction Rates and Kinetics 4151
8.11.2.3. Sedimentary Redox Reaction Patterns 4152
8.11.2.3.1. Redox oscillation 4154
8.11.2.3.2. Microenvironmental heterogeneity 4154
8.11.3. Diagenetic Transport Processes 4155
8.11.3.1. Diffusive Transport 4155
8.11.3.2. Advective Transport 4156
8.11.4. Diagenetic Transport-Reaction Models 4156
8.11.4.1. General Mass Balance Relations and Reference Frames 4156
8.11.4.2. Simplification of Diagenetic Models 4157
8.11.4.2.1. Characteristic scaling and steady state 4157
8.11.5. Patterns in Boundary Conditions and Reaction Balances 4158
8.11.5.1. Spatial Patterns in Sediment Accumulation and Biogenic Transport 4158
8.11.5.2. Spatial Patterns in Reactive Corg Delivery and Magnitudes of Benthic Fluxes 4159
8.11.5.3. Global Patterns in the Scaling of Redox Reactions 4160
8.11.5.4. Sedimentary Record of Diagenetic Reaction Dominance and Balances 4160
8.11.5.5. Temporal Patterns in Boundary Conditions and the Scaling of Reactions 4162
8.11.6. Corg Burial and Preservation: Reactants and Diagenetic Regime 4164
8.11.6.1. Patterns in Corg Distributions and Particle Associations 4164
8.11.6.2. Corg Preservation: O2, Accumulation Rates, and Diagenetic Regimes 4166
8.11.7. Carbonate Mineral Dissolution-Alteration-Preservation 4168
8.11.7.1. Coupling of Redox Reactions and Carbonate Diagenesis 4168
8.11.7.2. Carbonate Mineral Equilibria and Saturation States 4168
8.11.7.3. Kinetics of Biogenic Carbonate Dissolution in Sediments 4169
8.11.7.4. Shallow Water Carbonate Dissol 4171
8.11.7.5. Dissolution of Carbonate in Deep-Sea Deposits and Internal Reaction Patterns 4172
8.11.7.6. Benthic Alkalinity Fluxes 4172
8.11.8. Biogenic Silica and Reverse Weathering 4175
8.11.8.1. Patterns in Biogenic SiO2 Distributions 4175
8.11.8.2. Diagenetic Fates, Equilibria, and Dissolution Reaction Kinetics of Biogenic SiO2 4175
8.11.8.3. Authigenic Silicate Formation and Reverse Weathering 4177
8.11.9. Future Directions 4179
Acknowledgments 4179
References 4180
Chapter 8.12: Geochronometry of Marine Deposits 4186
8.12.1. Introduction 4186
8.12.2. Principles 4186
8.12.2.1. Radioactive Geochronometry 4186
8.12.2.2. Secondary Stratigraphic Procedures 4187
8.12.3. Radioactive Systems Used in Marine Geochronometry 4187
8.12.3.1. Radiocarbon 4187
8.12.3.2. Uranium and Thorium Decay Chain Nuclides 4187
8.12.3.3. Cosmogenic Nuclides 4187
8.12.3.4. Potassium-Argon 4188
8.12.4. Coastal Deposits 4188
8.12.4.1. Applicable Methods and Requirements 4188
8.12.4.2. Unbioturbated Deposits 4188
8.12.4.3. Bioturbated Deposits 4189
8.12.5. Deep-Sea Sediments 4190
8.12.5.1. Radiocarbon 4190
8.12.5.2. 230Th and 231Pa 4191
8.12.5.2.1. The basic theory 4191
8.12.5.2.2. The underlying assumptions 4192
8.12.5.2.3. Applications 4192
8.12.5.2.4. Problems of erosion and focusing 4193
8.12.5.3. 10Be 4193
8.12.5.4. 3He 4194
8.12.5.5. Volcanic Layers 4195
8.12.5.6. Extension of Dating Techniques 4195
8.12.5.6.1. The Milankovitch cycles and chronology 4195
8.12.5.6.2. Oxygen and carbon isotopes in carbonate tests 4195
8.12.5.6.3. Magnetic-reversal stratigraphy 4196
8.12.5.6.4. Element accumulation: Titanium and cobalt 4196
8.12.6. Ferromanganese Deposits 4197
8.12.6.1. Applicable Methods 4197
8.12.6.2. The Underlying Assumptions 4197
8.12.6.3. Applications 4197
8.12.7. Corals 4198
8.12.8. Methods Not Depending on Radioactive Decay 4200
8.12.8.1. Amino Acid Racemization 4200
8.12.8.2. Thermoluminescence 4200
Acknowledgments 4201
References 4201
Chapter 8.13: Geochemical Evidence for Quaternary Sea-Level Changes 4206
8.13.1. Introduction 4206
8.13.2. Methods of Sea-Level Reconstruction 4206
8.13.2.1. Methods of Direct Sea-Level Reconstruction 4207
8.13.2.2. Methods of Sea-Level Reconstruction from Oxygen Isotope Measurements 4207
8.13.3. History and Current State of Direct Sea-Level Reconstruction 4209
8.13.3.1. 230Th and 231Pa Dating: Current Status and Historical Overview 4209
8.13.3.2. 230Th and 231Pa Dating: Theory 4210
8.13.3.3. Tests of Dating Assumptions 4211
8.13.3.4. Sources of Error in Age 4212
8.13.3.5. Open-System 230Th Dating 4214
8.13.3.6. Current Status of Direct Sea-Level Reconstruction: The Past 500 ky 4214
8.13.4. History and Current State of Sea-Level Determinations from Oxygen Isotope Measurements 4219
8.13.4.1. History of Marine Oxygen Isotope Measurements and Sea Level 4219
8.13.4.2. Comparison of Direct Sea-Level and Benthic Foram Records 4219
8.13.4.3. 18O/16O-Based Sea-Level Records 4219
8.13.5. Causes of Sea-Level Change and Future Work 4220
References 4221
Chapter 8.14: Elemental and Isotopic Proxies of Past Ocean Temperatures 4224
8.14.1. Introduction 4224
8.14.2. A Brief History of Early Research on Geochemical Proxies of Temperature 4225
8.14.3. Oxygen Isotopes as a Paleotemperature Proxy in Foraminifera 4226
8.14.3.1. Background 4226
8.14.3.2. Paleotemperature Equations 4227
8.14.3.3. Secondary Effects and Diagenesis 4227
8.14.3.4. Results on Quaternary Timescales 4228
8.14.3.5. Results for the Neogene, Paleogene, and Earlier Periods 4228
8.14.3.6. Summary of Outstanding Research Issues 4228
8.14.4. Oxygen Isotopes as a Climate Proxy in Reef Corals 4229
8.14.4.1. Background 4229
8.14.4.2. Paleotemperature Equations 4229
8.14.4.3. Secondary Effects and Diagenesis 4229
8.14.4.4. Results on Historical Timescales 4230
8.14.4.5. Results on Late Quaternary Timescales 4230
8.14.4.6. Summary of Outstanding Research Issues 4231
8.14.5. Oxygen Isotopes as a Climate Proxy in other Marine Biogenic Phases 4231
8.14.6. Clumped Oxygen Isotopes 4231
8.14.7. Magnesium as a Paleotemperature Proxy in Foraminifera 4231
8.14.7.1. Background and History 4231
8.14.7.2. Calibration and Paleotemperature Equations 4232
8.14.7.3. Effect of Dissolution 4233
8.14.7.4. Other Secondary Effects on Mg/Ca 4234
8.14.7.5. Results over the Last Few Millennia 4235
8.14.7.6. Results on Quaternary Timescales 4235
8.14.7.7. Results for the Neogene, Paleogene, and Beyond 4237
8.14.7.8. Summary of Outstanding Research Issues 4237
8.14.8. Magnesium as a Paleotemperature Proxy in Ostracoda 4238
8.14.9. Strontium as a Climate Proxy in Corals 4238
8.14.9.1. Background 4238
8.14.9.2. Paleotemperature Equations 4238
8.14.9.3. Secondary Effects and Diagenesis 4239
8.14.9.4. Results on Historical Timescales 4240
8.14.9.5. Results on Geological Timescales 4240
8.14.9.6. Summary of Outstanding Research Issues 4241
8.14.10. Magnesium and Uranium in Corals as Paleotemperature Proxies 4241
8.14.11. Calcium Isotopes as a Paleotemperature Proxy 4241
8.14.12. Conclusions 4241
Acknowledgments 4242
References 4242
Chapter 8.15: Alkenone Paleotemperature Determinations 4250
8.15.1. Introduction 4250
8.15.2. Systematics and Detection 4252
8.15.3. Occurrence of Alkenones in Marine Waters and Sediments 4254
8.15.3.1. Genetic and Evolutionary Aspects of Alkenone Production 4255
8.15.4. Function 4256
8.15.5. Ecological Controls on Alkenone Production and Downward Flux 4257
8.15.5.1. Effects of Water Column Recycling and Sediment Diagenesis on the Alkenone Unsaturation Index 4260
8.15.6. Calibration of Uk37 Index to Temperature 4262
8.15.6.1. Culture Calibrations 4263
8.15.6.2. Particles 4264
8.15.6.2.1. Sediment traps 4265
8.15.6.3. Core Tops 4265
8.15.7. Synthesis of Calibration 4267
8.15.8. Paleotemperature Studies Using the Alkenone Method 4268
8.15.8.1. Holocene High-Resolution Studies 4268
8.15.8.2. Millennial-Scale Events of the Late Pleistocene and Last Glacial Termination 4269
8.15.8.3. Marine Temperatures During the LGM 4270
8.15.8.4. SST Records of the Late Pleistocene Ice Age Cycles 4273
8.15.8.5. SST before the Late Pleistocene 4274
8.15.8.6. Comparison with other Proxies: delta18O 4274
8.15.8.7. Comparison with other Proxies: Microfossils 4275
8.15.8.8. Comparison with other Proxies: Mg/Ca 4276
8.15.8.9. Comparison with other Proxies: TEX86 and other Glycerol Dialkyl Glycerol Tetraethers Indice 4277
8.15.8.10. Intercomparison of SST Proxies: Some Generalities 4277
8.15.9. Conclusions 4277
References 4278
Chapter 8.16: Tracers of Past Ocean Circulation 4286
8.16.1. Introduction 4286
8.16.2. Nutrient Water Mass Tracers 4287
8.16.2.1. Carbon Isotopes 4287
8.16.2.1.1. Controls on delta13C of oceanic carbon 4287
8.16.2.1.2. Carbon isotope ratios in benthic foraminifera 4288
8.16.2.2. Cadmium in Benthic Foraminifera 4289
8.16.2.2.1. Cd in seawater 4289
8.16.2.2.2. Cd/Ca in foraminifera 4290
8.16.2.3. Ba/Ca 4291
8.16.2.4. Zn/Ca 4291
8.16.2.5. Silicon Isotopes 4291
8.16.3. Conservative Water Mass Tracers 4291
8.16.3.1. Mg/Ca in Benthic Foraminifera 4291
8.16.3.2. Pore Water Chemistry 4291
8.16.3.3. Oxygen Isotopes in Benthic Foraminifera 4292
8.16.3.4. Clumped Isotopes 4292
8.16.3.5. Carbon Isotope Air-Sea Exchange Signature 4292
8.16.4. Neodymium Isotope Ratios 4293
8.16.5. Circulation Rate Tracers 4293
8.16.5.1. Radiocarbon 4293
8.16.5.2. 231Pa/230Th Ratio 4294
8.16.5.3. Geostrophic Shear Estimates from delta18O in Benthic Foraminifera 4294
8.16.6. Nongeochemical Tracers of Past Ocean Circulation 4294
8.16.7. Ocean Circulation during the LGM 4295
8.16.8. Conclusions 4299
References 4299
Chapter 8.17: Long-lived Isotopic Tracers in Oceanography, Paleoceanography, and Ice-sheet Dynamics 4304
8.17.1. Introduction 4304
8.17.2. Long-lived Isotopic Tracers and Their Applications 4304
8.17.3. Systematics of Long-lived Isotope Systems in the Earth 4305
8.17.3.1. Early Applications to the Oceans 4307
8.17.4. Neodymuim Isotopes in the Oceans 4308
8.17.4.1. REEs in Seawater 4308
8.17.4.2. Neodymium-isotope Ratios in Seawater 4309
8.17.4.3. Where does Seawater Neodymium Come From? 4313
8.17.4.4. Neodymium Isotopes as Water-mass Tracers 4314
8.17.4.5. The ``Nd Paradox´´ 4316
8.17.4.6. Implications of Nd Isotopes and Concentrations in Seawater 4319
8.17.5. Applications to Paleoclimate 4320
8.17.5.1. Radiogenic Isotopes in Authigenic Ferromanganese Oxides 4320
8.17.5.2. Long-term Time Series in Fe-Mn Crusts 4322
8.17.5.3. Hf-Nd Isotope Trends in the Oceans 4323
8.17.6. Long-lived Radiogenic Tracers and Ice-sheet Dynamics 4324
8.17.6.1. Heinrich Events 4325
8.17.6.2. K/Ar ages of Heinrich Event Detritus 4325
8.17.6.3. Nd-Sr-Pb Isotopes in Terrigenous Sediments 4325
8.17.6.4. Isotopic and Geochronologic Measurements on Individual Mineral Grains 4327
8.17.6.5. Contrasting Provenance of H3 and H6 4327
8.17.6.6. Summary of Geochemical Provenance Analysis of Heinrich Layers 4328
8.17.6.7. Trough Mouth Fans as Archives of Major IRD Sources 4328
8.17.6.8. 40Ar/39Ar Hornblende Evidence for History of the Laurentide Ice Sheet During the Last Glacial Cycle 4329
8.17.7. Final Thoughts 4331
Acknowledgments 4331
References 4331
Chapter 8.18: The Biological Pump in the Past 4336
8.18.1. Introduction 4336
8.18.2. Concepts 4340
8.18.2.1. Aqueous Carbon Chemistry 4340
8.18.2.2. Soft-Tissue versus Carbonate Pump 4341
8.18.2.3. Low- versus High-Latitude Ocean 4343
8.18.2.4. Southern Ocean versus North Atlantic 4346
8.18.3. Tools 4348
8.18.3.1. Surface Ocean Biogeochemistry 4348
8.18.3.1.1. Nutrient status 4349
8.18.3.1.2. Export production 4350
8.18.3.2. Ocean Ventilation 4351
8.18.3.2.1. Water mass distribution 4351
8.18.3.2.2. Rates of ocean overturning and ventilation 4352
8.18.3.3. Integrative Constraints on the Biological Pump 4353
8.18.3.3.1. Carbon isotope distribution of the ocean and atmosphere 4353
8.18.3.3.2. Deep-ocean oxygen content 4353
8.18.3.3.3. Carbon chemistry and boron 4354
8.18.4. Observations 4355
8.18.4.1. 800 000 Year Perspective 4355
8.18.4.2. Deglacial Perspective 4357
References 4359
Chapter 8.19: The Oceanic CaCO3 Cycle 4370
8.19.1. Introduction 4370
8.19.2. The Contemporary Marine CaCO3 Cycle 4370
8.19.2.1. Formation and Transport Pathways of CaCO3 4372
8.19.2.2. Destruction and Dissolution of CaCO3 4373
8.19.3. Oceanic Distribution and Present-Day Changes in the Seawater CO2-Carbonic Acid System Due to Human Activities 4376
8.19.3.1. CO2 Gradients within and across Ocean Basins 4376
8.19.3.2. Surface Uptake of Anthropogenic CO2 and Future Projections 4377
8.19.3.3. Changes in Distribution of Omega and Shoaling of the CaCO3 Saturation Horizon 4379
8.19.4. Implications of Anthropogenic Ocean Acidification to the Marine CaCO3 Cycle 4379
8.19.4.1. Formation of CaCO3 4379
8.19.4.2. Destruction and Dissolution of CaCO3 4383
8.19.4.3. Feedbacks to Atmospheric CO2 and the Earth Climate System 4384
8.19.5. A Brief Commentary on Past Alterations to the Marine CaCO3 Cycle and Analogies to the Present Perturbation 4385
8.19.5.1. Calcite and Aragonite Seas 4385
8.19.5.2. Glacial to Interglacial Periods 4386
8.19.5.3. Paleocene Eocene Thermal Maximum 4387
8.19.5.4. Volcanic Vent Systems 4387
8.19.6. Back to the Future: Summary of Past and Present Clues on the Future CaCO3 Cycle 4387
Acknowledgments 4388
References 4388
Chapter 8.20: Records of Cenozoic Ocean Chemistry 4394
8.20.1. Introduction 4394
8.20.2. Cenozoic Deep-Sea Stable Isotope Record 4395
8.20.2.1. Oxygen Isotopes and Climate 4395
8.20.2.2. Carbon Isotopes and Ocean Carbon Chemistry 4398
8.20.3. The Marine Strontium and Osmium Isotope Records 4399
8.20.3.1. Globally Integrated Records of Inputs to the Ocean 4399
8.20.3.2. Osmium-Strontium Decoupling 4400
8.20.3.2.1. Decoupled riverine fluxes of strontium and osmium? 4401
8.20.3.2.2. Decoupled unradiogenic fluxes? 4401
8.20.3.3. Reconstructing Seawater Isotope Composition from Sediments 4401
8.20.3.4. Cenozoic Strontium and Osmium Isotope Records 4402
8.20.3.4.1. Overview of the Cenozoic marine strontium isotope record 4402
8.20.3.4.2. Overview of the Cenozoic marine osmium isotope record 4403
8.20.3.4.3. Significance of uplift and weathering of the Himalayan-Tibetan Plateau (HTP) 4404
8.20.3.4.4. Glaciation and the marine strontium and osmium isotope records 4405
8.20.3.5. Variations in the Strontium and Osmium Isotope Composition of Riverine Input 4406
8.20.3.6. Osmium and Strontium Isotopes as Chemical Weathering Proxies 4407
8.20.4. Mg/Ca Records from Benthic Foraminifera 4408
8.20.4.1. Coupling Benthic Foraminiferal Mg/Ca and Oxygen Isotope Records 4408
8.20.4.2. Calibration of the Mg/Ca Thermometer 4408
8.20.4.3. Cenozoic Benthic Foraminiferal Mg/Ca Records 4410
8.20.4.4. Changing Seawater Mg/Ca Ratio 4411
8.20.5. Boron Isotopes, Paleo-pH, and Atmospheric CO2 4411
8.20.5.1. The pH Dependence of Boron Isotope Fractionation 4411
8.20.5.2. Boron Partitioning into Calcite 4412
8.20.5.3. Paleo-pH and Atmospheric CO2 Reconstruction 4413
8.20.5.4. Outstanding Questions about Paleo-pH Reconstructions 4414
8.20.6. Closing Synthesis: Does Orogenesis Lead to Cooling? 4415
References 4416
Chapter 8.21: The Geologic History of Seawater 4420
8.21.1. Introduction 4420
8.21.2. The Hadean (4.5-4.0 Ga) 4421
8.21.3. The Archean (4.0-2.5 Ga) 4422
8.21.3.1. The Paleoarchean (4.0-3.7 Ga) 4422
8.21.3.2. The Mesoarchean (3.7-3.0 Ga) 4423
8.21.3.3. The Neoarchean (3.0-2.5 Ga) 4424
8.21.4. The Proterozoic (2.5-0.542 Ga) 4427
8.21.4.1. The Early and Middle Paleoproterozoic (2.5-1.8 Ga) 4428
8.21.4.2. The Late Paleoproterozoic and Mesoproterozoic (1.8-1.0 Ga) 4430
8.21.4.3. The Early and Middle Neoproterozoic (1.0-0.635 Ga) 4434
8.21.4.4. The Ediacaran Period (0.635-0.542 Ga) 4439
8.21.5. The Phanerozoic (0.542 Ga-Present) 4442
8.21.5.1. Evidence from Marine Evaporites 4442
8.21.5.2. Fluid Inclusions in Marine Halites 4443
8.21.5.3. The Analysis of Unevaporated Seawater in Fluid Inclusions 4446
8.21.5.4. Br- Concentration in Halite 4446
8.21.5.5. The Mineralogy of Marine Oölites and Carbonate Cements 4447
8.21.5.6. Mg2+/Ca2+ and Sr2+/Ca2+ Ratios of Marine Shell-Building Organisms (Echinoderms, Rudists, and Foraminifera) 4448
8.21.5.7. Seawater Mg2+/Ca2+ Ratio and the Carbonate Mineralogy of Shell-Building Organisms 4449
8.21.5.8. Seawater Mg2+/Ca2+ Ratio and Shell-Building Organisms: Experimental Results 4450
8.21.5.9. Models of Phanerozoic Seawater Chemistry 4451
8.21.5.10. The Isotopic Composition of Strontium in Marine Carbonates 4454
8.21.5.11. The Isotopic Composition of Sulfur in Seawater 4456
8.21.5.12. The Isotopic Composition of Calcium in Seawater 4460
8.21.6. Summary 4460
Acknowledgments 4462
References 4462
e9780080983004v9 4474
Front Cover 4474
Sediments, Diagenesis, and Sedimentary Rocks 4477
Copyright 4478
In Memoriam 4479
Heinrich Dieter Holland (1927–2012) 4481
Karl Karekin Turekian (1927–2013) 4483
References 4485
Dedication 4487
Contents 4489
Executive Editors’ Foreword to the Second Edition 4491
Contributors 4495
Volume Editors' Introduction 4497
References 4505
Chapter 9.1: Chemical Composition and Mineralogy of Marine Sediments 4507
9.1.1. Introduction 4507
9.1.2. Pelagic Sediments 4510
9.1.2.1. Equatorial Pacific 4512
9.1.2.2. South Pacific 4513
9.1.2.3. Central Indian Basin 4515
9.1.3. Ferromanganese Nodules and Crusts 4517
9.1.3.1. Equatorial Pacific Nodules 4520
9.1.3.2. Seamount Ferromanganese Crusts from the Central Pacific 4522
9.1.4. Metalliferous Ridge and Basal Sediments 4524
9.1.4.1. Metalliferous Ridge Sediments 4527
9.1.4.2. Metalliferous Basal Sediments 4528
9.1.5. Marine Phosphorites 4528
9.1.6. Conclusions 4532
References 4535
Chapter 9.2: The Recycling of Biogenic Material at the Sea Floor 4539
9.2.1. Introduction 4539
9.2.2. Pore Water Sampling and Profiling 4540
9.2.3. Organic Matter Decomposition in Sediments 4542
9.2.3.1. Electron Acceptors for Sedimentary Organic Matter Oxidation 4542
9.2.3.2. The Stoichiometry of Sedimentary Organic Matter Decomposition 4547
9.2.3.2.1. Pelagic sediments 4548
9.2.3.2.2. Continental margin sediments 4549
9.2.3.3. The Depth Distribution of Organic Matter Oxidation in the Sediment Column 4550
9.2.3.4. The Response Time for Organic Matter Oxidation 4552
9.2.3.5. The Burial of Organic Matter in Marine Sediments 4553
9.2.3.6. Benthic Organic Matter Cycling and Marine Geochemical Cycles 4554
9.2.4. Particle Mixing in Surface Sediments: Bioturbation 4554
9.2.5. CaCO3 Dissolution in Sediments 4556
9.2.5.1. Metabolic Dissolution in Sediments Above the Calcite Lysocline 4556
9.2.5.2. Metabolic Dissolution and the Kinetics of Organic Matter Oxidation 4558
9.2.5.3. CaCO3 Dissolution in Sediments on the Continental Slope and Rise 4559
9.2.5.4. Dissolution in Carbonate-Rich Sediments on the Continental Shelf 4559
9.2.6. Silica Cycling in Sediments 4559
9.2.6.1. Dissolved Silica Profiles in Pore Waters 4559
9.2.6.2. Preservation Efficiency 4560
9.2.6.3. Summary: Silica in Pore Waters and Sediments 4562
9.2.7. Conclusions 4562
References 4563
Chapter 9.3: Formation and Diagenesis of Carbonate Sediments 4567
9.3.1. Introduction 4568
9.3.2. Physical Geochemistry of Carbonate Minerals 4569
9.3.2.1. Preliminary Remarks 4569
9.3.2.2. Carbonic Acid System and Basic Solution Equilibria 4569
9.3.2.3. Major Marine Carbonate Phases 4571
9.3.2.3.1. Magnesian calcite 4572
9.3.2.3.2. Dolomite and related phases 4574
9.3.2.3.3. Aragonite and other related carbonates 4575
9.3.3. Surface Reactions: Review of Theory 4575
9.3.3.1. Preliminary Remarks 4575
9.3.3.2. General Rate Equations 4576
9.3.3.2.1. Crystal growth 4578
9.3.3.2.2. Crystal dissolution 4580
9.3.3.2.3. Reaction rate and cation/anion ratios 4582
9.3.4. New Directions, New Insights 4583
9.3.4.1. Preliminary Remarks 4583
9.3.4.2. Structure of the Cleavage Surface 4583
9.3.4.3. Detail Rate Measurements by Surface Microscopy 4585
9.3.4.3.1. Atomic force microscopy 4585
9.3.4.3.2. Vertical scanning interferometry 4585
9.3.4.4. Growth Measurements 4586
9.3.4.4.1. Saturation state 4586
9.3.4.4.2. Impurities and growth inhibition 4587
9.3.4.4.3. Beyond BCF 4588
9.3.4.5. Dissolution Measurements 4588
9.3.4.5.1. Baseline rates 4589
9.3.4.5.2. Etch-pit morphology and significance 4589
9.3.4.5.3. Dissolution inhibitors 4589
9.3.4.5.4. Magnesite and dolomite dissolution 4590
9.3.4.6. Rate Control by `Indifferent´ Electrolytes 4590
9.3.4.7. Rate Control by Dissolved Ratio of Lattice Ions 4591
9.3.4.8. Concluding Remarks 4592
9.3.5. Sources and Diagenesis of Deep-Sea Carbonates 4592
9.3.5.1. Sources and Sedimentation 4592
9.3.5.2. Distribution of CaCO3 in Deep-Sea Sediments 4593
9.3.5.3. CaCO3 Diagenesis in Deep-Sea Sediments 4594
9.3.5.3.1. General relations 4594
9.3.5.3.2. Early diagenetic processes in deep-sea sediments 4594
9.3.6. Sources and Diagenesis of Shoal-Water Carbonate-Rich Sediments 4596
9.3.6.1. Sources of Shoal-Water Carbonates 4596
9.3.6.1.1. General considerations 4596
9.3.6.1.2. Sources of carbonate muds 4596
9.3.6.1.3. Formation of carbonate sands 4597
9.3.6.2. Early Marine Diagenesis of Shoal-Water Carbonate-Rich Sediments 4597
9.3.6.2.1. Pore-water chemistry 4597
9.3.6.2.2. Precipitation `of early´ carbonate cements 4598
9.3.6.2.3. Dissolution of carbonates 4600
9.3.6.2.4. Carbonate diagenesis associated with reefs 4600
9.3.6.2.5. Early dolomite formation 4601
References 4601
Chapter 9.4: The Diagenesis of Biogenic Silica: Chemical Transformations Occurring in the Water Column, Seabed, and Crust 4609
9.4.1. Introduction 4609
9.4.2. The Precipitation of Biogenic Silica 4610
9.4.3. The Physical Properties of Biogenic Silica 4610
9.4.4. Changes in Biogenic Silica Chemistry Occurring in the Water Column 4611
9.4.5. Diagenesis of Biogenic Silica in the Upper Meter of the Seabed 4612
9.4.5.1. Modeling Biogenic Silica Distributions and Pore-Water Silicate Concentrations 4612
9.4.5.2. Transformation of Biogenic Silica to Authigenic Clay Minerals 4613
9.4.5.3. Preservation of Biogenic Silica in the Seabed 4613
9.4.6. Silica Diagenesis on Timescales of Millions of Years 4614
9.4.6.1. Formation of Opal-CT and Chert 4614
9.4.6.2. Geological Settings for Chert Formation 4616
Acknowledgments 4616
References 4616
Chapter 9.5: Formation and Geochemistry of Precambrian Cherts 4619
9.5.1. Introduction 4619
9.5.1.1. Definition and Importance 4620
9.5.1.2. Fundamental Difference Between Precambrian and Phanerozoic Chert 4621
9.5.1.3. Aspects of Inorganic Geochemistry of Silica 4622
9.5.1.4. Possible Association of Chert and Evaporite 4623
9.5.2. Neoproterozoic and Mesoproterozoic Environments of Chert Formation 4623
9.5.3. Chert of Late Archean and Paleoproterozoic Iron Formation 4624
9.5.3.1. Chert of Lake Superior-Type Iron Formation 4626
9.5.3.2. The End of Major Cherty Iron Formation Deposition 4627
9.5.3.3. Chert of the Transvaal Supergroup and Hamersley Group 4627
9.5.4. Archean Chert and Cherty Iron Formation 4628
9.5.5. Stable Isotopes and Rare Earth Elements in Precambrian Chert and Cherty Iron Formation 4629
9.5.5.1. Silicon Isotope Systematics 4629
9.5.5.2. Raleigh-Type Fractionation of Silicon Isotopes 4630
9.5.5.3. Silicon Isotopic Studies in Early Archean Chert and Temporal Changes in δ30Si 4631
9.5.5.4. Oxygen Isotope Systematics 4634
9.5.5.5. Preservation of the Oxygen Isotope Record in Precambrian Chert 4635
9.5.5.6. Oxygen Isotope Composition of Seawater 4636
9.5.5.7. Hydrogen Isotopes in Precambrian Chert 4637
9.5.5.8. Iron Isotope Systematics 4638
9.5.5.9. Iron and Silicon Isotope Studies of Early Paleoproterozoic Iron Formation 4638
9.5.5.10. Rare Earth Elements as Indicators of Depositional Environments of Cherts and Cherty Iron Formation 4639
9.5.6. Conclusions 4640
Acknowledgments 4641
References 4641
Chapter 9.6: Geochemistry of Fine-Grained, Organic Carbon-Rich Facies 4647
9.6.1. Introduction 4647
9.6.2. Conceptual Model: Processes 4648
9.6.2.1. Detrital Flux 4649
9.6.2.2. Biogenic Flux 4650
9.6.2.3. Authigenic Flux 4651
9.6.2.4. Carbon Cycle and Climate Feedback 4652
9.6.3. Conceptual Model: Proxies 4653
9.6.3.1. Limitations of Proxy Data 4653
9.6.3.2. Detrital Proxies 4654
9.6.3.2.1. Physical methods 4654
9.6.3.2.2. Elemental proxies 4655
9.6.3.3. Biogenic Proxies 4655
9.6.3.3.1. Organic matter sources 4655
9.6.3.3.2. Stable carbon isotopes of organic matter (delta13C) 4656
9.6.3.3.3. Elemental ratios 4656
9.6.3.3.4. Biomarkers 4656
9.6.3.3.5. Accumulation rates 4657
9.6.3.4. Authigenic Proxies 4657
9.6.3.4.1. C-S relationships 4657
9.6.3.4.2. Sulfur isotope relationships 4658
9.6.3.4.3. Iron 4660
9.6.3.4.4. Trace metals 4661
9.6.4. Geochemical Case Studies of Fine-Grained, Organic Carbon-Rich Sediments and Sedimentary Rocks 4663
9.6.4.1. Modern Anoxic Environments of OM Burial: The Black Sea and Cariaco Basin 4663
9.6.4.2. Cretaceous Western Interior Basin 4665
9.6.4.3. Devonian Appalachian Basin 4671
9.6.4.4. Recent Precambrian Advances 4674
9.6.5. Discussion: A Unified View of the Geochemistry of Fine-Grained Organic Carbon-Rich Sediments and Sedim 4674
9.6.5.1. Applicability of the Model 4675
9.6.5.2. Detrital Fluxes and Bulk Sedimentation 4675
9.6.5.3. Productivity and Nutrients 4675
9.6.5.4. Productivity and C Isotope Records 4675
9.6.5.5. Mo, Fe, and Redox Control 4675
9.6.5.6. Elemental Ratios versus Accumulation Rates 4676
9.6.5.7. Future Prospects 4676
Acknowledgments 4676
References 4676
Chapter 9.7: Late Diagenesis and Mass Transfer in Sandstone-Shale Sequences 4687
9.7.1. Introduction 4687
9.7.2. The Realm of `Late Diagenesis´ 4688
9.7.3. Elemental Mobility at the Grain Scale 4688
9.7.3.1. Physical Processes 4688
9.7.3.1.1. Compaction 4688
9.7.3.1.2. Fracturing 4689
9.7.3.2. Chemical Processes in Late Diagenesis 4689
9.7.3.2.1. Dissolution 4689
9.7.3.2.2. Cementation 4691
9.7.3.2.3. Replacement 4691
9.7.4. Volumetrically Significant Processes of Late Diagenesis 4692
9.7.4.1. Detrital Feldspar Dissolution and Replacement 4692
9.7.4.2. Dissolution of Detrital Quartz (Pressure Solution) 4696
9.7.4.3. Dissolution of Detrital Carbonate 4697
9.7.4.4. Illitization 4697
9.7.4.5. Quartz Cement 4698
9.7.4.6. Authigenic Calcite 4699
9.7.4.7. Kaolinite and Chlorite 4701
9.7.4.8. Minor Cement and Replacement Phases 4701
9.7.4.9. Summary: Massive Reorganization by Fluid-Mediated Reactions 4702
9.7.5. Whole-Rock Elemental Data and Larger-Scale Elemental Mobility 4703
9.7.5.1. SiO2 4703
9.7.5.2. CaO (and CO2) 4704
9.7.5.3. K2O 4704
9.7.6. Fluid Flow 4704
9.7.7. Reverse Weathering and Concluding Comments 4704
Acknowledgments 4705
References 4705
Chapter 9.8: Coal Formation and Geochemistry 4713
9.8.1. Introduction 4713
9.8.2. Coal Formation 4714
9.8.2.1. Peat Formation and Early Diagenesis 4714
9.8.2.2. Coalification, Early Stage (Lignite, Brown Coal) 4719
9.8.2.3. Coalification, Late Stage (Subbituminous, Bituminous, Anthracite) 4721
9.8.3. Coal Rank 4721
9.8.4. Structure of Coal 4722
9.8.5. Hydrocarbons from Coal 4723
9.8.5.1. Liquid Hydrocarbons (Oil) 4723
9.8.5.2. Natural Gas 4724
9.8.6. Inorganic Geochemistry of Coal 4726
9.8.6.1. Abundance of Elements 4726
9.8.6.2. Mineralogy 4728
9.8.6.3. Modes of Occurrence 4729
9.8.7. Geochemistry of Coal Utilization 4731
9.8.8. Economic Potential of Metals from Coal 4731
9.8.9. Inorganics in Coal as Indicators of Depositional Environments 4731
9.8.10. Environmental Impacts 4732
9.8.10.1. Coal Combustion 4732
9.8.10.1.1. Sulfur emissions 4732
9.8.10.1.2. Nitrogen emissions 4732
9.8.10.1.3. Carbon dioxide emissions 4733
9.8.10.1.4. Emission of particulates 4733
9.8.10.1.5. Emission of trace elements 4733
9.8.10.1.6. Emission of organic compounds 4733
9.8.10.2. Environmental Impacts of Mining and Disposal of Coal Wastes 4733
9.8.10.3. Disposal of Solid Wastes from Coal Utilization 4733
9.8.10.4. Human Health 4733
9.8.11. Conclusions 4734
References 4735
Chapter 9.9: Formation and Geochemistry of Oil and Gas 4739
9.9.1. Introduction 4739
9.9.2. The Early Steps in Oil and Gas Formation: Where Does It All Begin? 4739
9.9.3. Insoluble Organic Material - Kerogen 4741
9.9.4. Soluble Organic Material 4744
9.9.4.1. Source 4746
9.9.4.2. Depositional Environments 4747
9.9.4.3. Maturity 4750
9.9.4.4. Biodegradation 4753
9.9.4.5. Age Dating 4754
9.9.4.6. Migration 4754
9.9.5. Geochemistry and Sequence Stratigraphy 4755
9.9.5.1. Lowstand System Tract 4755
9.9.5.2. Transgressive System Tract 4755
9.9.5.3. Condensed Section 4755
9.9.5.4. Highstand System Tract 4756
9.9.6. Fluid Inclusions 4757
9.9.7. Reservoir Geochemistry 4757
9.9.8. Basin Modeling 4759
9.9.9. Natural Gas 4763
9.9.10. Surface Prospecting 4765
9.9.11. Summary 4766
References 4766
Chapter 9.10: The Sedimentary Sulfur System: Biogeochemistry and Evolution through Geologic Time 4773
9.10.1. Introduction 4774
9.10.2. Sulfur in Sediments 4775
9.10.2.1. Forms of Sulfur in Sediments and Sedimentary Rocks 4776
9.10.2.1.1. Dissolved reduced sulfur species in sedimentary sulfide systems 4777
9.10.2.1.2. Iron sulfide minerals in sedimentary sulfide systems 4778
9.10.2.1.2.1. Iron(II) monosulfide: mackinawite 4778
9.10.2.1.2.2. Iron thiospinel, greigite 4779
9.10.2.1.2.3. Pyrite, FeS2p 4780
9.10.2.1.2.4. Cubic FeSc 4780
9.10.2.1.2.5. Troilite (FeSt) and the pyrrhotite group 4781
9.10.2.1.2.6. Smythite, rhombohedral Fe1-xSs 4781
9.10.2.1.2.7. Marcasite, orthorhombic FeS2m 4781
9.10.2.2. Distribution of Iron Sulfides in Sediments 4782
9.10.2.2.1. Observations of iron sulfide minerals in sediments 4782
9.10.2.2.2. Distribution of iron sulfide minerals in sediments 4783
9.10.3. Pyrite Formation in Sediments 4783
9.10.3.1. Thermodynamics of Sedimentary Pyrite Formation 4783
9.10.3.2. Mechanisms of Pyrite Formation 4785
9.10.3.3. Kinetics of Sedimentary Pyrite Formation 4786
9.10.4. Other Forms of Sulfur in Sediments 4787
9.10.4.1. Distribution of S8 in Sediments 4787
9.10.4.2. Sulfur in Suboxic Sedimentary Systems 4788
9.10.5. Reactive Iron 4789
9.10.5.1. The Nature of Nonsulfide Fe in Sediments 4789
9.10.5.2. Degree of Pyritization 4791
9.10.5.3. The Reactive Iron Shuttle 4791
9.10.5.4. Iron Isotopic Fractionation in Sulfidic Sediments 4792
9.10.5.5. Secular Variations in the Iron Isotopic Composition of Sedimentary Pyrite 4793
9.10.6. Microbial Ecology 4793
9.10.6.1. Microbial Sulfur Transformations 4793
9.10.6.2. Microbial Sulfate Reduction 4794
9.10.6.3. Microbiological Sulfate Reduction Rates (SRR) 4796
9.10.6.4. Iron Sulfides in Microorganisms 4796
9.10.6.5. Molecular Phylogeny of Sulfur Microorganisms in Sediments 4797
9.10.6.6. Syntrophy in the Sedimentary Sulfur System 4797
9.10.6.7. Microbial Sulfide Oxidation in Sediments 4798
9.10.6.8. Sulfur Disproportionating Organisms 4799
9.10.6.9. Microbial Stratigraphy: Biofilms and Microbial Mats 4799
9.10.6.10. Global Distribution of Sulfate-Reducing Microorganisms 4800
9.10.7. Evolution of the Sulfur Biome 4802
9.10.7.1. Sulfur Isotopic Fractionation by Microbial Sulfate Reduction 4802
9.10.7.2. Oxygen Isotope Fractionation During Sulfate Reduction and Sulfide Oxidation 4803
9.10.7.3. Microbial Disproportionation of Intermediate Sulfur Compounds 4803
9.10.7.4. Evolution of the Sulfur Biome from Sedimentary Sulfur Stable Isotope Geochemistry 4803
9.10.7.5. Carbon Isotopes 4804
9.10.7.6. Molecular Fossils: Sedimentary Biomarkers for Ancient Sulfur Microbes 4805
9.10.7.7. Molecular Biological Probes of the Evolution of the Sulfur Biome 4805
9.10.8. Euxinic Systems 4806
9.10.8.1. Oceanic Euxinic Conditions 4806
9.10.8.2. Sulfide Distribution in Natural Waters 4807
9.10.8.3. Proxies for Euxinia 4807
9.10.8.3.1. Sediment S/Corg ratios 4807
9.10.8.3.2. Biogenic silica 4808
9.10.8.3.3. Degree of pyritization 4808
9.10.8.3.4. Degree of sulfidation 4808
9.10.8.3.5. Reactive Fe content (FeHR) 4808
9.10.8.3.6. Pyrite framboid size 4809
9.10.8.3.7. Organic carbon:phosphate ratios, Corg/P 4809
9.10.8.3.8. Trace elements 4809
9.10.8.4. Sulfur Stable Isotopes in Euxinic Sediments 4809
9.10.8.5. Molybdenum Isotopes 4810
9.10.8.6. Other Stable Isotopes 4810
9.10.8.7. Biomarker Proxies 4811
9.10.9. The Geochemistry of Sulfidic Sedimentary Rocks 4811
9.10.9.1. Black Shales over the Last 200 Ma 4812
9.10.9.2. Paleozoic Black Shales 4813
9.10.9.3. Distribution of Black Shales in the Proterozoic 4814
9.10.9.4. Archean Sulfidic Sediments 4816
9.10.10. Geochemical Evolution of Sulfur-Based Sediments 4817
9.10.10.1. Mass-Independent Fractionation (MIF) of Sulfur Isotopes 4817
9.10.10.2. Sulfur-Rich Sediments and the History of Oceanic Oxygen 4818
9.10.10.3. The History of Marine Sulfate Concentration 4819
9.10.10.4. Variations in the Geochemistry of Sulfur-Rich Sediments through Geologic Time 4820
Acknowledgments 4821
References 4821
Chapter 9.11: Manganiferous Sediments, Rocks, and Ores 4833
9.11.1. Chemical Fundamentals 4833
9.11.2. Distribution of Manganese in Rocks and Natural Waters 4837
9.11.3. Common Manganese Minerals 4838
9.11.4. Composition of Manganese Accumulations 4840
9.11.5. Behavior of Manganese in Igneous Settings, Especially Mid-Ocean Ridge Vents 4843
9.11.6. Behavior of Manganese in Sedimentation 4845
9.11.6.1. Manganese Nodules and Crusts in Modern Sediments 4845
9.11.6.2. Manganese Carbonates in Modern Sediments 4845
9.11.7. Two Models of Sedimentary Manganese Mineralization 4846
9.11.8. Behavior in Soils and Weathering 4848
9.11.8.1. Manganese in Uncontaminated Soils 4848
9.11.8.2. Manganese in Soils Affected by Mining and Smelting 4850
9.11.9. Manganese through Geologic Time 4850
9.11.10. Conclusions 4851
References 4851
Chapter 9.12: Green Clay Minerals 4857
9.12.1. What Are We Looking At? 4857
9.12.1.1. The Cycle of Transformation 4858
9.12.1.2. Geologic Conditions of Green Clay Stability 4858
9.12.2. Description of Green Clay Minerals 4859
9.12.2.1. Potassic Green Clays (Mica-Based Structures) 4859
9.12.2.1.1. Glauconites 4859
9.12.2.1.2. Celadonite 4861
9.12.2.1.3. Summary of potassic green clays 4863
9.12.2.2. Ferrous, Green Clays 4863
9.12.2.2.1. Occurrence of berthiérine and verdine minerals 4863
9.12.2.2.2. Chamosite 4866
9.12.3. Nonchlorite, Nonmicaceous Green Clay Minerals 4866
9.12.3.1. Nontronite 4866
9.12.3.2. Talc 4867
9.12.4. Geochemical Origin of Green Clays 4867
9.12.4.1. Shallow Ocean Bottom, Marine Green Clays - Glauconite and Berthiérine 4867
9.12.4.2. Alteration Environments 4868
9.12.4.3. Diagenesis Reactions 4868
9.12.5. General Reflections 4869
References 4869
Chapter 9.13: Chronometry of Sediments and Sedimentary Rocks 4871
9.13.1. Introduction 4871
9.13.2. Chronometry Based on the Fossil Record - First Steps 4871
9.13.3. Refinements in Chronometry Using Fossils 4875
9.13.4. Oil Recovery in California Using Fossil-Based Chronometry 4877
9.13.5. Principles of Chorology: The Science of the Distribution of Organisms 4878
9.13.6. Constraints on Chronometry Imposed by Chorology 4882
9.13.7. Radiochronometry 4885
9.13.8. Magnetic Field Polarity and Chronometry 4886
9.13.9. Orbital Chronometry 4887
9.13.9.1. Aurichorology - The Golden Spikes and Global Statotype Section and Points 4888
9.13.10. Terminologies 4889
9.13.11. Summary 4889
References 4890
Chapter 9.14: The Geochemistry of Mass Extinction 4891
9.14.1. Introduction 4891
9.14.2. Isotope Records of the Major Mass Extinctions 4892
9.14.2.1. Carbon Isotope Record 4892
9.14.2.2. Sulfur Isotope Record 4892
9.14.2.3. Strontium Isotope Record 4893
9.14.2.4. Oxygen Isotope Record 4894
9.14.3. Interpreting the Geochemical Records of Mass Extinction 4894
9.14.3.1. Late Ordovician 4894
9.14.3.2. Late Devonian 4897
9.14.3.3. Permian-Triassic 4897
9.14.3.4. Triassic-Jurassic 4898
9.14.3.5. Cretaceous-Tertiary 4898
9.14.4. Summary with Extensions 4899
9.14.4.1. Paleozoic Suffocation 4899
9.14.4.2. Mesozoic Menace 4900
Acknowledgments 4901
References 4901
Chapter 9.15: Evolution of Sedimentary Rocks 4905
9.15.1. Introduction 4905
9.15.2. The Earth System 4906
9.15.2.1. Population Dynamics 4906
9.15.3. Generation and Recycling of the Oceanic and Continental Crust 4907
9.15.4. Global Tectonic Realms and Their Recycling Rates 4908
9.15.5. Present-Day Sedimentary Shell 4909
9.15.6. Tectonic Settings and Their Sedimentary Packages 4910
9.15.7. Petrology, Mineralogy, and Major Element Composition of Clastic Sediments 4911
9.15.7.1. Provenance 4911
9.15.7.2. Transport Sorting 4912
9.15.7.3. Sedimentary Recycling 4913
9.15.8. Trace Element and Isotopic Composition of Clastic Sediments 4913
9.15.9. Secular Evolution of Clastic Sediments 4914
9.15.9.1. Tectonic Settings and Lithology 4914
9.15.9.2. Chemistry 4914
9.15.9.3. Isotopes 4916
9.15.10. Sedimentary Recycling 4917
9.15.11. Ocean/Atmosphere System 4917
9.15.11.1. The Chemical Composition of Ancient Ocean 4918
9.15.11.2. Isotopic Evolution of Ancient Oceans 4919
9.15.11.2.1. Strontium isotopes 4919
9.15.11.2.2. Osmium isotopes 4922
9.15.11.2.3. Sulfur isotopes 4922
9.15.11.2.4. Carbon isotopes 4924
9.15.11.2.5. Oxygen isotopes 4927
9.15.11.2.6. Isotope tracers in developmental stages 4929
9.15.12. Major Trends in the Evolution of Sediments during Geologic History 4929
9.15.12.1. Overall Pattern of Lithologic Types 4929
9.15.12.2. Phanerozoic Carbonate Rocks 4930
9.15.12.2.1. Mass-age distribution and recycling rates 4930
9.15.12.2.2. Dolomite/calcite ratios 4932
9.15.12.2.3. Ooids and ironstones 4934
9.15.12.2.4. Calcareous shelly fossils 4935
9.15.12.2.5. The carbonate cycle in the ocean 4936
9.15.12.3. Geochemical Implications of the Phanerozoic Carbonate Record 4936
Acknowledgment 4937
References 4937
Chapter 9.16: Stable Isotopes in the Sedimentary Record 4943
9.16.1. Introduction 4943
9.16.2. Isotopic Concentration Units and Fractionation 4947
9.16.3. Hydrogen and Oxygen Isotopes in the Water Cycle 4948
9.16.4. Hydrogen and Oxygen Fractionation in Clays, Water, and Carbonates 4951
9.16.4.1. Illite and Kaolinite Reactions with Water 4952
9.16.4.2. Other Clay-Water Reactions 4953
9.16.4.3. δ18O in Carbonates 4955
9.16.5. Calcium Isotopes in Seawater and Carbonates 4956
9.16.6. Carbon Isotopes in Carbonates and Organic Matter 4959
9.16.6.1. Storage of Carbonates and Organic Matter 4960
9.16.6.2. Long-Term Trends of Carbonate Sediments 4962
9.16.7. Nitrogen Isotopes in Sedimentary Environment 4965
9.16.7.1. Specific Analytical Aspects 4966
9.16.7.2. N in the Mantle and Igneous Environment 4966
9.16.7.3. N in Sedimentary Rocks 4968
9.16.7.4. N in Oceanic Sediments and Particulate Matter 4968
9.16.7.5. Anthropogenic Effects 4970
9.16.8. Sulfur Isotopes in Sedimentary Sulfate and Sulfide 4971
9.16.9. Boron Isotopes at the Earth's Surface 4973
9.16.9.1. Ocean Water 4974
9.16.9.2. Ground- and River Waters 4975
9.16.9.3. Oceanic Sediments 4976
9.16.9.4. Clay Mineral-Water Exchange 4976
9.16.10. 40Ar in the Clay Fraction of Sediments 4977
9.16.10.1. 40Ar in Clay Diagenesis 4977
9.16.10.2. Clay Particle Size and K-Ar Apparent Age 4978
9.16.10.3. 40Ar Loss in Thermal Events 4981
9.16.10.4. 40Ar Flux from Sediments 4981
Acknowledgments 4983
References 4983
Chapter 9.17: Geochemistry of Evaporites and Evolution of Seawater 4989
9.17.1. Introduction 4990
9.17.2. Definition of Evaporites 4990
9.17.3. Brines and Evaporites 4990
9.17.4. Environment of Evaporite Deposition 4991
9.17.4.1. Evaporation 4992
9.17.4.2. Freezing 4992
9.17.4.3. Brine (Evaporating Waters) 4993
9.17.4.4. Salinity 4993
9.17.4.5. Temperature 4994
9.17.4.6. Heliothermal Effect 4995
9.17.4.7. pH 4995
9.17.5. Seawater as a Salt Source for Evaporites 4995
9.17.6. Evaporite and Saline Minerals 4996
9.17.7. Model of Marginal Marine Evaporite Basin 4997
9.17.7.1. Conceptual Model of the Basin 4998
9.17.7.2. Quantitative Model of the Basin 5001
9.17.8. Mode of Evaporite Deposition 5002
9.17.9. Primary and Secondary Evaporites 5004
9.17.10. Evaporation of Seawater - Experimental Approach 5005
9.17.11. Crystallization Sequence before K–Mg Salt Precipitation 5005
9.17.11.1. Early Salinity Rise - Calcium Carbonate Precipitation 5005
9.17.11.2. Gypsum Crystallization Field 5007
9.17.11.3. Halite Crystallization Field 5007
9.17.12. Crystallization Sequence of K–Mg Salts 5009
9.17.12.1. Natural Crystallization 5009
9.17.12.2. Theoretical Crystallization Paths 5010
9.17.13. Isotopic Effects in Evaporating Seawater Brines and Evaporite Salts 5011
9.17.14. Usiglio Sequence - A Summary 5011
9.17.15. Principles and Record of Chemical Evolution of Evaporating Seawater 5011
9.17.15.1. Principle of the Chemical Divide for Seawater 5011
9.17.15.2. Jänecke Diagrams 5013
9.17.15.3. Spencer Triangle 5014
9.17.16. Evaporation of Seawater - Remarks on Theoretical Approaches 5015
9.17.17. Sulfate Deficiency in Ancient K-Mg Evaporites 5015
9.17.17.1. Sulfate Deficiency as the Secondary Feature 5017
9.17.17.2. Sulfate Deficiency as a Record of Ancient Seawater Composition 5019
9.17.18. Ancient Ocean Chemistry Interpreted from Evaporites 5020
9.17.18.1. Implications from Evaporite Mineralogy and from Usiglio Sequence 5020
9.17.18.2. Implications of Primary Evaporite Minerals (Excluding Implications from Fluid Inclusions) 5022
9.17.19. Recognition of Ancient Marine Evaporites 5022
9.17.19.1. Sedimentological Criteria 5023
9.17.19.2. Mineralogical Criteria 5023
9.17.19.3. Geochemical Criteria 5023
9.17.20. Fluid Inclusions Reveal the Composition of Ancient Brines 5024
9.17.20.1. Criteria for Seawater Recognition in Halite Fluid Inclusions 5025
9.17.20.2. Reconstruction of Ancient Seawater Composition from Halite Fluid Inclusions 5026
9.17.21. Ancient Ocean Chemistry from Halite Fluid Inclusions - Summary and Comments 5029
9.17.22. Salinity of Ancient Oceans 5036
9.17.23. Evaporite Deposition through Time 5037
9.17.23.1. Late Ediacaran-Phanerozoic Marine Evaporites 5038
9.17.23.2. Precambrian (Pre-Ediacaran) Marine Evaporites 5042
9.17.23.3. Nonmarine Evaporites in Precambrian 5050
9.17.23.4. Pseudomorphs after Evaporite Minerals in Precambrian 5050
9.17.24. Significance of Evaporites in the Earth History 5052
9.17.24.1. Paleogeographic Indicators 5052
9.17.24.2. Seals for Hydrocarbons and More (Evaporites and Hydrocarbons) 5052
9.17.24.3. Halotectonics 5053
9.17.24.4. Diagenesis and Metamorphism of Evaporites 5053
9.17.25. Summary 5053
Acknowledgments 5054
References 5054
Chapter 9.18: Iron Formations: Their Origins and Implications for Ancient Seawater Chemistry 5067
9.18.1. Introduction 5068
9.18.2. Definition of IF 5069
9.18.3. Mineralogy of IF 5072
9.18.3.1. Precursor Sediments 5074
9.18.3.1.1. Secular trend in Fe mineralogy of GIFs 5075
9.18.4. Depositional Setting and Sequence-Stratigraphic Framework 5075
9.18.4.1. Basin-Type Control on IF Deposition 5077
9.18.4.2. Sedimentation Rates 5078
9.18.5. IF: A Proxy for Ancient Seawater Composition 5079
9.18.5.1. Trace Elements 5079
9.18.5.1.1. Rare earth elements 5079
9.18.5.1.2. Phosphorus 5080
9.18.5.1.3. Nickel 5083
9.18.5.1.4. Chromium 5083
9.18.5.2. Stable Isotope Studies of IF 5085
9.18.5.2.1. Traditional light stable isotopes 5085
9.18.5.2.2. Nontraditional stable isotopes 5087
9.18.5.2.2.1. Fe isotopes 5087
9.18.5.2.2.2. Chromium isotopes 5089
9.18.5.2.2.3. Silicon isotopes in chert and IF bands 5089
9.18.6. Perspective from the Modern Iron Cycle 5090
9.18.6.1. Hydrothermal Pulses of Si Synchronous with Fe Addition to Seawater 5092
9.18.6.2. Oxidation Mechanism: Biological versus Nonbiological 5092
9.18.6.2.1. Oxidation of Fe(II) by cyanobacterial O2 5094
9.18.6.2.2. Metabolic Fe(II) oxidation 5094
9.18.6.2.3. Ultraviolet photooxidation of Fe(II) 5095
9.18.7. Secular Trends for Exhalites, IFs, and VMS Deposits 5095
9.18.7.1. Relationships among Mantle Plumes, IF 5095
9.18.7.2. Secular Patterns in Precambrian VMS-Related Exhalites 5097
9.18.7.3. Secular Patterns in Sedimentary Iron Deposits 5098
9.18.7.3.1. Eoarchean IFs 5098
9.18.7.3.2. Paleoarchean IFs 5098
9.18.7.3.3. Neoarchean to Mesoarchean IFs 5098
9.18.7.3.4. Neoarchean IFs 5099
9.18.7.3.5. IFs deposited after the GOE and before 1.93Ga 5099
9.18.7.3.6. C.1.93-1.85Ga IFs coeval with large VMS de 5100
9.18.7.3.7. Proterozoic age gap in major IF deposition 5102
9.18.7.3.8. Neoproterozoic manganese deposits and IFs 5103
9.18.7.3.9. Phanerozoic ironstones, anoxic events, and VMS deposits 5104
9.18.8. Controls on IF Deposition 5106
9.18.8.1. Influence of Hydrothermal Processes on Ocean Composition and Organic Productivity 5108
9.18.8.2. Implications for Atmospheric Oxidation 5111
9.18.9. Euxinic Conditions Induced by Shift in Dissolved Fe/S Ratio of Seawater due to Iron Oxidation 5111
9.18.10. Research Perspectives and Future Directions 5112
Appendix 1. Precambrian Banded Iron Formations, Granular Iron Formations, and Rapitan-Type Iron Formationsa 5113
Appendix 2. Exhalites Associated with Precambrian Deep-Water (Cu-Rich) Volcanogenic Massive Sulfide Depositsa 5120
References 5123
Chapter 9.19: Bedded Barite Deposits: Environments of Deposition, Styles of Mineralization, and Tectonic Settings 5135
9.19.1. Introduction 5135
9.19.1.1. Modern Deposits of Massive Barite 5136
9.19.1.2. Ancient Deposits of Massive Barite 5137
9.19.1.3. Setting I. Continental Rifts (e.g., Red Dog) 5138
9.19.1.3.1. Regional setting 5139
9.19.1.3.2. Mudstone host 5140
9.19.1.3.3. Volcanic rocks 5141
9.19.1.3.4. Mineralization 5141
9.19.1.3.5. Fluid flow 5143
9.19.1.4. Setting II. Transtensional Basins (e.g., California Borderland) 5144
9.19.1.4.1. Regional setting 5144
9.19.1.4.2. Mudstone host 5145
9.19.1.4.3. Volcanic rocks 5146
9.19.1.4.4. Mineralization 5147
9.19.1.4.5. Fluid flow 5148
9.19.1.5. Setting III. Accretionary Prisms (e.g., Arkansas) 5150
9.19.1.5.1. Regional setting 5150
9.19.1.5.2. Mudstone host 5150
9.19.1.5.3. Volcanic rocks 5151
9.19.1.5.4. Mineralization 5152
9.19.1.5.5. Fluid flow 5153
9.19.2. Comparisons 5154
9.19.2.1. Environments of Deposition 5155
9.19.2.2. Mineralization 5155
9.19.2.3. Tectonic Setting 5155
9.19.3. The Nevada Barites: A Test Case 5155
9.19.3.1. Host Strata 5155
9.19.3.2. Mineralization 5156
9.19.3.3. Tectonic Setting 5157
9.19.4. Summary 5157
Acknowledgments 5159
References 5159
e9780080983004v10 5163
Front Cover 5163
Biogeochemistry 5166
Copyright 5167
In Memoriam 5168
Heinrich Dieter Holland (1927–2012) 5170
Karl Karekin Turekian (1927–2013) 5172
References 5174
Dedication 5176
Contents 5178
Executive Editors’ Foreword to the Second Edition 5180
Contributors 5184
Volume Editors’ Introduction 5186
References 5188
Chapter 10.1: The Early History of Life 5190
10.1.1. Introduction 5191
10.1.1.1. Strangeness and Familiarity - the Youth of the Earth 5191
10.1.1.2. Evidence in Rocks, Moon, Planets, and Meteorites - the Sources of Information 5191
10.1.1.3. Reading the Palimpsests – Using Evidence from the Modern Earth and Biology to Reconstruct the Ancestors and their Home 5192
10.1.1.4. Modeling - The Problem of Taking Fragments of Evidence and Rebuilding the Childhood of the Planet 5192
10.1.1.5. What Does a Planet Need to be Habitable? 5193
10.1.1.6. The Power of Biology: The Infinite Improbability Drive 5193
10.1.2. The Chaotian and Hadean (~4.56–4.0 Ga Ago) 5194
10.1.2.1. Definition of the Chaotian 5194
10.1.2.2. Definition of the Hadean 5194
10.1.2.3. Building a Habitable Planet 5194
10.1.2.4. The Hadean Geological Record 5196
10.1.2.5. When and Where Did Life Start? 5197
10.1.3. The Archean (~4-2.5Ga Ago) 5197
10.1.3.1. Definition of Archean 5197
10.1.3.2. The Archean Record 5198
10.1.3.2.1. Greenland 5198
10.1.3.2.2. Barberton 5198
10.1.3.2.3. Western Australia 5198
10.1.3.2.4. Steep Rock, Ontario, and Pongola, South Africa 5199
10.1.3.2.5. Belingwe 5200
10.1.4. The Functioning of the Earth System in the Archean 5201
10.1.4.1. The Physical State of the Archean Planet 5201
10.1.4.2. The Surface Environment 5202
10.1.5. Life: Early Setting and Impact on the Environment 5203
10.1.5.1. Origin of Life 5203
10.1.5.2. RNA World 5204
10.1.5.3. Hydrothermal World 5204
10.1.5.4. LUCA - The Last Common Ancestor 5204
10.1.5.5. A Hyperthermophile Heritage? 5208
10.1.5.6. Metabolic Strategies 5209
10.1.6. The Early Biomes 5210
10.1.6.1. Location of Early Biomes 5210
10.1.6.2. Methanogenesis: Impact on the Environment 5210
10.1.6.3. Prephotosynthetic Ecology 5211
10.1.6.4. Geological Settings of the Early Biomes 5212
10.1.7. The Evolution of Photosynthesis 5213
10.1.7.1. The Chain of Photosynthesis 5213
10.1.7.2. The Rubisco Fingerprint 5214
10.1.7.3. The Evolutionary Chain 5215
10.1.7.4. Anoxygenic Photosynthesis 5216
10.1.7.5. Oxygenic Photosynthesis 5217
10.1.7.6. Archean Oxygen 5218
10.1.8. Mud-Stirrers: Origin and Impact of the Eucarya 5219
10.1.8.1. The Ancestry of the Eucarya 5219
10.1.8.2. The Last Eukaryote Common Ancestor: Possible Settings for the Eukaryote Endosymbiotic Event 5221
10.1.8.3. Water and Mud Stirring - Consequences 5222
10.1.9. The breath of Life: The Impact of Life on the Ocean/Atmosphere System 5223
10.1.9.1. The Breath of Life 5223
10.1.9.2. Oxygen and Carbon Dioxide 5223
10.1.9.3. Nitrogen and Fixed Nitrogen 5224
10.1.9.4. Methane 5225
10.1.9.5. Sulfur and Biology 5225
10.1.10. Feedback from the Biosphere to the Physical State of the Planet 5225
Acknowledgments 5226
References 5226
Chapter 10.2: Evolution of Metabolism 5232
10.2.1. Introduction 5232
10.2.2. The Domains of Life 5232
10.2.3. Life and Rocks 5233
10.2.4. Mechanisms for Energy Conservation 5233
10.2.5. Extant Patterns of Metabolism 5235
10.2.5.1. Kinds of Phototrophs 5236
10.2.5.2. Lithotrophic Energy Sources 5237
10.2.5.3. Carbon Sources for Life 5237
10.2.5.4. Fermentative and Respiratory Metabolism 5238
10.2.6. Reconstructing the Evolution of Metabolism 5239
10.2.6.1. Approaches Employing Genomics and Molecular Genetics 5239
10.2.6.2. Approaches Employing Geochemical and Geophysical Methods 5240
10.2.6.2.1. Physical fossils 5240
10.2.6.2.2. Signature molecules 5241
10.2.6.2.3. Inorganic chemistry of sediments 5241
10.2.6.2.4. Stable isotope fractionation 5242
10.2.6.2.5. Carbon isotopes 5242
10.2.6.2.6. Sulfur isotopes 5244
10.2.6.2.7. Nitrogen isotopes 5244
10.2.6.2.8. Iron isotopes 5244
10.2.7. Overview 5245
References 5246
Chapter 10.3: Sedimentary Hydrocarbons, Biomarkers for Early Life 5250
10.3.1. Introduction 5250
10.3.2. Biomarkers as Molecular Fossils 5251
10.3.2.1. The Fate of Dead Biomass: Diagenesis, Catagenesis, and Metagenesis 5251
10.3.2.2. Compound-Specific Stable Isotopes 5253
10.3.3. Thermal Stability and Maturity of Biomarkers 5253
10.3.3.1. Biomarkers as Maturity Indicators 5253
10.3.3.2. The Survival of Biomarkers with Increasing Temperature and Time 5254
10.3.4. Experimental Approaches to Biomarker and Kerogen Analysis 5256
10.3.5. Discussion of Biomarkers by Hydrocarbon Class 5257
10.3.5.1. Advantages and Limitations of the Biomarker Approach 5257
10.3.5.2. n-Alkanes, Algaenans, and other Polymethylenic Biopolymers 5257
10.3.5.3. Methyl and Ethyl Alkanes 5259
10.3.5.4. Alkyl Cyclohexanes and Cyclopentanes 5260
10.3.5.5. Isoprenoids 5260
10.3.5.6. Carotenoids 5263
10.3.5.6.1. Aromatic carotenoids and arylisoprenoids 5264
10.3.5.6.2. Bacterioruberin 5267
10.3.5.7. Chlorophylls and Maleimides 5267
10.3.5.8. Sesquiterpanes (C15) and Diterpanes (C20) 5268
10.3.5.9. Cheilanthanes and other Tricyclic Polyprenoids 5270
10.3.5.10. Hopanoids and other Pentacyclic Triterpanes 5270
10.3.5.11. Steroid Hydrocarbons 5273
10.3.6. Reconstruction of Ancient Biospheres: Biomarkers for the Three Domains of Life 5276
10.3.6.1. Bacteria 5276
10.3.6.1.1. Hopanoids as biomarkers for bacteria 5276
10.3.6.1.2. Cyanobacteria 5276
10.3.6.1.3. Methanotrophs, methylotrophs, and acetic acid bacteria 5276
10.3.6.1.4. Phototrophic sulfur bacteria 5276
10.3.6.2. Archaea 5277
10.3.6.2.1. Methanogens 5277
10.3.6.2.2. Biomarkers and ecology at marine methane seeps 5277
10.3.6.2.3. Halobacteria 5278
10.3.6.2.4. Marine Crenarchaeota 5278
10.3.6.3. Eukarya 5278
10.3.7. Biomarkers as Environmental Indicators 5278
10.3.7.1. Marine versus Lacustrine Conditions 5278
10.3.7.2. Hypersaline Conditions 5279
10.3.7.3. Anoxic and Euxinic Conditions 5280
10.3.7.4. Carbonates versus Clay-rich Sediments 5280
10.3.7.5. Paleotemperature and Paleolatitude Biomarkers 5281
10.3.8. Age Diagnostic Biomarkers 5281
10.3.9. Biomarkers in Precambrian Rocks 5281
10.3.9.1. Biomarkers in the Proterozoic (0.54-2.5 Ga) 5281
10.3.9.2. Biomarkers Extracted from Archean Rocks (>2.5 Ga) 5282
10.3.10. Outlook 5283
Acknowledgments 5283
References 5283
Chapter 10.4: Biomineralization 5294
10.4.1. Introduction 5295
10.4.1.1. Outline of the Chapter 5295
10.4.1.2. Definitions and General Background on Biomineralization 5296
10.4.2. Biominerals 5297
10.4.2.1. Calcium Carbonates 5297
10.4.2.1.1. Calcite 5297
10.4.2.1.2. Aragonite 5297
10.4.2.1.3. Vaterite 5299
10.4.2.2. Silica 5300
10.4.2.2.1. Opal 5300
10.4.2.3. Bioapatite 5301
10.4.2.4. Iron Oxides and Hydroxides 5303
10.4.2.4.1. Magnetite 5303
10.4.3. Examples of Biomineralization 5304
10.4.3.1. Introduction 5304
10.4.3.2. Sulfur Biomineralization 5305
10.4.3.2.1. Sulfur oxidizers 5305
10.4.3.2.2. Sulfate reducers 5305
10.4.3.2.3. Formation of elemental sulfur 5305
10.4.3.2.4. Sulfate biomineralization 5306
10.4.3.3. Iron Biomineralization 5306
10.4.3.3.1. Roles of iron in archaea and bacteria 5306
10.4.3.3.2. Bacterial iron mineral formation 5306
10.4.3.3.3. Magnetotactic bacteria 5307
10.4.3.4. Carbonate Biomineralization 5307
10.4.3.4.1. Cyanobacteria 5309
10.4.3.4.2. Cnidaria (coelenterates) 5310
10.4.3.4.2.1. Corals 5310
10.4.3.4.2.2. Other taxa that biomineralize 5310
10.4.3.4.3. Coccoliths 5311
10.4.3.4.3.1. E. huxleyi: Intracellular calcification 5311
10.4.3.4.4. Foraminifera 5311
10.4.3.4.5. Echinoids 5313
10.4.3.4.6. Mollusks 5314
10.4.3.4.6.1. Bivalves 5314
10.4.3.4.6.2. Bivalve shell architecture 5314
10.4.3.4.6.3. Chitons 5314
10.4.3.4.6.4. Teeth of chitons 5316
10.4.3.4.7. Arthropods 5316
10.4.3.4.7.1. Crustacea exoskeleton: The carapace 5317
10.4.3.4.7.2. Gastroliths 5317
10.4.3.5. Silica Biomineralization 5317
10.4.3.5.1. Radiolarians 5318
10.4.3.5.2. Diatoms 5319
10.4.3.5.3. Sponges 5321
10.4.3.5.4. Plant biominerals 5323
10.4.3.5.4.1. Silica in plants 5323
10.4.3.5.5. Phytoliths: Indicators of the environment and paleoenvironment 5327
10.4.3.5.5.1. Radiocarbon dating using plant biominerals 5329
10.4.3.5.5.2. Stable isotope investigations on plant biominerals 5329
10.4.3.5.6. Bones and bone tissues 5329
10.4.3.5.6.1. Biomineralization of bone: The bone morphogenic unit 5329
10.4.3.5.6.2. Bone cells and products: Collagen 5332
10.4.3.5.6.3. Matrix-mediated biomineralization and other possibilities 5333
10.4.3.5.6.4. Analyses of the bone 5335
10.4.3.5.7. Cartilage 5335
10.4.3.5.7.1. Biomineralization of cartilage 5337
10.4.3.5.8. Antlers 5337
10.4.3.5.9. Teeth 5337
10.4.3.5.9.1. Introduction 5337
10.4.3.5.9.2. Tooth biology and mineralogy 5339
10.4.3.5.10. Otoliths 5341
10.4.4. Summary: Why Biomineralize? 5341
10.4.4.1. Physical or Macrobiomineralization Contributions 5341
10.4.4.1.1. Defense and protection through biomineralization 5343
10.4.4.2. Chemical or Microbiomineralization Contributions 5343
Acknowledgments 5344
References 5344
Chapter 10.5: Biogeochemistry of Primary Production in the Sea 5352
10.5.1. Introduction 5352
10.5.1.1. The Two Carbon Cycles 5353
10.5.1.2. A Primer on Redox Chemistry 5353
10.5.2. Chemoautotrophy 5353
10.5.3. Photoautotrophy 5354
10.5.3.1. Selective Forces in the Evolution of Photoautotrophy 5354
10.5.3.2. Selective Pressure in the Evolution of Oxygenic Photosynthesis 5355
10.5.4. Primary Productivity by Photoautotrophs 5355
10.5.4.1. What Are Photoautotrophs? 5356
10.5.4.1.1. The red and green lineages 5357
10.5.4.2. Estimating Chlorophyll Biomass 5357
10.5.4.2.1. Satellite-based algorithms for ocean color retrievals 5357
10.5.4.3. Estimating Net Primary Production 5359
10.5.4.3.1. Global models of net primary production for the ocean 5359
10.5.4.4. Quantum Efficiency of NPP 5360
10.5.4.4.1. Comparing efficiencies for oceanic and terrestrial primary production 5360
10.5.5. Export, New, and `True New` Production 5361
10.5.5.1. Steady State Versus Transient State 5362
10.5.5.2. Climate Change and the Transient State 5362
10.5.6. Nutrient Fluxes 5363
10.5.6.1. The Redfield Ratio 5363
10.5.7. Nitrification 5363
10.5.7.1. Carbon Burial 5364
10.5.7.2. Carbon Isotope Fractionation in Organic Matter and Carbonates 5364
10.5.7.3. Balance Between Net Primary Production and Losses 5364
10.5.7.4. Carbon Burial in the Contemporary Ocean 5364
10.5.7.5. Carbon Burial in the Precambrian Ocean 5366
10.5.8. Limiting Macronutrients 5366
10.5.8.1. The Two Concepts of Limitation 5366
10.5.9. The Evolution of the Nitrogen Cycle 5366
10.5.10. Functional Groups 5367
10.5.10.1. Siliceous Organisms 5368
10.5.10.2. Calcium Carbonate Precipitation 5369
10.5.10.3. Vacuoles 5369
10.5.11. High-Nutrient, Low-Chlorophyll Regions: Iron Limitation 5370
10.5.12. Glacial-Interglacial Changes in the Biological CO2 Pump 5370
10.5.13. Iron Stimulation of Nutrient Utilization 5371
10.5.14. Linking Iron to N2 Fixation 5371
10.5.15. Other Trace-Element Controls on NPP 5371
10.5.16. Concluding Remarks 5373
Acknowledgments 5373
References 5373
Chapter 10.6: Biogeochemical Interactions Governing Terrestrial Net Primary Production 5378
10.6.1. Introduction 5379
10.6.2. General Constraints on NPP 5379
10.6.2.1. What is NPP? 5379
10.6.2.2. Physiological Controls over NPP 5380
10.6.2.3. Environmental Controls over NPP 5381
10.6.2.4. Species Controls over NPP 5384
10.6.3. Limitations to Leaf-Level Carbon Gain 5384
10.6.3.1. The Basic Recipe for Carbon Gain 5384
10.6.3.2. CO2 Limitation 5384
10.6.3.3. Light Limitation 5385
10.6.3.4. Nitrogen Limitation 5385
10.6.3.5. Water Limitation 5386
10.6.4. Stand-Level Carbon Gain 5386
10.6.4.1. Spatial Scaling of GPP 5386
10.6.4.2. Temporal Scaling of GPP 5387
10.6.5. Respiration 5388
10.6.6. Allocation of NPP 5390
10.6.7. Tissue Turnover 5390
10.6.8. Global Patterns of Biomass and NPP 5390
10.6.9. Nutrient Use 5391
10.6.10. Balancing Nutrient Limitation 5392
10.6.10.1. Nutrient Requirements 5392
10.6.10.2. Limitation by Different Nutrients 5392
10.6.10.3. Stoichiometry of NPP 5393
10.6.10.4. Uncoupling Mechanisms 5394
10.6.10.4.1. Litterfall and leaching inputs 5394
10.6.10.4.2. Nutrient mineralization 5395
10.6.10.4.3. Nutrient availability 5396
10.6.10.4.4. Element interactions 5396
10.6.10.4.5. Plant uptake 5396
10.6.10.5. Recoupling Mechanisms 5397
10.6.11. Community-Level Adjustments 5398
10.6.12. Species Effects on Interactive Controls 5398
10.6.12.1. Species Effects on Resources 5398
10.6.12.1.1. Decomposition and nitrogen mineralization 5398
10.6.12.1.2. Water dynamics 5399
10.6.12.2. Species Effects on Climate 5399
10.6.12.3. Species Effects on Disturbance 5400
10.6.13. Species Interactions and Ecosystem Processes 5400
10.6.14. Summary 5400
Acknowledgments 5401
References 5401
Chapter 10.7: Biogeochemistry of Decomposition and Detrital Processing 5406
10.7.1. Introduction 5406
10.7.2. Composition of Decomposer Resources 5407
10.7.2.1. Plant Litter 5408
10.7.2.2. Roots 5409
10.7.2.3. Secondary Resources 5410
10.7.2.4. Soil Organic Matter 5410
10.7.2.5. Summary 5411
10.7.3. The Decomposer Organisms 5411
10.7.3.1. Functional Ecology 5412
10.7.3.2. Soil Microorganisms 5412
10.7.3.3. Soil Fauna 5415
10.7.3.4. Interactions 5418
10.7.4. Methods for Studying Decomposition 5419
10.7.4.1. Litter Techniques 5419
10.7.4.2. SOM Techniques 5420
10.7.5. Detrital Processing 5421
10.7.5.1. Time Course of Litter Decomposition 5421
10.7.5.2. Comminution 5424
10.7.5.3. Leaching 5424
10.7.5.4. Catabolism 5426
10.7.5.5. Change in Nutrient Status 5430
10.7.5.6. Priming Effect on Native SOM 5432
10.7.6. Humification 5432
10.7.6.1. Selective Preservation 5433
10.7.6.2. Condensation Models 5433
10.7.7. Control of Decomposition and Stabilization 5434
10.7.7.1. Decomposer Organisms 5435
10.7.7.2. Resource Quality 5437
10.7.7.3. Soil Characteristics 5441
10.7.7.4. Climate 5445
10.7.7.5. Multiple Constraints 5451
10.7.8. Modeling Approaches 5451
10.7.9. Conclusions 5453
References 5454
Chapter 10.8: Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes 5462
10.8.1. Overview of Life in the Absence of O2 5463
10.8.1.1. Introduction 5463
10.8.1.2. Overview of Anaerobic Metabolism 5464
10.8.1.3. Anaerobic-Aerobic Interface Habitats 5465
10.8.1.4. Syntax of Metabolism 5466
10.8.2. Autotrophic Metabolism 5466
10.8.2.1. Phototroph (Photolithoautotrophy) Diversity and Metabolism 5466
10.8.2.2. Chemotroph (Chemolithoautotrophy) Diversity and Metabolism 5468
10.8.2.3. Pathways of CO2 Fixation 5469
10.8.3. Decomposition and Fermentation 5469
10.8.3.1. Polymer Degradation 5469
10.8.3.1.1. Polysaccharides 5470
10.8.3.1.2. Lignin 5471
10.8.3.2. Fermentation 5471
10.8.3.2.1. Acetogenesis 5472
10.8.3.2.2. Syntrophy and interspecies hydrogen transfer 5472
10.8.4. Methane 5475
10.8.4.1. Methane in the Environment 5475
10.8.4.2. Methanogen Diversity and Metabolism 5476
10.8.4.3. Regulation of Methanogenesis 5477
10.8.4.3.1. O2 and oxidant inhibition 5477
10.8.4.3.2. Nutrients and pH 5477
10.8.4.3.3. Temperature 5477
10.8.4.3.4. Carbon quantity and quality 5478
10.8.4.3.5. Plants as carbon sources 5479
10.8.4.4. Contributions of Acetotrophy versus Hydrogenotrophy 5480
10.8.4.4.1. Organic carbon availability 5480
10.8.4.4.2. Temperature 5482
10.8.4.5. Anaerobic Methane Oxidation 5483
10.8.4.6. Aerobic Methane Oxidation 5485
10.8.4.6.1. Methanotroph diversity 5485
10.8.4.6.2. Regulation of methanotrophy 5486
10.8.4.6.3. Methane oxidation efficiency 5487
10.8.4.7. Wetland Methane Emissions and Global Change 5488
10.8.5. Nitrogen 5489
10.8.5.1. Nitrogen in the Environment 5489
10.8.5.2. Nitrogen Fixation 5491
10.8.5.3. Respiratory Denitrification 5491
10.8.5.3.1. Denitrifier diversity and metabolism 5491
10.8.5.3.2. Regulation of denitrification 5492
10.8.5.3.3. Nitrification-denitrification coupling 5494
10.8.5.3.4. Animals and plants 5494
10.8.5.3.5. N2O and NO fluxes 5495
10.8.5.4. Dissimilatory Nitrate Reduction to Ammonium (DNRA) 5495
10.8.5.4.1. Physiology and diversity of DNRA bacteria 5495
10.8.5.4.2. DNRA versus denitrification 5496
10.8.5.5. Alternative Pathways to N2 Production 5497
10.8.5.5.1. Anammox 5497
10.8.5.5.2. Nitrifier denitrification 5499
10.8.5.5.3. Abiotic and autotrophic denitrification 5499
10.8.6. Iron and Manganese 5500
10.8.6.1. Iron and Manganese in the Environment 5501
10.8.6.2. Iron and Manganese Geochemistry 5501
10.8.6.3. Microbial Reduction of Iron and Manganese 5501
10.8.6.3.1. Metabolic diversity in Fe(III)- and Mn(IV)-reducing organisms 5502
10.8.6.3.2. Physical mechanisms for accessing oxides 5502
10.8.6.4. Factors that Regulate Fe(III) Reduction 5503
10.8.6.4.1. Electron shuttling compounds 5503
10.8.6.4.2. Fe(lll) chelators 5504
10.8.6.4.3. Mineral reactivity 5504
10.8.6.4.4. Abiotic versus biotic reduction 5505
10.8.6.4.5. Separating enzymatic and nonenzymatic Fe(lll) reduction 5506
10.8.6.4.6. Fe(III) reduction in ecosystems 5506
10.8.6.5. Microbial Oxidation of Iron and Manganese 5507
10.8.6.5.1. Energetics of Fe(ll) and Mn(ll) oxidation 5507
10.8.6.5.2. Anaerobic Fe(ll) oxidation 5507
10.8.6.5.3. Aerobic Fe(ll) oxidation 5508
10.8.6.6. Iron Cycling 5509
10.8.7. Sulfur 5509
10.8.7.1. Sulfur Geochemistry 5510
10.8.7.2. Microbial Reduction of Sulfate 5510
10.8.7.2.1. Overview of sulfate reduction 5510
10.8.7.2.2. Metabolic diversity 5511
10.8.7.3. Taxonomic Considerations 5513
10.8.7.4. Sulfate-Reducing Populations 5514
10.8.7.5. Factors Regulating Sulfate Reduction Activity 5514
10.8.7.5.1. Sulfate-reducing activity 5514
10.8.7.5.2. Temperature 5515
10.8.7.5.3. Carbon 5515
10.8.7.5.4. Sulfate and molecular oxygen concentrations 5515
10.8.7.6. Microbial Reduction of Sulfur 5516
10.8.7.7. Disproportionation 5516
10.8.7.8. Sulfur Gases 5517
10.8.7.8.1. Hydrogen sulfide 5517
10.8.7.8.2. Methylsulfides 5517
10.8.7.8.3. Carbonyl sulfide and carbon disulfide 5519
10.8.7.9. Microbial Oxidation of Sulfur 5519
10.8.7.9.1. Colorless sulfur bacteria 5520
10.8.7.9.2. Single-cell colorless sulfur bacteria 5520
10.8.7.9.3. Filamentous colorless sulfur bacteria 5521
10.8.7.9.4. Anoxyphototrophic bacteria 5521
10.8.7.9.5. Ecological aspects of sulfide oxidation 5522
10.8.8. Coupled Anaerobic Element Cycles 5522
10.8.8.1. Evidence of Competitive Interactions 5522
10.8.8.2. Mechanisms of Competition 5522
10.8.8.3. Exceptions 5523
10.8.8.4. Noncompetitive Interactions 5524
10.8.8.5. Contributions to Carbon Metabolis 5524
10.8.8.6. Concluding Remarks 5524
Acknowledgments 5524
References 5525
Chapter 10.9: The Geologic History of the Carbon Cycle 5550
10.9.1. Introduction 5550
10.9.2. Modes of Carbon-Cycle Change 5551
10.9.2.1. The Carbon Cycle over Geologic Timescales 5551
10.9.2.1.1. The ``carbon dioxide´´ carbon cycle 5551
10.9.2.1.2. The ``methane´´ carbon subcycle 5554
10.9.2.2. Timescales of Carbon-cycle Change 5557
10.9.3. The Quaternary Record of Carbon-Cycle Change 5558
10.9.3.1. Analysis of CO2 and CH4 in Ice Cores 5558
10.9.3.2. Holocene Carbon-cycle Variations 5562
10.9.3.3. Glacial/interglacial Carbon-cycle Variations 5566
10.9.3.3.1. Carbon-cycle influences on glacial/interglacial climate 5566
10.9.3.3.2. Climate influences on glacial/interglacial carbon cycling 5568
10.9.3.3.3. Carbon/climate interactions at glacial terminations 5571
10.9.4. The Phanerozoic Record of Carbon-Cycle Change 5572
10.9.4.1. Mechanisms of Gradual Geologic Carbon-cycle Change 5573
10.9.4.1.1. The carbonate weathering-sedimentation cycle 5573
10.9.4.1.2. The silicate-carbonate weathering-decarbonation cycle 5573
10.9.4.1.3. The organic carbon production-consumption-oxidation cycle 5574
10.9.4.2. Model Simulations of Gradual Geologic Carbon-cycle Change 5576
10.9.4.3. Geologic Evidence for Phanerozoic Atmospheric CO2 Concentrations 5576
10.9.4.4. Abrupt Carbon-cycle Change 5578
10.9.5. The Precambrian Record of Carbon-Cycle Change 5579
10.9.6. Conclusions 5580
Acknowledgments 5580
References 5580
Chapter 10.10: The Contemporary Carbon Cycle 5588
10.10.1. Introduction 5589
10.10.2. Major Reservoirs and Natural Fluxes of Carbon 5589
10.10.2.1. Reservoirs 5589
10.10.2.1.1. The atmosphere 5589
10.10.2.1.2. Terrestrial ecosystems: vegetation and soils 5590
10.10.2.1.3. The oceans 5591
10.10.2.1.4. Fossil fuels 5591
10.10.2.2. The Natural Flows of Carbon 5592
10.10.2.2.1. Between land and atmosphere 5592
10.10.2.2.2. Between oceans and atmosphere 5594
10.10.2.2.3. Between land and oceans 5594
10.10.3. Changes in the Stocks and Fluxes of Carbon as a Result of Human Activities 5595
10.10.3.1. Changes over the Period 1850-2008 5595
10.10.3.1.1. Emissions of carbon from combustion of fossil fuels 5595
10.10.3.1.2. The increase in atmospheric carbon dioxide 5596
10.10.3.1.3. Net uptake of carbon by the oceans 5597
10.10.3.1.3.1. Ocean carbon models 5598
10.10.3.1.4. Land: net exchange of carbon between terrestrial ecosystems and the atmosphere 5598
10.10.3.1.5. Land: changes in land use 5598
10.10.3.1.6. Land: the residual carbon sink 5601
10.10.3.2. Changes over the Period 1980-2008 5602
10.10.3.2.1. The global carbon budget 5602
10.10.3.2.1.1. Sources and sinks inferred from inverse modeling with atmospheric transport models and atmospheric concentrat... 5602
10.10.3.2.1.2. Terrestrial sources and sinks of carbon from land-use change 5604
10.10.3.2.2. Regional distribution of sources and sinks of carbon: the northern mid-latitudes 5604
10.10.3.2.2.1. Inferring changes in terrestrial carbon storage from analysis of forest inventories 5605
10.10.3.2.3. Regional distribution of sources and sinks of carbon: the tropics 5606
10.10.3.2.3.1. Forest inventories 5606
10.10.3.2.3.2. Direct measurement of CO2 flux 5607
10.10.3.2.4. Summary: synthesis of the results of different methods 5607
10.10.4. Mechanisms Thought to be Responsible for Current Terrestrial Carbon Sink 5608
10.10.4.1. Physiological or Metabolic Responses to Environmental Change 5609
10.10.4.1.1. CO2 fertilization 5609
10.10.4.1.2. Nitrogen fertilization 5610
10.10.4.1.3. Atmospheric chemistry 5610
10.10.4.1.4. Climatic variability and climatic change 5611
10.10.4.1.5. Synergies among physiological `mechanisms´ 5612
10.10.4.1.6. Terrestrial carbon models 5612
10.10.4.2. Structural, Demographic, and Disturbance Mechanisms 5613
10.10.4.3. Which Terrestrial Mechanisms Are Most Important? 5613
10.10.4.4. Other Possible Explanations for the Residual Terrestrial Carbon Sink 5613
10.10.4.4.1. Aquatic transport: erosion and redeposition of carbon 5614
10.10.4.4.2. Woody encroachment 5614
10.10.4.4.3. Emissions from draining and burning of peatlands 5614
10.10.5. The Future 5614
10.10.5.1. Natural Feedbacks 5614
10.10.5.1.1. The airborne fraction 5615
10.10.5.1.2. How will the magnitude of the current terrestrial sink change in the future? 5615
10.10.5.1.3. How will the oceanic uptake of carbon change in the future? 5616
10.10.5.1.3.1. Physical and chemical mechanisms 5616
10.10.5.1.3.1.1. The buffer factor 5616
10.10.5.1.3.1.2. Warming 5616
10.10.5.1.3.1.3. Vertical mixing and stratification 5617
10.10.5.1.3.1.4. Rate of CO2 emissions 5617
10.10.5.1.3.2. Biological feedback/processes 5617
10.10.5.1.3.2.1. Addition of nutrients limiting primary production 5617
10.10.5.1.3.2.2. Enhanced utilization of nutrients 5617
10.10.5.1.3.2.3. Changes in the elemental ratios of organic matter in the ocean 5617
10.10.5.1.3.2.4. Increases in the organic carbon/carbonate ratio of export production 5617
10.10.5.2. Deliberate Sequestering of Carbon (or Reduction of Emissions) 5618
10.10.5.2.1. Terrestrial 5618
10.10.5.2.2. Oceanic 5618
10.10.5.2.3. Geologic 5618
10.10.6. Conclusion 5618
References 5619
Chapter 10.11: The Global Oxygen Cycle 5626
10.11.1. Introduction 5628
10.11.2. Distribution of O2 among Earth Surface Reservoirs 5628
10.11.2.1. The Atmosphere 5628
10.11.2.2. The Oceans 5628
10.11.2.3. Freshwater Environments 5631
10.11.2.4. Soils and Groundwaters 5631
10.11.3. Mechanisms of O2 Production 5632
10.11.3.1. Photosynthesis 5632
10.11.3.2. Photolysis of Water 5633
10.11.4. Mechanisms of O2 Consumption 5634
10.11.4.1. Aerobic Respiration 5634
10.11.4.2. Photorespiration 5634
10.11.4.3. C1 Metabolism 5634
10.11.4.4. Inorganic Metabolism 5635
10.11.4.5. Macroscale Patterns of Aerobic Respiration 5635
10.11.4.6. Volcanic Gases 5636
10.11.4.7. Mineral Oxidation 5636
10.11.4.8. Hydrothermal Vents 5636
10.11.4.9. Fe and S Oxidation at the Oxic&ndas 5636
10.11.4.10. Abiotic Organic Matter Oxidati 5637
10.11.5. Global O2 Budgets 5637
10.11.6. Atmospheric O2 Throughout Earth History 5637
10.11.6.1. Early Models 5637
10.11.6.2. The Archean 5639
10.11.6.2.1. Constraints on the O2 content of the Archean atmosphere 5639
10.11.6.2.2. The evolution of oxygenic photosynthesis 5640
10.11.6.2.3. Carbon isotope effects associated with photosynthesis 5642
10.11.6.2.4. Evidence for oxygenic photosynthesis in the late Archean 5643
10.11.6.3. The Proterozoic Atmosphere 5643
10.11.6.3.1. The Great Oxidation Event 5643
10.11.6.3.2. Survival strategies on the earliest oxygenated Earth 5646
10.11.6.3.3. Atmospheric O2 during the Mesoproterozoic 5646
10.11.6.3.4. Neoproterozoic atmospheric O2 5647
10.11.6.4. Phanerozoic Atmospheric O2 5649
10.11.6.4.1. Constraints on Phanerozoic O2 variation 5649
10.11.6.4.2. Evidence for variations in Phanerozoic O2 5649
10.11.6.4.3. Numerical models of Phanerozoic atmospheric O2 5651
10.11.7. Conclusions 5658
References 5659
Chapter 10.12: The Global Nitrogen Cycle 5664
10.12.1. Introduction 5664
10.12.2. Biogeochemical Reactions 5666
10.12.2.1. The Initial Reaction: Nr Creation 5666
10.12.2.2. Atmosphere 5666
10.12.2.2.1. Inorganic reduced N 5667
10.12.2.2.2. Inorganic oxidized N 5667
10.12.2.2.3. Reduced organic N 5668
10.12.2.2.4. Oxidized organic N 5668
10.12.2.3. Biosphere 5668
10.12.2.3.1. Nitrogen fixation 5668
10.12.2.3.2. Ammonia assimilation 5668
10.12.2.3.3. Nitrification 5668
10.12.2.3.4. Assimilatory nitrate reduction 5668
10.12.2.3.5. Ammonification 5668
10.12.2.3.6. Denitrification 5668
10.12.2.3.7. Anammox 5669
10.12.3. N Reservoirs and Their Exchanges 5669
10.12.3.1. Land to Atmosphere 5669
10.12.3.2. Ocean to Atmosphere 5669
10.12.3.3. Atmosphere to Surface 5669
10.12.3.4. Land to Ocean 5669
10.12.3.5. Continent to Continent - Commerce 5669
10.12.4. Nr Creation 5669
10.12.4.1. Introduction 5669
10.12.4.2. Lightning 5669
10.12.4.3. Terrestrial BNF 5670
10.12.4.4. Anthropogenic 5670
10.12.4.4.1. Introduction 5670
10.12.4.4.2. Food production 5671
10.12.4.4.3. Energy production 5672
10.12.4.5. Anthropogenic Nr Creation Rates from 1860 to 2005 5672
10.12.5. Global Terrestrial N Budgets 5672
10.12.5.1. Introduction 5672
10.12.5.2. Nr Creation 5674
10.12.5.3. Nr Distribution 5674
10.12.5.4. Nr Conversion to N2 5675
10.12.6. Global Marine N Budget 5676
10.12.7. Regional N Budgets 5678
10.12.8. Consequences 5679
10.12.8.1. Introduction 5679
10.12.8.2. Atmosphere 5680
10.12.8.3. Terrestrial Ecosystems 5680
10.12.8.4. Aquatic Ecosystems 5681
10.12.9. Future 5682
10.12.10. Societal Responses 5682
10.12.11. Summary 5685
Acknowledgments 5685
References 5685
Chapter 10.13: The Global Phosphorus Cycle 5688
10.13.1. Introduction 5688
10.13.2. The Global Phosphorus Cycle: Overview 5689
10.13.2.1. The Terrestrial Phosphorus Cycle 5689
10.13.2.2. Transport of Phosphorus from Continents to the Ocean 5692
10.13.2.2.1. Human impacts on the global phosphorus cycle 5693
10.13.2.3. The Marine Phosphorus Cycle 5693
10.13.3. Phosphorus Biogeochemistry and Cycling: Current Research 5694
10.13.3.1. Phosphorus Cycling in Terrestrial Ecosystems and Soils 5694
10.13.3.2. Phosphorus Cycling in Terrestrial Aquatic Systems: Lakes, Rivers, and Estuaries 5695
10.13.3.2.1. Biogeochemistry and cycling of phosphorus in lakes 5695
10.13.3.2.2. Biogeochemistry and cycling of phosphorus in rivers and estuaries 5696
10.13.3.2.3. Submarine groundwater discharge of phosphorus to the ocean 5698
10.13.3.3. Biogeochemistry and Cycling of Phosphorus in the Modern Ocean 5699
10.13.3.3.1. Phosphorus in the oceanic water column: Composition and cycling 5699
10.13.3.3.1.1. Dissolved inorganic phosphorus 5699
10.13.3.3.1.2. Dissolved organic phosphorus 5700
10.13.3.3.1.3. Water column particulate P 5704
10.13.3.3.1.3.1. Water column C:P ratios 5704
10.13.3.3.1.3.2. Application of 31P-NMR to water column particulate matter 5704
10.13.3.3.1.3.3. Cosmogenic 32P and 33P as tracers of phosphorus cycling in surface waters 5705
10.13.3.3.1.4. Oxygen isotopes of phosphate in seawater 5706
10.13.3.3.1.5. Phosphorus limitation of marine primary photosynthetic production 5707
10.13.3.3.2. Phosphorus burial and the marine phosphorus budget 5710
10.13.3.3.2.1. Historical perspective 5710
10.13.3.3.2.2. Diagenesis and burial of phosphorus in marine sediments 5711
10.13.3.3.2.2.1. Sedimentary organic phosphorus: composition and reactivity 5714
10.13.3.3.2.2.2. Authigenic CFA: modern phosphorites 5715
10.13.3.3.2.2.3. Disseminated authigenic CFA 5717
10.13.3.3.2.2.4. Experimental studies of authigenic apatite precipitation 5723
10.13.3.3.2.2.5. Other authigenic phosphate minerals 5724
10.13.3.3.2.2.6. Sedimentary organic carbon to organic phosphorus [(C:P)org] ratios 5725
10.13.3.3.2.2.7. Coupled iron-phosphorus cycling 5729
10.13.3.3.3. Benthic return flux of phosphorus from the seabed 5731
10.13.3.3.4. The oceanic residence time of phosphorus 5732
10.13.3.4. Phosphorus Cycling Over Long, Geologic Timescales 5733
10.13.3.4.1. The role of tectonics in the global phosphorus cycle 5733
10.13.3.4.2. Links to other biogeochemical cycles on long, geologic timescales 5733
10.13.3.4.2.1. The nutrient-CO2 connection 5733
10.13.3.4.2.2. The phosphorus-iron-o& 5734
10.13.3.4.3. Phosphorus in paleoceanography: P burial as a proxy for weathering, paleoproductivity, and climate change 5735
10.13.3.4.4. Ancient phosphorites 5736
10.13.4. Summary 5736
References 5736
Chapter 10.14: The Global Sulfur Cycle 5748
10.14.1. Elementary Issues 5749
10.14.1.1. History 5749
10.14.1.2. Isotopes 5749
10.14.1.3. Allotropes 5750
10.14.1.4. Vapor Pressure 5750
10.14.1.5. Chemistry 5750
10.14.2. Abundance of Sulfur and Early History 5752
10.14.2.1. Sulfur in the Cosmos 5753
10.14.2.2. Condensation, Accretion, and Evolution 5753
10.14.2.3. Sulfur on the Early Earth 5754
10.14.3. Occurrence of Sulfur 5755
10.14.3.1. Elemental Sulfur 5755
10.14.3.2. Sulfides 5755
10.14.3.3. Evaporites 5755
10.14.3.4. The Geological History of Sulfur 5755
10.14.3.5. Utilization and Extraction of Sulfur Minerals 5756
10.14.4. Chemistry of Volcanogenic Sulfur 5757
10.14.4.1. Deep-Sea Vents 5757
10.14.4.1.1. Chemistry of volcanogenic sulfur 5757
10.14.4.2. Aerial Emissions 5757
10.14.4.3. Fumaroles 5758
10.14.4.4. Crater Lakes 5758
10.14.4.5. Impacts of Emissions on Local Environments 5758
10.14.5. Biochemistry of Sulfur 5759
10.14.5.1. Origin of Life 5759
10.14.5.2. Sulfur Biomolecules 5759
10.14.5.3. Uptake of Sulfur 5760
10.14.6. Sulfur in Seawater 5760
10.14.6.1. Sulfate 5760
10.14.6.2. Hydrogen Sulfide 5761
10.14.6.3. OCS and Carbon Disulfide 5761
10.14.6.4. Organosulfides 5761
10.14.6.5. Coastal Marshes 5763
10.14.7. Surface and Groundwaters 5763
10.14.8. Marine Sediments 5764
10.14.9. Soils and Vegetation 5765
10.14.10. Troposphere 5766
10.14.10.1. Atmospheric Budget of Sulfur Compounds 5766
10.14.10.2. Hydrogen Sulfide 5767
10.14.10.3. Carbonyl Sulfide 5767
10.14.10.4. Carbon Disulfide 5768
10.14.10.5. Dimethyl Sulfide 5768
10.14.10.6. DMSO and Methanesulfonic Acid 5769
10.14.10.7. Sulfur 5769
10.14.10.8. Sulfur Dioxide 5769
10.14.10.9. Aerosol Sulfates and Climate 5771
10.14.10.10. Deposition 5771
10.14.11. Anthropogenic Impacts on the Sulfur Cycle 5772
10.14.11.1. Combustion Emissions 5772
10.14.11.2. Organosulfur Gases 5772
10.14.11.3. Acid Rain 5773
10.14.11.4. Water and Soil Pollutants 5773
10.14.11.5. Coastal Pollution 5774
10.14.12. Sulfur in Upper Atmospheres 5774
10.14.12.1. Radiation Balance and Sulfate Particles 5774
10.14.12.2. Ozone 5775
10.14.12.3. Aircraft 5775
10.14.13. Planets and Moons 5776
10.14.13.1. Venus 5776
10.14.13.2. Jupiter 5776
10.14.13.3. Io 5776
10.14.13.4. Europa 5776
10.14.14. Conclusions 5777
References 5777
Chapter 10.15: Plankton Respiration, Net Community Production and the Organic Carbon Cycle in the Oceanic Water Column 5782
10.15.1. Introduction 5782
10.15.2. Biogeochemical Background 5783
10.15.3. Biochemical Background 5784
10.15.4. Measurement of Respiration Rates 5785
10.15.4.1. Measurement of the Rate of Concentration Change of a Reactant or Product 5785
10.15.4.2. Measurements of the ETS 5785
10.15.4.3. Other Biological Approaches 5786
10.15.5. First Order Overall Global Organic Budget of the Oceans 5786
10.15.6. Distribution of Respiration within the Oceans 5787
10.15.6.1. Respiration in the Epipelagic Zone 5788
10.15.6.2. Assessment of the Output of Organic Material from the Euphotic Zone 5793
10.15.6.3. Consumption of Organic Material Within the Dark Zone of the Ocean 5794
10.15.7. Distribution of Respiration within the Community 5797
10.15.8. Summary 5799
References 5800
Chapter 10.16: Respiration in Terrestrial Ecosystems 5802
10.16.1. Introduction 5804
10.16.1.1. Photosynthesis and Respiration 5805
10.16.1.2. A Definition of Respiration 5805
10.16.1.3. Objectives and Outline 5806
10.16.2. Cellular Respiration 5806
10.16.2.1. Carbon Metabolism in Respiration 5806
10.16.2.1.1. Glycolysis 5806
10.16.2.1.2. Tricarboxylic acid cycle 5807
10.16.2.2. The Mitochondrial Electron Transport Chain and Oxidative Phosphorylation 5807
10.16.2.3. Daytime Foliar Respiration 5809
10.16.2.4. Fermentation 5809
10.16.2.5. Alternative Microbial Terminal Electron Acceptors 5809
10.16.2.5.1. Nitrate and sulfate reduction 5809
10.16.2.5.2. Methanogenesis 5810
10.16.2.5.3. Methane oxidation 5810
10.16.3. Whole-Plant Respiration 5810
10.16.3.1. Sinks for Respiratory Energy: Growth, Maintenance, and Transport 5810
10.16.3.2. Nonphosphorylating Respiration 5811
10.16.3.3. Contribution of the Alternative, Nonphosphorylating Pathway to Respiration in Roots and Leaves 5812
10.16.3.4. Effects of Some Environmental Conditions on Plant Respiration 5813
10.16.3.5. Plant Respiration and Photosynthesis 5815
10.16.3.5.1. The RA/GPP of plants and in terrestrial ecosystems 5815
10.16.3.5.2. Environmental effects on plant RA/GPP 5815
10.16.3.5.3. Forest RA/GPP during stand development 5818
10.16.4. Animal Respiration 5819
10.16.4.1. Respiration of Individual Animals 5819
10.16.4.2. Animal Respiration in Terrestrial Ecosystems 5819
10.16.4.3. Respiration by Humans and Domestic Farm Animals 5820
10.16.4.4. Methane Production by Terrestrial Animals 5821
10.16.4.4.1. Methane production by wild vertebrates 5821
10.16.4.4.2. Methane production by termites and other terrestrial arthropods 5821
10.16.4.4.3. Methane production by domestic animals 5821
10.16.5. Respiration of Terrestrial Ecosystems 5822
10.16.5.1. Soil Respiration 5822
10.16.5.1.1. Soil CO2 efflux and soil respiration 5822
10.16.5.1.2. Temporal variations in soil CO2 efflux 5823
10.16.5.1.3. Annual soil respiration within terrestrial ecosystems 5823
10.16.5.1.4. Sources of soil-derived CO2 5824
10.16.5.1.4.1. Decomposer contributions to soil respiration 5825
10.16.5.1.4.2. Root contributions to soil respiration 5825
10.16.5.1.4.3. Soil methane oxidation 5826
10.16.5.1.4.4. Soil denitrification 5826
10.16.5.1.4.5. Abiotic CO2 production within soils 5827
10.16.5.1.5. Effects of environmental factors on microbial and soil respiration 5828
10.16.5.1.5.1. Soil organic carbon and climate change 5828
10.16.5.1.5.2. Temperature and soil carbon mineralization 5828
10.16.5.1.5.3. Soil moisture and soil carbon mineralization 5829
10.16.5.2. Net Ecosystem Exchange of Carbon Dioxide 5829
10.16.6. Global Terrestrial Ecosystem Respiration 5830
References 5831
e9780080983004v11 5839
Front Cover 5839
Environmental Geochemistry 5842
Copyright 5843
In Memoriam 5844
Heinrich Dieter Holland (1927–2012) 5846
Karl Karekin Turekian (1927–2013) 5848
References 5850
Dedication 5852
Contents 5854
Executive editors’ Foreword to the Second Edition 5856
Contributors 5860
Volume editor’s Introduction 5862
References 5863
Chapter 11.1: Groundwater and Air Contamination: Risk, Toxicity, Exposure Assessment, Policy, and Regulation 5864
11.1.1. Introduction 5864
11.1.2. Principles, Definitions, and Perspectives of Hazardous Waste Risk Assessments 5865
11.1.2.1. Definitions of Hazard and Risk 5865
11.1.2.2. Typical Risks Encountered – Natural and Anthropogenic 5865
11.1.2.3. Risks Associated with Contaminated Sites and Groundwater 5865
11.1.3. Regulatory and Policy Basis for Risk Assessment 5865
11.1.3.1. Examples of Contaminated Sites and Potential Risk Exposure Pathways 5865
11.1.3.2. Risk-Based Nature of CERCLA 5866
11.1.3.3. Risk-Based Corrective Actions 5866
11.1.3.4. Use of Applicable or Relevant and Appropriate Requirements 5867
11.1.3.5. Limited Uses of Absolute Standards 5867
11.1.4. The Risk Assessment Process 5867
11.1.4.1. Sources, Pathways, and Receptors: The Fundamental Algorithm for Risk Assessments 5867
11.1.4.2. The Four-Step Risk Assessment Process 5868
11.1.5. Hazard Identification 5868
11.1.5.1. Determining Contaminant Identity, Concentration, and Distribution 5868
11.1.5.2. Contaminant Surrogate Analysis 5868
11.1.6. Exposure Assessment 5869
11.1.6.1. Potential Exposure Pathways 5869
11.1.6.2. Estimating Exposure Concentrations 5869
11.1.6.3. Identifying Potentially Exposed Populations 5869
11.1.6.4. Estimating Chemical Intake 5869
11.1.7. Toxicity Assessment 5870
11.1.7.1. Overview of Human Health Toxicology 5870
11.1.7.1.1. Classification of toxic responses 5871
11.1.7.1.2. Quantifying reversible toxic effects 5871
11.1.7.2. Quantifying Noncarcinogenic Risk: Reference Dosages 5871
11.1.7.2.1. The no observed adverse effect level 5871
11.1.7.2.2. Acceptable daily intakes and reference doses 5871
11.1.7.3. Quantifying Carcinogenic Risk: Slope Factors 5872
11.1.8. Risk Characterization 5873
11.1.8.1. Determination of Noncarcinogenic Risk 5873
11.1.8.2. Determination of Carcinogenic Risk 5873
11.1.9. Sources of Uncertainties in Risk Assessment 5873
11.1.9.1. Source Characterization 5873
11.1.9.2. Lack of Available Data 5874
11.1.9.3. Exposure Assessment Models and Methods 5874
11.1.9.4. Quality of Toxicological Data 5874
11.1.9.5. Evaluating Uncertainty 5874
11.1.10. Risk Management and Risk Communication 5874
References 5875
Chapter 11.2: Arsenic and Selenium 5876
11.2.1. Introduction 5877
11.2.2. Sampling 5879
11.2.2.1. Rocks, Soils, and Sediments 5879
11.2.2.2. Water 5879
11.2.2.2.1. Techniques 5879
11.2.2.2.2. Filtered or unfiltered samples 5880
11.2.2.2.3. Sample preservation and redox stability 5880
11.2.3. Analytical Methods 5881
11.2.3.1. Arsenic 5881
11.2.3.1.1. Total arsenic in aqueous samples 5881
11.2.3.1.1.1. Laboratory methods 5881
11.2.3.1.1.2. Field-test kits 5882
11.2.3.1.2. Total arsenic in solid samples 5882
11.2.3.1.3. Arsenic speciation 5882
11.2.3.1.3.1. Aqueous speciation 5882
11.2.3.1.3.2. Solid-phase speciation 5882
11.2.3.1.3.3. EPA TCLP test 5883
11.2.3.2. Selenium 5883
11.2.3.2.1. Total selenium in aqueous samples 5883
11.2.3.2.1.1. Pretreatment to destroy organic matter 5883
11.2.3.2.1.2. Laboratory methods 5883
11.2.3.2.2. Selenium in solid samples 5884
11.2.3.2.3. Selenium speciation 5884
11.2.3.3. Quality Control and Standard Reference Materials 5884
11.2.4. Abundance and Forms of Arsenic in the Natural Environment 5885
11.2.4.1. Abundance in Rocks, Soils, and Sediments 5885
11.2.4.2. National and International Standards for Drinking Water 5885
11.2.4.3. Abundance and Distribution in Natural Waters 5886
11.2.4.3.1. Atmospheric precipitation 5886
11.2.4.3.2. River water 5887
11.2.4.3.3. Lake water 5887
11.2.4.3.4. Seawater and estuaries 5888
11.2.4.3.5. Groundwater 5888
11.2.4.3.6. Sediment pore water 5889
11.2.4.3.7. Acid mine drainage 5889
11.2.4.4. Arsenic Species in Natural Waters 5890
11.2.4.4.1. Inorganic species 5890
11.2.4.4.2. Organic species 5891
11.2.4.4.3. Observed speciation in different water types 5891
11.2.4.5. Microbial Controls 5892
11.2.5. Pathways and Behavior of Arsenic in the Natural Environment 5892
11.2.5.1. Release from Primary Minerals 5893
11.2.5.1.1. Examples of mining-related arsenic problems 5893
11.2.5.1.2. Modern practice in mine-waste stabilization 5894
11.2.5.2. Role of Secondary Minerals 5894
11.2.5.2.1. The importance of arsenic cycling and diagenesis 5894
11.2.5.2.2. Redox behavior 5894
11.2.5.3. Adsorption of Arsenic by Oxides and Clays 5895
11.2.5.4. Arsenic Transport 5896
11.2.5.5. Impact of Changing Environmental Conditions 5896
11.2.5.5.1. Release of arsenic at high pH 5896
11.2.5.5.2. Release of arsenic on reduction 5896
11.2.5.6. Case Studies 5896
11.2.5.6.1. The Bengal Basin, Bangladesh, and India 5896
11.2.5.6.2. Chaco-Pampean Plain, Argentina 5898
11.2.5.6.3. Eastern Wisconsin, USA 5900
11.2.6. Abundance and Forms of Selenium in the Natural Environment 5901
11.2.6.1. Abundance in Rocks, Soils, and Sediments 5901
11.2.6.2. National and International Standards in Drinking Water 5903
11.2.6.3. Abundance and Distribution in Natural Waters 5903
11.2.6.3.1. Atmospheric precipitation 5904
11.2.6.3.2. River and lake water 5904
11.2.6.3.3. Seawater and estuaries 5904
11.2.6.3.4. Groundwater 5904
11.2.6.3.5. Sediment pore water 5905
11.2.6.3.6. Mine drainage 5905
11.2.6.4. Selenium Species in Water, Sediment, and Soil 5905
11.2.7. Pathways and Behavior of Selenium in the Natural Environment 5906
11.2.7.1. Release from Primary Minerals 5906
11.2.7.2. Adsorption of Selenium by Oxides and Clays 5906
11.2.7.3. Selenium Transport 5907
11.2.7.3.1. Global fluxes 5907
11.2.7.3.2. Selenium fluxes in air 5907
11.2.7.3.3. Soil–water–plant relationships 5908
11.2.7.4. Case Studies 5909
11.2.7.4.1. Kesterson Reservoir, USA 5909
11.2.7.4.2. Enshi, China 5909
11.2.7.4.3. Soan-Sakesar Valley, Pakistan 5910
11.2.7.4.4. Selenium deficiency, China 5911
11.2.8. Concluding Remarks 5911
Acknowledgments 5912
References 5912
Chapter 11.3: Heavy Metals in the Environment – Historical Trends 5922
11.3.1. Introduction 5922
11.3.1.1. Metals: Pb, Zn, Cd, Cr, Cu, Ni 5922
11.3.1.2. Sources of Metals 5923
11.3.1.2.1. Natural 5923
11.3.1.2.2. Anthropogenic 5923
11.3.1.3. Source and Pathways 5924
11.3.2. Occurrence, Speciation, and Phase Associations 5924
11.3.2.1. Geochemical Properties and Major Solute Species 5924
11.3.2.1.1. Lead 5924
11.3.2.1.2. Zinc 5926
11.3.2.1.3. Cadmium 5926
11.3.2.1.4. Chromium 5927
11.3.2.1.5. Copper 5927
11.3.2.1.6. Nickel 5928
11.3.2.2. Occurrence in Rocks, Soils, Sediments,Anthropogenic Materials 5928
11.3.2.3. Geochemical Phase Associations in Soils and Sediments 5929
11.3.3. Atmospheric Emissions of Metals and Geochemical Cycles 5932
11.3.3.1. Historical Heavy Metal Fluxes to the Atmosphere 5933
11.3.3.2. Perturbed Heavy Metal Cycles 5934
11.3.3.3. Global Emissions of Heavy Metals 5934
11.3.3.4. US Emissions of Heavy Metals 5935
11.3.3.4.1. Lead 5935
11.3.3.4.2. Zinc 5936
11.3.3.4.3. Cadmium 5936
11.3.4. Historical Metal Trends Reconstructed from Sediment Cores 5937
11.3.4.1. Paleolimnological Approach 5937
11.3.4.2. Age Dating 5940
11.3.4.3. Selected Reconstructed Metal Trends 5940
11.3.4.3.1. Lead and leaded gasoline: consequence of the clean air act 5940
11.3.4.3.2. Zinc from rubber tire wear 5942
11.3.4.3.3. Metal processing and metal trends in sediment cores 5943
11.3.4.3.4. Reduction in power plant emissions of heavy metals: clean air act amendments and the use of low sulfur coal 5944
11.3.4.3.5. European lacustrine records of heavy metal pollution 5946
References 5949
Chapter 11.4: Geochemistry of Mercury in the Environment 5954
11.4.1. Introduction 5954
11.4.1.1. The Global Mercury Cycle 5956
11.4.2. Fundamental Geochemistry 5958
11.4.2.1. Solid Earth Abundance and Distribution 5958
11.4.2.2. Isotopic Distributions 5959
11.4.2.3. Minable Deposits 5959
11.4.2.4. Occurrence of Mercury in Fossil Fuels 5959
11.4.3. Sources of Mercury to the Environment 5960
11.4.3.1. Volcanic Mercury Emissions 5960
11.4.3.2. Mercury Input to the Oceans via Submarine Volcanism 5963
11.4.3.3. Low-Temperature Volatilization 5963
11.4.3.4. Anthropogenic Sources 5964
11.4.3.5. Mining 5965
11.4.3.6. Biomass Burning, Soil and Oceanic Evasion – Mixed Sources 5965
11.4.3.7. Watersheds and Legacy Mercury 5966
11.4.4. Atmospheric Cycling and Chemistry of Mercury 5966
11.4.5. Aquatic Biogeochemistry of Mercury 5970
11.4.5.1. Environmental Mercury Methylation 5972
11.4.5.1.1. Nearshore regions 5973
11.4.5.1.2. Open-ocean mercury cycling 5974
11.4.5.1.3. Open-ocean mercury profiles 5975
11.4.6. Removal of Mercury from the Surficial Cycle 5977
11.4.7. Models of the Global Cycle 5979
11.4.8. Developments in Studying Mercury in the Environment on a Variety of Scales 5981
11.4.8.1. Acid Rain and Mercury Synergy in Lakes 5981
11.4.8.2. METAALICUS 5981
11.4.8.3. Fractionation of Mercury Isotopes 5981
11.4.8.4. Tracing Atmospheric Mercury with 210Pb and Br 5982
11.4.8.5. Mercury and Organic Matter Interactions 5983
11.4.9. Summary 5983
Acknowledgments 5983
References 5983
Chapter 11.5: The Geochemistry of Acid Mine Drainage 5994
11.5.1. Introduction 5995
11.5.1.1. Scale of the Problem 5995
11.5.1.2. Overview of the Mining Process and Sources of Low-Quality Drainage 5995
11.5.1.3. Sources of Low-Quality Drainage 5995
11.5.1.3.1. Mine workings 5995
11.5.1.3.2. Open-pits 5996
11.5.1.3.3. Waste rock 5996
11.5.1.3.4. Mill tailings 5996
11.5.1.3.5. Wastes from extractive metallurgy operations 5996
11.5.2. Mineralogy of Ore Deposits 5997
11.5.2.1. Coal Deposits 5997
11.5.2.2. Base-Metal Deposits 5998
11.5.2.3. Precious-Metal Deposits 5999
11.5.2.4. Uranium Deposits 5999
11.5.2.5. Diamond Deposits 6000
11.5.2.6. Other Deposits 6000
11.5.3. Sulfide Oxidation and the Generation of Oxidation Products 6000
11.5.3.1. Sulfide-Mineral Oxidation 6001
11.5.3.1.1. Pyrite oxidation 6001
11.5.3.1.1.1. Chemical oxidation by Fe3+ and O2 6001
11.5.3.1.2. Pyrrhotite oxidation 6002
11.5.3.1.2.1. Chemical oxidation by O2 and Fe3 6003
11.5.3.1.2.2. Nonoxidative mechanism 6003
11.5.3.1.3. Oxidation of other metal sulfides 6003
11.5.3.1.3.1. Sphalerite 6003
11.5.3.1.3.2. Galena and chalcopyrite 6003
11.5.3.1.3.3. Mercury sulfides 6004
11.5.3.1.4. Oxidation of arsenic sulfides 6004
11.5.3.2. Bacteria and Sulfide-Mineral Oxidation 6005
11.5.3.2.1. Mechanisms of sulfide-mineral dissolution and the role of microorganisms 6005
11.5.3.2.2. Biodiversity of iron- and sulfur-oxidizing acidophilic microorganisms 6007
11.5.3.2.2.1. Acidophilic bacteria and archaea that oxidize sulfur 6009
11.5.3.2.2.2. Acidophilic bacteria and archaea that oxidize both iron and sulfur 6010
11.5.4. Acid-Neutralization Mechanisms at Mine Sites 6010
11.5.4.1. Mechanisms of Acid Neutralization 6010
11.5.4.1.1. Carbonate-mineral dissolution 6011
11.5.4.1.2. Dissolution of hydroxide minerals 6012
11.5.4.1.3. Dissolution of silicate minerals 6012
11.5.4.1.4. Development of pH-buffering sequences 6013
11.5.5. Geochemistry and Mineralogy of Secondary Minerals 6013
11.5.5.1. Soluble Sulfates: Iron Minerals 6013
11.5.5.2. Soluble Sulfates: Other Elements 6013
11.5.5.3. Less Soluble Sulfate Minerals 6014
11.5.5.4. Metal Oxides and Hydroxides 6015
11.5.5.5. Carbonate Minerals 6016
11.5.5.6. Arsenic Oxides 6016
11.5.5.7. Phosphates 6017
11.5.5.8. Secondary Sulfides 6017
11.5.5.9. Role of Microorganisms in the Formation and Dissolution of Secondary Minerals 6018
11.5.6. AMD in Mines and Mine Wastes 6021
11.5.6.1. Underground Workings 6021
11.5.6.2. Open-Pits 6022
11.5.6.3. Waste-Rock Piles 6024
11.5.6.4. Coal-Mine Spoils 6026
11.5.6.5. Tailings Impoundments 6027
11.5.7. Bioaccumulation and Toxicity of Oxidation Products 6030
11.5.7.1. Uptake and Bioaccumulation 6030
11.5.7.2. Toxicity of Oxidation Products 6031
11.5.7.3. Assessment of Toxicity 6031
11.5.7.3.1. Predictive models 6031
11.5.7.3.2. Biologic sensors 6032
11.5.7.3.3. Molecular tools 6032
11.5.8. Methods of Prediction 6032
11.5.8.1. Laboratory Static Procedures 6032
11.5.8.2. Mineralogical Prediction 6033
11.5.8.3. Laboratory Dynamic Procedures 6034
11.5.8.4. Geochemical Models 6034
11.5.8.4.1. Geochemical modeling approaches 6034
11.5.8.4.2. Application of geochemical speciation mass-transfer models 6035
11.5.8.5. Reactive-Transport Models 6036
11.5.9. Approaches for Remediation and Prevention 6036
11.5.9.1. Collection and Treatment 6037
11.5.9.2. Controls on Sulfide Oxidation 6037
11.5.9.2.1. Physical barriers 6037
11.5.9.2.1.1. Subaqueous disposal 6037
11.5.9.2.1.2. Dry covers 6038
11.5.9.2.1.3. Synthetic covers 6038
11.5.9.2.1.4. Oxygen-consuming materials 6038
11.5.9.2.2. Chemical treatments 6039
11.5.9.2.3. Bactericides 6039
11.5.9.3. Passive Remediation Techniques 6039
11.5.9.3.1. Types of passive systems 6039
11.5.9.3.2. Anaerobic bioreactors 6039
11.5.9.3.3. Constructed wetlands 6040
11.5.9.3.4. Permeable reactive barriers 6040
11.5.9.3.5. Other in situ techniques 6041
11.5.10. Summary and Conclusions 6042
References 6042
Chapter 11.6: Radioactivity, Geochemistry, and Health 6054
11.6.1. Introduction 6055
11.6.1.1. Approach and Outline of Chapter 6055
11.6.1.2. Previous Reviews and Scope of the Chapter 6055
11.6.2. Radioactive Processes and Sources 6056
11.6.2.1. Radioactive Processes 6056
11.6.2.2. Overview of Radioactive Sources and Exposure 6058
11.6.2.2.1. Natural sources of radioactivity 6058
11.6.2.2.2. Nuclear waste 6058
11.6.2.2.3. Sites of radioactive environmental contamination 6059
11.6.2.2.4. Exposure to background and anthropogenic sources of radioactivity 6059
11.6.3. Radionuclide Geochemistry: Principles and Methods 6059
11.6.3.1. Aqueous Speciation and Solubility 6060
11.6.3.1.1. Experimental studies 6060
11.6.3.1.2. Aqueous speciation and solubility models 6060
11.6.3.2. Sorption 6060
11.6.3.2.1. Experimental studies 6060
11.6.3.2.2. Sorption models 6061
11.6.3.2.3. Reactive transport models 6062
11.6.3.3. Colloids 6063
11.6.3.3.1. Introduction 6063
11.6.3.3.2. Microbial and humic colloids 6063
11.6.3.3.3. Models for transport of radionuclides by colloids 6064
11.6.4. Environmental Radioactivity and Health Effects Relevant to Drinking Water, the Nuclear Fuel Cycle, and Nuclear Weap 6064
11.6.4.1. Radium in Groundwater 6065
11.6.4.1.1. Geological occurrence 6065
11.6.4.1.2. Geochemical controls on Ra concentrations 6066
11.6.4.1.3. Isotopic ratios 6066
11.6.4.1.3.1. 228Ra/226Ra ratios 6066
11.6.4.1.3.2. 224Ra/228Ra ARs 6067
11.6.4.1.4. Radium removal and generation of TENORM 6067
11.6.4.1.5. Health effects owing to radium exposure 6068
11.6.4.2. Uranium and Other Actinides [An(III), An(IV), An(V), An(VI)] 6069
11.6.4.2.1. General trends in speciation, solubility, and sorption of the actinides 6069
11.6.4.2.1.1. Oxidation state 6069
11.6.4.2.1.2. Complexation and solubility 6070
11.6.4.2.1.3. Actinide sorption 6070
11.6.4.2.2. Behavior of uranium in the environment and impacts on human health 6072
11.6.4.2.2.1. Radiochemical, geochemical, and biogeochemical properties of uranium 6072
11.6.4.2.2.2. Environmental distribution of uranium 6074
11.6.4.2.2.2.1. Overview: relationship between geochemical properties and distribution 6074
11.6.4.2.2.2.2. Air 6074
11.6.4.2.2.2.3. Rocks and soils 6075
11.6.4.2.2.2.4. Water: background concentration levels 6075
11.6.4.2.2.2.5. Water concentrations at contaminated sites 6075
11.6.4.2.2.3. Uranium exposure and human health 6076
11.6.4.2.2.3.1. Exposure pathways 6076
11.6.4.2.2.3.2. Environmental toxicology and epidemiology of uranium 6076
11.6.4.2.2.4. Application: uranium contamination from mining 6077
11.6.4.2.2.4.1. Overview of mining, processing, and disposal 6077
11.6.4.2.2.4.2. Uranium mill tailings: introduction 6077
11.6.4.2.2.4.3. Geochemistry of mill tailings 6078
11.6.4.2.2.4.3.1. Mineralogy of tailings 6078
11.6.4.2.2.4.3.2. Geochemistry of aqueous contamination from mill tailings 6078
11.6.4.2.2.4.3.3. Bacterial processes 6079
11.6.4.2.2.4.3.4. Long-term behavior of mill tailings:&/I 6079
11.6.4.2.2.4.4. ISR of Uranium 6080
11.6.4.2.2.4.4.1. General description 6080
11.6.4.2.2.4.4.2. Choice of leaching solution 6080
11.6.4.2.2.4.4.3. Processing 6080
11.6.4.2.2.4.4.4. Site restoration 6081
11.6.4.2.2.4.4.5. Environmental issues 6081
11.6.4.2.2.4.4.6. Case histories 6082
11.6.4.2.2.4.4.7. Current controversies 6083
11.6.4.2.2.4.4.8. NA for ISR sites 6083
11.6.4.2.2.4.5. Remediation of uranium-contaminated sites 6084
11.6.4.2.2.4.5.1. Permeable reactive barriers 6084
11.6.4.2.2.4.5.2. Bioremediation 6085
11.6.4.2.2.4.5.3. Monitored natural attenuation 6085
11.6.4.2.3. Actinides and nuclear waste disposal 6086
11.6.4.2.3.1. Speciation, solubility, and sorption of actinides in nuclear waste repository environments 6087
11.6.4.2.3.1.1. Americium 6087
11.6.4.2.3.1.2. Thorium 6088
11.6.4.2.3.1.3. Neptunium 6088
11.6.4.2.3.1.4. Plutonium 6090
11.6.4.2.3.1.5. Uranium 6091
11.6.4.2.3.1.6. Actinide sorption by uranium wastes 6092
11.6.4.2.3.2. Geochemical models in risk assessment for 6092
11.6.4.3. Fission Products 6093
11.6.4.3.1. Introduction 6093
11.6.4.3.2. Geochemistry of fission products 6093
11.6.4.3.2.1. 90Sr 6093
11.6.4.3.2.2. 137Cs 6094
11.6.4.3.2.3. 99Tc 6094
11.6.4.3.2.4. 129I 6094
11.6.4.3.3. Application: the Chernobyl reactor accident 6095
11.6.4.3.3.1. Introduction 6095
11.6.4.3.3.2. Geochemical behavior 6095
11.6.4.3.3.3. Environmental epidemiology 6096
11.6.4.3.4. Application: contamination from weapons production at Chelyabins 6096
11.6.4.3.4.1. Chelyabinsk complex 6096
11.6.4.3.4.2. Environmental epidemiology 6097
11.6.5. Summary 6097
Appendix A. Radioactivity and Human Health 6098
Basis for Health Effects from Radiation: Interactions between Io 6099
Equivalent Dose and Biokinetics 6099
Dosimetry and Environmental Exposure 6100
Linear Nonthreshold Dose–Response Curve 6100
Epidemiological Studies of the Effects of Radiation 6101
Populations Living Near Nuclear Power Plants 6101
Survivors of Atomic Bomb Blasts at Hiroshima and Nagasaki 6102
Regulating Radionuclide Releases to the Environment and Exposures to the Public 6102
US Regulations 6103
European Regulations 6103
Appendix B Health Effects of Uranium 6103
Absorption 6103
Distribution 6104
Toxicity 6104
Carcinogencity 6104
Environmental Health Regulations 6105
Acknowledgments 6105
References 6105
Chapter 11.7: The Environmental and Medical Geochemistry of Potentially Hazardous Materials Produced by Disasters 6120
11.7.1. Introduction 6121
11.7.2. Potentially Hazardous Materials Produced by Disasters 6121
11.7.3. Medical Geochemistry – A Review and Update 6123
11.7.3.1. Factors Influencing the Health Effects of Disaster Materials 6128
11.7.3.2. Interdisciplinary Methods Used to Study the Health Effects of Disaster Materials 6129
11.7.4. Sampling, Analytical, and Remote Sensing Methods Applied to Disaster Materials 6130
11.7.4.1. Spatially Extensive Sampling in Rapid Response and over the Long Term 6130
11.7.4.2. Safety during Sampling 6130
11.7.4.3. Sampling Methods for Deposits of Solid Samples 6130
11.7.4.4. Sampling Methods for Airborne Particulate Matter and other Aerosols 6131
11.7.4.5. Field Analytical Methods for Solids 6131
11.7.4.6. Sampling and Field Analysis Methods for Waters 6131
11.7.4.7. Processing and Preparation of Solid DM for Lab Analysis 6131
11.7.4.8. Laboratory Methods for the Analysis of Disaster Materials 6132
11.7.4.9. Remote Sensing Methods for Identification and Mapping of Disaster Materials 6133
11.7.5. Volcanic Eruptions and Volcanic Degassing 6133
11.7.5.1. Volcanic Gases, Vog, and Laze 6133
11.7.5.2. Crater Lake Gas Eruption Disasters – Lake Nyos as an Example 6134
11.7.5.3. Volcanic Ash 6134
11.7.6. Landslides, Debris Flows, and Lahars 6136
11.7.6.1. Landslides and Debris Flows Sourced in Ultramafic Rocks 6137
11.7.6.2. Landslides and Debris Flows Sourced in Sulfide-Rich Rocks 6137
11.7.6.3. Volcanic Lahars 6137
11.7.6.4. Pathogens in Dusts from Earthquake-Generated Landslides 6138
11.7.7. Hurricanes, Extreme Storms, and Floods – Katrina as an Exam 6138
11.7.7.1. An Overview of DM Produced by Hurricanes, Extreme Storms, and Floods 6138
11.7.7.2. Hurricane Katrina Floodwaters, Flood Sediments, and Molds 6138
11.7.8. Wildfires at the Wildland–Urban Interface 6141
11.7.8.1. Types of Ash Produced by Wildfires 6142
11.7.8.2. Ash, Debris, and Burned Soil Characteristics of Potential Environmental or Health Concern 6142
11.7.8.3. Potential Environmental and Health Concerns of Wildfire Ash 6144
11.7.9. Mud and Waters from the Lusi Mud Eruption, East Java, Indonesia 6145
11.7.10. Failures of Mill Tailings or Mineral-Processing Waste Impoundments 6146
11.7.10.1. Mine Waste and Mill Tailings Impoundment Failures, Marinduque Island, Philippines 6146
11.7.10.2. Mill Tailings Impoundment Failure, Aznalcóllar Mine, Spain 6148
11.7.10.3. Cyanide Processing Impoundment Failures – Baia Mare, Romania, as an Example 6149
11.7.10.4. Red Mud Spill from Bauxite Processing, Hungary 6150
11.7.10.5. General Insights Regarding Environmental and Health Impacts of Mineral-Processing Impound 6151
11.7.11. Failures of Coal Slurry or Coal Fly Ash Impoundments 6151
11.7.11.1. Coal Slurry Impoundment Failures 6152
11.7.11.2. Coal Fly Ash Impoundment Failures 6152
11.7.12. Building Collapse – The World Trade Center as an Example 6154
11.7.13. Disaster Preparedness 6159
11.7.14. Summary 6161
Acknowledgments 6161
References 6161
Chapter 11.8: Eutrophication of Freshwater Systems 6168
11.8.1. Introduction 6169
11.8.1.1. Importance and Structure of Water 6169
11.8.1.2. Movement over and through Land 6170
11.8.1.3. Implications for Overloading the System 6170
11.8.2. Nutrient Cycles in Aquatic Ecosys 6170
11.8.2.1. Phosphorus 6171
11.8.2.2. Nitrogen 6172
11.8.3. Aquatic Ecosystem Structure 6174
11.8.3.1. Nutrient Input Patterns 6174
11.8.3.2. Lotic Systems 6174
11.8.3.2.1. Determining order 6175
11.8.3.2.2. Runoff, discharge, and loading rates 6175
11.8.3.3. Wetlands 6176
11.8.3.4. Lentic Systems 6176
11.8.3.4.1. Temperature and mixing 6177
11.8.3.4.2. Light, turbidity, and primary productivity 6177
11.8.3.4.3. Nutrient ratios and phytoplankton dynamics 6178
11.8.4. Eutrophication 6180
11.8.4.1. Ecological Succession versus Eutr 6180
11.8.4.2. Natural Eutrophication 6180
11.8.4.3. Cultural Eutrophication 6180
11.8.4.4. Conditions that Affect Eutrophication 6180
11.8.4.4.1. Dissolved organic carbon 6180
11.8.4.4.2. Salinity 6181
11.8.4.4.3. Fire 6181
11.8.4.4.4. Drought 6181
11.8.5. Two Case Studies in Eutrophicatio 6182
11.8.5.1. A Point-Source-Impacted Deep Water Lake 6182
11.8.5.2. A Nonpoint-Source-Impacted Shallow Water Lake 6183
11.8.6. Future Opportunities 6184
11.8.6.1. Management 6184
11.8.6.2. Monitoring 6184
11.8.7. Conclusions 6185
References 6185
Chapter 11.9: Salinization and Saline Environments 6188
11.9.1. Introduction 6190
11.9.2. River Salinization 6192
11.9.3. Lake Salinization 6199
11.9.4. Groundwater Salinization 6201
11.9.4.1. Seawater Intrusion and Saltwater Displacement in Coastal Aquifers 6201
11.9.4.2. Mixing with External Saline Waters in Noncoastal Areas 6205
11.9.4.3. Salinization of Shallow Groundwater in River Basins 6207
11.9.4.4. Salinization of Nonrenewable Groundwater 6208
11.9.5. Salinization of Dryland Environment 6209
11.9.6. Anthropogenic Salinization 6211
11.9.6.1. Urban Environment and Wastewater Salinization 6211
11.9.6.2. Deicing and Salinization 6213
11.9.6.3. Agricultural Drainage and the Unsaturated Zone 6213
11.9.7. Salinity and the Occurrence of Health-Related Contaminants 6215
11.9.7.1. Fluoride and Salinity 6216
11.9.7.2. Oxyanions and Salinity 6216
11.9.7.2.1. Arsenic 6216
11.9.7.2.2. Selenium 6217
11.9.7.2.3. Boron 6217
11.9.7.3. Naturally Occurring Radionuclides and Salinity 6219
11.9.7.4. Trihalomethanes and Salinity 6219
11.9.7.5. Salinity and Toxic Algae Bloom 6220
11.9.8. Elucidating the Sources of Salinity 6221
11.9.9. Remediation and the Chemical Composition of Desalination 6226
Acknowledgments 6230
References 6230
Chapter 11.10: Acid Rain – Acidification and Recovery 6242
11.10.1. Introduction 6243
11.10.2. What Is Acidification? 6245
11.10.3. Long-Term Acidification 6246
11.10.3.1. Has Long-Term Acidification Occurred? 6246
11.10.3.2. What Controls Long-Term Acidification? 6247
11.10.4. Short-Term and Episodic Acidification 6249
11.10.5. Drivers of Short-Term and Episodic Acidification 6250
11.10.5.1. High Discharge from Snowmelt and Rain 6250
11.10.5.2. Pulsed Release of SO4 and NO3 from Soils 6250
11.10.5.3. Marine Aerosols 6250
11.10.5.4. Organic Acidity 6251
11.10.5.5. Dilution 6251
11.10.5.6. In-Lake Processes Affecting pH and ANC 6251
11.10.6. Effects of Acidification 6252
11.10.6.1. Release of Al and other Elements 6252
11.10.6.2. Nutrient Availability 6253
11.10.7. Effects of a Changing Physical Climate on Acidification 6255
11.10.7.1. NO3 6256
11.10.7.2. SO4 6256
11.10.7.3. CO2 6256
11.10.7.4. Organic Acids 6257
11.10.7.5. Evaporation/Hydrology 6257
11.10.7.6. Marine Aerosols 6257
11.10.7.7. Biological Feedbacks 6258
11.10.8. Acidification Trajectories through Recent Time 6258
11.10.9. Longitudinal Acidification 6259
11.10.10. Some Areas with Recently or Potentially Acidified Soft Waters 6260
11.10.10.1. Eastern Canada 6260
11.10.10.2. Eastern United States 6260
11.10.10.3. British Isles 6260
11.10.10.4. Scandinavia 6261
11.10.10.5. Continental Europe 6261
11.10.10.6. South America 6261
11.10.10.7. Eastern Asia 6262
11.10.11. Experimental Acidification and Deacidification of LowANC Systems 6262
11.10.11.1. Experimental Acidification of Lakes 6262
11.10.11.2. Experimental Acidification of Wetlands 6262
11.10.11.3. Experimental Acidification of Terrestrial Ecosystems 6262
11.10.11.4. Experimental Acidification of Streams 6263
11.10.12. Remediation of Acidity 6264
11.10.12.1. Ca Additions 6264
11.10.12.2. Nutrient Additions to Eliminate Excess NO3 6264
11.10.12.3. Land Use 6264
11.10.12.3.1. Deforestation 6264
11.10.12.3.2. Afforestation 6265
11.10.13. Chemical Modeling of Acidification of Soft Water Systems 6265
11.10.13.1. SteadyState Models 6265
11.10.13.2. Dynamic Models 6266
11.10.14. Chemical Recovery from Anthropogenic Acidification 6266
Acknowledgments 6269
References 6270
Chapter 11.11: Tropospheric Ozone and Photochemical Smog 6278
11.11.1. Introduction 6279
11.11.2. General Description of Photochemical Smog 6279
11.11.2.1. Primary and Secondary Pollutants 6279
11.11.2.2. Ozone 6280
11.11.2.2.1. Urban ozone 6280
11.11.2.2.2. Regional pollution events and long-distance transport 6280
11.11.2.2.3. Ozone and the global troposphere 6281
11.11.2.2.4. Ozone precursors: NOx, CO, and volatile organics 6282
11.11.2.2.5. Impact of biogenics 6283
11.11.2.3. Particulates 6283
11.11.2.4. Environmental and Health Impacts 6285
11.11.2.5. Long-Term Trends in Ozone and Particulates 6287
11.11.3. Photochemistry of Ozone and Particulates 6287
11.11.3.1. Ozone 6287
11.11.3.1.1. Ozone formation 6287
11.11.3.1.2. Odd hydrogen radicals 6288
11.11.3.1.3. O3, NO, and NO2 6288
11.11.3.1.4. O3– NOx–VOC sensitivity and OH 6289
11.11.3.1.5. Ozone formation in the remote troposphere 6290
11.11.3.1.6. Ozone production efficiency 6290
11.11.3.2. Chemistry of Aerosols 6291
11.11.3.3. Ozone–Aerosol Interactions 6292
11.11.4. Meteorological Aspects of Photochemical Smog 6292
11.11.4.1. Dynamics 6292
11.11.4.2. Ozone and Temperature 6294
11.11.5. New Directions: Evaluation Based on Ambient Measurements 6294
Acknowledgments 6297
References 6297
Chapter 11.12: Volatile Hydrocarbons and Fuel Oxygenates 6302
11.12.1. Introduction 6302
11.12.1.1. Scope of the Problem 6302
11.12.1.2. Petroleum Chemical Composition 6305
11.12.1.2.1. Crude oil 6305
11.12.1.2.2. Fuels 6307
11.12.1.2.3. Fuel oxygenates 6307
11.12.1.2.4. Solvents, lubricants, and petrochemical feedstocks 6309
11.12.1.3. Ecological Concerns and Human Exposure Pathways 6309
11.12.2. The Petroleum Industry 6311
11.12.2.1. Petroleum Exploration, Production, and Processing 6311
11.12.2.2. Petroleum Transportation and Storage 6312
11.12.2.3. Petroleum Usage 6313
11.12.2.4. Disposal of Petroleum Wastes 6314
11.12.3. Environmental Transport Processes 6314
11.12.3.1. Phase Partitioning 6314
11.12.3.2. Physical Transport 6320
11.12.4. Transformation Processes 6320
11.12.4.1. Abiotic Transformation 6321
11.12.4.2. Biotic Transformation 6321
11.12.4.2.1. Aerobic processes 6322
11.12.4.2.2. Anaerobic processes 6324
11.12.4.2.3. Fuel hydrocarbon and oxygenate mixtures 6328
11.12.5. Environmental Restoration 6329
11.12.5.1. Natural Attenuation Processes 6329
11.12.5.2. Engineered or Enhanced Remediation 6332
11.12.5.3. Innovative Tools to Assess Remediation 6332
11.12.6. Challenges 6335
Acknowledgments 6336
References 6336
Chapter 11.13: High Molecular Weight Petrogenic and Pyrogenic Hydrocarbons in Aquatic Environments 6344
11.13.1. Introduction 6344
11.13.2. Scope of Review 6345
11.13.3. Sources 6346
11.13.3.1. Petrogenic Hydrocarbons 6346
11.13.3.2. Pyrogenic Sources of HMW Hydrocarbons 6349
11.13.4. Pathways 6352
11.13.5. Fate 6354
11.13.5.1. Sorption 6355
11.13.5.2. Volatilization 6356
11.13.5.3. Water Dissolution and Solubility 6357
11.13.5.4. Photochemical Reactions 6358
11.13.5.5. Biodegradation 6358
11.13.6. Carbon Isotope Geochemistry 6360
11.13.6.1. Carbon Isotope Variations in PAH Sources 6361
11.13.6.1.1. Pyrogenesis 6361
11.13.6.1.2. Pedogenesis 6362
11.13.6.2. Weathering and Isotopic Composition 6363
11.13.6.3. Isotopic Source Apportionment of PAHs in St. John's Harbor: An Example 6364
11.13.7. Synthesis 6367
Acknowledgments 6368
References 6368
Chapter 11.14: Biogeochemistry of Halogenated Hydrocarbons 6374
11.14.1. Introduction 6374
11.14.2. Global Transport and Distribution of Halogenated Organic Compounds 6374
11.14.2.1. Persistent Organic Pollutants 6375
11.14.2.1.1. Global distribution mechanisms 6375
11.14.2.1.2. Contaminant classification 6376
11.14.2.2. Biogenic Pollutants and Anthropogenic Non-POPs 6376
11.14.3. Sources and Environmental Fluxes 6377
11.14.3.1. Adsorbable Organic Halogens 6377
11.14.3.2. Alkyl Halides 6378
11.14.3.3. Aryl Halides 6379
11.14.4. Chemical Controls on Reactivity 6380
11.14.4.1. Phase Partitioning 6380
11.14.4.2. Reaction Energetics 6381
11.14.5. Microbial Biogeochemistry and Bioavailability 6382
11.14.5.1. Ecological Considerations 6382
11.14.5.2. Matrix Interactions 6383
11.14.6. Environmental Reactivity 6384
11.14.6.1. Microbial Reactivity 6384
11.14.6.2. Surface-Mediated Reactivity 6386
11.14.6.3. Organic-Matter-Mediated Reactivity 6387
11.14.6.4. Predictive Models: Structure–Reactivity Relationships 6388
11.14.7. Implications for Environmental Cycling of Halogenated Hydrocarbons 6389
11.14.8. Knowledge Gaps and Fertile Areas for Future Research 6392
Acknowledgments 6393
References 6393
Chapter 11.15: The Geochemistry of Pesticides 6398
11.15.1. Introduction 6399
11.15.1.1. Previous Reviews of Pesticide Geochemistry 6399
11.15.1.2. Scope of This Review 6399
11.15.1.3. Biological Effects of Pesticide Compounds 6399
11.15.1.4. Variations in Pesticide Use over Time and Space 6400
11.15.1.5. Environmental Distributions in Relation to Use 6400
11.15.1.6. Overview of Persistence in the Hydrologic System 6402
11.15.2. Partitioning among Environmental Matrices 6403
11.15.2.1. Partitioning between Soils, Sediments, and Natural Waters 6403
11.15.2.2. Partitioning between Aquatic Biota and Natural Waters 6406
11.15.2.3. Partitioning between Earth's Surface and the Atmosphere 6406
11.15.2.3.1. Movement between air and natural waters 6406
11.15.2.3.2. Movement between air, soil, and plant surfaces 6407
11.15.3. Transformations 6408
11.15.3.1. Photochemical Transformations 6409
11.15.3.2. Neutral Reactions 6410
11.15.3.3. Electron-Transfer Reactions 6411
11.15.3.4. Governing Factors 6413
11.15.3.4.1. Reactant concentrations 6413
11.15.3.4.2. Structure and properties of the pesticide substrate 6414
11.15.3.4.3. Structure and properties of other reactants 6416
11.15.3.4.4. Physical factors 6418
11.15.3.4.5. Geochemical environment 6420
11.15.3.5. Effects of Transformations on Environmental Transport and Fate 6424
11.15.3.6. Occurrence of Pesticide Transformation Products in the Hydrologic System 6425
11.15.4. The Future 6425
Acknowledgments 6427
References 6428
Chapter 11.16: The Biogeochemistry of Contaminant Groundwater Plumes Arising from Waste Disposal Facilities 6436
11.16.1. Introduction 6436
11.16.2. Source and Leachate Composition 6437
11.16.3. Spreading of Pollutants in Groundwater 6438
11.16.4. Biogeochemistry of Landfill Leachate Plumes 6439
11.16.4.1. Redox Environments and Redox Buffering 6439
11.16.4.2. Microbial Activity and Redox Processes 6442
11.16.5. Overview of Processes Controlling Fate of Landfill Leachate Compounds 6443
11.16.5.1. Dissolved Organic Matter, Inorganic Macrocomponents, and Heavy Metals 6445
11.16.5.1.1. Dissolved organic carbon 6445
11.16.5.1.2. Inorganic macrocomponents 6445
11.16.5.1.3. Heavy metals 6445
11.16.5.2. Xenobiotic Organic Compounds 6445
11.16.6. Norman Landfill (United States) 6447
11.16.6.1. Source, Geology, and Hydrogeology 6447
11.16.6.2. Landfill Leachate Plume 6447
11.16.6.2.1. Biogeochemistry of the plume 6447
11.16.6.2.2. Availability of electron acceptors 6452
11.16.6.2.3. Fate of XOCs 6453
11.16.7. Grindsted Landfill Site (DK) 6454
11.16.7.1. Source, Geology, and Hydrogeology 6454
11.16.7.2. Landfill Leachate Plume 6456
11.16.8. Monitored Natural Attenuation 6462
11.16.9. Future Challenges 6463
References 6464
e9780080983004v12 6469
Front Cover 6469
Organic Geochemistry 6472
Copyright 6473
In Memoriam 6474
Heinrich Dieter Holland (1927–2012) 6476
Karl Karekin Turekian (1927–2013) 6478
Dedication 6482
Contents 6484
Executive Editors’ Foreword to the Second Edition 6486
Contributors 6490
Volume Editors’ Introduction 6492
Introduction 6492
Chapter 12.1: Organic Geochemistry of Meteorites 6494
12.1.1. Meteorites and Their Carbon 6494
12.1.2. Classification of Carbonaceous Chondrites 6495
12.1.3. Stable Isotopes and Carbonaceous Chondrites 6495
12.1.4. The Organic Compounds in Carbonaceous Chondrites 6497
12.1.5. Carboxylic Acids 6497
12.1.5.1. Short-Chain Monocarboxylic Acids 6497
12.1.5.2. Long-Chain Monocarboxylic Acids 6499
12.1.5.3. Hydroxycarboxylic Acids 6499
12.1.5.4. Dicarboxylic Acids 6499
12.1.5.5. Aromatic Carboxylic Acids 6500
12.1.5.6. Stable Isotopes and Carboxylic Acids 6500
12.1.6. Amino Acids 6501
12.1.6.1. Free Amino Acids 6501
12.1.6.2. Enantiomeric Excesses 6503
12.1.6.3. Origin of Enantiomeric Excess 6504
12.1.6.4. Amino Acid Precursors 6504
12.1.6.5. Stable Isotopes and Amino Acids 6505
12.1.7. Amines and Amides 6506
12.1.8. Aliphatic Hydrocarbons 6506
12.1.8.1. Short-Chain Alkanes 6506
12.1.8.2. Normal Alkanes 6506
12.1.8.3. Stable Isotopes and Short-Chain Alkanes 6507
12.1.8.4. Stable Isotopes and Normal Alkanes 6508
12.1.9. Aromatic Hydrocarbons 6508
12.1.9.1. Solvent and Thermal Extracts 6508
12.1.9.2. Laser Mass Spectrometry 6509
12.1.9.3. Stable Isotopes and Aromatic Hydrocarbons 6509
12.1.10. Nucleic Acid Bases and Other Nitrogen Heterocycles 6510
12.1.11. Alcohols, Polyhydroxylated Compounds, and Carbonyls 6511
12.1.12. Sulfonic and Phosphonic Acids 6512
12.1.12.1. Chemical Structures 6512
12.1.12.2. Stable Isotopes and Sulfonic and Phosphonic Acids 6512
12.1.13. Organohalogens 6512
12.1.14. Macromolecular Material 6512
12.1.14.1. Aliphatic and Aromatic Units 6512
12.1.14.2. Oxygen-Containing Units 6513
12.1.14.3. Sulfur-Containing Units 6514
12.1.14.4. Nitrogen-Containing Units 6514
12.1.14.5. Radicals 6514
12.1.14.6. Stable Isotopes and the Macromolecular Material 6514
12.1.14.7. Variations Within and Between Macromolecular Materials 6515
12.1.15. Microvesicles and Nanoglobules 6516
12.1.16. Organic-Inorganic Relationships 6518
12.1.17. Source Environments 6518
References 6519
Chapter 12.2: Organic Geochemical Signatures of Early Life on Earth 6526
12.2.1. Introduction 6526
12.2.2. Eoarchean (4.0-3.6Ga) Biological Remnants? 6526
12.2.3. The Post-3.5Ga Sedimentary Record of Stable Carbon Isotopes 6527
12.2.4. The Record of Organic Carbon Burial 6528
12.2.5. The Composition of Buried Organic Matter 6530
12.2.6. Visible Structures with Organic Affinities 6533
12.2.6.1. Organic-Walled Microfossils 6533
12.2.6.2. Fossil Microbial Mats, Textures, and Trace Fossils 6534
12.2.6.3. Stromatolites 6534
12.2.7. Summary and Prospects 6535
Acknowledgments 6536
References 6536
Chapter 12.3: The Analysis and Application of Biomarkers 6540
12.3.1. Introduction 6540
12.3.2. Biomarkers and Environments 6542
12.3.2.1. Introduction 6542
12.3.2.2. Hopanoids 6546
12.3.2.3. Steranes 6547
12.3.2.4. Marine/Lacustrine Environments 6548
12.3.2.5. Marine Environments 6548
12.3.2.6. Lacustrine Environments 6549
12.3.2.7. Terrigenous Environments 6549
12.3.2.7.1. Steranes 6549
12.3.2.7.2. n-Alkanes 6549
12.3.2.7.3. Diterpenoids 6550
12.3.2.7.4. Triterpenoids 6550
12.3.2.8. Biomarkers for Specific Environmental Conditions 6551
12.3.2.8.1. Photic zone euxinia 6551
12.3.2.8.2. Purple sulfur bacteria 6551
12.3.2.8.3. Green sulfur bacteria 6552
12.3.2.8.4. Archaea 6554
12.3.2.8.5. Glycerol dialkyl glycerol tetraethers 6554
12.3.2.8.6. TEX86 and other GDGT-based palaeotemperature proxies 6556
12.3.2.8.7. Halophilic archaea 6556
12.3.3. Age-Diagnostic Biomarkers 6557
12.3.3.1. n-Alkanes 6557
12.3.3.2. Evolution of the Land Plants in the Late Devonian 6557
12.3.3.3. Evolution of Flowering Plants in the Cretaceous 6557
12.3.3.4. Botryococcanes in Tertiary Lakes 6558
12.3.3.5. Evolution of Demospongiae in the Latest Neoproterozoic 6558
12.3.3.6. Evolution of Dinoflagellates in the Late Mesozoic 6558
12.3.3.7. Evolution of Diatoms in the Jurassic 6558
12.3.3.8. Age-Diagnostic Steranes 6559
12.3.4. Biomarkers of Fungi 6559
12.3.5. Biomarkers and Extinction Events 6559
12.3.5.1. Permian/Triassic 6559
12.3.5.2. Triassic/Jurassic 6560
12.3.5.3. The Palaeocene-Eocene Thermal Maximum 6561
12.3.6. Analytical Approaches 6561
12.3.6.1. Analytical Pyrolysis 6561
12.3.6.2. Laser Micropyrolysis GC-MS 6562
12.3.6.3. Catalysed HyPy 6562
12.3.6.4. Stable Isotope Analysis 6562
12.3.6.5. Comprehensive Two-Dimensional Gas Chromatography (GCxGC) 6563
12.3.6.6. Time-of-Flight Secondary Ion Mass Spectrometry 6563
12.3.7. Summary 6563
Acknowledgments 6563
References 6563
Chapter 12.4: Hydrogen Isotope Signatures in the Lipids of Phytoplankton 6572
12.4.1. Introduction 6572
12.4.2. The Effect of δDwater on δDlipid 6573
12.4.3. The Effect of Biosynthesis on δDlipid 6575
12.4.4. The Effect of Species on δDlipid 6576
12.4.5. The Effect of Salinity on δDlipid 6576
12.4.6. The Effect of Temperature on δDlipid 6580
12.4.7. The Effect of Growth Rate on δDlipid 6582
12.4.7.1. Substrate-Limited Growth Rate Effects 6582
12.4.7.2. Light-Limited Growth Rate Effects 6585
12.4.8. Summary and Conclusions 6585
Acknowledgments 6585
References 6585
Chapter 12.4: 13C/12C Signatures in Plants and Algae 6588
12.5.1. Introduction 6588
12.5.2. The Term ‘Isotopic Fractionation’ 6589
12.5.3. Isotopic Fractionation in Plants and Algae 6592
12.5.3.1. Outline 6592
12.5.3.2. δ13C of Source Carbon 6592
12.5.3.3. Isotopic Fractionation During Photosynthesis 6594
12.5.3.3.1. Outline 6594
12.5.3.3.2. Terrestrial C3 plants 6594
12.5.3.3.3. Aquatic plants and algae 6596
12.5.3.3.4. Terrestrial C4 plants 6596
12.5.3.3.5. Terrestrial CAM plants 6596
12.5.3.3.6. Experimental values for 6597
12.5.3.3.7. Other factors 6597
12.5.3.4. Model for Isotopic Fractionation in Biosynthetic Products 6598
12.5.3.5. Sources of Carbon Atoms for Biosynthetic Products 6602
12.5.3.5.1. Outline 6602
12.5.3.5.2. Lipids 6602
12.5.3.5.3. Amino acids 6603
12.5.3.5.4. Chlorophylls 6607
12.5.3.5.5. Nucleic acid bases 6607
12.5.3.5.6. Lignin 6609
12.5.3.6. A Deeper Understanding of Isotopic Fractionation in Lipid Biosynthesis 6609
12.5.3.7. Topics for Further Study 6611
References 6612
Chapter 12.6: Dissolved Organic Matter in Aquatic Systems 6618
12.6.1. Introduction 6620
12.6.2. Inventory and Fluxes 6621
12.6.2.1. The Global Inventory 6621
12.6.2.2. Sources to the Ocean 6621
12.6.2.3. Turnover and Flux of Marine DOM 6622
12.6.2.4. What Happens to Terrigenous DOM? 6624
12.6.2.5. Global Distribution 6624
12.6.3. Bulk Chemical Properties 6626
12.6.3.1. Carbon Isotopes 6626
12.6.3.1.1. Stable carbon isotopes 6626
12.6.3.1.2. Radiocarbon 6626
12.6.3.2. Optical Properties 6627
12.6.3.2.1. Colored DOM 6627
12.6.3.2.2. Fluorescent DOM 6630
12.6.3.3. Nuclear Magnetic Resonance 6631
12.6.4. The Composition of DOM on an Individual Molecular Level 6633
12.6.4.1. Introduction 6633
12.6.4.2. Ultrahigh-Resolution Mass Spectrometry 6634
12.6.4.3. Interaction Among Individual Molecules 6638
12.6.4.4. Molecular Clues on the Source and Turnover of Marine DOM 6639
12.6.4.4.1. Introduction 6639
12.6.4.4.2. The fate of terrigenous DOM in the ocean 6639
12.6.4.4.3. A thermogenic component 6640
12.6.4.4.4. The microbial imprint 6640
12.6.5. Reasons Behind the Stability of DOM in the Deep Ocean 6641
12.6.6. Perspectives 6643
12.6.6.1. What Is the Substrate on Which Marine Microorganisms Grow? 6643
12.6.6.2. Why Do DOM Molecules Lose Their Physiological Function Over Time? 6643
12.6.6.3. Reading the Molecular Archive for Historic Reconstruction 6643
12.6.6.4. What Are the Organic Ligands of Essential Trace Metals? 6644
Acknowledgments 6644
References 6644
Chapter 12.7: Dynamics, Chemistry, and Preservation of Organic Matter in Soils 6650
12.7.1. Soil Organic Matter and Soil Functions 6651
12.7.2. Input and Quantity of SOM 6653
12.7.2.1. Amount of OM in Soils 6653
12.7.2.2. Plant and Microbial Input to SOM 6654
12.7.2.2.1. Aboveground input 6654
12.7.2.2.2. Belowground input 6655
12.7.2.3. Plant Compound Classes 6655
12.7.2.3.1. Cellulose 6656
12.7.2.3.2. Noncellulosic polysaccharides 6656
12.7.2.3.3. Lignin 6656
12.7.2.3.4. Tannins and other polyphenols 6656
12.7.2.3.5. Lipids 6656
12.7.2.3.6. Cutin and suberin 6657
12.7.2.3.7. N-, S-, and P-containing compounds 6657
12.7.2.3.8. Specific components of fungi and bacteria 6658
12.7.2.4. Charcoal 6660
12.7.3. Composition and Transformation of Organic Matter in Soils 6661
12.7.3.1. Bulk SOM Composition 6661
12.7.3.2. Organic Matter in Subsoils 6665
12.7.4. Turnover of SOM 6666
12.7.4.1. Pools and Models 6666
12.7.4.2. Assessing Mean Residence Times on the Bases of C Isotopic Composition 6667
12.7.4.2.1. δ13C abundance measurements as a tool for turnover assessment 6667
12.7.4.2.2. Δ14C abundance measurements as a tool for turnover assessment 6669
12.7.4.2.3. Turnover of OC in topsoils and subsoils 6669
12.7.5. Origin and Turnover of Specific Components in Soils 6670
12.7.5.1. Biomarkers for Plant-Derived C 6670
12.7.5.1.1. Lignins 6670
12.7.5.1.2. Tannins 6673
12.7.5.1.3. Aliphatic compounds 6673
12.7.5.1.4. Carbohydrates 6674
12.7.5.2. Biomarkers for Living Microbial Biomass 6674
12.7.5.2.1. Phospholipid fatty acids 6674
12.7.5.2.2. Ergosterol and others 6675
12.7.5.2.3. Glycerol dialkyl glycerol tetraethers 6675
12.7.5.3. Biomarkers for Dead Microbial Biomass 6675
12.7.5.3.1. Terpenoids 6675
12.7.5.3.2. Nitrogen-containing biomarkers 6675
12.7.5.4. Biomarkers for Off-Site Contributions to SOM 6676
12.7.5.4.1. Steroids and bile acids 6676
12.7.5.4.2. Benzene polycarboxylic acids 6676
12.7.5.5. Examples for Applications in Soil Science 6677
12.7.5.5.1. Changes in biomarker signature with prolonged arable cropping 6677
12.7.5.5.2. Biomarkers in particle-size fractions 6678
12.7.5.6. Turnover Rates of Different Biomarkers 6679
12.7.5.6.1. Biomarker-specific stable isotope analyses in artificial labeling experiments 6679
12.7.5.6.2. Biomarker-specific stable isotope analyses after C3/C4 vegetation change 6680
12.7.6. Soil-Specific Interactions of OM with the Mineral Phase 6682
12.7.6.1. Soil Architecture and Its Effects on C Turnover and Stabilization 6682
12.7.6.1.1. Accessibility/aggregation 6682
12.7.6.1.2. Organomineral interactions 6684
12.7.6.1.3. Types of C and N in organomineral associations 6684
12.7.6.1.4. Phyllosilicate clay minerals 6684
12.7.6.1.5. Pedogenic oxides 6685
12.7.6.1.6. Interactions with metal ions 6685
12.7.6.2. SOM Formation in Major Soil Types 6685
12.7.6.2.1. Chernozems 6686
12.7.6.2.2. Podzols 6687
12.7.6.2.3. Ferralsols 6689
12.7.6.2.4. Cryosols 6690
12.7.6.2.5. Andosols 6691
12.7.6.2.6. Man-made soils (Anthrosols) 6692
12.7.6.2.6.1. Paddy soils 6692
12.7.6.2.6.2. Terra preta 6694
12.7.7. Peculiarities 6695
References 6698
Chapter 12.8: Weathering of Organic Carbon 6710
12.8.1. Introduction 6710
12.8.2. Reservoirs and Fluxes in the Geochemical Carbon Cycle 6710
12.8.2.1. Rock Reservoirs of Carbon 6710
12.8.2.2. Addition of OM to the Rock Reservoir: OM Burial 6711
12.8.2.3. Removal of OM from the Rock Reservoir: Weathering, Erosion, and Oxidation 6712
12.8.3. Weathering of Kerogen 6713
12.8.3.1. Weathering of Kerogen in Black Shales 6713
12.8.3.1.1. Decreases in organic carbon content 6713
12.8.3.1.2. Changes in kerogen composition accompanying weathering 6714
12.8.3.1.3. Changes in bitumen composition during weathering 6717
12.8.3.2. Metals and Minerals During Shale Weathering 6717
12.8.3.3. Oxidative Weathering of OM-Rich Sediments 6718
12.8.3.4. Models of Shale Weathering 6719
12.8.4. Biodegradation of Sedimentary OM 6719
12.8.4.1. Direct Biodegradation of Kerogen and Coal 6719
12.8.4.2. Hydrocarbon Biodegradation During Weathering 6720
12.8.4.3. Biodegradation of Rock-Derived Hydrocarbons 6721
12.8.4.4. Fossil OM Biodegradation in the Subsurface 6721
12.8.5. Surficial Transport and Transformations of Fossil OM 6722
12.8.5.1. Kerogen Recycling Along Active Continental Margins 6722
12.8.5.2. River Transport and Transformations of Rock-Derived OM 6722
12.8.6. Model Estimates of Global Organic Carbon Weathering 6723
12.8.6.1. Models of the Geochemical Cycles of Carbon and Oxygen 6723
12.8.6.2. OC Loss Through Chemical Weathering of Sedimentary Rocks 6725
12.8.6.3. Global Re Fluxes: Constraints on OM Weathering 6727
12.8.7. Synthesis and Conclusions: Carbon Weathering in the Global Carbon Cycle 6727
References 6728
Chapter 12.9: Organic Carbon Cycling and the Lithosphere 6732
12.9.1. Introduction 6732
12.9.2. Carbon Content of the Continental Crust 6732
12.9.3. Isotopic Constraints on Crustal Carbon 6734
12.9.4. Cycling of Crustal Carbon 6735
12.9.5. Inconsistencies in Crustal-Sedimentary Carbon Budgets 6736
12.9.6. Carbon Cycling Under Reduced Atmospheric Oxygen Levels 6738
12.9.7. Conclusions 6740
References 6741
Chapter 12.10: Organic Nitrogen: Sources, Fates, and Chemistry 6744
12.10.1. Introduction 6744
12.10.2. Nitrogen Assimilation and Isotopic Effects 6745
12.10.2.1. Background 6745
12.10.2.2. Nitrogen Assimilation Processes by Autotrophs 6746
12.10.2.3. Nitrogen Isotopic Fractionation Associated with Autotrophic Nitrogen Assimilation 6747
12.10.2.4. Nitrification and Denitrification 6749
12.10.2.5. Applications to Oceanic Systems 6750
12.10.3. Cellular Nitrogenous Compounds and Isotope Effects 6751
12.10.3.1. Background 6751
12.10.3.2. Amino Acids and Proteins 6752
12.10.3.3. Nucleobases and Nucleic Acids 6755
12.10.3.4. Chlorophylls 6756
12.10.3.5. Other Tetrapyrroles 6758
12.10.3.6. Other Nitrogenous Compounds 6759
12.10.4. Organic Nitrogen in Sediments and Its Application to Paleoenvironmental Reconstructions 6760
12.10.4.1. Background 6760
12.10.4.2. Degradations of Proteins and Amino Acids and Isotopic Effects on Bulk Organic Nitrogen 6761
12.10.4.3. Chlorins 6763
12.10.4.4. Alkyl Porphyrins 6765
12.10.4.5. Maleimides 6768
12.10.4.6. Other Nitrogenous Compounds 6769
12.10.5. Related Topics 6770
12.10.5.1. Ecological and Archaeological Applications 6770
12.10.5.2. Recent Advances in Enantiomer-Specific Nitrogen Isotope Analysis of Amino Acids 6771
12.10.5.3. Extraterrestrial Nitrogenous Compounds 6772
12.10.6. Conclusions 6775
Acknowledgments 6775
References 6775
Chapter 12.11: Lipidomics for Geochemistry 6784
12.11.1. Introduction 6784
12.11.2. Lipid Biosynthetic Pathways 6785
12.11.2.1. Acetogenic Lipids 6785
12.11.2.2. Isoprenoids - MVA Pathway 6788
12.11.2.3. Isoprenoids - MEP Pathway 6789
12.11.2.4. Ether and Ester Linkages to Glycerol - Bacteria and Eukaryotes 6790
12.11.2.5. Diethers and Tetraethers of Archaea 6793
12.11.2.6. Glycerol Membrane Lipids: Final Comments 6795
12.11.2.7. Polar Head Groups 6795
12.11.2.8. Linear Polyprenes 6801
12.11.2.9. Hopanoids 6801
12.11.2.10. Steroids 6802
12.11.2.11. Ladderanes 6803
12.11.2.12. Long-Chain Alkenones 6805
12.11.2.13. Highly Branched Isoprenoids of Diatoms 6805
12.11.3. Case Studies and Approaches to Lipidomics 6806
12.11.3.1. Examples Using Bacterial Genetics 6807
12.11.3.1.1. Role of squalene-hopene cyclase in the synthesis of hopanoid lipids 6808
12.11.3.1.2. Synthesis of A-ring methylated bacteriohopanepolyols 6809
12.11.3.1.3. Synthesis of hopanoid C5 side chains 6810
12.11.3.2. Examples Using Genomic Data from Characterized Species 6810
12.11.3.2.1. Bacteria capable of sterol biosynthesis 6811
12.11.3.2.2. Anaerobes capable of synthesizing hopanoids 6811
12.11.3.2.3. The distribution of phosphatidylcholine in bacteria 6812
12.11.3.2.4. Hypotheses about synthesis of ladderane lipids 6812
12.11.3.3. Examples Using Environmental Metagenomics and Functional Genomics 6813
12.11.3.3.1. Functional gene surveys - environmental shc genes 6813
12.11.3.3.2. General metagenomic surveys - hopanoid synthesis genes 6814
12.11.3.3.3. General metagenomic surveys - other lipid biosynthetic pathways 6815
12.11.3.4. Examples Using Experimental Biochemical Approaches 6817
12.11.3.4.1. Synthesis of botryococcene 6817
12.11.3.4.2. Multifunctional 2,3-oxidosqualene cyclases in plants 6817
12.11.3.5. Examples Using SSU rRNA Combined with Taxonomic Specificity of Biomarkers 6818
12.11.3.5.1. Paleorecord of alkenone-producing haptophyte algae 6819
12.11.3.5.2. Highly branched isoprenoids of diatoms 6819
12.11.4. Conclusions 6820
Acknowledgments 6820
References 6820
Chapter 12.12: Mineral Matrices and Organic Matter 6830
12.12.1. Introduction 6831
12.12.2. Evidence for Organic Matter Association with Minerals 6833
12.12.2.1. Correlations with Grain Size and Mineral-Specific Surface Area 6833
12.12.2.2. Why Do Organic Matter and Minerals Stick Together? 6833
12.12.2.2.1. Sorption 6834
12.12.2.2.1.1. Ligand exchange 6834
12.12.2.2.1.2. Ion exchange 6834
12.12.2.2.1.3. Cation bridging 6834
12.12.2.2.1.4. Van der Waals forces 6834
12.12.2.2.1.5. Hydrogen bonding 6834
12.12.2.2.1.6. Hydrophobic interactions 6834
12.12.2.2.1.7. Multimode sorption 6835
12.12.2.2.1.8. Intercalation 6836
12.12.2.2.2. Occlusion by biomineralization 6836
12.12.2.2.3. Secondary architectures: aggregation 6836
12.12.2.2.4. The role of mineral surface area and geometry 6839
12.12.3. Impact on Organic Matter 6839
12.12.3.1. Compositional Variations Among Different Mineral Associations 6839
12.12.3.2. Organic Matter Stabilization and Destabilization 6840
12.12.3.2.1. Abiotic and biotic roles of minerals in organic matter decay 6840
12.12.3.2.2. Minerals as organic matter stabilizers 6840
12.12.3.2.3. Does mineralogy influence protection? 6842
12.12.3.3. Crosscutting Themes 6843
12.12.3.3.1. Microbial roles 6843
12.12.3.3.2. Oxygen effects on bulk organic matter persistence 6844
12.12.3.3.3. Physical disturbance 6845
12.12.4. Future Directions 6846
12.12.5. Conclusion 6847
Acknowledgments 6847
References 6847
Chapter 12.13: Biomarker-Based Inferences of Past Climate: The Alkenone pCO2 Proxy 6854
12.13.1. Introduction 6854
12.13.2. The Alkenone CO2 Proxy 6854
12.13.2.1. Roots of the Methodology 6854
12.13.2.2. Models of Algal Carbon Isotope Fractionation Assuming Diffusive Carbon Transport 6855
12.13.2.3. Development of the Alkenone-CO2 Proxy 6857
12.13.2.4. The Calibration of `b´ and Estimates of εf 6858
12.13.3. CO2 Reconstructions, Uncertainties, and Complications 6859
12.13.3.1. The Influence of Growth Rate and Irradiance 6861
12.13.3.1.1. Dilute cultures and mesocosm experiments 6861
12.13.3.1.2. Ocean and surface sediment data 6862
12.13.3.1.3. The case against growth rate as the dominant influence on εp37:2 6862
12.13.3.2. Consideration of Cell Geometry Changes on Long-Term εp37:2 Records 6863
12.13.4. Active Transport and the Case Against the Diffusive Model of Carbon Uptake 6865
12.13.4.1. Models for Active Carbon Uptake 6866
12.13.5. Summary 6867
References 6868
Chapter 12.14: Biomarker-Based Inferences of Past Climate: The TEX86 Paleotemperature Proxy 6872
12.14.1. Introduction 6872
12.14.2. History and Systematics 6872
12.14.3. Detection and Analysis of GDGTs 6874
12.14.4. Ecology of the Thaumarchaeota and Implications for TEX86 6874
12.14.5. Preservation of GDGT Lipids in Sediments 6877
12.14.6. Calibration of TEX86 to Temperature 6877
12.14.6.1. Mesocosm Calibrations 6877
12.14.6.2. Surface-Sediment Calibrations 6878
12.14.7. Conclusion 6883
References 6884
Chapter 12.15: Biomarkers for Terrestrial Plants and Climate 6888
12.15.1. Higher Plants Biomarkers 6888
12.15.1.1. n-Alkyl Compounds in Plant Cuticle 6888
12.15.1.1.1. n-Alkane concentrations in leaves of vascular plants 6889
12.15.1.1.2. n-Alkane distributions: average chain length 6889
12.15.1.1.3. n-Alkane distributions: carbon preference index 6891
12.15.1.1.4. Alkyl compounds and aliphatic carbon preservation 6891
12.15.1.1.5. Other sources for n-alkyl compounds 6892
12.15.1.2. Terpenoids 6892
12.15.1.3. Macromolecular Components of Vascular Plants: Lignin and Related Structures 6894
12.15.2. Soil and Lake Microbial Lipids and Proxies for Terrestrial Paleoclimate 6895
12.15.3. Carbon Isotope Signatures of Vegetation and Climate 6896
12.15.3.1. Carbon Isotopic Compositions of C3 Plants 6897
12.15.3.1.1. Sensitivity of C3 photosynthetic isotope fractionation to water 6897
12.15.3.1.2. Sun exposure, growth rates, and the canopy effect 6898
12.15.3.1.3. Atmospheric CO2 concentrations and plant delta13C &INS id 6898
12.15.3.1.4. Fractionation and atmospheric CO2 concentration 6899
12.15.3.2. Carbon Isotopic Composition of C4 Plants 6899
12.15.3.3. C4 Evolution, Ecosystems, and Past Climates 6899
12.15.3.4. Woodland-Grassland Ecosystems and C3/C4 Mixing Models 6900
12.15.4. Lipid-Leaf Fractionation Factors 6900
12.15.5. Transport and Preservation in Soils, Lakes, and Marine Sediments 6901
12.15.5.1. Transport Means and Depositional Setting 6901
12.15.5.2. The Impact of Fire on Aeolian Inputs 6901
12.15.5.3. Catchment and Landscape Dynamics: Hydrology, Topography, Vegetation, and Erosion 6902
12.15.5.4. Soil and Shelf Residence Time 6902
12.15.6. Terrestrial Biomarkers and Isotopes: Research Outlook 6902
Acknowledgments 6902
References 6902
e9780080983004v13 6910
Front Cover 6910
Geochemistry of Mineral Depsoits 6913
Copyright 6914
IN MEMORIAM 6915
HEINRICH DIETER HOLLAND (1927–2012) 6917
KARL KAREKIN TUREKIAN (1927–2013) 6919
DEDICATION 6923
CONTENTS 6925
EXECUTIVE EDITORS’ FOREWORD TO THE SECOND EDITION 6927
CONTRIBUTORS 6931
VOLUME EDITOR’S INTRODUCTION 6933
Chapter 13.1: Fluids and Ore Formation in the Earths Crust 6937
13.1.1. Ore Deposits and Crustal Geochemistry 6938
13.1.1.1. Ores, Mineral Deposits, and Crustal Composition 6938
13.1.1.2. Economic Aspects: Deposit Assessment, Grade, and Resources and Reserves 6938
13.1.1.3. Extreme Metal Enrichment: A Rare Conjunction of Common Processes 6940
13.1.2. Magmatic Ore Formation 6941
13.1.3. Ore-Forming Hydrothermal Processes 6944
13.1.3.1. Physical Aspects of Hydrothermal Metal Enrichment 6945
13.1.3.1.1. Energy sources driving fluid flow 6945
13.1.3.1.2. Fluid focusing and `structural control´ 6946
13.1.3.1.3. Timescales of fluid flow and heat transfer 6946
13.1.3.2. Chemical Driving Forces for Hydrothermal Metal Enrichment 6947
13.1.3.2.1. Rock buffering and fluid-chemical master variables 6947
13.1.3.2.2. Sulfide solubility and base-metal content of crustal fluids 6948
13.1.3.2.3. Example: Hydrothermal redistribution of gold 6950
13.1.3.3. Metal Source Regions versus Ore Deposition Sites 6951
13.1.3.3.1. Source region characteristics 6951
13.1.3.3.2. Ore deposition and wall-rock alteration 6951
13.1.4. Hydrothermal Ore Formation in Sedimentary Basins 6952
13.1.5. Hydrothermal Ore Systems in the Oceanic Realm 6953
13.1.6. Magmatic-Hydrothermal Ore Systems 6953
13.1.6.1. Melt Generation, Magma Storage, and Ascent 6953
13.1.6.2. Fluid Exsolution and Element Transfer from Melt to Fluid 6955
13.1.6.3. Fluid Cooling, Decompression, and Phase Separation 6955
13.1.6.4. Fluid Evolution Paths at the Porphyry to Epithermal Transition 6956
13.1.6.5. Wall-Rock Alteration and Ore Mineral Precipitation 6957
13.1.7. Ore Formation at the Earth's Surface 6958
13.1.8. Back to the Future: Global Mineral Resources 6959
Acknowledgments 6959
References 6959
Chapter 13.2: The Chemistry of Metal Transport and Deposition by Ore-Forming Hydrothermal Fluids 6965
13.2.1. Introduction 6965
13.2.1.1. Compositions of Ore-Forming Fluids 6966
13.2.2. Hydrothermal Ore Solution Chemistry - The Main Dissolved Components 6969
13.2.2.1 Water Solvent at Hydrothermal Conditions 6969
13.2.2.2 NaCl – The Main Dissolved Electrolyte Component 6971
13.2.2.3 Ion Hydration, Association, and Water Activity 6971
13.2.2.4 Weak Acid/Base Equilibria in Hydrothermal Systems 6972
13.2.3. Mineral Solubility in Water and Salt Solutions at High Temperature and Pressure 6973
13.2.4. Ore Metal Transport and Deposition 6976
13.2.4.1. Ore Fluids with Liquid-Like Densities 6976
13.2.4.1.1. Ligands in hydrothermal ore solutions 6976
13.2.4.1.2. Metal chloride complexing 6977
13.2.4.1.3. Complexing with other halide ligands 6978
13.2.4.1.4. Metal complexes with hydroxide and other oxygen electron donor ligands 6979
13.2.4.1.5. Complexing with hydrosulfide/sulfide ligands 6981
13.2.4.1.6. Thioanions 6982
13.2.4.1.7. Complexing with other sulfur-containing ligands 6983
13.2.4.1.8. Other complexing ligands 6984
13.2.4.1.9. Ore fluids with gas-like density 6984
13.2.5. Epilogue 6986
Acknowledgments 6986
References 6986
Chapter 13.3: Stable Isotope Geochemistry of Mineral Deposits 6995
13.3.1. Introduction 6995
13.3.2. Fundamental Aspects of Stable Isotope Geochemistry 6995
13.3.3. Stable Isotope Systematics 6996
13.3.3.1. Delta Notation 6996
13.3.3.2. Fractionation Equations 6996
13.3.3.3. Reservoir Effects and Mass Balance Calculations 6997
13.3.3.4. Water/Rock Ratio 6998
13.3.4. Analytical Methods 6998
13.3.5. Ore Deposit Types 6998
13.3.5.1. Magmatic Sulfide and PGE Deposits 6998
13.3.5.2. Porphyry Deposits 6999
13.3.5.3. Skarn Deposits 7001
13.3.5.4. Volcanogenic Massive Sulfide Deposits 7004
13.3.5.5. Sedimentary-Exhalative and Mississippi Valley-Type Deposits 7011
13.3.5.6. Precious-Metal Deposits: Epithermal, Carlin-Type, and Orogenic Au 7013
13.3.5.7. Banded Iron Formation 7014
13.3.6. Summary and Conclusions 7016
Acknowledgments 7018
References 7018
Chapter 13.4: Dating and Tracing the History of Ore Formation 7023
13.4.1. A Holistic Approach to Ore Geology 7024
13.4.1.1. What We Know 7024
13.4.1.2. Critical and Compromising Gaps 7025
13.4.1.3. Meaningful Results 7025
13.4.1.4. Meaningful Models 7026
13.4.2. The Fourth Dimension - Time 7026
13.4.2.1. The Transcendence of Time 7026
13.4.2.2. Time Ties that Bind 7027
13.4.3. Radiometric Clocks 7027
13.4.3.1. What Geologic Clocks Measure 7027
13.4.3.2. How Radiometric Clocks Work 7028
13.4.3.2.1. Ages through single mineral clocks 7029
13.4.3.2.2. Ages through isochrons 7030
13.4.3.2.3. Conditions for isotopic closure 7030
13.4.3.2.3.1. Thermal dependence 7031
13.4.3.2.3.2. Chemical dependence 7032
13.4.4. Radiometric Clocks for Ore Geology 7033
13.4.4.1 U–Th–Pb (Uranium–Thorium–Lead) 7033
13.4.4.1.1. Zircon (ZrSiO4) 7033
13.4.4.1.2. Monazite (Ce, LREE, Th, U, Ca)PO4 7034
13.4.4.1.3. Uraninite (UO2) 7034
13.4.4.2. Pb-Pb (Lead-Lead) 7034
13.4.4.3. Pt-Os (Platinum-Osmium) 7036
13.4.4.4. Rb-Sr (Rubidium-Strontium) 7036
13.4.4.5. 40Ar/39Ar (Argon-Argon) 7036
13.4.4.6. Sm-Nd (Samarium-Neodymium) 7037
13.4.5 Rhenium–Osmium – A Clock for Sulfides 7037
13.4.5.1. Where We Find Re and Os 7037
13.4.5.2. Historical Background 7037
13.4.5.2.1. Sample-spike equilibration 7037
13.4.5.2.2 Negative TIMS 7037
13.4.5.2.3. An interlaboratory age standard 7038
13.4.5.2.4. Half-life hurdles - the 187Re decay constant 7038
13.4.5.2.5. Stoichiometry of Os standards 7038
13.4.5.3. The Last Steps for the First Chronometer for Ore Deposition 7039
13.4.5.3.1. Comparison of Re-Os ages with other ages 7039
13.4.5.3.2. Lack of effect of alteration on Re-Os systematics 7039
13.4.5.3.3. Parent-daughter decoupling conundrum in molybdenite 7039
13.4.5.3.4. Revival of model ages for geochronometry 7040
13.4.5.4. Molybdenite Dating of a Young Porphyry Cu-(Mo) Deposit in Chile 7040
13.4.5.4.1. Full circle back to the field 7043
13.4.5.5. Molybdenite Dating of an Old Porphyry Cu-(Mo) Deposit in Northern Sweden 7044
13.4.5.6. Low Level, Highly Radiogenic (LLHR) Sul 7045
13.4.6. Re-Os in Nonsulfides 7046
13.4.6.1. Chromite (FeCr2O4) 7046
13.4.6.2. Magnetite (Fe3O4) 7047
13.4.6.3. Native Gold 7047
13.4.7. A Clock for Metal Release and Migration from Hydrocarbon Maturation 7047
13.4.8. Future of Dating for Ore Geology and Mineral Exploration 7048
Acknowledgments 7049
References 7049
Chapter 13.5: Fluid Inclusions in Hydrothermal Ore Deposits 7055
13.5.1. Introduction 7056
13.5.2. Mississippi Valley-Type Deposits 7056
13.5.2.1. Composition of MVT Fluids 7057
13.5.2.1.1. Major cations 7057
13.5.2.1.2. Ore metals 7057
13.5.2.2. MVT Fluid Sources 7058
13.5.3. Volcanogenic Massive Sulfide (VMS) Deposits 7058
13.5.3.1. General Fluid Characteristics 7058
13.5.3.2. Composition of VMS Fluids 7058
13.5.3.3. VMS Fluid Sources 7059
13.5.4. Epithermal Gold and Silver Deposits 7059
13.5.4.1. Overall Temperature and Salinity Ranges of Epithermal Fluids 7060
13.5.4.2. Compositional Variations of Epithermal Fluids 7060
13.5.4.2.1. Sulfidation state 7060
13.5.4.2.2. Correlation between metals in ore and fluid salinity 7060
13.5.4.2.3. Volatiles 7061
13.5.4.2.4. Depth of formation 7061
13.5.4.2.5. Source of mineralizing fluids 7061
13.5.5. Porphyry Cu Deposits 7062
13.5.5.1. Homogenization Temperature and Salinity Data 7062
13.5.5.1.1. Variation in Th and salinity with alteration and mineralization 7063
13.5.5.2. Compositions of Individual Fluid Inclusions 7064
13.5.5.2.1. Copper content of ore fluids 7064
13.5.5.3. Depth and Pressure of Ore Formation 7065
13.5.6. Porphyry Mo Deposits 7065
13.5.6.1. Homogenization Temperature and Salinity Data 7065
13.5.6.2. Depth and Pressure of Ore Formation 7066
13.5.6.3. Source of Metals in Porphyry Mo Deposits 7066
13.5.7. Porphyry Sn-W Deposits 7066
13.5.7.1. General Fluid Characteristics 7066
13.5.7.2. Fluid Composition 7067
13.5.7.3. Fluid Source 7067
13.5.7.4. Precipitation Mechanism 7067
13.5.8. Skarn Deposits 7068
13.5.8.1. Homogenization Temperature and Salinity Data 7068
13.5.8.2. Sources of Fluids 7069
13.5.8.3. Pressures and Depths of Mineralization 7069
13.5.9. Carlin-Type Au Deposits 7069
13.5.9.1. Homogenization Temperature, Salinity, and Volatile Data 7070
13.5.9.2. Pressure and Depth of Formation 7070
13.5.9.3. Source of Mineralizing Fluids 7070
13.5.10. Orogenic Gold Deposits 7070
13.5.10.1. Compositional and Microthermometric Data 7070
13.5.10.2. Compositions of Orogenic Gold Fluids 7070
13.5.10.2.1. Major ions 7071
13.5.10.2.2. Volatile components 7071
13.5.10.3. Evidence of Immiscibility 7072
13.5.10.4. Depths of Formation 7072
13.5.10.5. Sources of Mineralizing Fluids 7072
13.5.11. Concluding Remarks and Future Directions 7073
Acknowledgments 7073
References 7073
Chapter 13.6: Melt Inclusions 7079
13.6.1. Introduction 7079
13.6.2. Formation of Melt Inclusions 7080
13.6.3. Postentrapment Changes in Melt Inclusions 7081
13.6.4. Analytical Techniques 7084
13.6.4.1. Melt-Inclusion Rehomogenization 7084
13.6.4.2. Electron Microprobe Analysis 7085
13.6.4.3. Secondary Ion Mass Spectrometry 7086
13.6.4.4. Laser Ablation ICP-MS 7086
13.6.4.5. Spectroscopic Techniques 7087
13.6.5. Information Obtainable from Melt Inclusions 7087
13.6.5.1. Coexistence with other Phases 7087
13.6.5.1.1. Immiscibility between silicate melt and aqueous fluid 7089
13.6.5.1.2. Immiscibility between silicate melt and salt melts 7089
13.6.5.1.3. Silicate melt-silicate melt immiscibil 7090
13.6.5.2. Concentration of Volatiles 7091
13.6.5.3. Constraints on P-T-X Conditions 7091
13.6.5.4. Concentrations of Ore Metals 7094
13.6.5.5. Melt Evolution during Magma Chamber Processes 7094
13.6.5.6. Isotopic Information 7095
13.6.6. Melt Inclusions in Mineralized Systems 7095
13.6.6.1. Porphyry-Type Ore Deposits 7095
13.6.6.1.1. Porphyry Cu (-Au, Mo) Deposits 7095
13.6.6.1.2. Porphyry Mo deposits 7100
13.6.6.1.3. Porphyry Sn deposits 7100
13.6.6.2. Intrusion-Related Vein, Skarn, and Greisen Deposits 7101
13.6.6.2.1. Sn-W deposits 7101
13.6.6.2.2. Other intrusion-related ore deposits 7101
13.6.6.3. Magmatic Oxide and Sulfide Deposits 7102
13.6.6.4. Volcanogenic Massive Sulfide Deposits 7102
13.6.6.5. Pegmatites 7102
13.6.6.6. Alkali Complexes and Carbonatites 7103
13.6.7. Synthesis and Conclusions 7103
Acknowledgments 7104
References 7104
Chapter 13.7: Metamorphosed Hydrothermal Ore Deposits 7111
13.7.1. Introduction 7111
13.7.2. Characteristics of Metamorphosed Hydrothermal Ore Systems 7112
13.7.2.1. Terminology 7112
13.7.2.2. Hydrothermal Ore Deposits and Alteration Haloes 7112
13.7.2.3. Effects of Metamorphism on Ore and Host Rocks 7115
13.7.2.4. Lithological and Mineralogical Attributes of Metamorphosed Hydrothermal Systems 7116
13.7.2.4.1. Metaexhalite, metainhalite, and ironstone 7116
13.7.2.4.2. Hydrothermal alteration haloes 7117
13.7.2.4.3. Mineral compositions as indicators 7118
13.7.2.5. Remobilization and Melting as Agents of Chemical Transformation of Ore Systems 7118
13.7.2.5.1. Remobilization of preexisting ore bodies 7118
13.7.2.5.2. Melting of ore deposits 7118
13.7.3. Geochemical Techniques Used to Study Metamorphosed Ore Deposits 7119
13.7.3.1. Lithogeochemistry 7119
13.7.3.2. Metamorphic Fluids and Fluid Inclusion Studies 7119
13.7.3.3. Behavior of Light Stable Isotopes during Metamorphism 7121
13.7.3.3.1. Sulfur 7121
13.7.3.3.2. Boron 7122
13.7.3.3.3. Oxygen 7122
13.7.3.4. Behavior of Nontraditional Stable Isotopes during Metamorphism 7122
13.7.4. From Case Examples to Conceptual Models and Exploration Tools 7123
13.7.4.1. Vectoring to Ore through Metamorphic Petrology Applications 7123
13.7.4.1.1. Protolithology as an essential step of lithogeochemical exploration 7123
13.7.4.1.2. Chemographic approaches in the recognition of metamorphosed hydrothermal alteration 7123
13.7.4.1.3. Application to metaaluminous and peraluminous gneisses 7124
13.7.4.2. Knowledge, Knowledge Gaps, and the Importance of Geochemical Haloes 7125
13.7.5. Conclusions 7126
Acknowledgments 7126
References 7126
Chapter 13.8: Geochemistry of Magmatic Ore Deposits 7131
13.8.1. Introduction 7131
13.8.2. Trace Element Behavior 7132
13.8.3. Fertility of Primary Magmas 7133
13.8.4. Incompatible Element Deposits 7136
13.8.4.1. Rare-Element Granites, Syenites, and Pegmatites 7136
13.8.4.2. Carbonatite 7137
13.8.5. Compatible Lithophile Element Deposits 7138
13.8.5.1. Chromitite 7138
13.8.5.2. Stratiform Magnetitite 7140
13.8.5.3. Kiruna-Type Ores and Nelsonites 7140
13.8.5.4. Tellnes-Type Ti Deposits 7141
13.8.6. Magmatic Chalcophile Element Deposits 7141
13.8.6.1. Sulfide Liquid Immiscibility 7141
13.8.6.2. Sulfide Solubility 7141
13.8.6.3. Chalcophile Element Partitioning 7142
13.8.6.4. Sulfide Segregation 7142
13.8.6.5. Crystallization of Sulfide Magmas 7146
13.8.6.6. Precious Metal Sulfide Deposits 7147
13.8.6.6.1. Classification 7147
13.8.6.6.2. Offset reefs 7148
13.8.6.6.3. Unconformity-hosted reefs 7148
13.8.7. Conclusions 7150
Acknowledgments 7151
References 7151
Chapter 13.9: Sediment-Hosted Zinc-Lead Mineralization: Proce 7155
13.9.1. Introduction 7156
13.9.2. Sedimentary `Exhalative&INS id= 7157
13.9.2.1. Introduction 7157
13.9.2.2. Tectonostratigraphic Setting 7157
13.9.2.3. Structural Setting 7157
13.9.2.4. Mineralization 7158
13.9.2.5. Fluid Sources 7160
13.9.2.6. Metal and Sulfur Sources 7161
13.9.2.7. Secular Variation in the Abundance of SEDEX Deposits 7162
13.9.2.8. Fluid Flow Mechanism 7163
13.9.2.9. Genetic Model 7164
13.9.3. Mississippi Valley-Type Mineralization 7164
13.9.3.1. Introduction 7164
13.9.3.2. Tectonostratigraphic Setting 7165
13.9.3.3. Structural Setting 7165
13.9.3.4. Mineralization 7165
13.9.3.5. Fluid Sources 7166
13.9.3.6. Metal and Sulfur Sources 7167
13.9.3.7. Secular Variation in the Abundance of MVT Deposits 7168
13.9.3.8. Fluid Flow Mechanism 7169
13.9.3.9. Genetic Model 7170
13.9.4. Irish-Type Zn-Pb Mineralization: A Transitional Ore Type 7171
13.9.4.1. Introduction 7171
13.9.4.2. Tectonostratigraphic Setting 7172
13.9.4.3. Structural Setting 7174
13.9.4.4. Mineralization 7174
13.9.4.5. Fluid Sources 7175
13.9.4.6. Metal and Sulfur Sources 7176
13.9.4.7. Timing of Mineralization 7177
13.9.4.8. Fluid Flow Mechanism 7178
13.9.4.9. Genetic Model 7178
13.9.5. Discussion 7179
13.9.5.1. Irish Deposits as Carbonate-Replacement SEDEX Systems 7179
13.9.5.2. Key Factors in the Genesis of SEDEX Deposits 7179
13.9.5.3. Key Factors in the Genesis of MVT Deposits 7180
13.9.5.4. Outstanding Questions 7180
Acknowledgments 7180
References 7181
Chapter 13.10: Low-Temperature Sediment-Hosted Copper Deposits 7187
13.10.1. Introduction 7187
13.10.2. Geochemistry in the Genesis of SSC Minera 7188
13.10.2.1. Characteristics of SSCs 7188
13.10.2.2. A General Genetic Model for SSC Copper Deposition 7191
13.10.2.2.1. Early concepts 7191
13.10.2.2.2. A diagenetic explanation for SSCs 7191
13.10.2.3. Copper Solubility 7194
13.10.2.4. Solubilities of other Ore-Stage Metals 7196
13.10.2.5. Sources of Copper 7196
13.10.2.6. A Basin-Scale Genetic Model for SSCs 7198
13.10.3. Closely Related Sediment-Hosted Copper Deposits 7199
13.10.3.1. Redbed-Type Copper Deposits 7199
13.10.3.2. Volcanic-Associated Redbed Deposits 7200
13.10.4. Distantly Related Sediment-Hosted Deposit Types 7201
13.10.5. Concluding Remarks 7204
Acknowledgments 7204
References 7204
Chapter 13.11: Deep-Ocean Ferromanganese Crusts and Nodules 7209
13.11.1. Introduction 7209
13.11.1.1. Definitions and General Mechanisms of Formation 7209
13.11.1.2. Distribution 7210
13.11.1.3. Physical Properties 7211
13.11.1.4. Review of Nodule and Crust Compositions 7212
13.11.1.4.1. Mineralogy 7212
13.11.1.4.2. Chemical composition 7212
13.11.1.5. Age Dating 7216
13.11.2. New Considerations 7216
13.11.2.1. Concentrations of High-Tech Trace Metals in Nodules and Crusts 7216
13.11.2.1.1. High field-strength elements, Ti, Zr, Hf, Nb, and & 7216
13.11.2.1.2. Noble metals 7216
13.11.2.1.3. REEs and yttrium 7216
13.11.2.1.4. Vanadium, molybdenum, and tungsten 7217
13.11.2.1.5. Tellurium 7217
13.11.2.2. Mechanisms of Formation with Focus on High-Tech Metals 7217
13.11.2.3. Biomineralization as a Mechanism of Crust and Nodule Formation 7220
13.11.3. Paleoceanographic Records from Fe-Mn Crusts and Nodules 7221
13.11.4. Exploration, Technology, and Resource Considerations 7222
13.11.4.1. Mining Systems 7222
13.11.4.2. Resources 7222
13.11.4.3. Environmental Issues 7223
13.11.5. Future Directions 7224
Acknowledgments 7225
References 7225
Chapter 13.12: Geochemistry of a Marine Phosphate Deposit: A Signpost to Phosphogenesis 7229
13.12.1. Introduction 7229
13.12.2. Statement of the Problem 7229
13.12.3. The MPM: Local Setting 7231
13.12.4. Lithogenous Sediment Fraction 7234
13.12.5. Seawater-Derived Trace Elements 7236
13.12.5.1. Biogenous Trace Elements 7238
13.12.5.2. Hydrogenous Trace Elements 7238
13.12.5.3. A Circulation Model 7241
13.12.6. Rare Earth Elements 7242
13.12.7. Summary and Conclusions 7244
Acknowledgments 7245
References 7245
Chapter 13.13: Sedimentary Hosted Iron Ores 7249
13.13.1. Introduction 7249
13.13.2. Definition and Classification of Iron-Formation 7251
13.13.2.1. Precambrian Iron-Formation 7252
13.13.2.2. Occurrence and Distribution of Precambrian Iron-Formation 7253
13.13.2.3. BIF Ores 7254
13.13.2.4. Mineralogy 7255
13.13.2.5. Chemical Composition 7255
13.13.2.6. Beneficiation of BIF/GIF 7256
13.13.3. Enriched BIF-Hosted Iron Ores 7256
13.13.3.1. Residual BIF-Hosted Iron Ore 7257
13.13.3.2. Martite-Goethite BIF-Hosted Iron Ore 7257
13.13.3.3. Martite Microplaty Hematite BIF-Hosted Iron Ore 7258
13.13.3.3.1. Genetic models 7260
13.13.3.4. Weathering of Martite-Goethite and Hematite BIF-hosted Iron Ores 7265
13.13.3.5. Geochemistry of Martite-Goethite and Martite-microplaty Hematite Iron Ores 7267
13.13.3.5.1. Major and minor elements 7268
13.13.3.5.2. Rare earth elements 7268
13.13.3.6. Detrital Iron Deposits 7268
13.13.4. Ooidal Ironstones 7270
13.13.4.1. Introduction 7270
13.13.4.2. POI Genesis 7271
13.13.4.2.1. Marine ironstones 7271
13.13.4.2.2. Terrestrial ironstones 7273
13.13.4.3. Comparative Evaluation of POI-Derived Iron Ore Mineralogy and Composition 7275
13.13.4.4. Bog Iron Ores 7279
13.13.4.4.1. General occurrence setting and early utilization 7279
13.13.4.4.2. Bog iron ore exploitation 7279
13.13.4.4.3. Types of bog iron ores 7280
13.13.4.4.3.1. Lake ores 7280
13.13.4.4.3.1.1. Stream/spring bog ores 7280
13.13.4.4.3.2. Marsh or peat bog ores 7281
13.13.4.4.3.2.1. Blackband ironstones 7281
13.13.4.4.3.3. Bacterial association in bog ores 7281
13.13.4.4.3.4. Bog ore iron oxides - mineralogy 7283
13.13.5. Summary 7284
Acknowledgments 7285
References 7285
Chapter 13.14: Geochemistry of Porphyry Deposits 7293
13.14.1. Introduction 7293
13.14.2. Geology, Alteration, and Mineralization 7293
13.14.3. Tectonic Setting 7296
13.14.4. Igneous Petrogenesis 7296
13.14.5. Geochronology 7299
13.14.6. Lead Isotopes 7300
13.14.7. Fluid Inclusions 7302
13.14.8. Conventional Stable Isotopes 7303
13.14.8.1. Oxygen-Deuterium 7303
13.14.8.2. Sulfur 7303
13.14.8.3. Carbon-Oxygen 7306
13.14.9. Nontraditional Stable Isotopes 7306
13.14.9.1. Copper 7306
13.14.9.2. Molybdenum 7308
13.14.9.3. Iron 7309
13.14.9.4. Summary 7309
13.14.10. Ore-Forming Processes 7309
13.14.11. Exploration Model 7311
Acknowledgments 7312
References 7312
Chapter 13.15: Geochemistry of Hydrothermal Gold Deposits 7319
13.15.1. Introduction 7319
13.15.2. Epithermal Deposits 7320
13.15.2.1. Introduction 7320
13.15.2.2. Low-Sulfidation Epithermal Deposits 7321
13.15.2.2.1. Trace elements and mineral associations 7321
13.15.2.2.2. Ore fluid characteristics 7322
13.15.2.2.3. Hydrothermal alteration 7322
13.15.2.2.4. Geochemistry of the Midas LS deposit, Nevada 7323
13.15.2.3. High-Sulfidation Epithermal Ores 7326
13.15.2.3.1. Hydrothermal alteration 7326
13.15.2.3.2. Trace elements and mineral associations 7327
13.15.2.3.3. Ore-fluid composition 7328
13.15.2.3.4. Light-stable isotopes 7329
13.15.2.3.5. Reaction of volcanic gas condensate with quartz latite 7329
13.15.2.3.6. Ore deposition 7330
13.15.2.4. New Ideas about the Geochemistry of Epithermal Deposits 7333
13.15.3. Carlin-Type Gold Deposits 7334
13.15.3.1. Introduction 7334
13.15.3.2. Age and Geologic Setting of CTD 7335
13.15.3.3. Ore and Gangue Minerals 7335
13.15.3.4. Geochemistry of Rocks and Pyrite 7336
13.15.3.5. Composition of Ore Fluids 7340
13.15.3.6. Carbonate Dissolution 7340
13.15.3.7. Ore Fluid Composition and Precipitation Mechanisms 7341
13.15.3.8. Element Substitution in Pyrite 7342
13.15.3.9. Source(s) of Ore Fluid Components 7343
13.15.4. Orogenic Gold Deposits 7345
13.15.4.1. Introduction 7345
13.15.4.1.1. General geologic setting and genetic model 7345
13.15.4.2. Geochemistry and Mineralogy of Alteration and Ores 7347
13.15.4.2.1. Ore mineral assemblages 7347
13.15.4.2.2. Wall rock alteration 7348
13.15.4.2.3. Geochemistry of ore-forming fluids 7349
13.15.4.2.4. PTX constraints on ore deposition 7351
13.15.4.3. Geochemistry of Type Examples 7352
13.15.4.3.1. Phanerozoic metasedimentary-hosted Muruntau 7352
13.15.4.3.2. Paleoproterozoic BIF-hosted Homestake 7353
13.15.4.3.3. Late Archean Greenstone-hosted Golden Mile 7354
13.15.5. Summary and Conclusions 7354
Acknowledgments 7355
References 7355
Chapter 13.16: Silver Vein Deposits 7361
13.16.1. Introduction 7361
13.16.2. Silver-Lead-Zinc Veins 7361
13.16.2.1. Cordilleran Vein Type Deposits 7361
13.16.2.2 Silver–Lead–Zinc Veins in Clastic Metasedimentary Terranes 7362
13.16.3 Five-Element (Ag–Ni–Co–As–Bi) Veins 7362
13.16.4 Epithermal Ag–Au and Ag–Base Metal Veins 7364
13.16.4.1. Low-Sulfidation Epithermal Deposi 7364
13.16.4.2. High-Sulfidation Epithermal Depo 7365
13.16.5. Silver-Bearing Veins Related to Tin Mineralization 7366
13.16.6. Silver-Bearing Veins Related to Skarn Mineralization 7366
13.16.7. Discussion 7366
Acknowledgments 7367
References 7367
Chapter 13.17: Geochemistry of Placer Gold - A Case Study of the Witwatersrand Deposits 7369
13.17.1. Introduction 7369
13.17.2. Chemical and Physical Properties of Gold 7369
13.17.3. Gold Abundances 7370
13.17.4. Gold Compounds and Minerals 7371
13.17.5. Aqueous Geochemistry of Gold at 25C 7371
13.17.6. Gold in Surficial Environments 7372
13.17.6.1. Gold Morphology in Placer Deposits 7372
13.17.6.2. Compositional Changes in the Surficial Environment 7373
13.17.6.3. Composition of Alluvial and Eluvial Gold Compared to Its Source Characteristics 7376
13.17.7. Witwatersrand Gold - A Case Study 7377
13.17.7.1. Introduction 7377
13.17.7.2. Geological Background 7377
13.17.7.3. Formation of the Ore Deposits 7380
13.17.7.4. Chemical Composition of Witwatersrand Gold 7381
13.17.7.4.1. The nature of the available data 7381
13.17.7.4.2 Variation of gold chemistry within the Central Rand Group 7384
13.17.7.4.2.1. Witwatersrand gold compositions at the deposit level - the km scale 7384
13.17.7.4.2.2 Witwatersrand gold compositions within individual mines/deposits – the km–10 m scale 7388
13.17.7.4.2.3. Witwatersrand gold compositions within individual hand specimens &nd 7388
13.17.7.4.2.4. Witwatersrand gold compositions within individual thin sections - the cm scale 7392
13.17.7.4.2.5. Witwatersrand gold compositions within individual gold grains - the micron scale 7392
13.17.7.5. The Origins of Witwatersrand Gold 7392
13.17.7.5.1. Gold chemistry and implications for the modified placer and hydrothermal models 7392
13.17.7.5.2. Potential gold source regions 7392
13.17.8. Conclusions 7394
Acknowledgments 7394
References 7394
Chapter 13.18: Volcanogenic Massive Sulfide Deposits 7399
13.18.1. Introduction 7399
13.18.2. Distribution, Abundance, and Classification 7401
13.18.3. Composition 7401
13.18.4. General Genetic Model 7403
13.18.5. Chemical Evolution of the Hydrothermal Fluids 7404
13.18.5.1. Fluid-Mineral Equilibria 7404
13.18.5.2. Metal Concentrations 7407
13.18.5.3. Role of Phase Separation 7408
13.18.5.4. Redox Controls on Ore Deposition 7409
13.18.6. Metal Zoning and Trace Element Geochemistry 7410
13.18.6.1. Metal Zoning 7410
13.18.6.2. Trace Element Geochemistry 7412
13.18.6.3. Sources of Trace Metals 7413
13.18.7. Nonsulfide Gangue Minerals 7414
13.18.8. Alteration Mineralogy and Geochemistry 7415
13.18.9. Chemical Sediments 7416
13.18.10. Sulfur Isotopes 7417
13.18.11. Oxygen, Hydrogen, and Carbon Isotopes 7418
13.18.12. Strontium and Lead Isotopes 7419
13.18.13. Conclusions 7419
Acknowledgments 7420
References 7421
Chapter 13.19: Uranium Ore Deposits 7425
13.19.1. Introduction 7425
13.19.2. The Need for Uranium 7426
13.19.3. Geochemistry of Uranium 7426
13.19.4. Uranium Deposits Through Time 7428
13.19.5. Deposit Types 7429
13.19.5.1. Unconformity-Related Deposits 7429
13.19.5.1.1. The Athabasca Basin 7430
13.19.5.1.2. The Kombolgie Basin 7433
13.19.5.1.3. Karku, Russia 7434
13.19.5.1.4. Otish Basin, Quebec 7434
13.19.5.2. Sandstone Uranium Deposits 7435
13.19.5.2.1. United States 7436
13.19.5.2.2. Africa 7437
13.19.5.2.3. Asia 7437
13.19.5.3. Vein Deposits 7438
13.19.5.3.1. Beaverlodge, Canada 7438
13.19.5.4. Metasomatic Deposits 7438
13.19.5.4.1. Na metasomatism-related deposits of 7439
13.19.5.4.2. Valhalla, Australia 7439
13.19.5.5. Breccia Complex Deposits 7439
13.19.5.6. Intrusive Deposits 7440
13.19.5.6.1. Alaskites 7440
13.19.5.6.2. Peralkaline systems 7441
13.19.5.6.2.1. The Ilmaussaq complex 7441
13.19.5.6.2.2. Bokan Mountain (United States) 7441
13.19.5.6.3. Peraluminous granites 7441
13.19.5.7. Volcanic-Associated Deposits 7442
13.19.5.7.1. Streltsovkoye caldera (Transbaikalia, Russia) 7442
13.19.5.7.2. Macusani, Peru 7443
13.19.5.8. Quartz-Pebble Conglomerate Deposits 7443
13.19.5.8.1. Blind River-Elliot Lake district 7443
13.19.5.8.2. The Witwatersrand Basin 7444
13.19.5.9. Surficial Uranium Deposits 7444
13.19.5.10. Collapse Breccia Pipe Deposits 7445
13.19.5.11. Phosphorite Deposits 7445
13.19.5.12. Black Shale and Seawater 7446
13.19.6. Synopsis 7446
Acknowledgments 7446
References 7446
Chapter 13.20: Iron Oxide(-Cu-Au-REE-P-Ag-U-Co) Systems 7451
13.20.1. Introduction 7451
13.20.1.1. Semantics and Postulated Origins 7452
13.20.2. Geologic Context for IOCG Systems 7453
13.20.2.1. Distribution in Space and Time 7453
13.20.2.2. Geologic Settings 7454
13.20.2.2.1. Association with igneous rocks (or lack thereof) 7454
13.20.2.2.2. Framework lithologies and paleoclimate 7455
13.20.3. Synopsis of Deposit Features 7455
13.20.3.1. Deposit Types 7455
13.20.3.1.1. Magnetite- and/or hematite-dominated deposits 7456
13.20.3.1.2. Fe oxide-poor Cu(-Au/Ag) deposits of proposed affinity to IOCG systems 7458
13.20.3.1.3. Possible modern analogues 7458
13.20.3.2. Grade, Size, and Form 7458
13.20.3.3. Ore Mineralogy and Paragenesis 7459
13.20.3.4. Minor Element Contents and Mineralogy: U-Th, REE, Co-Ni-V, Cl-F-Br, B 7460
13.20.4. Hydrothermal Alteration and System-scale Zoning 7461
13.20.4.1. Types of Hydrothermal Alteration 7461
13.20.4.1.1. Sodic to calcic alteration types 7461
13.20.4.1.2. Carbonate-hosted alteration: Skarn and Fe oxide replacement 7462
13.20.4.1.3. K-rich alteration: High-temperature and low-temperature types 7462
13.20.4.1.4. Hydrolytic (acid) alteration 7463
13.20.4.2. System- to Regional-Scale Spatial and Temporal Patterns 7463
13.20.4.3. Extent of Metasomatism and Comparison with Porphyry/Alkaline Cu Systems 7464
13.20.5. Petrologic and Geochemical Characteristics 7465
13.20.5.1. Conditions of Formation 7465
13.20.5.1.1. Depth 7465
13.20.5.1.2. Temperature 7466
13.20.5.1.3. Fluid inclusion compositions 7466
13.20.5.1.4. Oxidation state, sulfidation state, and total sulfur 7467
13.20.5.2. Tracer Studies and Sources of Components 7467
13.20.5.2.1. Light stable isotopes: H, O, S, C, and B 7468
13.20.5.2.2. Radiogenic isotopes: Sr, Nd, Pb, and Os 7469
13.20.5.2.3. Halogens and noble gases: Ratios and isotopes 7470
13.20.6. Summary of the IOCG Clan, Likely Origins, and the terrestrial Hydrothermal Environment 7470
13.20.6.1. Discussion of Genesis 7471
13.20.6.2. IOCG Systems and the Terrestrial Hydrothermal Environment 7472
Acknowledgments 7472
References 7472
Chapter 13.21: Geochemistry of the Rare-Earth Element, Nb, Ta, Hf, and Zr Deposits 7479
13.21.1. Introduction 7479
13.21.1.1. Uses of Rare Elements 7480
13.21.1.2. Rare-Element Mineralogy 7481
13.21.2. Geochemistry of Rare Elements 7481
13.21.2.1. Magmatic Behavior and Processes 7485
13.21.2.1.1. Concentrations of rare elements in magmatic rocks 7485
13.21.2.1.2. Partial melting and fractional crystallization 7485
13.21.2.1.3. Solubility of rare elements in carbonatite melts 7486
13.21.2.1.4. Solubility of rare elements in silicate melts 7486
13.21.2.1.5. Fluid-melt partitioning of rare elements 7487
13.21.2.2. Hydrothermal Behavior and Processes 7487
13.21.2.2.1. Concentrations of rare metals in natural fluids 7487
13.21.2.2.2. Aqueous complexation and mineral solubility 7488
13.21.2.2.2.1. Aqueous complexation of the REE 7488
13.21.2.2.2.2. Speciation calculations and REE transport in hydrothermal environments 7489
13.21.2.2.3. REE mineral solubility 7489
13.21.2.2.4. Zirconium 7490
13.21.2.2.5. Tantalum and niobium 7490
13.21.3. Deposit Characteristics 7490
13.21.3.1. Introduction 7490
13.21.3.2. Deposits in Alkaline Igneous Provinces 7490
13.21.3.2.1. Carbonatites and genetically related rocks 7490
13.21.3.2.2. Silicate-hosted deposits 7493
13.21.3.2.2.1. Khibiny and Lovozero 7493
13.21.3.2.2.2. Ilimaussaq 7493
13.21.3.2.2.3. Thor Lake (the Nechalacho deposit) 7494
13.21.3.2.2.4. Strange Lake 7494
13.21.3.3. Peraluminous Granite- and Pegmatite-Hosted Deposits 7495
13.21.3.3.1. Peraluminous granite-hosted deposits 7495
13.21.3.3.2. Peraluminous pegmatite-hosted deposits 7495
13.21.3.4. Supergene Deposits 7496
13.21.3.4.1. Saprolite deposits 7496
13.21.3.4.2. Laterite deposits 7496
13.21.3.4.3. Reworked laterite deposits 7496
13.21.3.4.4. Ion-adsorbed clay deposits 7496
13.21.3.5. Placer Deposits 7497
13.21.4. Genesis of HFSE Deposits 7497
13.21.4.1. Magmatic Controls of Carbonatite Deposits 7497
13.21.4.2. Hydrothermal Controls of Carbonatite Deposits 7498
13.21.4.3. Magmatic Controls of Alkaline Silicate Environments 7498
13.21.4.4. Hydrothermal Controls of Alkaline Silicate Environments 7499
13.21.4.5. Magmatic Controls of Peraluminous Environments 7499
13.21.4.6. Hydrothermal Controls of Peraluminous Environments 7500
13.21.5. Commonalities of Rare-Element Mineralization 7500
Acknowledgments 7500
References 7500
Relevant Websites 7504
Chapter 13.22: Geochemistry of Evaporite Ores in an Earth-Scale Climatic and Tectonic Framework 7505
13.22.1. Introduction 7505
13.22.2. Extractable Economic Salts (Excluding Halite and CaSO4 Salts) 7505
13.22.3. Sodium Carbonate (Soda-Ash: Trona) 7506
13.22.4. Sodium Sulfate (Salt-Cake) 7507
13.22.5. Borate and Lithium Occurrences 7509
13.22.6. Climatic and Tectonic Controls on Nonmarine Salts 7516
13.22.7. Potash Salts 7518
References 7527
Chapter 13.23: Gem Deposits 7531
13.23.1. Introduction 7531
13.23.2. Diamond 7532
13.23.2.1. Morphology 7532
13.23.2.2. Crystal Chemistry and Diamond Types 7532
13.23.2.3. Environment of Diamond Formation and Associated Inclusion Suites 7533
13.23.2.3.1. Diamond-forming reactions and mantle metasomatism 7533
13.23.2.3.2. Inclusion suites and diamond-forming environments 7533
13.23.2.3.3. Pressure and temperature constraints 7534
13.23.2.4. Stable Isotopes of Diamond and Diamond Inclusions 7535
13.23.2.5. Dating 7535
13.23.2.6. Model 7536
13.23.3. Ruby and Sapphire 7536
13.23.3.1. Introduction 7536
13.23.3.2. Distribution and Classification of Gem Corundum Deposits 7537
13.23.3.3. Recent Studies 7537
13.23.3.3.1. Gem corundum in marble 7538
13.23.3.3.2. Gem corundum in volcanic rocks 7538
13.23.3.3.3. Sapphire in lamprophyric dikes 7538
13.23.3.3.4. Metasomatic sapphire 7538
13.23.3.3.5. Gem corundum in placers 7538
13.23.3.4. Exploration 7539
13.23.4. Emerald 7539
13.23.4.1. Introduction 7539
13.23.4.2. The Crystal Chemistry of Beryl 7539
13.23.4.3. The Geochemistry of Be, Cr, and V 7542
13.23.4.4. Deposit Models 7542
13.23.4.4.1. Emerald deposits related to granitic intrusions 7542
13.23.4.4.2. The Colombian model 7543
13.23.4.4.3. Regional metamorphism and tectonometamorphic processes 7543
13.23.4.5. Genetic Classification 7545
13.23.4.6. Exploration 7546
13.23.5. Non-Emerald Gem Beryl 7547
13.23.6. Chrysoberyl 7547
13.23.7. Tanzanite 7549
13.23.8. Tsavorite 7549
13.23.9. Topaz 7550
13.23.10. Jade 7550
13.23.10.1. Introduction 7550
13.23.10.2. Jadeitite 7551
13.23.10.3. Nephrite 7551
Acknowledgments 7552
References 7552
Chapter 13.24: Exploration Geochemistry 7559
13.24.1. Introduction 7559
13.24.1.1. Role of Geochemistry in Mineral Exploration 7559
13.24.1.2. Geochemical Processes and Terrains 7559
13.24.2. The Primary Environment 7560
13.24.3. The Secondary Environment 7563
13.24.3.1. Weathering and Dispersion 7563
13.24.3.2. Arid and Deeply Weathered Terrains 7565
13.24.3.3. Transported Cover 7566
13.24.3.4. Glaciated Terrains 7569
13.24.3.5. Other Example Techniques 7571
13.24.3.5.1. Heavy indicator minerals 7571
13.24.3.5.2. Hydrogeochemistry 7571
13.24.3.5.3. Biogeochemistry 7574
13.24.3.5.4. Vapor and gas geochemistry 7574
13.24.4. Regional Geochemical Mapping 7575
13.24.5. Analysis 7577
13.24.6. Geochemical Data Interpretation 7580
Acknowledgments 7582
References 7582
e9780080983004v14 7587
Front Cover 7587
Archaeology and Anthropology 7590
Copyright 7592
In Memoriam 7594
Heinrich Dieter Holland (1927–2012) 7596
Karl Karekin Turekian (1927–2013) 7598
References 7600
Dedication 7602
Contents 7604
Executive Editors’ Foreword to the Second Edition 7606
Contributors 7610
Volume Editor’s Introduction 7612
References 7613
Chapter 14.1: K/Ar and 40Ar/39Ar Isotopic Dating Techniques as Applied to Young Volcanic Rocks, Particularly Those Associated with Hominin Lo 7614
14.1.1. Introduction 7614
14.1.2. Basis of the K/Ar and 40Ar/39Ar Dating Techniques 7614
14.1.3. Suitable Materials for Dating 7618
14.1.4. Size Limitations 7619
14.1.5. The Omo-Turkana Basin Sequence 7620
14.1.6. Results from Afar, Ethiopia 7625
14.1.7. Conclusions 7626
Acknowledgments 7627
References 7627
Chapter 14.2: Luminescence Dating Methods 7630
14.2.1. Luminescence Dating 7630
14.2.1.1. Introduction 7630
14.2.1.2. Production of Luminescence Signals 7631
14.2.1.3. Preparation of Samples 7633
14.2.1.4. Determining De 7634
14.2.1.5. Combining De Datasets 7635
14.2.1.6. Dose Rate Determination 7637
14.2.1.7. Problems 7638
14.2.1.8. Single-Grain Measurements 7639
14.2.2. Applications 7640
14.2.2.1. General Impact 7640
14.2.2.2. The MSA in Southern Africa 7640
14.2.2.3. The Aterian and Earlier Stone Industries in North Africa 7643
14.2.2.4. Human Arrival in Australia 7645
14.2.3. Summary 7645
Acknowledgments 7646
References 7646
Chapter 14.3: Radiocarbon: Calibration to Absolute Time Scale 7650
Glossary 7650
14.3.1. Introduction 7650
14.3.2. Variable Atmospheric 14C Content 7650
14.3.3. Radiocarbon Calibration Curve 7651
14.3.4. Calibration and Calibration Programs 7653
14.3.5. Calibration in Archaeological Studies 7653
References 7655
Chapter 14.4: Radiocarbon: Archaeological Applications 7658
14.4.1. Introduction 7658
14.4.2. Late Paleolithic 7658
14.4.3. Neolithic 7659
14.4.4. Development of Metal Use 7659
14.4.5. Bronze Age 7659
14.4.6. Iron Age 7660
14.4.7. Egyptian Chronologies 7660
14.4.8. New World Archaeology 7660
14.4.9. Australia 7661
14.4.10. Polynesia 7661
14.4.11. Chemistry 7662
14.4.12. Bone Dating 7662
14.4.13. Radiocarbon Dating of Art Works and Historical Objects 7662
14.4.14. Understanding Radiocarbon Dates 7663
14.4.14.1. The Significance of Radiocarbon Reservoir Effects 7664
14.4.14.2. Regional and Site-Specific Differences in Atmospheric 14C 7664
14.4.15. Bayesian Modeling 7664
References 7664
Chapter 14.5: The Molecular Clock 7668
14.5.1. Introduction 7668
14.5.2. Historical Overview 7668
14.5.3. A Numerical Example: The Chimp-Human Common Ancestor 7669
14.5.4. Difficulties with the Molecular Clock 7669
14.5.4.1. Uncertainties 7669
14.5.4.2. Purifying Selection 7670
14.5.4.3. Variation in Rates 7670
14.5.5. Coping with an Imperfect Clock 7671
14.5.5.1. Excluding Variant Lineages 7671
14.5.5.2. Relaxed Clocks 7672
14.5.6. Using Multiple Genes 7672
14.5.7. Conclusions 7673
References 7673
Chapter 14.6: Correlation: Volcanic Ash, Obsidian 7676
14.6.1. Introduction 7676
14.6.2. Some Relatively Common Types of Natural Glass and Their Compositions 7677
14.6.3. Field Occurrence 7679
14.6.4. Sample Preparation 7680
14.6.5. Analytical Techniques 7681
14.6.5.1. Electron Probe Microanalysis 7681
14.6.5.2. Laser Ablation, Inductively Coupled Plasma Mass Spectrometry 7681
14.6.5.3. X-Ray Fluorescence 7682
14.6.6. Handling Analyses 7682
14.6.6.1. Analyses of Individual Shards and 7682
14.6.6.2. Analyses of Bulk Samples 7683
14.6.7. Recalculation of Analyses 7683
14.6.8. Sets of Analyses 7684
14.6.8.1. Unimodal Ash Layers 7684
14.6.8.2. Bimodal Ash Layers 7685
14.6.8.3.Ash Layers with Linear Arrays of Analyses 7685
14.6.9. The Problem of Alkali Content 7687
14.6.10. Comparison of Analyses 7689
14.6.11. Examples of Uses of Volcanic Glass in Archaeological Studies 7689
14.6.11.1. Determining Sources of Obsidian 7689
14.6.11.2. Correlation of Archaeological Sites 7690
14.6.11.3. Primary Dates on Archaeological Material 7691
14.6.11.4. Indirect Dates and Climatic Information through Correlations to Marine Cores 7691
Acknowledgments 7692
References 7692
Chapter 14.7: Cosmogenic Nuclide Burial Dating in Archaeology and Paleoanthropology 7694
14.7.1. Introduction 7694
14.7.2. Cosmogenic Nuclides 7695
14.7.2.1. Cosmogenic Nuclide Production 7695
14.7.2.2. Production Rates at the Surface 7695
14.7.2.2.1. Latitude 7696
14.7.2.2.2. Altitude 7696
14.7.2.2.3. Time 7696
14.7.2.3. Production Rates at Depth 7696
14.7.2.3.1. Neutrons 7696
14.7.2.3.2. Muons 7696
14.7.2.3.2.1. Negative muon capture 7697
14.7.2.3.2.2. Fast muons 7697
14.7.2.4. Cosmogenic Nuclide Buildup in Rocks 7697
14.7.2.4.1. Exposure 7698
14.7.2.4.2. Erosion 7698
14.7.3. Burial Dating 7698
14.7.3.1. Burial Dating Theory 7699
14.7.3.2. Simple Burial Dating 7699
14.7.3.2.1. Example: Sima del Elefante, Atapuerca 7700
14.7.3.3. Min/Max Methods 7701
14.7.3.3.1. Example: Rietputs Formation, lower Vaal River 7702
14.7.3.4. Isochron Dating 7702
14.7.3.4.1. Example: Sundays River 7703
14.7.3.5. Uncertainties and limits of burial dating 7704
14.7.4. Applications to Archaeology and Paleoanthropology 7705
14.7.4.1. Simple Burial Dating: Zhoukoudian, China 7705
14.7.4.2. Min/Max Burial Dating: Rietputs Formation, South Africa 7706
14.7.4.3. Min/Max Burial Dating: Attirampakkam, India 7707
14.7.4.4. Problematic Burial Dates 7708
14.7.4.4.1. Sterkfontein, South Africa 7708
14.7.4.4.2. Luangwa Valley, Zambia 7708
14.7.5. Summary 7709
References 7709
Chapter 14.8: Marine Sediment Records of African Climate Change: Progress and Puzzles 7712
14.8.1. Introduction 7712
14.8.2. Marine Sediments as Recorders of Terrestrial Climate Change 7713
14.8.2.1. Eolian Dust Supply, Composition, and Grain Size 7713
14.8.2.2. River Runoff, Paleohydrology, and Vegetation Proxies 7716
14.8.3. Marine Sediment Records of African Paleoclimate: Progress and Puzzles 7718
14.8.3.1. Summary of North African Climate Evolution Since the Last Glacial Maximum 7718
14.8.3.2. Fidelity of Aridity Proxies: Dustiness or Gustiness? 7718
14.8.3.3. An Abrupt or Gradual End of the AHP near 5k 7719
14.8.4. Summary and Future Directions 7719
References 7720
Chapter 14.9: History of Water in the Middle East and North Africa 7722
14.9.1. Introduction 7722
14.9.1.1. Geographical Characteristics and Distribution of the Middle East and North Africa 7722
14.9.1.2. Present-Day Synoptic System in the Middle East 7723
14.9.1.3. Present-Day Synoptic System in North Africa 7724
14.9.2. Paleoclimate of the Middle East and Northeast Africa 7725
14.9.2.1. Paleoclimate of the Middle East and Northeast Africa Based on Deep Sea Sediments from the East 7725
14.9.2.2. Paleoclimate of the Middle East and North Africa Based on Speleothems and Lake Records 7727
14.9.2.2.1. Speleothems 7727
14.9.2.3. Eastern Mediterranean Speleothem Records 7728
14.9.2.4. Desert Speleothems 7729
14.9.2.4.1. Origin of rainfall for the desert speleothems 7731
14.9.2.4.2. The MIS 6/5 transition 7732
14.9.2.5. Arabian Speleothems 7732
14.9.2.5.1. Lakes 7733
14.9.2.6. Eastern Mediterranean and North African Lakes 7734
14.9.2.7. The Connection between `Wet´ Episodes in Northeast Africa-Middle East and H 7735
14.9.3. Conclusions 7736
References 7737
Chapter 14.10: The Carbon, Oxygen, and Clumped Isotopic Composition of Soil Carbonate in Archeology 7742
14.10.1. Introduction 7742
14.10.2. Paleosol Carbonate Recognition 7742
14.10.3. Limitations for Archeologists 7744
14.10.4. Seasonality of Formation and Isotopic Equilibrium 7744
14.10.5. Carbon Isotopes in Soil Carbonate 7745
14.10.5.1. Plants and Climate 7745
14.10.5.2. The Soil Diffusion Model 7745
14.10.5.3. Reconstructing the Fraction Woody Cover 7747
14.10.5.4. The Radiation of C4 Plants and Evolution of Hominids 7748
14.10.5.4.1. Phase I (>8.4Ma): A mainly C3 world 7750
14.10.5.4.2. Phase II (8.4-7Ma): C4 grasses appear 7750
14.10.5.4.3. Phase III (7-2.7Ma): Expansion of C4 grasses 7750
14.10.5.4.4. Phase IV (2.7Ma to present): Development of modern savannas in most of East Africa 7750
14.10.6. Clumped Isotopes in Soil Carbonate 7750
14.10.6.1. Principles and Methods 7750
14.10.6.2. Soil Temperature Considerations 7751
14.10.6.3. Examples of Use 7751
14.10.7. Oxygen in Soil Carbonate 7752
14.10.7.1. Temperature Effects 7752
14.10.7.2. Composition of Precipitation 7752
14.10.7.3. Soil Water Evaporation 7752
14.10.7.4. The Late Cenozoic Oxygen Isotope Shift 7753
14.10.8. Integrity of the Isotopic Record from Soil Carbonate 7753
14.10.9. Environmental Reconstruction on Short Timescales and Future Directions 7754
Acknowledgments 7754
References 7754
Chapter 14.11: Microanalytical Isotope Chemistry: Applications for Archaeology 7758
14.11.1. History of Micromilling Technology 7758
14.11.2. Applications of Micromilling Devices toward the Enhancement of Sampling Strategies and Derivation of High-Resolution Records 7760
14.11.2.1. Mollusks 7760
14.11.2.1.1. From seasonality of site occupation to seasonality of temperature 7760
14.11.2.2. Fish Otoliths 7760
14.11.2.3. Derivation of Seasonality of Temperature in Continental &INS id= 7761
14.11.2.4. Seasonality of Site Occupation 7763
14.11.2.5. Coral 7763
14.11.2.6. Speleothems 7763
14.11.2.7. Teeth 7764
14.11.2.8. Trees 7765
14.11.3. Future Advances and Directions 7766
14.11.4. Conclusions 7766
14.11.5. Partial List of Applications of Micromilling in Archaeology 7766
14.11.5.1. Mollusks 7766
14.11.5.2. Otoliths 7766
14.11.5.3. Bone 7766
14.11.5.4. Speleothems 7766
14.11.5.5. Teeth 7766
14.11.5.6. Hair 7766
Acknowledgments 7766
References 7767
Chapter 14.12: Stable Isotope Evidence for Hominin Environments in Africa 7770
14.12.1. Introduction 7771
14.12.2. Carbon Isotopes in Plants 7771
14.12.3. Ecology of Mixed C3 and C4 Ecosystems 7772
12.13.3.1. Isotopes and Shade: Quantification of Woody Cover 7772
14.12.3.2. Paleosols as Recorders of Paleoenvironments in African Hominin Sites 7774
14.12.4. Paleotemperature 7775
14.12.4.1. Temperature as a Variable in Human Evolution 7775
14.12.4.2. Paleotemperature from Delta47 in Paleosols 7775
14.12.5. Diet History of Mammals 7776
14.12.5.1. Isotopes Distinguish Between Grazing and Browsing 7776
14.12.5.2. Diet Histories of Nonprimates Associated with Hominins 7776
14.12.5.2.1. Overall faunal preferences 7776
14.12.5.3. Diets of Early Human Relatives 7777
14.12.6. Summary and Future Directions 7777
Acknowledgments 7779
References 7779
Chapter 14.13: Geochemistry of Ancient Metallurgy: Examples from Africa and Elsewhere 7782
14.13.1. Introduction 7782
14.13.2. Chemistry of Ancient Metallurgy 7784
14.13.3. Geochemistry Methods in Archaeometallurgy: Some Common Examples 7787
14.13.4. Geochemistry Applications in Ancient Metallurgy 7789
14.13.4.1. One of the Earliest Beginnings of Metallurgy in the World: The Case of the Balkans 7789
14.13.4.2. The Unresolved Case of the Earliest African Metallurgy: Contributions of Geochemistry 7790
14.13.4.3. Getting to Grips with the Full Ancient Metal Production Chain: Technology, Organization of Production, and Social 7791
14.13.4.4. Going Beyond System Generated Constraints in Ancient Metal Smelting 7793
14.13.4.5. Provenancing Artifacts Using NAA and Lead Isotope Analysis 7793
14.13.4.6. Reading Gender Specialization in Ancient Metallurgy: Contributions of Geochemistry 7795
14.13.4.7. Geochemistry for Conservation: Oranjemund Shipwreck 7797
14.13.5. Conclusion 7800
Acknowledgments 7800
References 7800
Chapter 14.14: Elemental and Isotopic Analysis of Ancient Ceramics and Glass 7804
14.14.1. Introduction 7804
14.14.2. Considerations on Archeological Ceramic Studies 7805
14.14.2.1. Pottery in Archeology 7805
14.14.2.2. Pottery and Provenance 7805
14.14.2.3. Pottery Analyses 7806
14.14.2.3.1. Ceramic petrography and mineralogy 7806
14.14.2.3.2. Chemical analysis of ceramics 7806
14.14.2.3.2.1. Analytical techniques and methodology 7806
14.14.2.3.2.2. A summary of useful elements in ceramic provenance studies 7806
14.14.2.3.2.2.1. Cr, Ni, and Co 7807
14.14.2.3.2.2.2. Zr (Hf) 7807
14.14.2.3.2.2.3. Y 7807
14.14.2.3.2.2.4. Ti 7807
14.14.2.3.2.2.5. Sr 7807
14.14.2.3.2.2.6. K, Rb 7807
14.14.2.3.2.2.7. Ba 7807
14.14.2.3.2.2.8. Fe 7807
14.14.2.3.2.2.9. Th (U) 7807
14.14.2.3.3. Data treatment in ceramic provenancing 7808
14.14.2.4. Case Studies in Pottery Analysis 7808
14.14.3. Considerations on Archeological Glass Analysis 7810
14.14.3.1. Glass in Archeology 7810
14.14.3.2. Glass and Provenance 7811
14.14.3.3. Glass Analyses 7813
14.14.3.3.1. Glass provenance and elemental analysis 7813
14.14.3.3.1.1. Glass flux types: sodium, potassium, magnesium, phosphorous 7813
14.14.3.3.1.2. Glass network former and stabilizer: silica, lime, alumina 7813
14.14.3.3.1.3. Glass colorants: antimony, manganese, copper, cobalt, tin, etc. 7813
14.14.3.3.1.4. Glass provenance: other minor and trace elements 7813
14.14.3.3.2. Glass provenance and isotopes 7814
14.14.3.3.2.1. Oxygen isotopes 7814
14.14.3.3.2.2. Lead isotopes 7814
14.14.3.3.2.3. Strontium isotopes 7815
14.14.3.3.2.4. Neodymium isotopes 7815
14.14.3.4. Case Study in Glass Analysis 7815
References 7816
Chapter 14.15: Synchrotron Methods: Color in Paints and Minerals 7822
14.15.1. Introduction 7823
14.15.1.1. Role of Color in Archaeology 7823
14.15.1.2. What Kind of Information Is Looked for When Searching for Investigating Color in Paints or Minerals? 7824
14.15.1.3. From the Color Cause of Ancient Materials to Archaeological Information 7824
14.15.1.4. Physical and Chemical Causes of Color Important in Terms of Archaeological Materials 7824
14.15.2. Studies of Ancient Pigments, Paints, and Minerals 7824
14.15.2.1. Definition of Pigments, Colorants, and Paints 7824
14.15.2.2. Relevant Archaeological and Historical Pigments 7824
14.15.2.3. Relevant Archaeological and Historical Minerals, Biominerals, Colored Stones, and Gemstones 7825
14.15.3. History of Their Study and Current Trends 7828
14.15.3.1. First Archaeometric Laboratory Studies 7828
14.15.3.2. General Approach for Studying Archaeomaterials 7830
14.15.3.3. Neutron Sources 7831
14.15.3.4. Ion Beam Analyses 7831
14.15.3.5. Current Trends 7831
14.15.4. Overview of Synchrotron-Based Method Used for the Study of Pigments, Paints, and Minerals 7831
14.15.4.1. Why Use Synchrotron-Based X-Ray Methods to Study Color of Archaeomaterials? 7831
14.15.4.2. Chemical Analysis 7832
14.15.4.3. Structural Investigations 7833
14.15.4.4. Molecular Studies 7834
14.15.4.5. Spectroscopic Studies 7834
14.15.4.6. Noninvasive Depth-Resolved Investigations 7836
14.15.4.7. Synchrotrons with Important Activities in the Field of CH Studies 7837
14.15.5. Case Studies 7837
14.15.5.1. Identification of Pigments and Minerals 7837
14.15.5.1.1. Black Paleolithic paints in the Lascaux cave (Dordogne): use of different Mn oxides with diffe 7837
14.15.5.1.2. Color shades investigated in Roman frescoes by SR-micro-XRD mapping 7839
14.15.5.1.3. Possible differentiation of different lead whites in successive paint layers of the Isenheim A 7839
14.15.5.1.4. Special Zn-containing pigments found in Indian miniature paintings long before European paintings: 7839
14.15.5.1.5. Color reconstruction of a hidden face painted by Vincent Van Gogh using fast macro-XRF mapping combined with mic 7841
14.15.5.2. Early Synthesis of Colored Matter in Ancient Civilizations 7841
14.15.5.2.1. Early chemical synthesis to manufacture ancient Egyptian make& 7841
14.15.5.2.2. Different production processes for two different synthetic pigments used in ancient Egypt 7843
14.15.5.2.3. Synthetic Chinese purple pigment (Han purple) used on Qin terracotta warriors: technology transfer from Egypt to 7844
14.15.5.2.4. A hybrid synthetic pigment with amazing stability over time: Maya blue in pre-Columbian Mesoamerica 7844
14.15.5.3. Study of Paint and Pigment Discoloration 7845
14.15.5.3.1. Hiding or discoloration of prehistoric paints in limestone caves (Large cave of Arcy-sur-Cure, 7845
14.15.5.3.2. From fossil bone to turquoise imitation 7846
14.15.5.3.3. Blackening of Pompeian wall paintings 7847
14.15.5.3.4. Discoloration of smalt used as pigment in paintings 7848
14.15.6. Conclusion and Trends 7848
References 7849
Chapter 14.16: Geochemical Methods of Establishing Provenance and Authenticity of Mediterranean Marbles 7854
14.16.1. Foreword 7854
14.16.2. Types of Fakes 7855
14.16.3. Determining Marble Provenance 7856
14.16.3.1. Analytical Techniques 7856
14.16.3.1.1. Stable isotope methodology 7857
14.16.3.1.2. Electron paramagnetic resonance/electron spin resonance 7857
14.16.3.1.3. A note on the use of CL in marbles 7859
14.16.3.2. Case Studies 7859
14.16.3.2.1. Excavations at Cyrene 7859
14.16.3.2.2. Cyrene revisited 7859
14.16.3.2.3. Deconstructing Antonia 7860
14.16.3.2.4. Aphrodite 7862
14.16.3.2.5. Aphrodite in the National Gallery of Art 7863
14.16.4. Testing Authenticity 7864
14.16.5. Summary 7864
References 7865
Chapter 14.17: Biblical Events and Environments - Authentification of Controversial Archaeological Artifacts 7868
14.17.1. Introduction 7868
14.17.1.1. Archaeological Forgery 7868
14.17.1.2. Patina 7869
14.17.1.3. Oxygen and Carbon Isotopic Composition 7869
14.17.2. The James Ossuary 7870
14.17.2.1. The Ossuary 7870
14.17.2.2. Authenticity Studies 7871
14.17.3. Jehoash Inscription 7874
14.17.3.1. The Tablet 7874
14.17.3.2. Authenticity Studies 7874
14.17.3.2.1. Petrography 7875
14.17.3.2.2. Oxygen isotopic composition 7875
14.17.4. The Ivory Pomegranate 7877
14.17.4.1. The Pomegranate 7877
14.17.4.2. Authenticity Study 7877
14.17.4.2.1. The inscription 7877
14.17.4.2.2. The patina 7878
14.17.4.2.2.1. Stable isotope analysis 7878
14.17.5. Iron Age Ostraca 7878
14.17.5.1. The ostraca 7878
14.17.5.2. Authenticity Examination 7879
14.17.5.2.1. Micromorphologic and petrographic examination 7879
14.17.5.2.2. Oxygen and carbon isotopic composition 7879
14.17.6. Dust 7881
14.17.7. Conclusions 7881
References 7882
Chapter 14.18: Trace Evidence: Glass, Paint, Soil, and Bone 7884
14.18.1. Introduction 7885
14.18.2. Elemental Analysis Techniques 7886
14.18.3. Man-Made Matrices 7887
14.18.3.1. Glass 7887
14.18.3.2. Elemental Analysis of Glass 7887
14.18.3.3. Paint 7887
14.18.3.4. Elemental Analysis of Paint 7887
14.18.4. Natural Matrices 7888
14.18.4.1. Soil 7888
14.18.4.2. Properties of Soil 7888
14.18.4.3. Soil Sampling and Sample Preparation 7888
14.18.4.4. Analysis of Soil 7889
14.18.4.5. Elemental Analysis of Soil 7889
14.18.4.6. Bones and Teeth 7890
14.18.4.7. Properties of Bone 7891
14.18.4.8. Bone Sampling and Sample Preparation 7891
14.18.4.9. Analysis of Bone 7891
14.18.4.10. Elemental Analysis of Bone 7892
14.18.5. Interpretation 7893
14.18.6. Conclusion 7894
References 7894
Chapter 14.19: Stable Isotopes in Forensics Applications 7898
14.19.1. Stable Isotope Geochemistry as a Science-Based Forensic Application 7899
14.19.1.1. Overview 7899
14.19.1.2. A Framework for Applying Stable Isotope Analysis in Forensic Investigations 7899
14.19.2. Nonspatial Applications of Stable Isotope Analysis 7900
14.19.2.1. Synthetic Drugs 7900
14.19.2.1.1. Amphetamine-type stimulants 7901
14.19.2.1.2. Performance-enhancing steroids 7901
14.19.2.2. Manufactured Explosives 7902
14.19.2.2.1. Peroxide-based explosives 7902
14.19.2.2.2. An industrial explosive: ammonium nitrate 7903
14.19.2.2.3. A militarygrade explosive: pentaerythritol tetranitrate 7904
14.19.2.3. Packaging Materials 7905
14.19.2.4. Crude Oils and Petroleum Products 7905
14.19.3. Spatial Applications of Stable Isotope Analysis 7905
14.19.3.1. Water Isotopes and the Isoscapes Foundational Approach 7906
14.19.3.2. Waters, Beverages, and the Isoscapes Potential 7907
14.19.4. Plant-Related Forensic Applications of Stable Isotope Analysis 7908
14.19.4.1. Economic Adulteration of Foods 7908
14.19.4.2. Food Origin Authentication 7910
14.19.4.3. Controlled Substances Produced from Plants 7911
14.19.4.3.1. Cocaine and heroin 7911
14.19.4.3.2. Marijuana 7912
14.19.4.4. Wood and other Plant Product Isotope Records 7913
14.19.4.4.1. Arson - isotopic comparisons 7913
14.19.4.4.2. Flavor compounds - adulteration detection 7913
14.19.4.4.3. Plant and wood products - geographical region of origin 7913
14.19.5. Human-Related Forensic Applications of Stable Isotope Analysis 7914
14.19.5.1. Dietary Patterns 7914
14.19.5.2. Spatial Patterns 7915
14.19.5.2.1. Body water, geography, and metabolism 7915
14.19.5.2.2. Carbonates and phosphates in teeth and bones 7915
14.19.5.2.3. Proteins in bone and hair 7916
14.19.5.3. Provenancing Unidentified Homicide Victims 7917
14.19.5.4. Human Diseases 7918
14.19.6. Animal-Related (Nonhuman) Forensic Applications of Stable Isotope Analysis 7918
14.19.6.1. Animal Migration and Movement 7918
14.19.6.2. Provenance of Trade Goods 7920
14.19.7. Archaeological and Gem Origin Investigations Utilizing Stable Isotope Analysis 7921
14.19.7.1. Sculpture Source: Monuments, Statues, and Artifacts 7921
14.19.7.2. Gem Origins 7922
14.19.7.2.1. Rubies and sapphires 7922
14.19.7.2.2. Emeralds 7922
14.19.7.2.3. Diamonds 7922
14.19.8. Isotope Geochemists as Contributors to the Forensic Sciences 7922
14.19.8.1. Addressing the Needs of the NRC Report 7922
14.19.8.2. Isotopes in the Courts 7923
14.19.8.3. Concluding Points 7923
References 7923
Chapter 14.20: Reconstructing Aquatic Resource Exploitation in Human Prehistory Using Lipid Biomarkers and Stable Isotopes 7932
14.20.1. Introduction 7932
14.20.2. Reconstructing Diet and Economy fr 7933
14.20.3. The Lipid Composition of Aquatic Fats and Oils 7934
14.20.4. Early Attempts to Detect Aquatic Lipids in the Archeological Record 7934
14.20.5. New Aquatic Resource Biomarkers 7935
14.20.5.1. Vicinal Dihydroxy Acids 7935
14.20.5.2. Isoprenoid Fatty Acids 7936
14.20.5.3. omega-(o-Alkylphenyl)alkanoic Acids 7936
14.20.6. Stable Isotope Proxies 7938
14.20.6.1. Carbon Isotopes 7938
14.20.6.2. Hydrogen Isotopes 7939
14.20.7. Experimental Approaches and Protocols 7939
14.20.7.1. Thermal Degradation Experiments to Demonstrate Formation of Novel Lipid Biomarkers During the Heating of Unsaturat 7939
14.20.7.2. High Sensitivity GC/MS Protocols for the Detection of Marine Lipid Biomarkers 7940
14.20.7.3. Determination of Compound-Specific delta13C and deltaD Values of Individual n-Alkanoic Acids of Marine Organism 7944
14.20.8. Detecting Evidence for Marine Product Processing in Prehistory Using Biomarker and Stable Isotope Proxies 7945
14.20.8.1. Southern Brazil 7945
14.20.8.2. South Africa 7946
14.20.8.3. Northern and Northwestern Europe 7947
14.20.8.4. The Arctic 7948
14.20.9. Conclusions 7948
Acknowledgments 7950
References 7950
Chapter 14.21: Investigating Ancient Diets Using Stable Isotopes in Bioapatites 7954
14.21.1. Introduction 7954
14.21.2. A Few Basics 7954
14.21.2.1. Isotopes 7954
14.21.2.2. Bioapatite 7955
14.21.3. Development of the Field 7955
14.21.3.1. Photosynthesis 7955
14.21.3.2. From Plants to Animals 7956
14.21.3.3. Enter Anthropology 7957
14.21.3.4. Apatite as a Recorder on Geological Timescales 7957
14.21.4. Practical Issues 7958
14.21.4.1. Sampling and Analysis via Acid Hydrolysis 7958
14.21.4.2. Diet-Tissue Relationships 7958
14.21.4.3. Signal Attenuation 7959
14.21.4.4. Coupling Apatite and Collagen - A 7960
14.21.5. Applications 7961
14.21.5.1. Anthropology 7961
14.21.5.1.1. Holocene archaeology 7961
14.21.5.1.2. Anthropology in the deeper past 7963
14.21.5.2. Paleontology and Paleoecology 7963
14.21.5.2.1. Carbon isotopes for paleodiet and p& 7963
14.21.5.2.2. Oxygen isotopes in mammalian e 7964
14.21.6. Conclusions 7964
References 7965
Chapter 14.22: Human Physiology in Relation to Isotopic Studies of Ancient and Modern Humans 7970
14.22.1. Introduction 7970
14.22.2. Molecular Constituents of Human T 7970
14.22.2.1. Amino Acids 7970
14.22.2.2. Proteins 7972
14.22.2.3. Lipids 7972
14.22.2.4. Methane 7972
14.22.2.5. Inorganic Species in Solution 7973
14.22.2.5.1. Processing of phosphate 7973
14.22.3. Tissues Preserved Postmortem 7974
14.22.3.1. Bone 7974
14.22.3.1.1. Composition and structure 7974
14.22.3.1.1.1. The mineral components of teeth and bone 7974
14.22.3.1.1.2. Collagen 7975
14.22.3.1.1.3. Noncollagenous proteins and other molecules 7976
14.22.3.1.2. Structure of bone 7976
14.22.3.1.3. Modeling and remodeling 7977
14.22.3.2. Teeth: Composition, Structure, and Ontogeny 7978
14.22.3.3. Hair 7979
14.22.3.4. Lipids 7979
14.22.4. Homeostasis, Mineral Stability 7979
14.22.4.1. Calcium Phosphate Saturation 7979
14.22.4.2. Osmoregulation, Water Stress 7980
14.22.5. Nutritional and Metabolic Diseases 7980
References 7980
Chapter 14.23: Hair as a Geochemical Recorder: Ancient to Modern 7984
14.23.1. Introduction 7984
14.23.1.1. Structure and Composition of Hair 7984
14.23.1.2. Hair Growth 7985
14.23.2. Survival of Hair in Archaeological and Forensic Contexts 7986
14.23.3. Studies of Isotope Ratios in Animal Hair 7988
14.23.3.1. Animal Hair from Controlled, Experimental Situations 7988
14.23.3.2. Animal Hair as an Environmental Sampling Tool 7989
14.23.4. Anthropological Studies on Modern and Historically Collected Hair 7992
14.23.5. Health and Medical Applications of Hair Analysis 7994
14.23.5.1. Human Dietary Preferences and Stable Isotope Ratios 7994
14.23.5.2. Use of Isotope Ratios to Investigate Nitrogen Balance during Pregnancy 7995
14.23.5.3. Investigation of Stable Isotope Ratios as a Means of Diagnosing Eating Disorders 7995
14.23.5.4. Trace Element Analysis of Human Hair as a Tool for Health Investigation 7996
14.23.6. Archaeological Hair 7996
14.23.6.1. The Americas 7997
14.23.6.2. The Nile Valley 7998
14.23.6.3. Other Regions 7998
14.23.7. Applications to Forensic Investigations 7998
14.23.7.1. Unidentified Human Remains 7998
14.23.7.2. Wildlife Forensics and Isotopic Analysis of Hair 7999
14.23.8. Geography and Temporal Dynamics in Hair Oxygen Isotope Ratios 7999
14.23.9. Future Directions 8001
References 8001
e9780080983004v15 8007
Front Cover 8007
Analytical Geochemistry/Inorganic Instrument Analysis 8010
Copyright 8011
In Memoriam 8012
Heinrich Dieter Holland (1927–2012) 8014
Karl Karekin Turekian (1927–2013) 8016
References 8018
Dedication 8020
Contents 8022
Executive Editors’ Foreword To The Second Edition 8024
Contributors 8028
Volume Editor’s Introduction 8030
The First Step: Sampling Strategies and Getting Ready for the Lab 8030
Uncertainties, Reference Materials, and Isotope Dilution 8030
Digesting and Preparing Samples in the Clean Lab 8031
Analyzing the Sample: Photons and Atomic Masses 8031
Measuring Photons 8032
Measuring Mass 8033
Analyzing the Planet: New Developments 8034
Chapter 15.1: Basic Considerations: Sampling, the Key for a Successful Applied Geochemical Survey for Mineral Exploration and Environ 8036
15.1.1. Introduction and Background Information 8036
15.1.2. Design of a Geochemical Sampling Campaign 8037
15.1.2.1. Desk Study 8037
15.1.2.2. Orientation Survey 8037
15.1.2.2.1. Orientation survey in mineral exploration 8037
15.1.2.2.2. Orientation survey in a contaminated land investigation 8038
15.1.2.3. Regional Geochemical Survey 8039
15.1.2.4. Follow-up Geochemical Survey 8040
15.1.2.5. Detailed Geochemical Survey 8040
15.1.2.5.1. Detailed rock or soil geochemical survey 8041
15.1.2.5.2. Detailed contaminated land investigation 8041
15.1.2.5.2.1. Systematic versus random sampling 8043
15.1.2.5.2.2. Square block sampling 8043
15.1.2.5.2.3. Composite versus spot sampling 8043
15.1.3. Randomization of Samples 8044
15.1.4. Quality Control - Duplicate Field Samples and Control Samples 8044
15.1.5. Sampling 8045
15.1.5.1. Stream Sediment Sampling 8045
15.1.5.1.1. Wet sieving 8047
15.1.5.1.2. Dry sieving 8047
15.1.5.1.3. Without sieving 8047
15.1.5.2. Overbank or Floodplain Sediment Sampling 8047
15.1.5.3. Stream and Ground-Water Sampling 8050
15.1.5.4. Rock Sampling 8052
15.1.5.5. Soil Sampling 8053
15.1.5.5.1. Soil sampling for mineral exploration 8053
15.1.5.5.2. Soil sampling for environmental investigations 8054
15.1.5.5.2.1. Urban soil sampling 8055
15.1.5.5.2.2. Soil sampling for contaminated land investigations 8057
15.1.5.6. House-Dust Sampling 8057
15.1.5.7. Attic-Dust Sampling 8058
15.1.5.8. Road Dust Sampling 8059
15.1.6. Sampling in the Laboratory 8059
15.1.7. Conclusions 8062
Acknowledgments 8062
References 8063
Chapter 15.2: Error Propagation 8068
15.2.1. Introduction 8068
15.2.2. Accuracy, Precision, and Types of Errors 8068
15.2.2.1. Accuracy and Precision 8068
15.2.2.2. Errors 8068
15.2.3. Statistical Treatment of Random Errors 8069
15.2.3.1. Mean and Standard Deviation 8069
15.2.3.2. Weighted Averages 8070
15.2.3.3. Variance, Covariance, and Correlated Errors 8070
15.2.4. Probability Distributions 8071
15.2.4.1. Normal/Gaussian Distribution 8071
15.2.4.1.1. Log-normal distribution 8072
15.2.4.2. Poisson Distribution 8072
15.2.5. Calibration Curves, Blank Standar 8073
15.2.5.1. Calibration Curves 8073
15.2.5.2. Blank Standard Deviation, Blank Standard 8073
15.2.6. Error Propagation 8075
15.2.6.1. Random Error Propagations 8075
15.2.6.2. Systematic Error Propagations 8076
15.2.5.3. Use of Least Squares to Estimate 8074
Acknowledgments 8077
References 8077
Chapter 15.3: Reference Materials in Geochemical and Environmental Research 8078
15.3.1. Introduction 8079
15.3.2. ISO Guidelines and IAG Certification Protocol 8079
15.3.3. Rock Reference Materials 8081
15.3.3.1. Preparation 8081
15.3.3.2. Frequently Used Rock Reference Materials 8082
15.3.3.2.1. USGS basalts and andesites 8083
15.3.3.2.2. Certified reference materials 8083
15.3.3.2.3. Reference materials from diverse providers 8084
15.3.3.2.4. Reference materials for platinum-group elements 8085
15.3.4. Environmental Reference Materials 8085
15.3.4.1. Soils and Sediments 8085
15.3.4.2. Dust and Air Particulates and Nanoparticles 8086
15.3.4.3. Water Reference Materials 8086
15.3.4.4. Biota 8086
15.3.5. Microanalytical Reference Materials 8086
15.3.5.1. Synthetic Reference Glasses 8087
15.3.5.1.1. NIST SRM reference glasses 8087
15.3.5.1.2. BAM-certified reference glasses 8087
15.3.5.1.3. USGS GS reference glasses 8087
15.3.5.2. Natural Reference Glasses 8091
15.3.5.2.1. Geologic USGS reference glasses 8091
15.3.5.2.2. Geologic MPI-DING reference glasses 8092
15.3.5.2.3. Geologic NRCG reference glasses 8092
15.3.5.3. Mineral Reference Materials 8092
15.3.5.3.1. Zircon 8092
15.3.5.3.2. Sulfide reference materials 8093
15.3.5.3.3. Other mineral reference materials 8093
15.3.6. Isotopic Reference Materials 8093
15.3.6.1. Radiogenic Isotopic Reference Materials 8093
15.3.6.1.1. Strontium isotopes 8093
15.3.6.1.2. Barium isotopes 8093
15.3.6.1.3. Cerium isotopes 8093
15.3.6.1.4. Neodymium isotopes 8094
15.3.6.1.5. Hafnium isotopes 8094
15.3.6.1.6. Osmium isotopes 8094
15.3.6.1.7. Lead isotopes 8094
15.3.6.2. Radioactive Isotopic Reference Materials 8094
15.3.6.2.1. Uranium isotopes 8095
15.3.6.2.2. Thorium isotopes 8095
15.3.6.3. Stable Isotopic Reference Materials 8095
15.3.6.3.1. Hydrogen isotopes 8095
15.3.6.3.2. Lithium isotopes 8097
15.3.6.3.3. Boron isotopes 8097
15.3.6.3.4. Carbon isotopes 8097
15.3.6.3.5. Nitrogen isotopes 8097
15.3.6.3.6. Oxygen isotopes 8097
15.3.6.3.7. Magnesium isotopes 8097
15.3.6.3.8. Silicon isotopes 8098
15.3.6.3.9. Sulfur isotopes 8098
15.3.6.3.10. Chlorine isotopes 8098
15.3.6.3.11. Calcium isotopes 8098
15.3.6.3.12. Titanium isotopes 8098
15.3.6.3.13. Vanadium isotopes 8098
15.3.6.3.14. Chromium isotopes 8098
15.3.6.3.15. Iron isotopes 8098
15.3.6.3.16. Nickel isotopes 8098
15.3.6.3.17. Copper isotopes 8099
15.3.6.3.18. Zinc isotopes 8099
15.3.6.3.19. Germanium isotopes 8099
15.3.6.3.20. Selenium isotopes 8099
15.3.6.3.21. Rubidium isotopes 8099
15.3.6.3.22. Strontium isotopes 8099
15.3.6.3.23. Zirconium isotopes 8099
15.3.6.3.24. Molybdenum isotopes 8099
15.3.6.3.25. Cadmium isotopes 8099
15.3.6.3.26. Silver isotopes 8099
15.3.6.3.27. Antimony isotopes 8099
15.3.6.3.28. Tungsten isotopes 8099
15.3.6.3.29. Rhenium isotopes 8100
15.3.6.3.30. Mercury isotopes 8100
15.3.6.3.31. Thallium isotopes 8100
15.3.7. GeoReM Database 8100
15.3.8. Successes and Needs 8100
Acknowledgments 8101
References 8101
Chapter 15.4: Application of Isotope Dilution in Geochemistry 8106
15.4.1. Introduction 8106
15.4.2. Applications of Isotope Dilution 8106
15.4.2.1. Determination of Accurate and Precise Element Concentrations 8106
15.4.2.2. `Double Spiking´ for IC Measurements 8107
15.4.3. Principles of Isotope Dilution 8107
15.4.3.1. Derivation of the Principal ID Equation 8107
15.4.3.2. Criteria for Spiking Samples 8109
15.4.3.3. The Optimum Spike-Sample Ratio 8109
15.4.3.4. Sources of Uncertainty in ID Measurements 8110
15.4.4. Applying Isotope Dilution 8111
15.4.4.1. Preparation and Calibration of Spikes 8111
15.4.4.2. Mixed Spikes Versus Single Spikes 8112
15.4.4.3. Simultaneous IC and ID: `Spike Stripping´ 8113
15.4.5. Double and Triple Spiking 8115
15.4.6. Conclusions 8119
Acknowledgments 8120
References 8120
Chapter 15.5: Sample Digestion Methods 8122
15.5.1. Introduction 8122
15.5.2. General Considerations 8123
15.5.2.1. Mineral Acids 8123
15.5.2.1.1. Hydrofluoric acid 8123
15.5.2.1.2. Nitric acid 8123
15.5.2.1.3. Aqua regia 8123
15.5.2.1.4. Hydrochloric acid 8124
15.5.2.1.5. Perchloric acid 8124
15.5.2.1.6. Sulfuric acid 8124
15.5.2.1.7. Phosphoric acid 8124
15.5.2.2. Digestion Vessel Materials 8124
15.5.2.3. Contamination from the Digestion Process 8124
15.5.2.4. Assessing a Digestion Procedure 8125
15.5.3. Sample Digestion Methods 8126
15.5.3.1. Open Vessel Acid Digestions 8126
15.5.3.2. Closed Vessel Digestions 8127
15.5.3.3. Microwave Digestions 8128
15.5.3.4. Partial Dissolutions 8130
15.5.3.5. Dry Ashing Techniques 8130
15.5.3.6. Alkali Fusions 8132
15.5.3.6.1. Fusion with NaOH and KOH 8132
15.5.3.6.2. Sinter or fusion with Na2O2 8132
15.5.3.6.3. Fusion with LiBO2 and Li2B4O7 8133
15.5.3.6.4. Fusion with Na2CO3 8133
15.5.3.7. Fire Assays 8134
15.5.3.7.1. Lead fire assay 8134
15.5.3.7.2. Nickel fire assay 8134
15.5.3.8. Carius Tube and High-Pressure Asher (HPA-S) 8135
15.5.3.9. Direct Fusion of Rock Powder 8136
15.5.3.9.1. Flux-free fusion glasses 8137
15.5.3.9.2. Lithium-borate fusion glass 8137
15.5.4. Summary and Overview 8138
Acknowledgments 8138
References 8138
Chapter 15.6: Developments in Clean Lab Practices 8146
15.6.1. Introduction 8146
15.6.2. Detection and Quantification Limits 8148
15.6.2.1. Limit of Detection 8148
15.6.2.2. Procedural Blank 8149
15.6.3. Design of a Clean Room 8149
15.6.3.1. Materials 8150
15.6.3.2. Clean Air Supply 8150
15.6.3.3. Pure Water Supply 8150
15.6.4. Clean Lab Equipment, Labware&I 8151
15.6.4.1. Laminar Flow Boxes 8151
15.6.4.2. Labware 8151
15.6.4.3. Sub boiling Distillation of Reagents 8153
15.6.5. Examples of Low-Level Blank &I 8154
15.6.5.1. Uranium-Lead Zircon Dating 8154
15.6.5.2. Strontium Isotopic Analysis by Micromilling 8154
15.6.5.3. Palladium-Silver Analysis of Meteorites 8155
15.6.5.4. High-Field-Strength Elements and Tungsten 8155
15.6.5.5. Rhenium-Osmium Systematics 8155
15.6.5.6. Trace Element Contamination-Lithium Example 8156
15.6.6. Concluding Remarks 8156
Acknowledgments 8156
References 8156
Chapter 15.7: Basics of Ion Exchange Chromatography for Selected Geological Applications 8158
15.7.1. Introduction 8159
15.7.2. Basic Principles of Ion Chromatography 8159
15.7.2.1. Stationary Phase-Mobile Phase 8159
15.7.2.2. Structure of Ion Exchange Resins 8159
15.7.2.3. Ion Exchange Processes 8160
15.7.2.3.1. The equilibrium distribution coefficient (Kd) 8160
15.7.2.3.2. The batch method 8161
15.7.2.3.3. The column method 8161
15.7.2.3.4. Retention volume and retention time 8162
15.7.2.3.5. The ion exchange capacity of a resin 8162
15.7.2.3.6. The capacity factor 8163
15.7.2.3.7. Selectivity, separation factor, and selectivity coefficient: the efficiency of an ion exchange column to separate 8163
15.7.2.3.8. Minimizing peak broadening: van Deemter&INS id= 8163
15.7.3. Cation Exchange Versus Anion Exchange Chromatography 8164
15.7.3.1. Structure and Basic Functionality of Cation and Anion Exchange Resins 8164
15.7.3.2. Equilibrium Distribution Coefficients (Kd) for Cation and Anion Exchange Resins 8165
15.7.3.2.1. Equilibrium distribution coefficients for strong cation exchange resins 8165
15.7.3.2.2. Equilibrium distribution coefficients for strong anion exchange resins 8165
15.7.4. Applications of Anion and Cation Exchange Chromatography for Element Enrichment and Purification Prior to High-&INS i 8166
15.7.4.1. General Considerations for Chromatographic Ion Exchange Separation Procedures 8166
15.7.4.2. General Laboratory Procedure of Ion Exchange Separations 8173
15.7.4.3. The Setup of Ion Exchange Separation Methods: Calibration and Verification of Accuracy 8173
15.7.4.4. Procedural Blanks 8174
15.7.4.5. Selected Examples of Geological Applications Using Strong Cation or Anion Exchange Resin in Combina 8174
15.7.4.5.1. Lithium 8178
15.7.4.5.2. Chromium 8178
15.7.4.5.3. Iron 8178
15.7.4.5.4. Silver 8178
15.7.4.5.5. Neodymium 8179
15.7.5. Concluding Remarks 8179
References 8179
Chapter 15.8: Separation Methods Based on Liquid-Liquid Extraction, Extraction Chromatography, and Other Miscellaneous Solid Phase Extraction 8182
15.8.1. Introduction 8182
15.8.2. Separations by Liquid-Liquid Extraction 8183
15.8.2.1. General 8183
15.8.2.2. Experimental 8184
15.8.2.3. Some Examples of Geochemical Applications 8184
15.8.3. Extraction Chromatography 8186
15.8.3.1. General Principle 8186
15.8.3.2. Preparation of EXC Materials and Columns 8187
15.8.3.2.1. General 8187
15.8.3.2.2. EXC materials 8187
15.8.3.2.2.1. Inert support 8187
15.8.3.2.2.2. Loading of the stationary phase onto the inert support 8188
15.8.3.2.3. Column packing 8188
15.8.3.3. Examples of EXC Materials 8188
15.8.3.3.1. Sr resin 8188
15.8.3.3.2. Pb resin 8190
15.8.3.3.3. TRU resin 8190
15.8.3.3.4. RE resin 8190
15.8.3.3.5. TEVA resin 8192
15.8.3.3.6. UTEVA resin 8192
15.8.3.3.7. Actinide (DIPEX) resin 8192
15.8.3.3.8. Ln resin 8193
15.8.3.3.9. `DGA resins 8194
15.8.3.3.10. Miscellaneous, not marketed EXC materials 8194
15.8.3.3.10.1. BPHA resin 8194
15.8.3.3.10.2. DIBK resin 8194
15.8.3.4. Some Examples of Applications in Geochemistry and Cosmochemistry 8194
15.8.3.5. Advantages and Limitations of Extraction Chromatography 8197
15.8.3.5.1. Advantages 8197
15.8.3.5.2. Limitations 8200
Chapter 15.9: Principles of Atomic Spectroscopy 8206
15.9.1. Introduction and Terminology 8206
15.9.2. Some History 8206
15.9.3. Principles of Atomic Spectroscopy: Electromagnetic Radiation 8207
15.9.4. Origin of Atomic Spectra 8209
15.9.5. Analytical Applications of Atomic Spectroscopy 8210
15.9.5.1. Atomic Absorption 8210
15.9.5.2. Atomic Emission 8210
15.9.5.3. X-Ray Fluorescence 8211
15.9.5.4. Mass Spectrometry 8212
15.9.5.5. Mass Spectrometer Ion Source 8212
15.9.5.6. Mass Dispersion Devices 8213
15.9.5.6.1. Magnetic sector 8213
15.9.5.6.2. Quadrupole mass analyzer 8213
15.9.6. Characteristics of Analytical Atomic Spectrometry Instruments 8213
15.9.6.1. Atomic Absorption Spectrometry 8214
15.9.6.2. X-Ray Fluorescence Analysis 8214
15.9.6.3. Inductively Coupled Plasma-Atomic Emission Spectrometry 8214
15.9.6.4. Inductively Coupled Plasma-Mass Spectrometry 8215
References 8215
Chapter 15.10: x-Ray Fluorescence Spectroscopy for Geochemistry 8216
15.10.1. Principles 8217
15.10.1.1. Introduction 8217
15.10.1.2. x-Ray Generation 8217
15.10.1.3. Primary and Fluorescent x-Ray 8218
15.10.1.4. Excitation Energy 8218
15.10.1.5. x-Ray Absorption and Analytic Depth 8219
15.10.1.6. x-Ray Safety 8219
15.10.2. Instrumentation 8219
15.10.2.1. Measuring Systems 8219
15.10.2.1.1. Wavelength dispersive system 8219
15.10.2.1.2. Energy dispersive system 8220
15.10.2.1.3. Portable handheld device 8220
15.10.2.2. x-Ray Source 8220
15.10.2.3. x-Ray Detection 8220
15.10.2.4. x-Ray Filter 8221
15.10.2.5. Pulse-Height Analyzer 8221
15.10.2.6. Measuring Atmosphere 8221
15.10.2.7. Analyzing Crystal for WDS 8221
15.10.3. Sample Preparation 8221
15.10.3.1. Criteria of Specimen 8221
15.10.3.2. Direct Measurement 8222
15.10.3.3. Specimen with Sample Pulverization 8222
15.10.3.3.1. Sample pulverization 8222
15.10.3.3.2. Loose powder analyses 8223
15.10.3.3.3. Pressed powder pellet analyses 8223
15.10.3.3.4. Fused glass bead analyses 8223
15.10.3.4. Liquid Sample 8223
15.10.3.5. Contamination 8224
15.10.4. Qualitative Analysis 8224
15.10.4.1. x-Ray Spectrum 8224
15.10.4.2. Special Lines 8224
15.10.4.3. Spectral Interference 8224
15.10.4.4. Peak Identification 8224
15.10.5. Quantitative Analysis 8224
15.10.5.1. x-Ray Intensity 8224
15.10.5.1.1. Analytic line 8224
15.10.5.1.2. XRF intensity for determination 8225
15.10.5.1.3. Standardization for routine analysis 8225
15.10.5.1.4. x-Ray statistics 8225
15.10.5.2. Standardless Determination 8225
15.10.5.3. Determination with Calibration Standard 8225
15.10.5.3.1. Criteria of standard specimen 8225
15.10.5.3.2. Commercial standards 8226
15.10.5.3.3. Synthetic standards 8226
15.10.5.3.4. In-house standards 8226
15.10.5.3.5. Calibration curve 8226
15.10.5.4. Matrix Effect 8227
15.10.5.5. Matrix Corrections 8227
15.10.5.5.1. Standard addition 8227
15.10.5.5.2. Internal standard 8227
15.10.5.5.3. Correction with scattering x-rays 8227
15.10.5.5.4. Model calculations 8228
15.10.5.6. Validation 8228
15.10.5.7. Applications 8228
15.10.6. Further Techniques 8228
15.10.6.1. Total Reflection for Surface Analysis 8228
15.10.6.2. Chemical Shift for Chemical State Analysis 8228
References 8229
Chapter 15.11: Raman and Nuclear Resonant Spectroscopy in Geosciences 8230
15.8.4. Other Element-Specific SPE Materials 8201
15.8.4.1. A Few Selected Examples of Chelating Resins 8201
15.8.4.1.1. Boron-specific resin 8201
15.8.4.1.2. Precious elements specific resins 8201
15.8.4.1.3. Chelating resins for trace element separation from (sea-) water 8201
15.8.4.2. SPE Materials Based on Macrocyclic Ligands 8202
15.8.5. Suggestions for Future Trends 8202
References 8203
15.11.1. Introduction 8230
15.11.1.1. Interaction of Electromagnetic Waves and Matter 8231
15.11.1.2. General Raman and Nuclear Resonant Spectroscopy 8232
15.11.1.3. Electronic Structures and Crystal Field Theory 8232
15.11.2. Raman Spectroscopy 8233
15.11.2.1. Theory of Vibrational Properties of Molecules and Crystals 8233
15.11.2.2. Instrumentation for Raman Experiments 8234
15.11.2.2.1. Raman microprobe and mapping 8234
15.11.2.2.2. Raman spectroscopy in high P-T DAC 8235
15.11.2.2.3. Raman instrumentation for planetary e&/ 8236
15.11.2.3. Raman Analyses of Planetary Materials 8236
15.11.2.3.1. Phase identification in natural and synthetic samples 8237
15.11.2.3.2. Raman microprobe study of meteorites and lunar samples 8237
15.11.2.3.3. Laboratory studies at high P-T 8237
15.11.3. Synchrotron MS and NRIXS 8238
15.11.3.1. Mössbauer Effect and MS 8239
15.11.3.1.1. Chemical shift 8239
15.11.3.1.2. Quadrupole splitting 8239
15.11.3.1.3. Magnetic hyperfine splitting 8239
15.11.3.1.4. Recoil-free fraction 8240
15.11.3.2. Mössbauer Instrumentation Using Conventional and Synchrotron Sources 8240
15.11.3.3. Nuclear Resonant Scattering Using Synchrotron Radiation 8240
15.11.3.4. Geophysical Applications 8242
15.11.3.4.1. Sound velocities of iron alloys by NRIXS 8243
15.11.3.4.2. Electronic spin and valence states by SMS 8243
15.11.4. Prospective Directions 8243
Acknowledgments 8244
References 8244
Chapter 15.12: Synchrotron x-Ray Spectroscopic Analysis 8248
15.12.1. Introduction 8248
15.12.2. High-Energy Synchrotrons 8248
15.12.3. Synchrotron Radiation Sources 8250
15.12.4. Synchrotron Beamlines 8251
15.12.5. XAFS Analysis 8252
15.12.6. XRM Analysis 8254
15.12.6.1. XRM Instrumentation 8255
15.12.6.2. XRF Microanalysis 8255
15.12.6.3. Micro-XAFS Analysis 8257
15.12.6.4. Micro-XRD Analysis 8260
15.12.7. Computed Microtomography 8260
15.12.8. Surface and Interface Methods 8262
15.12.9. Other Synchrotron Methods 8263
15.12.10. Future Directions 8263
Acknowledgments 8263
References 8263
Chapter 15.13: Transmission Electron Microscope-Based Spectroscopy 8266
Glossary 8266
15.13.1. Introduction 8266
15.13.2. TEM Design Considerations 8268
15.13.2.1. TEM or STEM 8268
15.13.2.2. Thermionic and Field Emission Electron Sources 8269
15.13.2.3. Energy Spread and Monochromators 8269
15.13.2.4. Operating Voltage 8269
15.13.3. Energy-Dispersive x-Ray Spectroscopy and Electron Energy-Loss Spectroscopy Instrumentation 8270
15.13.3.1. EDS Detectors 8270
15.13.3.2. Electron Energy-Loss Spectrometers 8270
15.13.4. Sample Preparation 8270
15.13.5. Energy-Dispersive x-Ray Spectroscopy Examples 8272
15.13.6. Electron Energy-Loss Spectroscopy Examples 8277
References 8279
Chapter 15.4: Laser-Induced Breakdown Spectroscopy 8280
15.14.1. Introduction and Overview 8280
15.14.2. The LIBS Analysis 8281
15.14.3. LIBS Fundamentals 8282
15.14.3.1. The Physics of LIBS 8282
15.14.3.2. Spatial Resolution 8287
15.14.3.3. The Chemistry of LIBS 8288
15.14.3.3.1. Quantitative LIBS 8288
15.14.3.3.2. Qualitative LIBS 8289
15.14.4. Laboratory, Field-Portable, and Standoff LIBS Analysis 8290
15.14.5. Example Applications of LIBS for Natural Material Analysis 8291
15.14.5.1. Minerals and Rocks 8291
15.14.5.2. Sediment and Soil Analysis 8293
15.14.5.3. Fluid Analysis 8295
15.14.5.4. Fluid Inclusion Analysis 8296
15.14.5.5. Material Analysis under Water 8297
15.14.5.6. Environmental Applications 8297
15.14.5.7. Archaeological Applications 8298
15.14.5.8. Extraterrestrial Analysis 8298
15.14.5.9. Isotopic Analysis by LIBS 8299
15.14.6. Statistical Signal Processing for LIBS 8299
15.14.7. Conclusions - The Path Forward 8301
Acknowledgments 8302
References 8302
Chapter 15.15: Nuclear Spectroscopy 8308
15.15.1. Introduction 8308
15.15.2. The Discovery of Radioactivity 8309
15.15.3. The Atomic Nucleus, Isotopes, and Radionuclides 8309
15.15.4. Radioactive Decay 8310
15.15.4.1. Modes of Radioactive Decay 8310
15.15.4.2. Radioactive Decay Law 8310
15.15.4.3. Units of Radioactivity 8311
15.15.4.4. Growth and Decay of Radioactive Products 8311
15.15.5. Nuclear Reactions 8312
15.15.5.1. The Reaction Process 8312
15.15.5.2. Compound Nucleus Formation 8313
15.15.5.3. Reaction Cross Sections 8313
15.15.5.4. Excitation Functions 8314
15.15.5.5. Growth of Radioactive Products During Irradiation 8314
15.15.6. Irradiation Sources 8314
15.15.6.1. Nuclear Reactors 8315
15.15.6.2. Neutron Generators 8316
15.15.6.3. Charged-Particle Accelerators 8316
15.15.6.4. Radioisotopic Sources 8316
15.15.7. Interactions Between Radiation and Matter 8316
15.15.7.1. Interaction of Heavy-Charged Particles with Matter 8316
15.15.7.2. Interaction of Electrons and Positrons with Matter 8317
15.15.7.3. Interaction of Gamma Rays with Matter 8317
15.15.7.4. Interaction of Neutrons with Matter 8318
15.15.8. Radiation Detection and Measurement 8318
15.15.8.1. General Properties of Detectors 8319
15.15.8.2. Scintillation Detectors 8319
15.15.8.3. Semiconductor Detectors 8320
15.15.8.4. Shielding and Compton Suppression 8320
15.15.9. Applications for Nuclear Spectroscopy 8321
15.15.9.1. Activation Analysis 8321
15.15.9.1.1. Preparation of samples and standards for activation analysis 8321
15.15.9.1.2. Irradiation and counting techniques 8322
15.15.9.1.3. Activation analysis with thermal neutrons 8322
15.15.9.1.4. Activation analysis with epithermal neutrons 8323
15.15.9.1.5. Activation analysis with fast neutrons 8323
15.15.9.1.6. Activation analysis using prompt gamma rays 8323
15.15.9.1.7. Activation analysis with charged-particle beams 8323
15.15.9.1.8. Activation analysis with high-energy photons 8324
15.15.9.1.9. Activation analysis with radiochemical separation 8324
15.15.9.1.10. Activation analysis with gamma-gamma coincidence 8324
15.15.9.2. Other Applications of Nuclear Spectroscopy 8325
References 8325
Chapter 15.16: Stable Isotope Techniques for Gas Source Mass Spectrometry 8326
15.16.1. Introduction 8326
15.16.2. Mass Spectrometers 8326
15.16.2.1. Inlet System 8327
15.16.2.1.1. Dual inlet 8327
15.16.2.1.2. Continuous flow inlet 8328
15.16.2.2. Ion Source 8330
15.16.2.3. Analyzer 8331
15.16.2.4. Collector Assembly 8332
15.16.3. Standardization 8333
15.16.4. Methods of Analysis 8334
15.16.4.1. Hydrogen 8334
15.16.4.1.1. Reduction methods 8335
15.16.4.1.2. Equilibration methods 8335
15.16.4.2. Carbon 8335
15.16.4.3. Nitrogen 8336
15.16.4.4. Oxygen 8336
15.16.4.5. Sulfur 8337
15.16.4.6. Chlorine 8338
15.16.5. Laser Absorption Spectrometry 8338
References 8340
Chapter 15.17: Inductively Coupled Plasma Mass Spectrometers 8344
15.17.1. Introduction 8346
15.17.2. Sample Preparation 8348
15.17.3. Sample Introduction and Ion Production 8349
15.17.4. Sampler/Skimmer Interface 8352
15.17.5. ICP-MS with Quadrupole Mass Spectrometers 8352
15.17.6. Spectral Overlaps in ICP-MS 8352
15.17.6.1. Elemental Ions 8353
15.17.6.2. Molecular Ions 8353
15.17.6.3. Doubly Charged Ions 8354
15.17.6.4. Recognizing that Spectral Overlaps Exist 8354
15.17.6.5. Preventing Errors in Reported Concentrations Due to Spectral Overlaps 8355
15.17.6.5.1. Choice of isotopes to measure 8355
15.17.6.5.2. Mathematical corrections: Elemental ions 8355
15.17.6.5.3. Mathematical corrections: Molecular ions 8355
15.17.6.5.4. Desolvation system to reduce solvent-related ion signals 8356
15.17.6.5.5. Modifying plasma conditions to reduce molecular ion signals: Addition of molecular gas to the plasma 8356
15.17.6.5.7. Chemical separation prior to analysis 8356
15.17.6.5.8. Kinetic energy discrimination using a collision/reaction cell 8356
15.17.6.5.9. Ion-molecule reactions using a collision/reaction cell 8357
15.17.6.5.6. Modifying plasma conditions to reduce signals from ions with high ionization energy: &INS id= 8356
15.17.7. Collision/Reaction Cells to Overcome Spectral Overlaps in ICP-Quadrupole MS 8357
15.17.7.1. Kinetic Energy Discrimination 8357
15.17.7.2. Ion-Molecule Reactions 8359
15.17.8. ICP-MS Instrument Designs with a Quadrupole Mass Analyzer 8359
15.17.9. ICP-Sector Field Mass Spectrometers 8360
15.17.9.1. ICP-SFMS with Sequential Detection 8360
15.17.10. ICP-MS Instruments with Simultaneous Detection of the Mass Spectrum 8365
15.17.10.1. ICP-Sector Field Mass Spectrometer with Simultaneous Imaging Detector 8365
15.17.10.2. ICP-Time of Flight Mass Spectrometer 8365
15.17.11. Multicollector Inductively Coupled Plasma Mass Spectrometers 8365
15.17.11.1. Spectral Overlaps 8367
15.17.11.2. Fixed or Variable Position Detectors 8367
15.17.11.3. Static and Dynamic Measurements 8367
15.17.11.4. Mass Discrimination (Mass Bias) 8368
15.17.11.4.1. Double or triple spike correction for mass bias 8368
15.17.11.4.2. Internal standardization using an analyte isotope pair that is constant in nature 8368
15.17.11.4.3. Internal standardization using a pair of isotopes of another element 8368
15.17.11.4.4. Internal standardization with isotopes of another element using a regression approach 8368
15.17.11.4.5. External standard sample standard bracketing 8369
15.17.11.4.6. Isotope ratio uncertainties 8369
15.17.11.5. Applications 8369
References 8369
Chapter 15.18: Thermal Ionization Mass Spectrometry 8372
15.18.1. Introduction 8372
15.18.2. Why TIMS Survives 8372
15.18.2.1. Strengths 8372
15.18.2.2. Weaknesses 8373
15.18.3. Thermal Ionization 8374
15.18.4. The Physical TIMS Instrument 8376
15.18.4.1. The Ion Source 8376
15.18.4.2. The Mass Analyzer 8377
15.18.4.3. Ion Detectors 8380
15.18.4.3.1. Faraday detectors 8380
15.18.4.3.2. Ion multipliers 8382
15.18.5. Measuring Isotope Ratios by TIMS 8384
15.18.5.1. Noise 8384
15.18.5.2. Time Variability of the Ion Beam 8384
15.18.5.3. Correcting for Amplifier and Faraday Cup Gains 8384
15.18.5.4. Fractionation Correction 8385
15.18.6. Conclusions and Future Prospects 8387
Acknowledgments 8388
References 8388
Chapter 15.19: Noble Gas Mass Spectrometry 8390
15.19.1. Introduction 8390
15.19.1.1. Noble Gases in Geochemistry and Cosmochemistry 8390
15.19.2. Characteristics of Noble Gas Mass Spectrometry 8391
15.19.3. Types of Samples, Noble Gas Extraction and Purification 8392
15.19.3.1. Solid Samples 8393
15.19.3.1.1. Total extraction of noble gases from solid samples 8394
15.19.3.1.2. Stepwise noble gas extraction from solid samples 8394
15.19.3.2. Liquid Samples 8395
15.19.3.3. Gaseous Samples 8395
15.19.3.4. Noble Gas Purification 8396
15.19.3.5. Separation of Noble Gases from Each Other 8397
15.19.3.6. Nitrogen Analysis by Static Mass Spectrometry 8397
15.19.4. Ionization, Mass Separation, and Ion Detection 8397
15.19.4.1. Ionization 8397
15.19.4.2. Mass Separation and Detection 8397
15.19.5. Calibration 8399
15.19.5.1. Spiking 8399
15.19.5.2. Peak-Height Comparison 8399
15.19.5.3. Standards 8400
15.19.5.4. The Isotopic Composition of Noble Gases in Air 8400
15.19.6. Blank and Interference Corrections 8402
15.19.6.1. Noble Gas Blanks 8402
15.19.6.2. Interference Corrections 8402
15.19.7. Mass Spectrometer Memory and Ion Pumping 8403
15.19.8. Outlook 8404
Acknowledgments 8405
References 8405
Chapter 15.20: Accelerator Mass Spectrometry 8410
15.20.1. Introduction 8410
15.20.2. The AMS Instrument 8410
15.20.3. Ion Source 8411
15.20.4. Injection Magnet and Bouncer 8412
15.20.5. Tandem Particle Accelerator and Stripper 8413
15.20.6. High-Energy Particle Analysis 8413
15.20.7. Particle Detection 8414
15.20.8. Development of Smaller Machines 8414
15.20.8.1. The 0.5-1MV `Small&INS i 8414
15.20.8.2. 200kV Machines 8415
15.20.8.3. The `Single-Stage&INS id= 8416
15.20.9. Conclusion 8416
References 8417
Chapter 15.21: Ion Microscopes and Microprobes 8420
15.21.1. Overview 8420
15.21.2. Primary Ion Beams 8421
15.21.2.1. Primary Ions 8421
15.21.2.2. Primary Column and Beam Characteristics 8422
15.21.3. Secondary Ions 8423
15.21.3.1. Ion Yields 8424
15.21.4. Mass Spectrometry 8424
15.21.4.1. History of Ion Microprobe Mass Spectrometers 8425
15.21.4.2. Nuclidic Mass Resolution 8425
15.21.4.3. Mass Spectra 8426
15.21.4.4. Energy Spectra 8426
15.21.5. Instrumentation 8427
15.21.5.1. Cameca Ion Microscopes (ims 7f and 1280 Series) 8427
15.21.5.2. Cameca NanoSIMS 8427
15.21.5.3. SHRIMP 8428
15.21.6. Measurement 8431
15.21.6.1. Detection 8431
15.21.6.2. Ion Counting 8431
15.21.6.3. 2D Detectors 8432
15.21.6.4. Faraday Cups 8432
15.21.6.5. Multiple Collection 8433
15.21.7. Chemical Analysis 8434
15.21.7.1. Volatile Abundance Measurements 8434
15.21.8. Stable Isotope Analysis 8435
15.21.8.1. Isotope Mass Fractionation 8435
15.21.8.2. Sulfur Isotope Analysis 8435
15.21.8.3. Oxygen Isotope Analysis 8436
15.21.8.4. Carbon and Nitrogen 8436
15.21.8.5. Lithium and Boron 8437
15.21.8.6. Hydrogen 8437
15.21.9. Radiogenic Isotopes 8437
15.21.9.1. U-Th-Pb Geochronology 8438
15.21.9.2. U-Th Disequilibrium 8439
15.21.9.3. 176Lu-176Hf in Zircon 8440
15.21.9.4. 40K-40Ca Measurements 8440
15.21.9.5. Short-Lived Radionuclides 8440
15.21.10. Isotopic Anomalies 8441
15.21.10.1. Refractory Inclusions 8441
15.21.10.2. Presolar Grains 8441
15.21.11. Future Developments and Issues 8442
References 8442
Chapter 15.22: Time-of-Flight Secondary Ion Mass Spectrometry, Secondary Neutral Mass Spectrometry, and Resonance Ionization Mass Spectrometry 8446
15.22.1. Introduction 8446
15.22.2. Time-of-Flight Secondary Ion Mass Spectrometry 8447
15.22.2.1. Technical Principles 8447
15.22.2.2. Sample Considerations 8448
15.22.2.3. Matrix Effects 8448
15.22.2.4. Data Analysis 8449
15.22.2.5. Quantification 8450
15.22.2.6. Some Neat Little Tricks 8450
15.22.2.7. Summary: Strengths and Weaknesses 8450
15.22.2.8. Applications: Inorganic Geochemistry 8451
15.22.2.8.1. TOF-SIMS in cosmochemistry 8451
15.22.2.8.2. TOF-SIMS in space 8451
15.22.3. Organic TOF-SIMS 8451
15.22.3.1. Applications: Organic Geochemistry 8452
15.22.3.1.1. TOF-SIMS in geomicrobiology 8452
15.22.3.1.2. TOF-SIMS in organic cosmochemistry 8452
15.22.4. New Developments of TOF-SIMS 8453
15.22.4.1. Combination with DC Primary Ion Beams 8453
15.22.5. Postionization 8454
15.22.5.1. Resonance Ionization Mass Spectrometers 8454
15.22.5.1.1. Noble gas resonance ionization mass spectrometers 8455
15.22.5.1.2. Sputter-initiated resonance ionization mass spectrometry - Resonant ionization of sputte 8456
15.22.5.2. Laser SNMS Applications 8456
15.22.5.2.1. Isotopic and elemental analysis 8456
15.22.5.3. Nonresonant Laser Postionization 8457
References 8457
Chapter 15.23: Laser Ablation ICP-MS and Laser Fluorination GS-MS 8460
15.23.1. Introduction 8460
15.23.2. Laser Processing 8460
15.23.2.1. Bandgap Energies of Solid Materials 8460
15.23.2.2. Laser Radiation and Photon-Substrate Coupling 8461
15.23.2.3. Stoichiometric Laser Sampling 8462
15.23.2.4. Commercial Laser Ablation Systems 8463
15.23.3. Laser Ablation ICP-MS Methodology 8464
15.23.3.1. Plasma Source Mass Spectrometry 8464
15.23.3.1.1. Quadrupole ICP-MS 8465
15.23.3.1.2. High-resolution ICP-MS 8466
15.23.3.1.3. Multicollector ICP-MS 8467
15.23.3.2. Quantitative LA-ICP-MS Analysis 8467
15.23.3.2.1. Spectral matrix effects 8467
15.23.3.2.2. Nonspectral matrix effects 8468
15.23.3.2.3. Laser-induced elemental fractionations 8469
15.23.3.2.4. Recent and future advances in LA-ICP-MS technology and applications 8470
15.23.4. Laser Fluorination Mass Spectr 8470
15.23.4.1. The Advent of Laser Fluorinati 8470
15.23.4.2. Fundamental LF-GS-MS 8471
15.23.4.3. Applications of Laser Fluorination M 8472
15.23.5. Conclusions 8472
References 8473
Chapter 15.24: Geoneutrino Detection 8478
15.24.1. Introduction 8478
15.24.2. Neutrino Physics 8478
15.24.2.1. Neutrinos in the Standard Model 8478
15.24.2.2. Neutrino Reactions 8480
15.24.3. Neutrino Detector Technologies 8482
15.24.3.1. Charge Collection 8482
15.24.3.2. Cherenkov Light 8482
15.24.3.3. Scintillation Light 8483
15.24.3.4. Liquid Scintillator Antineutrino Detector Design 8483
15.24.4. Existing and Planned Geoneutrino Detectors 8484
15.24.4.1. KamLAND 8484
15.24.4.2. Borexino 8485
15.24.4.3. SNO 8485
15.24.4.4. Future Geoneutrino Detectors 8485
15.24.5. Desired Future Developments 8486
15.24.5.1. Global Survey 8486
15.24.5.2. Directionality 8486
15.24.5.3. Detection of 40K Geoneutrinos 8487
15.24.6. Conclusions 8487
References 8487
e9780080983004v16 8490
Front Cover 8490
Indexes 8493
Copyright 8494
In Memoriam 8495
Heinrich Dieter Holland (1927–2012) 8497
Karl Karekin Turekian (1927–2013) 8499
References 8501
Volume Editors 8503
Contents 8511
Contents of All Volumes 8513
Contributors of All Volumes 8529
Index 8543