Menu Expand
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Global Edition

Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Global Edition

Randall D. Knight

(2016)

Additional Information

Book Details

Abstract

For courses in introductory calculus-based physics.

 

A research-driven approach, fine-tuned for even greater ease-of-use and student success

For the Fourth Edition of Physics for Scientists and Engineers, Knight continues to build on strong research-based foundations with fine-tuned and streamlined content, hallmark features, and an even more robust MasteringPhysics program, taking student learning to a new level. By extending problem-solving guidance to include a greater emphasis on modeling and significantly revised and more challenging problem sets, students gain confidence and skills in problem solving. A modified Table of Contents and the addition of advanced topics now accommodate different teaching preferences and course structures.

 

MasteringPhysics not included. Students, if MasteringPhysics is a recommended/mandatory component of the course, please ask your instructor for the correct ISBN and course ID. MasteringPhysics should only be purchased when required by an instructor. Instructors, contact your Pearson representative for more information.

 

MasteringPhysics from Pearson is the leading online homework, tutorial, and assessment system, designed to improve results by engaging students before, during, and after class with powerful content. Instructors ensure students arrive ready to learn by assigning educationally effective content before class, and encourage critical thinking and retention with in-class resources such as Learning Catalytics.


Table of Contents

Section Title Page Action Price
Cover Cover
Front End Paper FEP1
Title Page 1
Copyright Page 2
About the Author 3
Preface to the Instructor 8
Acknowledgments 10
Preface to the Student 13
Contents 15
Part I: Newton’s Laws 23
Overview: Why Things Change 23
Chapter 1: Concepts of Motion 24
1.1. Motion Diagrams 25
1.2. Models and Modeling 26
1.3. Position, Time, and Displacement 27
1.4. Velocity 31
1.5. Linear Acceleration 33
1.6. Motion in One Dimension 37
1.7. Solving Problems in Physics 40
1.8. Unit and Significant Figures 44
Summary 49
Questions and Problems 50
Chapter 2: Kinematics in One Dimension 54
2.1. Uniform Motion 55
2.2. Instantaneous Velocity 59
2.3. Finding Position from Velocity 62
2.4. Motion with Constant Acceleration 65
2.5. Free Fall 71
2.6. Motion on an Inclined Plane 73
2.7. Advanced Topic: Instantaneous Acceleration 76
Summary 79
Questions and Problems 80
Chapter 3: Vectors and Coordinate Systems 87
3.1. Scalars and Vectors 88
3.2. Using Vectors 88
3.3. Coordinate Systems and Vector Components 91
3.4. Unit Vectors and Vector Algebra 94
Summary 98
Questions and Problems 99
Chapter 4: Kinematics in Two Dimensions 102
4.1. Motion in Two Dimensions 103
4.2. Projectile Motion 107
4.3. Relative Motion 112
4.4. Uniform Circular Motion 114
4.5. Centripetal Acceleration 118
4.6. Nonuniform Circular Motion 120
Summary 125
Questions and Problems 126
Chapter 5: Force and Motion 132
5.1. Force 133
5.2. A Short Catalog of Forces 135
5.3. Identifying Forces 137
5.4. What Do Forces Do? 139
5.5. Newton’s Second Law 142
5.6. Newton’s First Law 143
5.7. Free-Body Diagrams 145
Summary 148
Questions and Problems 149
Chapter 6: Dynamics I: Motion Along a Line 153
6.1. The Equilibrium Model 154
6.2. Using Newton’s Second Law 156
6.3. Mass, Weight, and Gravity 159
6.4. Friction 163
6.5. Drag 167
6.6. More Examples of Newton’s Second Law 170
Summary 174
Questions and Problems 175
Chapter 7: Newton’s Third Law 181
7.1. Interacting Objects 182
7.2. Analyzing Interacting Objects 183
7.3. Newton’s Third Law 186
7.4. Ropes and Pulleys 191
7.5. Examples of Interacting-Object Problems 194
Summary 197
Questions and Problems 198
Chapter 8: Dynamics II: Motion in a Plane 204
8.1. Dynamics in Two Dimensions 205
8.2. Uniform Circular Motion 206
8.3. Circular Orbits 211
8.4. Reasoning About Circular Motion 213
8.5. Nonuniform Circular Motion 216
Summary 219
Questions and Problems 220
Knowledge Structure: Part I: Newton’s Laws 226
Part II: Conservation Laws 227
Overview: Why Some Things Don’t Change 227
Chapter 9: Work and Kinetic Energy 228
9.1. Energy Overview 229
9.2. Work and Kinetic Energy for a Single Particle 231
9.3. Calculating the Work Done 235
9.4. Restoring Forces and the Work Done by a Spring 241
9.5. Dissipative Forces and Thermal Energy 243
9.6. Power 246
Summary 248
Questions and Problems 249
Chapter 10: Interactions and Potential Energy 253
10.1. Potential Energy 254
10.2. Gravitational Potential Energy 255
10.3. Elastic Potential Energy 261
10.4. Conservation of Energy 264
10.5. Energy Diagrams 266
10.6. Force and Potential Energy 269
10.7. Conservative and Nonconservative Forces 271
10.8. The Energy Principle Revisited 273
Summary 276
Questions and Problems 277
Chapter 11: Impulse and Momentum 283
11.1. Momentum and Impulse 284
11.2. Conservation of Momentum 288
11.3. Collisions 294
11.4. Explosions 299
11.5. Momentum in Two Dimensions 301
11.6. Advanced Topic: Rocket Propulsion 303
Summary 307
Questions and Problems 308
Knowledge Structure: Part II: Conservation Laws 314
Part III: Applications of Newtonian Mechanics 315
Overview: Power Over Our Environment 315
Chapter 12: Rotation of a Rigid Body 316
12.1. Rotational Motion 317
12.2. Rotation About the Center of Mass 318
12.3. Rotational Energy 321
12.4. Calculating Moment of Inertia 323
12.5. Torque 325
12.6. Rotational Dynamics 329
12.7. Rotation About a Fixed Axis 331
12.8. Static Equilibrium 333
12.9. Rolling Motion 336
12.10. The Vector Description of Rotational Motion 339
12.11. Angular Momentum 342
12.12. Advanced Topic: Precession of a Gyroscope 346
Summary 350
Questions and Problems 351
Chapter 13: Newton’s Theory of Gravity 358
13.1. A Little History 359
13.2. Isaac Newton 360
13.3. Newton’s Law of Gravity 361
13.4. Little g and Big G 363
13.5. Gravitational Potential Energy 365
13.6. Satellite Orbits and Energies 369
Summary 374
Questions and Problems 375
Chapter 14: Fluids and Elasticity 379
14.1. Fluids 380
14.2. Pressure 381
14.3. Measuring and Using Pressure 387
14.4. Buoyancy 391
14.5. Fluid Dynamics 395
14.6. Elasticity 400
Summary 404
Questions and Problems 405
Knowledge Structure: Part III: Applications of Newtonian Mechanics 410
Part IV: Oscillations and Waves 411
Overview: The Wave Model 411
Chapter 15: Oscillations 412
15.1. Simple Harmonic Motion 413
15.2. SHM and Circular Motion 416
15.3. Energy in SHM 419
15.4. The Dynamics of SHM 421
15.5. Vertical Oscillations 424
15.6. The Pendulum 426
15.7. Damped Oscillations 430
15.8. Driven Oscillations and Resonance 433
Summary 435
Questions and Problems 437
Chapter 16: Traveling Waves 442
16.1. The Wave Model 443
16.2. One-Dimensional Waves 445
16.3. Sinusoidal Waves 448
16.4. Advanced Topic: The Wave Equation on a String 452
16.5. Sound and Light 456
16.6. Advanced Topic: The Wave Equation in a Fluid 460
16.7. Waves in Two and Three Dimensions 463
16.8. Power, Intensity, and Decibels 465
16.9. The Doppler Effect 467
Summary 471
Questions and Problems 472
Chapter 17: Superposition 477
17.1. The Principle of Superposition 478
17.2. Standing Waves 479
17.3. Standing Waves on a String 481
17.4. Standing Sound Waves and Musical Acoustics 485
17.5. Interference in One Dimension 489
17.6. The Mathematics of Interference 493
17.7. Interference in Two and Three Dimensions 496
17.8. Beats 499
Summary 503
Questions and Problems 504
Knowledge Structure: Part IV: Oscillations and Waves 510
Part V: Thermodynamics 511
Overview: It’s All About Energy 511
Chapter 18: A Macroscopic Description of Matter 512
18.1. Solids, Liquids, and Gases 513
18.2. Atoms and Moles 514
18.3. Temperature 516
18.4. Thermal Expansion 518
18.5. Phase Changes 519
18.6. Ideal Gases 521
18.7. Ideal-Gas Processes 525
Summary 531
Questions and Problems 532
Chapter 19: Work, Heat, and the First Law of Thermodynamics 537
19.1. It’s All About Energy 538
19.2. Work in Ideal-Gas Processes 539
19.3. Heat 543
19.4. The First Law of Thermodynamics 546
19.5. Thermal Properties of Matter 548
19.6. Calorimetry 551
19.7. The Specific Heats of Gases 553
19.8. Heat-Transfer Mechanisms 559
Summary 563
Questions and Problems 564
Chapter 20: The Micro/Macro Connection 570
20.1. Molecular Speeds and Collisions 571
20.2. Pressure in a Gas 572
20.3. Temperature 575
20.4. Thermal Energy and Specific Heat 577
20.5. Thermal Interactions and Heat 580
20.6. Irreversible Processes and the Second Law of Thermodynamics 583
Summary 587
Questions and Problems 588
Chapter 21: Heat Engines and Refrigerators 592
21.1. Turning Heat into Work 593
21.2. Heat Engines and Refrigerators 595
21.3. Ideal-Gas Heat Engines 600
21.4. Ideal-Gas Refrigerators 604
21.5. The Limits of Efficiency 606
21.6. The Carnot Cycle 609
Summary 614
Questions and Problems 616
Knowledge Structure: Part V: Thermodynamics 622
Part VI: Electricity and Magnetism 623
Overview: Forces and Fields 623
Chapter 22: Electric Charges and Forces 624
22.1. The Charge Model 625
22.2. Charge 628
22.3. Insulators and Conductors 630
22.4. Coulomb’s Law 634
22.5. The Electric Field 638
Summary 644
Questions and Problems 645
Chapter 23: The Electric Field 651
23.1. Electric Field Models 652
23.2. The Electric Field of Point Charges 652
23.3. The Electric Field of a Continuous Charge Distribution 657
23.4. The Electric Fields of Rings, Disks, Planes, and Spheres 661
23.5. The Parallel-Plate Capacitor 665
23.6. Motion of a Charged Particle in an Electric Field 667
23.7. Motion of a Dipole in an Electric Field 670
Summary 673
Questions and Problems 674
Chapter 24: Gauss’s Law 680
24.1. Symmetry 681
24.2. The Concept of Flux 683
24.3. Calculating Electric Flux 685
24.4. Gauss’s Law 691
24.5. Using Gauss’s Law 694
24.6. Conductors in Electrostatic Equilibrium 698
Summary 702
Questions and Problems 703
Chapter 25: The Electric Potential 709
25.1. Electric Potential Energy 710
25.2. The Potential Energy of Point Charges 713
25.3. The Potential Energy of a Dipole 716
25.4. The Electric Potential 717
25.5. The Electric Potential Inside a Parallel- Plate Capacitor 720
25.6. The Electric Potential of a Point Charge 724
25.7. The Electric Potential of Many Charges 726
Summary 729
Questions and Problems 730
Chapter 26: Potential and Field 736
26.1. Connecting Potential and Field 737
26.2. Finding the Electric Field from the Potential 739
26.3. A Conductor in Electrostatic Equilibrium 742
26.4. Sources of Electric Potential 744
26.5. Capacitance and Capacitors 746
26.6. The Energy Stored in a Capacitor 751
26.7. Dielectrics 752
Summary 757
Questions and Problems 758
Chapter 27: Current and Resistance 764
27.1. The Electron Current 765
27.2. Creating a Current 767
27.3. Current and Current Density 771
27.4. Conductivity and Resistivity 775
27.5. Resistance and Ohm’s Law 777
Summary 782
Questions and Problems 783
Chapter 28: Fundamentals of Circuits 788
28.1. Circuit Elements and Diagrams 789
28.2. Kirchhoff’s Laws and the Basic Circuit 790
28.3. Energy and Power 793
28.4. Series Resistors 795
28.5. Real Batteries 797
28.6. Parallel Resistors 799
28.7. Resistor Circuits 802
28.8. Getting Grounded 804
28.9. RC Circuits 806
Summary 810
Questions and Problems 811
Chapter 29: The Magnetic Field 818
29.1. Magnetism 819
29.2. The Discovery of the Magnetic Field 820
29.3. The Source of the Magnetic Field: Moving Charges 822
29.4. The Magnetic Field of a Current 824
29.5. Magnetic Dipoles 828
29.6. Ampère’s Law and Solenoids 831
29.7. The Magnetic Force on a Moving Charge 837
29.8. Magnetic Forces on Current-Carrying Wires 842
29.9. Forces and Torques on Current Loops 845
29.10. Magnetic Properties of Matter 846
Summary 850
Questions and Problems 851
Chapter 30. Electromagnetic Induction 858
30.1. Induced Currents 859
30.2. Motional emf 860
30.3. Magnetic Flux 864
30.4. Lenz’s Law 867
30.5. Faraday’s Law 870
30.6. Induced Fields 874
30.7. Induced Currents: Three Applications 877
30.8. Inductors 879
30.9. LC Circuits 883
30.10. LR Circuits 885
Summary 889
Questions and Problems 890
Chapter 31: Electromagnetic Fields and Waves 898
31.1. E or B? It Depends on Your Perspective 899
31.2. The Field Laws Thus Far 904
31.3. The Displacement Current 905
31.4. Maxwell’s Equations 908
31.5. Advanced Topic: Electromagnetic Waves 910
31.6. Properties of Electromagnetic Waves 915
31.7. Polarization 918
Summary 921
Questions and Problems 922
Chapter 32: AC Circuits 927
32.1. AC Sources and Phasors 928
32.2. Capacitor Circuits 930
32.3. RC Filter Circuits 932
32.4. Inductor Circuits 935
32.5. The Series RLC Circuit 936
32.6. Power in AC Circuits 940
Summary 944
Questions and Problems 945
Knowledge Structure: Part VI: Electricity and Magnetism 950
Part VII: Optics 951
Overview: The Story of Light 951
Chapter 33: Wave Optics 952
33.1. Models of Light 953
33.2. The Interference of Light 954
33.3. The Diffraction Grating 959
33.4. Single-Slit Diffraction 962
33.5. Advanced Topic: A Closer Look at Diffraction 966
33.6. Circular-Aperture Diffraction 969
33.7. The Wave Model of Light 970
33.8. Interferometers 972
Summary 975
Questions and Problems 976
Chapter 34: Ray Optics 982
34.1. The Ray Model of Light 983
34.2. Reflection 985
34.3. Refraction 988
34.4. Image Formation by Refraction at a Plane Surface 993
34.5. Thin Lenses: Ray Tracing 994
34.6. Thin Lenses: Refraction Theory 1000
34.7. Image Formation with Spherical Mirrors 1005
Summary 1010
Questions and Problems 1011
Chapter 35: Optical Instruments 1017
35.1. Lenses in Combination 1018
35.2. The Camera 1019
35.3. Vision 1023
35.4. Optical Systems That Magnify 1026
35.5. Color and Dispersion 1030
35.6. The Resolution of Optical Instruments 1032
Summary 1037
Questions and Problems 1038
Knowledge Structure: Part VII: Optics 1042
Part VIII: Relativity and Quantum Physics 1043
Overview: Contemporary Physics 1043
Chapter 36: Relativity 1044
36.1. Relativity: What’s It All About? 1045
36.2. Galilean Relativity 1045
36.3. Einstein’s Principle of Relativity 1048
36.4. Events and Measurements 1051
36.5. The Relativity of Simultaneity 1054
36.6. Time Dilation 1057
36.7. Length Contraction 1061
36.8. The Lorentz Transformations 1065
36.9. Relativistic Momentum 1070
36.10. Relativistic Energy 1073
Summary 1079
Questions and Problems 1080
Chapter 37: The Foundations of Modern Physics 1085
37.1. Matter and Light 1086
37.2. The Emission and Absorption of Light 1086
37.3. Cathode Rays and X Rays 1089
37.4. The Discovery of the Electron 1091
37.5. The Fundamental Unit of Charge 1094
37.6. The Discovery of the Nucleus 1095
37.7. Into the Nucleus 1099
37.8. Classical Physics at the Limit 1101
Summary 1102
Questions and Problems 1103
Chapter 38: Quantization 1107
38.1. The Photoelectric Effect 1108
38.2. Einstein’s Explanation 1111
38.3. Photons 1114
38.4. Matter Waves and Energy Quantization 1118
38.5. Bohr’s Model of Atomic Quantization 1121
38.6. The Bohr Hydrogen Atom 1125
38.7. The Hydrogen Spectrum 1130
Summary 1134
Questions and Problems 1135
Chapter 39: Wave Functions and Uncertainty 1140
39.1. Waves, Particles, and the Double-Slit Experiment 1141
39.2. Connecting the Wave and Photon Views 1144
39.3. The Wave Function 1146
39.4. Normalization 1148
39.5. Wave Packets 1150
39.6. The Heisenberg Uncertainty Principle 1153
Summary 1157
Questions and Problems 1158
Chapter 40: One-Dimensional Quantum Mechanics 1163
40.1. The Schrödinger Equation 1164
40.2. Solving the Schrödinger Equation 1167
40.3. A Particle in a Rigid Box: Energies and Wave Functions 1169
40.4. A Particle in a Rigid Box: Interpreting the Solution 1172
40.5. The Correspondence Principle 1175
40.6. Finite Potential Wells 1177
40.7. Wave-Function Shapes 1182
40.8. The Quantum Harmonic Oscillator 1184
40.9. More Quantum Models 1187
40.10. Quantum-Mechanical Tunneling 1190
Summary 1195
Questions and Problems 1196
Chapter 41: Atomic Physics 1200
41.1. The Hydrogen Atom: Angular Momentum and Energy 1201
41.2. The Hydrogen Atom: Wave Functions and Probabilities 1204
41.3. The Electron’s Spin 1207
41.4. Multielectron Atoms 1209
41.5. The Periodic Table of the Elements 1212
41.6. Excited States and Spectra 1215
41.7. Lifetimes of Excited States 1220
41.8. Stimulated Emission and Lasers 1222
Summary 1227
Questions and Problems 1228
Chapter 42: Nuclear Physics 1232
42.1. Nuclear Structure 1233
42.2. Nuclear Stability 1236
42.3. The Strong Force 1239
42.4. The Shell Model 1240
42.5. Radiation and Radioactivity 1242
42.6. Nuclear Decay Mechanisms 1247
42.7. Biological Applications of Nuclear Physics 1252
Summary 1256
Questions and Problems 1257
Knowledge Structure: Part VIII: Relativity and Quantum Physics 1262
Appendix A: Mathematics Review A-1
Appendix B: Periodic Table of Elements A-4
Appendix C: Atomic and Nuclear Data A-5
Answers to Stop to Think Questions and Odd-Numbered Problems A-9
Credits C-1
Index I-1
Back End Paper BEP1
Back Cover Back Cover