Menu Expand
Biophysics and Biochemistry of Cartilage by NMR and MRI

Biophysics and Biochemistry of Cartilage by NMR and MRI

Yang Xia | Konstantin Momot

(2016)

Additional Information

Book Details

Abstract

This unique book describes the latest information in the fundamental understanding of the biophysics and biochemistry of articular cartilage using the state-of-the-art practices in NMR and MRI. This is the first book of its kind, written by physicists and chemists on this important tissue, whose degradation contributes to osteoarthritis and related joint diseases. Connecting the fundamental science with the clinical imaging applications, the experts Editors provide an authoritative addition to the literature.
Ideal for practising physical scientists and radiologists with an interest in the fundamental science as well as instrument manufacturers and clinical researchers working with articular cartilage.

Table of Contents

Section Title Page Action Price
Cover Cover
Biophysics and Biochemistry of Cartilage by NMR and MRI i
Preface v
Acknowledgements ix
Contents xiii
Part One - Introduction 1
Chapter 1 - Introduction to Cartilage 3
1.1 Introduction 3
1.2 Cartilage and the Joint 4
1.2.1 Different Types of Cartilage 4
1.2.2 Synovial Joints and Articular Cartilage 5
1.3 Cellular Aspects of Articular Cartilage 7
1.3.1 Cartilage Progenitor Cells 8
1.3.2 Mature Chondrocytes in Cartilage 8
1.3.3 Mesenchymal Stem Cells 10
1.4 Extracellular Matrix of Articular Cartilage 10
1.4.1 Collagen 11
1.4.2 Proteoglycans and Glycosaminoglycans 12
1.4.3 Water 13
1.4.4 Other Components 15
1.5 Histological Structure of Articular Cartilage 16
1.5.1 The Zonal Structure of Articular Cartilage 16
1.5.2 Depth-Dependent Physicochemical Properties 17
1.6 Biomechanical Properties of Articular Cartilage 18
1.6.1 The Uncompressed Equilibrium State 18
1.6.2 Compression of Articular Cartilage 20
1.7 Joint and Gross Morphology of Articular Cartilage 25
1.7.1 Development of Synovial Joint 25
1.7.2 Topographic Distributions in the Knee 26
1.7.3 Topographic Distributions in the Shoulder 27
1.7.4 The Split-Line Pattern 28
1.8 The Diseases of Cartilage and Joints 29
1.8.1 Classification and Etiology of Osteoarthritis 29
1.8.2 Pathogenesis 29
1.8.3 The Role of Subchondral Bone 30
1.8.4 Biomarkers 30
1.8.5 Treatment 31
1.9 Osteoarthritis Research 31
1.9.1 In vivo Models of Osteoarthritis 32
1.9.2 In vitro Models of Cartilage Degeneration 33
Acknowledgements 34
References 35
Chapter 2 - Osmotic Properties of Cartilage 44
2.1 Introduction 44
2.2 Cartilage Molecular Architecture, Gross Appearance, and Morphology 46
2.3 Osmotic Swelling Pressure of Cartilage 48
2.4 Molecular Interactions of Cartilage Polymers 51
2.4.1 Osmotic Observations 51
2.4.2 Small-Angle Scattering Measurements 53
2.4.3 Dynamic Properties of Proteoglycan Assemblies 55
2.5 Conclusions 58
Acknowledgements 59
References 59
Chapter 3 - Introduction to NMR and MRI 62
3.1 Introduction 62
3.2 Semiclassical Description of NMR 63
3.2.1 NMR-Active Nuclei 63
3.2.2 Vector Description of NMR 66
3.2.3 Excitation 68
3.2.4 Precession and the Bloch Equation 69
3.2.5 Rotating Frame 70
3.2.6 Chemical Shielding and Chemical Shift 71
3.2.7 Spin Relaxation 73
3.2.8 NMR Signal Detection 77
3.2.9 Spin Echo and NMR Pulse Sequences 78
3.3 Quantum Description of NMR 80
3.3.1 Spin and Angular Momentum 81
3.3.2 Conceptual Points 82
3.3.3 Matrix Representation of Spin Operators 82
3.3.4 Zeeman Hamiltonian 83
3.3.5 Nuclear Magnetisation 83
3.3.6 Evolution of the Spin Density Matrix 85
3.3.7 NMR Observables and Coherence Order 88
3.3.8 Spin Relaxation 89
3.3.9 Anisotropic Spin Hamiltonians and NMR Spectra 91
3.4 MRI 92
3.4.1 Fourier MRI 92
3.4.2 Implementation of Fourier Imaging 95
3.4.3 Image Contrast 98
3.4.4 Spatial Resolution and the SNR 99
3.4.5 Parameter Mapping Versus Weighted Imaging 99
3.5 Conclusion 100
Abbreviations and Symbols 101
Acknowledgements 101
References 102
Chapter 4 - The Magic Angle Effect in NMR and MRI of Cartilage 109
4.1 Introduction 109
4.2 Basic Physics and Physical Chemistry 112
4.2.1 Electronegativity and Partial Charges 112
4.2.2 Role of Hydrogen Bonds 112
4.2.3 Protein: Polar Solutes 113
4.2.4 Bound Water 114
4.3 Basic Concepts of NMR Relaxation 115
4.3.1 NMR Spin-Lattice Relaxation and Molecular Motion 115
4.3.2 Proton Fast Exchange 117
4.3.3 NMR Titration Study of Protein Solutions 117
4.3.4 NMR Titration of Native Bovine Tendon 118
4.3.5 Bound Water Equivalence to Water Bridges 119
4.3.6 Double Water Bridges 121
4.4 Formation of a Molecular Model 122
4.4.1 Stoichiometric Hydration Model 122
4.4.2 SHM Applied to Collagen 125
4.4.3 SHM Water Bridge Binding Energy Predictions 127
4.4.4 Anisotropic Rotation of Water Bridges 129
4.4.5 Water Bridge Source for Magic Angle Effects 131
4.4.6 SHM Explanation of Biphasic and Monophasic T2 133
4.5 Cartilage and the Magic Angle Effect 134
4.5.1 Collagen in Cartilage 134
4.5.2 Magic Angle Effect in Cartilage 135
4.5.3 Multi-Exponential Versus Mono-Exponential T2 Relaxation 136
4.6 Revisiting the 1985 Tendon Relaxation Report 139
4.7 The T2 Versus T2* Conundrum 139
4.8 Conclusions and Discussion 141
References 142
Part Two - Cartilage Research by Experimental NMR and MRI Techniques 145
Chapter 5 - Physical Properties of Cartilage by Relaxation Anisotropy 147
5.1 Introduction 147
5.1.1 Relaxation Anisotropy 148
5.1.2 Physical Properties of Cartilage 148
5.1.3 Relaxation Anisotropy in Cartilage 149
5.1.4 Relaxation Anisotropy in Other Tissues 150
5.1.5 Theoretical and Simulation Work on Articular Cartilage 151
5.2 Anisotropy of T2 Relaxation Time in Cartilage 151
5.2.1 Dependence of T2 Relaxation on Collagen Orientation 151
5.2.2 Dependence of T2 Relaxation on Collagen Content and Tissue Hydration 153
5.2.3 Spatial and Topographical Variation of T2 Relaxation Time 153
5.2.4 T2 Relaxation in Detection of Anisotropy-Related Cartilage Maturation 154
5.2.5 T2 Relaxation in Detection of Cartilage Repair 156
5.3 Anisotropy of T1ρ Relaxation in Cartilage 156
5.4 Different Relaxation Mechanisms in T1ρ 161
5.5 Anisotropy of T1 Relaxation in Cartilage 163
5.5.1 Pre-contrast T1 Relaxation Time 163
5.5.2 Delayed Gadolinium-Enhanced MRI of Cartilage (dGEMRIC) 164
5.6 Sensitivities in Practical Relaxation Measurement 167
5.7 Conclusions 168
Acknowledgement 169
References 169
Chapter 6 - Chemical Properties of Cartilage Studied Using Charged Ions 176
6.1 Introduction 176
6.2 The dGEMRIC Method 178
6.2.1 The Basis of the dGEMRIC Method 178
6.2.2 Clinical Applications of dGEMRIC 186
6.3 Concluding Remarks and Future Prospects 188
References 189
Chapter 7 - Quantification of Articular Cartilage Microstructure by the Analysis of the Diffusion Tensor 191
7.1 Introduction 191
7.2 Diffusion Magnetic Resonance 192
7.2.1 Diffusion NMR Spectroscopy 193
7.2.2 General Treatment and the Diffusion Propagator 195
7.2.3 Diffusion Imaging 196
7.2.3.1 Diffusion Tensor Imaging 196
7.3 Diffusion Magnetic Resonance of Articular Cartilage 199
7.4 Diffusion Simulations in Articular Cartilage 200
7.4.1 Constructing Idealised Fibre Networks 200
7.4.1.1 Networks of Aligned Cylinders 201
7.4.1.2 Adding Orientational Disorder 202
7.4.1.3 Controlling the Fibre Volume Fraction 203
7.4.1.4 Cross-Linked Fibre Networks 203
7.4.2 Diffusion of Water in Model Networks 204
7.4.2.1 Monte Carlo Simulations 204
7.4.2.2 Langevin Dynamics 206
7.4.3 Reconstructing the Diffusion Tensor 208
7.4.4 Simulation Parameters and Considerations 210
7.4.4.1 Diffusion Coefficient and Implicitly Modelling Proteoglycans 210
7.4.4.2 Modelling the Long Diffusion Time Limit 210
7.4.4.3 Simulation Boundary Conditions 211
7.4.4.4 Artefacts in Disordered Networks and Networks of a Finite Size 211
7.4.4.5 Simulation Noise and Systematic Errors 212
7.4.5 Diffusion Trends Through Model Networks 212
7.4.5.1 Aligned Networks 213
7.4.5.2 Partially Aligned and Disordered Networks 215
7.5 Combining Experiments and Simulations 215
7.6 Post-DTI Approaches to Cartilage Diffusion Imaging 216
7.7 Conclusions 218
Acknowledgements 219
References 219
Chapter 8 - Sodium and Other Exotic Methods in NMR and MRI of Cartilage 225
8.1 Clinical Need 225
8.1.1 Current Methods of Detecting Cartilage Degeneration with Imaging 226
8.2 Sodium NMR 227
8.2.1 Sodium MRI of Cartilage 227
8.2.2 Advantage of Sodium MRI 227
8.2.3 Limitations of Sodium MRI 229
8.3 T1ρ MRI 229
8.3.1 Mechanism of T1ρ Relaxation in Tissues 231
8.3.2 T1ρ MRI Methods 231
8.3.3 T1ρ MRI Pulse Sequences 232
8.3.4 T1ρ MRI as a Biomarker of Cartilage 235
8.4 Chemical Exchange Saturation Transfer 238
8.4.1 CEST MRI of Cartilage 238
8.5 Summary 240
Acknowledgements 241
References 242
Chapter 9 - Multi-Quantum Filtered NMR and MRI of Cartilage 246
9.1 Introduction 246
9.2 Theoretical Background 248
9.3 2H and 23Na DQF NMR of Nasal Cartilage 253
9.4 Mapping the Orientation of the Collagen Fibers in Articular Cartilage 256
9.5 The Effect of the Detachment from the Bone 258
9.6 Comparison of the Effects of Mechanical Load and Osmotic Pressure on Articular Cartilage 260
9.7 The Effect of Decalcification 263
9.8 Maturation of Pig Articular Cartilage 266
9.9 23Na Spectroscopy and Imaging of Intact and Proteoglycan-Depleted Articular Cartilage 270
9.10 23Na and 2H Studies of Osteoarthritic and Osteoporotic Articular Cartilage 270
9.11 Sodium Triple Quantum Imaging 272
9.12 1H DQF Imaging of Connective Tissues 273
9.13 Conclusions 275
References 275
Chapter 10 - Solid-State NMR Techniques to Study the Molecular Dynamics in Cartilage 279
10.1 Introduction 279
10.2 Methodological Concepts of Studying Cartilage by Solid-State NMR Spectroscopy 281
10.2.1 Static Solid-State NMR Techniques 281
10.2.2 Magic-Angle Spinning Solid-State NMR Techniques 284
10.3 Molecular Dynamics of GAGs and Collagen in Cartilage Tissue 285
10.3.1 GAG Dynamics in Native Cartilage Tissue 285
10.3.2 Collagen Dynamics in Native Cartilage Tissue 287
10.4 Hydration of Cartilage 290
10.5 Solid-State NMR as a Tool to Study the Quality of Tissue-Engineered Cartilage 292
10.6 Conclusions 295
References 296
Chapter 11 - Ultrashort Echo Time Imaging of Articular Cartilage 299
11.1 Introduction 299
11.2 Morphological UTE Imaging of Articular Cartilage 301
11.2.1 Multi-Echo UTE Imaging of Articular Cartilage 301
11.2.2 DIR-UTE Imaging of Articular Cartilage 302
11.2.3 AWSOS Imaging of Articular Cartilage 304
11.2.4 SWIFT Imaging of Articular Cartilage 305
11.3 Quantitative UTE Imaging of Articular Cartilage 308
11.3.1 T1 Quantification of Calcified Cartilage 308
11.3.2 T2* Quantification of Calcified Cartilage 309
11.3.3 T1ρ Quantification of Calcified Cartilage 310
11.3.4 UTE T2* Bi-Component Analysis of Articular Cartilage 311
11.3.5 AWSOS T2* Multi-Component Analysis of Articular Cartilage 315
11.4 Conclusions 317
References 317
Chapter 12 - Low-Field and Field-Cycling NMR and MRI of Cartilage 320
12.1 Introduction: Low Field vs. Variable Field 320
12.2 Theoretical Background 321
12.3 Hardware Considerations 326
12.3.1 Low-Field Studies: The Single-Sided Scanner 326
12.3.2 Variable Magnetic Field Strengths by Field Variation 329
12.3.3 Field-Cycling MRI 330
12.4 Low-Field Investigations of Cartilage 331
12.4.1 Relaxation Profiles 331
12.4.2 Diffusion Profiles 333
12.4.3 Influence of Sample Curvature and Resolution Limit 334
12.4.4 Contrast Agents and Enzymes 334
12.4.5 Cartilage Under Loading 336
12.5 Variable-Field Studies of Cartilage 337
12.5.1 Relaxometry Studies 337
12.5.2 Field-Cycling Imaging 341
12.6 Summary and Outlook 343
References 344
Chapter 13 - The Influence of Specimen and Experimental Conditions on NMR and MRI of Cartilage 347
13.1 Introduction 347
13.2 Pre-Experiment Specimen Preparation and Storage 348
13.2.1 Specimen Harvesting 348
13.2.2 Specimen Storage 350
13.2.3 Alternative Specimens for Articular Cartilage 352
13.3 Specimen Solutions During NMR and MRI Experiments 356
13.3.1 NMR/MRI of Cartilage in H2O, Simple Salt and Phosphate-Buffered Solutions 356
13.3.2 NMR/MRI of Cartilage in Phosphate Salt Solutions 357
13.3.3 NMR/MRI of Cartilage in Commercial Buffers at Different pH Values 359
13.3.4 NMR/MRI of Cartilage in Fixation Solutions 361
13.4 Experimental Issues in NMR and MRI Measurement of Cartilage 361
13.4.1 Basic Optimization in Experimental Setup and Data Analysis 362
13.4.2 Effect of the Repetition Time on Cartilage Laminae in MRI 362
13.4.3 Effect of the Echo Time in Cartilage MRI 363
13.4.4 Strength of the Spin-Lock Field in Cartilage T1ρ Experiments 364
13.4.5 Pulse Sequences in Quantitative MRI 364
13.4.6 Considerations in Multi-Component Relaxation Measurements 366
13.5 Final Remarks 367
Acknowledgements 367
References 367
Part Three - Biomechanical Properties of Cartilageby NMR and MRI 373
Chapter 14 - Diffusion MRI and Poroelastic Biomechanics of Articular Cartilage 375
14.1 Introduction 375
14.2 Cartilage as a Poroelastic Material 377
14.3 Mechanisms of Cartilage Lubrication 379
14.4 Microscopic Structure of the Collagen Network 380
14.5 MRI Methods for Mapping Fluid Translational Motion 383
14.6 MRI Studies of Cartilage Poroelastic Biomechanics 386
14.7 Conclusions and Outlook 390
References 390
Chapter 15 - Combining Multi-Modal MRI and Biomechanical Modeling to Investigate the Response of Cartilage and Chondrocytes to Mechanical Stimuli 395
15.1 Introduction 395
15.2 Cartilage Architecture and MRI 397
15.2.1 Cartilage Composition and MRI Morphology 397
15.2.2 Cartilage Composition and Diffusion 398
15.2.3 Cartilage Composition and MRI Relaxivity 399
15.3 Chondrocytes and Mechanical Stimuli 401
15.3.1 Force Transfer from Global to Cellular Scales 401
15.3.2 Response of Chondrocytes to Global Stimuli 402
15.3.3 MRI and Single Chondrocytes 402
15.4 MRI Measures of Mechanical Behavior 403
15.4.1 Correlation Between Quantitative MRI and Mechanical Properties 403
15.4.2 Measurement of Zonal Mechanics by MRI 403
15.4.3 Measurement of Zonal Mechanics by Magnetic Resonance Elastography 406
15.4.4 Multi-Modal MRI 407
15.5 Image-Based Modeling 409
15.5.1 2D Constitutive Models 410
15.5.2 3D Constitutive Models 411
15.5.2.1 Single-Phase Modeling Example 412
15.5.2.2 Biphasic Modeling Example 414
15.6 Applications of Image-Based Modeling 416
15.6.1 Modeling Applications in 2D 416
15.6.2 Modeling Applications in 3D 418
15.6.2.1 DTI Experiment 418
15.6.2.2 Determination of Geometry and Input Data for the Model 418
15.6.2.3 Single-Phase Modeling Example 419
15.6.2.4 Bi-Phasic Modeling Example 420
15.7 Outlook 421
Acknowledgements 423
References 423
Chapter 16 - Loading-Induced Changes in Cartilage Studied by NMR and MRI 433
16.1 Introduction 433
16.2 Loading of Articular Cartilage 434
16.2.1 Mechanical Properties of Articular Cartilage 434
16.2.2 MRI Study of Cartilage Loading 436
16.3 Effect of Tissue Loading on T1 Relaxation and GAG Quantification 437
16.3.1 Strain- and Depth-Dependent Deformation of Articular Cartilage 437
16.3.2 Critical Point Phenomenon in Compressed Articular Cartilage 441
16.3.3 Quantification of Gd and GAG Concentrations in Compressed Cartilage 442
16.4 Effect of Tissue Loading on T2 and T1ρ Relaxation Times 443
16.4.1 Articular Cartilage Deformation by Proton Images 443
16.4.2 Articular Cartilage Deformation by T2 and T1ρ Relaxation Times 444
16.4.3 A Model of Collagen Deformation in Healthy and Lesioned Cartilage 445
16.5 Functional Study of Human Cartilage using Clinical MRI 446
16.6 Final Remarks 448
Acknowledgements 449
References 449
Part Four - Applications and the Future of Cartilage Research by NMR and MRI 455
Chapter 17 - The Critical Role of High Imaging Resolution in MRI of Cartilage—The MRI Microscope 457
17.1 Introduction 457
17.2 High Resolution in MRI 458
17.3 Complex Interplay of Imaging Resolution in MRI of Cartilage 459
17.3.1 Depth-Dependent Zonal Structure of Articular Cartilage 459
17.3.2 Topographical Distribution of Cartilage Properties 460
17.3.3 Long Degradation Process with Diverse Early Characteristics 462
17.3.4 Orientation of the Specimen in the Magnet 463
17.3.5 Orientation of a Pencil-Shaped Imaging Voxel in MRI 463
17.3.6 Boundary Tissue Averaging in MRI 464
17.4 Resolution Scaling Law in MRI of Cartilage 465
17.5 A Sweet Spot—µMRI of Animal Models of Osteoarthritis 467
17.6 Final Remarks 467
Acknowledgement 468
References 468
Chapter 18 - Multicomponent Relaxation in NMR and MRI of Cartilage 471
18.1 Introduction 471
18.2 Methodological Considerations in Relaxometry 473
18.2.1 Tissue Heterogeneity and Dipolar Interaction 473
18.2.2 Ex vivo Sample Handling 475
18.2.3 NMR and MRI Acquisition Parameters 476
18.2.4 Multicomponent Analysis 477
18.2.5 Additional Considerations in Clinical MRI 479
18.3 Multicomponent NMR Relaxation Studies 479
18.3.1 Model Systems 479
18.3.2 Tissue-Engineered Cartilage 481
18.3.3 Bovine Nasal Cartilage 483
18.3.4 Articular Cartilage 485
18.4 Multicomponent MRI Relaxation Studies 487
18.4.1 Spin Echo Imaging 487
18.4.2 Gradient Echo Imaging 488
18.5 Conclusions 491
Acknowledgement 491
References 491
Chapter 19 - Uni- and Multi-Parametric Magnetic Resonance Analysis of Cartilage 494
19.1 Introduction to Cartilage MRI Classification 494
19.2 Classification 497
19.2.1 Sensitivity and Specificity 497
19.3 Empirical Studies of Univariate Classification of Cartilage 497
19.3.1 Assignment Based on Euclidean Distance 498
19.3.2 Assignment Based on Mahalanobis Distance 499
19.3.3 Limitations to Univariate Classification 508
19.4 Empirical Studies of Multivariate Classification of Cartilage 508
19.4.1 Multivariate Classification of Cartilage Using Cluster Analysis 508
19.4.2 Multivariate Classification of Cartilage Using Support Vector Machine Analysis 514
19.4.3 Multiexponential and Multivariate Analysis 516
19.4.4 Application of Machine Learning to Sodium MRI Data 522
19.4.5 Pattern Recognition and Machine Learning Classification 524
19.5 Conclusion 525
References 526
Chapter 20 - Magnetic Resonance in the Assessment of Tissue Engineered Cartilage 529
20.1 Introduction 529
20.2 Cartilage 530
20.3 Cartilage Tissue Engineering 531
20.3.1 Cells 531
20.3.1.1 Chondrocytes 531
20.3.1.2 Stem Cells 532
20.3.2 Scaffolds 532
20.3.3 Growth Factors and Growth Strategies 532
20.3.4 Tissue Growth Assessment 533
20.4 MRS and MRI in Cartilage Tissue Engineering 533
20.5 Magnetic Resonance Accessible Components of Tissue Engineered and Regenerating Cartilage 535
20.5.1 Assessment of Tissue Growth 535
20.5.1.1 Water Proton MRI 535
20.5.2 Assessment of Tissue Anisotropy and Dynamics 539
20.5.2.1 Proton NMR Spectroscopy 540
20.5.2.2 Sodium TQ NMR 541
20.5.2.3 Diffusion Tensor Imaging 544
20.5.3 Assessment of GAG Amount 545
20.5.3.1 Sodium MRI 545
20.6 Future Directions 547
20.6.1 New Biomaterials 547
20.6.2 Magnetic Resonance Standards 547
20.6.3 ECM-Specific Techniques 547
20.7 Summary 548
References 548
Chapter 21 - Complementary Imaging in MRI of Cartilage 552
21.1 Introduction 552
21.2 Polarized Light Microscopy 553
21.3 Fourier-Transform Infrared Imaging (FTIRI) 558
21.4 Electron Microscopy 561
21.5 Microscopic Computed Tomography 563
21.6 Additional Imaging Techniques in Cartilage Research 564
21.7 Final Remarks 567
Acknowledgement 569
References 569
Chapter 22 - Quantitative MRI for Detection of Cartilage Damage 575
22.1 Introduction 575
22.2 MRI Biomarkers 577
22.2.1 Quantitative Morphology 577
22.2.2 Sodium (Na) Imaging 577
22.2.3 Delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) 578
22.2.4 T2 Relaxation Time 578
22.2.5 Spin-Lattice Relaxation Time in the Rotating Frame (T1ρ) 578
22.2.6 Magnetization Transfer 579
22.2.7 Diffusion-Weighted MRI 579
22.3 Validation of MRI Biomarkers 580
22.3.1 Techniques Used in the Validation of MRI Biomarkers 581
22.3.1.1 Cartilage Morphology 581
22.3.1.2 Methods for Artificial Degradation 581
22.3.1.3 Histology 583
22.3.1.4 Cartilage Composition 585
22.3.2 Clinical MRI 586
22.3.3 Quantitative Morphology 590
22.3.4 Biomarkers for Cartilage Composition 598
22.3.4.1 Differences in MRI Parameters in Healthy and Degraded Cartilage 598
22.3.4.2 Correlation with Measures of Cartilage Composition and Cartilage Damage 602
22.3.4.3 Diagnostic Accuracy 603
22.3.4.4 Limitations of this Comparative Study 604
22.3.5 Summary 607
22.4 Validation of Diffusion-Weighted Imaging of Articular Cartilage 608
22.4.1 Value of DTI for the Detection of Change of Cartilage After Mechanical Injury 608
22.4.1.1 Study Design 609
22.4.1.2 MRI Protocol and Image Processing 609
22.4.1.3 Results and Discussion 610
22.4.2 Validation of a Clinical Protocol for DTI of Articular Cartilage with Histology 611
22.4.2.1 MRI Protocol 613
22.4.2.2 Histology and Image Processing 614
22.4.2.3 Results and Discussion 616
Acknowledgement 617
References 617
Chapter 23 - Challenges for the Early Detection of Degenerative Cartilage Changes Using Magnetic Resonance Imaging In vivo in Humans 628
23.1 Introduction 628
23.2 Morphologic MRI Techniques 629
23.2.1 Field Strength and Coil 629
23.2.2 Pulse Sequences 630
23.2.2.1 2D Spin Echo and Fast Spin-Echo 631
23.2.2.2 3D Fast Spin-Echo 632
23.2.2.3 3D Gradient Echo 632
23.2.2.4 3D Dual-Echo Steady-State 633
23.2.2.5 Ultrashort Echo-Time 634
23.3 Quantitative Morphological Measurements of Cartilage 634
23.3.1 Magnetic Resonance Considerations 634
23.3.2 Segmentation and Quantification 635
23.3.3 Semi-Quantitative vs. Quantitative Measurements 635
23.3.4 Assessment in Osteoarthritis 637
23.3.5 Assessment After Injury 639
23.3.6 Assessment After Loading 639
23.3.7 Measurement Variability 640
23.4 Quantitative MRI Techniques for Assessment of Cartilage Composition 640
23.4.1 T2 Relaxation Time Mapping 641
23.4.1.1 Sequence Considerations 643
23.4.1.2 Hardware and Software Considerations 643
23.4.1.3 Segmentation 644
23.4.1.4 Other Factors 644
23.4.1.5 Reproducibility and Repeatability 645
23.4.2 Delayed Gadolinium-Enhanced MRI of Cartilage 645
23.4.2.1 Sequence Considerations, Reproducibility, and Repeatability 647
23.4.2.2 Assumptions of GAG Calculation 648
23.4.2.3 Other Factors 648
23.4.3 T1ρ Relaxation Time Mapping 649
23.4.3.1 Sequence Considerations 650
23.4.3.2 Hardware and Software Considerations 651
23.4.3.3 Other Factors 651
23.4.3.4 Reproducibility and Repeatability 652
23.4.4 Sodium (23Na) Imaging 652
23.4.4.1 Sequence Considerations 654
23.4.4.2 Hardware and Software Considerations 654
23.4.4.3 Other Factors 654
23.4.4.4 Reproducibility and Repeatability 654
23.4.5 Diffusion-Weighted Imaging and Diffusion Tensor Imaging 655
23.4.6 Magnetization Transfer and Chemical Exchange-Dependent Saturation Transfer 656
23.5 Conclusion 656
References 657
Chapter 24 - Ultrahigh-Field Whole-Body MRI for Cartilage Imaging: Technical Challenges 671
24.1 Introduction 671
24.2 Technical Solutions 674
24.2.1 Overview 674
24.2.2 Radiofrequency Coil Technology 675
24.2.3 B1+ Shimming and Parallel Transmission 681
24.2.4 B1+-Insensitive Radiofrequency Pulse Design 686
24.2.5 SAR Monitoring and Modeling of Radiofrequency Heating 686
24.2.6 Field Monitoring and B0 Shimming 687
24.2.7 Image Acceleration Strategies 688
24.2.8 Summary 690
24.3 Emerging Applications 691
24.3.1 High-Resolution Anatomical Imaging of Cartilage 691
24.3.2 Quantitative Mapping of Cartilage Damage and Repair 691
24.3.3 Susceptibility-Weighted Imaging of Cartilage Vascular Canals 693
24.3.4 UTE Imaging of the Osteochondral Junction 694
24.3.5 Quantitative Sodium Imaging of Proteoglycan Content 695
24.4 Outlook 695
References 697
Subject Index 706