Menu Expand
Smart Pharmaceutical Nanocarriers

Smart Pharmaceutical Nanocarriers

Torchilin Vladimir P

(2015)

Additional Information

Book Details

Abstract

Drug delivery systems and pharmaceutical nanocarriers that respond to different types of stimuli, such as internal ones, intrinsic for the pathological area (changes in pH, temperature, redox condition, activity of certain enzymes), or external, artificially applied (magnetic field, ultrasound, various irradiations), represent an important and continuously growing area of research. Smart Phramaceutical Nanocarriers overviews the various stimuli used for drug release and delivery by smart pharmaceutical carriers and presents cutting-edge research and the newest data from the leading laboratories in each area.

Table of Contents

Section Title Page Action Price
Contents ix
Preface v
Chapter 1 Stimuli-Sensitive Nanopreparations: Overview 1
1.1 Introduction 1
1.2 Stimuli Characteristics for Pathological Tissues (see Table 1.1) 3
1.2.1 pH 3
1.2.2 Reduction–oxidation (redox) potential 6
1.2.3 Locally overexpressed enzymes 9
1.2.4 Temperature 12
1.3 Stimuli Acting from Outside of the Body (see Table 1.1) 15
1.3.1 Magnetic field 15
1.3.2 Light 26
1.3.3 Ultrasound 28
1.4 Concluding Remarks 30
References 31
Chapter 2 pH-Sensitive Nanosystems 49
2.1 Introduction 49
2.2 Mechanism of pH-Sensitivity 51
2.2.1 Protonation/deprotonation 51
2.2.2 Acid-labile bonds 54
2.3 Representative pH-Sensitive Nanosystems 56
2.3.1 Micelle 56
2.3.2 Liposome 59
2.3.3 Mesoporous silica nanoparticles 59
2.3.4 Others 61
2.4 pH-Sensitive Nanosystems for Drug Delivery 61
2.4.1 Delivery of small molecule drugs 61
2.4.2 Gene delivery 66
2.4.3 Protein/peptide delivery 68
2.5 Other Applications of pH-Sensitive Nanosystems 69
2.5.1 Imaging 69
2.5.2 pH measurement 70
2.5.3 Miscellaneous 73
2.6 Conclusion and Perspective 73
Acknowledgement 74
References 74
Chapter 3 Matrix Metalloproteinase-Sensitive Nanocarriers 83
3.1 Introduction 83
3.2 MMPs and their Physiological Functions 85
3.3 Up-Regulation of MMPs in Pathological Conditions 86
3.4 Design of MMP-Sensitive Nanosized Drug \rDelivery and Imaging Systems 87
3.4.1 Substrates for MMPs 87
3.4.2 MMP-sensitive drug conjugates 91
3.4.3 MMP-sensitive liposomal nanocarriers 94
3.4.4 MMP-sensitive polymeric micelles 96
3.4.5 MMP-sensitive protein-based nanoparticles 99
3.4.6 Dendrimer-based nanoparticles 100
3.4.7 MMP-sensitive nanogels 101
3.4.8 Other polymeric nanoparticles sensitive to MMPs 103
3.4.9 MMP-sensitive inorganic nanoparticles 104
3.4.10 MMP-sensitive multifunctional nanocarriers 105
3.5 Challenges and Future Directions 107
References 108
Chapter 4 Redox-Sensitive Nanosystems 117
4.1 Introduction 117
4.2 Redox-Sensitive Polyethylenimines (PEIs) 119
4.3 Redox-Sensitive Polypeptides 124
4.4 Redox-Sensitive Poly(amido amine)s 127
4.5 Redox-Sensitive Polyion Complex (PIC) Micelles 132
4.6 Redox-Sensitive nanogels 133
4.7 Summary and Future Perspective 136
Acknowledgements 136
References 136
Chapter 5 Temperature-Sensitive Pharmaceutical Nanocarriers 143
5.1 Introduction 143
5.2 Pharmaceutical Nanocarriers: The Need for Targeted and Triggered Drug Delivery \r 144
5.3 Passive/Active Targeting of Nanocarriers 146
5.4 Functional Properties of Thermo-Sensitive Polymers and Lipids 149
5.4.1 Thermo-sensitive polymers 149
5.4.2 Thermo-sensitive lipids 151
5.5 Thermo-Sensitive Micelles 153
5.6 Thermo-Sensitive Hydrogels 158
5.7 Thermo-Sensitive Liposomes 159
5.8 Modalities for Hyperthermia Application 167
5.9 Future Perspectives 168
References 168
Chapter 6 Ultrasound-Controlled Nanosystems 179
6.1 Introduction 179
6.2 Structure and Properties of Ultrasound-Controlled \rNanosystems 180
6.2.1 Polymer-shelled nanoparticles 181
6.2.1.1 Polymer micelles 182
6.2.1.2 Polymer-shelled microbubbles 183
6.2.2 Liposomes 183
6.2.2.1 Temperature-sensitive liposomes 183
6.2.2.2 Liposome-shelled nanobubbles 185
6.2.3 Protein-shelled microbubbles 186
6.3 Active Targeting of Ultrasound-Responsive Nanoparticles 186
6.3.1 Targeting strategies 187
6.3.2 Targeted nanoparticle evaluation 190
6.4 Therapeutic Ultrasound 191
6.4.1 Biophysics of therapeutic ultrasound 191
6.4.2 Cavitation 192
6.4.3 Acoustic radiation force 192
6.4.4 Thermal bioeffects 193
6.4.5 Acoustic parameters for enhanced therapeutic delivery 193
6.4.5.1 Peak rarefactional pressure and center frequency 193
6.4.5.2 Pulse duration and duty cycle 193
6.5 Therapeutic Applications of Ultrasound-Controlled \rNanosystems 194
6.5.1 Drug and gene delivery to the brain 194
6.5.2 Drug and gene delivery to the kidneys 195
6.5.3 Drug and gene delivery to the lungs and the pleural space 196
6.5.4 Gene therapy applications 196
6.5.5 Drug and gene delivery in atherosclerosis and myocardium 198
6.5.5.1 Atherosclerosis 198
6.5.5.2 Myocardium 199
6.5.6 Bioactive gas delivery 199
6.6 Conclusions 200
References 200
Chapter 7 Plasmonic Nanobubble-Controlled On Demand Drug Delivery and Release with High Target Cell Specificity 213
7.1 Introduction 213
7.2 Generation and Detection of PNBs 215
7.2.1 Mechanism of PNB generation 219
7.3 Target Cell Specificity of PNB vs. NPS 223
7.4 PNB-Induced Ejection (Release) of an Encapsulated Payload 228
7.5 Therapeutic Responses to Drugs, GNPs, Laser Pulses and X-Rays In Vitro 230
7.6 The Mechanism of Intracellular Self-Amplification of the Therapeutic Strength with Cancer Aggressiveness 233
7.7 Generation and Detection of PNBs In Vivo 234
7.8 The Evaluation of PNB Therapy and Diagnostics In Vivo 237
7.9 Future Medical Applications of PNBs 241
References 243
Chapter 8 Light-Activated Nanopreparations 253
8.1 Introduction 253
8.2 Light-Modulated Self Assembly 254
8.3 Photo-Responsive Molecules 255
8.4 Vehicles for Light-Activated Drug Delivery 257
8.4.1 Liposomes 257
8.4.2 Micelles 259
8.4.3 Nanoparticles 260
8.5 Challenges 261
8.6 Conclusions 261
References 262
Chapter 9 Magnetic Field-Responsive Nanocarriers 267
9.1 Introduction 267
9.2 Magnetic Materials and Nanoparticles: A Brief Overview 268
9.2.1 Properties and types of magnetic materials 269
9.2.2 Commonly employed magnetic materials 270
9.3 Magnetic Drug Targeting (MDT) Using Nanocarriers: General Concepts 272
9.4 Magnetically Responsive Nanocarriers for Specific Applications 275
9.4.1 Passively targeted magnetic nanocarriers 275
9.4.2 Actively targeted magnetic nanocarriers 278
9.4.3 MFRNs for hyperthermia 280
9.4.4 Magnetic field-responsive nanocarriers for imaging 285
9.4.5 Magnetic field-responsive nanocarriers as theranostics 288
9.4.6 Other biomedical applications of MNPs\r 291
9.5 Multifunctional Magnetic Nanocarriers 292
9.6 Conclusion and Future Perspectives 295
References 296
Chapter 10 Smart Lipid-Based Drug Delivery Systems 309
10.1 Introduction 309
10.2 Smart Lipid-Based Carriers for Systemic Drug Delivery 314
10.2.1 Smart liposomes for systemic delivery 314
10.2.1.1 First generation of liposomes: Plain liposomes 314
10.2.1.2 Long-circulating liposomes: “Stealth” liposomes 315
10.2.1.3 Long-circulating functionalized liposomes for active targeting 317
10.2.1.4 pH-responsive liposomes 318
10.2.1.5 Temperature-responsive liposomes: Thermoliposomes 319
10.2.1.6 Redox-responsive liposomes 319
10.2.1.7 Magnetically-responsive liposomes: Magnetoliposomes 320
10.2.1.8 Ultrasound-responsive liposomes: Ultrasonic liposomes 321
10.2.1.9 Light-responsive liposomes 322
10.2.1.10. Cationic liposomes: Lipid-DNA complexes for gene delivery 323
10.2.2 Smart lipid-based micelles for systemic delivery 328
10.2.3 Smart SLNs for systemic delivery 329
10.2.4 Smart LNCs for systemic delivery 330
10.2.5 Smart lipid-coated systems for systemic delivery 332
10.2.5.1 Lipid-coated gas microbubbles 332
10.2.5.2 LPHNs 332
10.2.6 Smart oil-in-water emulsions for systemic delivery 334
10.3 Smart Lipid-Based Carriers for Oral Drug Delivery 336
10.3.1 Smart liposomes for oral delivery 338
10.3.2 Smart lipid-based liquid crystals for oral delivery 339
10.3.3 Smart long-chain triglyceride or fatty acid-based delivery systems for oral delivery 341
10.3.4 Smart SMEDDSs for oral delivery 343
10.4 Smart Lipid-Based Carriers for Dermal and Transdermal Delivery 345
10.4.1 Smart liposomes for transdermal delivery 345
10.4.2 Smart lipid-based liquid crystals for dermal delivery 346
10.4.3 Smart solid lipid nanoparticles for dermal delivery 347
10.5 Smart Lipid-Based Carriers for Ocular Delivery 347
10.5.1 Smart liposomes for ocular delivery 348
10.5.2 Smart solid lipid nanoparticles for ocular delivery 348
10.6 Smart Lipid-Based Carriers for Intramuscular \rDelivery of Vaccines: Virosomes 349
r10.7 Summary 350
Acknowledgements 351
References 351
Chapter 11 Smart Polymer-Based Nanomedicines 373
11.1 Polymer Therapeutics Design and Synthesis 373
11.1.1 Polymer principles 374
11.1.2 Early polymer therapeutics 376
11.1.3 Incorporating smart functionality 376
11.1.4 Synthesis strategies 378
11.1.4.1 Atom Transfer Radical Polymerization (ATRP) 378
11.1.4.2 Reversible Addition−Fragmentation Chain-Transfer (RAFT ) 378
11.2 Stimuli 379
11.2.1 Temperature 379
11.2.2 pH 381
11.2.3 Light 383
11.2.4 Reduction 383
11.2.5 Ultrasound 384
11.3 Biorecognition/Biological 384
11.3.1 Passive targeting 385
11.3.2 Active targeting 385
11.3.3 Selective targeting 386
11.4 Structures of Polymer-Based Nanomedicines 386
11.4.1 Linear polymers 386
11.4.1.1 In vivo self-assembling polymer therapeutics 390
11.4.2 Micelles 392
11.4.3 Polymersomes 393
11.4.4 Nanogels or shell cross-linked micelles 395
11.4.5 Dendritic polymers 397
11.4.6 Elastin-like polypeptides 398
11.5 Challenges for Translation 399
11.5.1 Necessary steps towards safe smart polymer therapeutics 401
11.5.1.1 Biocompatibility 402
11.5.1.2 Characterization of smart therapeutics 402
References 403
Chapter 12 Inorganic Nanoparticle-Based Smart Drug Delivery Systems 415
12.1 Introduction 415
12.2 Design Consideration of Inorganic NPs for Delivery Application 416
12.2.1 HD size 417
12.2.2 Surface charge 422
12.2.3. Targeting 427
12.3 Smart Delivery System with Strategic Payload Release 430
12.3.1 pH 430
12.3.2. Intracellular GSH 433
12.3.3 Light 436
12.3.4. Magnetic field 438
12.4 Conclusion 441
References 443
Chapter 13 Smart Nanopreparations for Cancer 449
13.1 Introduction 449
13.1.1 pH-sensitive nanoformulation 449
13.1.2 Gold nanoparticles 454
13.1.2.1 AuNPs in drug delivery of lung cancer 459
13.1.2.2 AuNPs for cytotoxicity studies 460
13.1.2.3 Smart GNPs enhance killing effect on cancer cells 461
13.1.2.4 Photodynamic therapy 462
13.1.2.5. Diagnostics 463
13.1.3 Magnetic nanoparticles 465
References 470
Chapter 14 Advances in Smart Nanopreparations for Oral Drug Delivery 479
14.1 Introduction 479
14.1.1 Importance of oral delivery and nanotechnology 480
14.1.1.1 Side effects of drugs 480
14.1.1.2 Biodisponibility of drugs 481
14.1.2 Physiological barriers that affect nanopreparations’stability 481
14.1.2.1 Gastric acidity 481
14.1.2.2 GI proteases 482
14.1.2.3 Transport mechanisms in the GI tract 482
14.1.2.4 Mucus layer of GI tract 482
14.1.2.5 Residence time 483
14.1.3 Biopharmaceutical considerations 483
14.1.3.1 Mononuclear phagocyte system (MPS)—PEGylation 483
14.1.3.2 The enhanced permeation and retention (EPR) effect 484
14.1.3.3 Active targeting 484
14.2 Nanopreparations 485
14.2.1. Nanocrystals 485
14.2.1.1 Drug nanocrystals 485
14.2.1.2 Cross-linked enzyme: Crystals (CLECs) and aggregates (CLEAs) 488
14.2.2 Polymeric nanocarriers 489
14.2.2.1. Polymeric nanoparticles 491
14.2.2.2 Polymeric micelles 493
14.2.2.3 Polymer–drug conjugates 494
14.2.3 Emulsions 495
14.2.3.1 Liposomes 495
14.2.3.2 Solid lipid nanoparticles (SLNs) 498
14.2.3.3 Nano-structured lipid carrier 504
14.2.4. Inorganic and hybrid systems 505
14.2.4.1 Silica 506
14.2.4.2 Zeolites and Nanoclays 508
14.2.4.3 Silver nanoparticles 512
14.3 Conclusions 514
Acknowledgments and Conflict of Interest Statement 514
References 515
Chapter 15 Smart Theranostic Nanosystems 523
15.1 Introduction 523
15.2 pH-Sensitive Theranostic Nanosystems 523
15.2.1 Mechanisms for pH sensitivity 524
15.2.2 Strategies for targeting 527
15.2.3 Application of pH-sensitive theranostics 528
15.3 Photo-Responsive Systems 530
15.3.1 Design and synthesis of PR theranostic nanoplatforms 530
15.3.2 Gold-based PR theranostic tanosystems 532
15.3.3 Silica-based and other PR theranostic nanosystems 535
15.4 Magnetically Responsive Systems 536
15.4.1 Design and synthesis of theranostic magnetic nanoplatforms 539
15.4.2. Design parameters of magnetically responsive nanosystems 539
15.4.3 Application of magnetic nanosystems 541
15.5 Conclusion 545
Acknowledgement 547
References 547