Menu Expand
Ophthalmic Disease Mechanisms And Drug Discovery

Ophthalmic Disease Mechanisms And Drug Discovery

Zhang Kang | Wu Frances

(2016)

Additional Information

Book Details

Abstract

This invaluable book presents a concise discussion on the most important topics of ophthalmology — mechanism of ophthalmic diseases, imaging techniques used for diagnosis, novel therapies and drug delivery systems. It also covers current knowledge about anti-VEGF therapies that revolutionized neovascular AMD treatment, anti-inflammatory and dry eye treatment, as well as nanoparticles use of drug delivery.Written by experts in ophthalmology, this unique volume provides a comprehensive overview of the latest research in the field. This is an essential reading that will provide up-to-date reference to practicing physicians and current knowledge to residents and students.

Table of Contents

Section Title Page Action Price
Contents v
Introduction 1
Chapter 1: Pathology and Mechanism of Eye Diseases 3
1. Introduction 3
2. The Eye 3
2.1. Anterior eye 4
2.2. Posterior eye 4
2.2.1. The retina 5
2.2.2. The photoreceptor cells 5
3. The Phototranduction Cascade 7
3.1. Activation of the phototransduction cascade 8
3.2. Deactivation of the phototransduction cascade 8
3.3. Adaptation of the phototransduction cascade 9
4. The Visual Cycle 10
5. Pathology of Eye Diseases 10
5.1. Leber congenital amaurosis 11
5.2. Retinitis pigmentosa 11
6. Mechanisms of Eye Diseases 12
6.1. Rod photoreceptor cell metabolism 13
6.2. The complement pathway and the alternative pathway 14
6.3. Lipofuscin accumulation 15
6.4. Non-autonomous cone cell death 16
6.5. Calcium-dependent apoptosis 16
6.6. The unfolded protein response 17
6.7. Ciliary defects 19
6.8. Intracellular trafficking defects 20
6.9. Structural defects 21
6.10. Processing of messenger RNA and transcriptional defects 22
7. Summary 22
8. References 23
Chapter 2: Ophthalmic Imaging 33
1. Introduction 33
2. Fluorescein Angiography 34
2.1. Principles of fluorescein angiography 34
2.2. Interpretation of fluorescein angiography 35
2.2.1. Age-related macular degeneration (AMD) 39
3. Indocyanine Green Angiography 41
3.1. Principles of indocyanine green angiography 41
3.2. Interpretation of indocyanine green angiography 42
3.2.1. Polypoidal choroidal vasculopathy (PCV) 43
3.2.2. Retinal angiomatous proliferation (RAP) 43
3.2.3. Central serous chorioretinopathy 44
3.2.4. Inflammatory eye diseases 44
4. Optical Coherence Tomography 45
4.1. Principles of optical coherence tomography 45
4.2. Choroidal imaging using OCT 48
5. Fundus Autofluorescence 49
6. Widefield Imaging 52
6.1. Pseudocolor fundus images 53
6.2. Widefield fluorescein angiography 54
6.3. Widefield fundus autofluorescence 55
7. Conclusion 56
8. References 56
Chapter 3: Pharmacogenomics of Response to Anti-VEGF Therapy in Exudative Age-Related Macular Degeneration 63
1. Introduction 63
2. Results 65
2.1. Pharmacogenetics for genes associated with AMD in the comparison of AMD treatments trials (CATT) 65
2.1.1 Conclusions 73
2.2. Pharmacogenetics of complement factor H (Y402H) and treatment of exudative AMD with ranibizumab 73
2.2.1. Conclusions 74
2.3. Complement factor H Y402H gene polymorphism and response to intravitreal bevacizumab in exudative AMD 74
2.3.1. Conclusions 75
2.4. Association of complement factor H and LOC387715 genotypes with response of exudative AMD to intravitreal bevacizumab 75
2.4.1. Conclusions 75
2.5. Involvement of genetic factors in the response to a variable-dosing ranibizumab treatment regimen for AMD 76
2.5.1. Conclusions 76
2.6. Association between high-risk disease loci and response to anti-vascular endothelial growth factor treatment for wet AMD 77
2.6.1. Conclusions 77
2.7. CFH, VEGF and HTRA1 promoter genotype may influence the response to intravitreal ranibizumab for neovascular AMD 78
2.7.1. Conclusions 78
2.8. Association of genetic polymorphisms with response to bevacizumab for neovascular AMD in the Chinese population 78
2.8.1. Conclusion 79
2.9. VEGF-A polymorphisms predict short-term functional response to intravitreal ranibizumab in exudative AMD 79
2.9.1. Conclusion 80
2.10. The influence of genetics on response to treatment with ranibizumab (Lucentis) for AMD: the Lucentis genotype study 80
2.10.1. Conclusion 81
2.11. Genetic influences on the outcome of anti-vascular endothelial growth factor treatment in neovascular AMD 81
2.11.1. Conclusion 82
2.12. Genetic association with response to intravitreal ranibizumab in patients with neovascular AMD 82
2.12.1. Conclusion 83
2.13. Variants in the VEGF-A gene and treatment outcome after anti-VEGF treatment for neovascular AMD 83
2.13.1. Conclusion 84
2.14. Common variant in VEGFA and response to anti-VEFF therapy for neovascular AMD 84
2.14.1. Conclusion 85
2.15. Variants in the APOE gene are associated with improved outcome after anti-VEGF treatment for neovascular AMD 85
2.15.1. Conclusion 85
2.16. Cumulative effect of risk alleles in CFH, ARMS2, and VEGF-A on the response to ranibizumab treatment in AMD 86
2.16.1. Conclusion 86
3. Discussion 86
4. References 91
Chapter 4: Dry Eye Therapy 97
1. Introduction 97
2. Background of DED 98
2.1. Definition of DED 98
2.2. Types of DED 99
2.3. Pathophysiology of DED 100
3. Potential Targets for DED 102
3.1. Tear deficiency or increased evaporation 102
3.2. Inflammation 103
3.3. Mucin secretion 104
3.4. Autologous serum tears 104
3.5. Hormonal mechanisms 105
4. Current Status of Ocular Drugs and Therapies 105
4.1. Stepwise approach from dry eye workshop report 106
4.2. Ocular lubricants 106
4.3. Anti-inflammatory drugs 108
4.3.1. Cyclosporine A ( Restasis®) 108
4.3.2. Corticosteroids 110
4.4. Dietary supplementation 111
4.5. Other ocular drugs and therapies for dry eye disease 112
5. Ongoing Clinical Trials and Potential Future Therapies (Table 4) 113
5.1. Mucin secretagogues 113
5.1.1. Rebamipide 113
5.1.2 Diquafosol tetrasodium 113
5.2. Ocular lubricants 116
5.2.1 Sodium hyaluronate 116
5.3. Anti-inflammatory antibiotics 116
5.4. Autologous 117
5.4.1. Serum tears 117
5.4.2. Autologous plasma 118
5.5. Hormonal therapy 119
5.6. Anti-inflammatory drugs and immunomodulators 120
5.6.1. Cyclokat (Nova22007) 120
5.6.2 Resolvin E1 (RvE1) 121
5.6.3. Lifitegrast (SAR 1118) 121
5.6.4. EGP-437 122
5.6.5. CF101 123
5.6.6. Topical tofacitinib (CP-690,550) 124
5.6.7. Thymosin β4 (RGN-259) 124
5.6.8. Topical tacrolimus 125
5.7. Biologics 125
5.7.1. Topical infliximab 125
5.7.2. IL-1 Receptor antagonist 126
5.8. MIM-D3 126
6. Conclusions 127
7. References 127
Chapter 5: Ocular Inflammation Therapy 145
1. Introduction 145
2. Ocular Inflammatory Diseases 146
3. Inflammatory Casacade Overview 148
4. Ocular Drugs and Delivery Systems in Ocular Inflammation 148
4.1. Nonsteroidal anti-inflammatory drugs 148
4.1.1. Topical non-steroidal anti-inflammatory drugs 149
4.1.2. Systemic non-steroidal anti-inflammatory drugs 150
4.2. Glucocorticosteroids 150
4.2.1. Topical corticosteroids 152
4.2.2. Systemic corticosteroids 154
4.2.3. Periocular corticosteroids 155
4.2.4. Intravitreal injections of corticosteroids 156
4.2.5. Intravitreal implants 157
4.2.5.1. Retisert® implant 157
4.2.5.2. Ozurdex® 158
4.2.5.3. Other implants 160
4.3. Immunomodulatory therapy 160
4.3.1. Chemotherapeutic agents 162
4.3.1.1. Antimetabolites 162
4.3.1.2. Alkylating agents 164
4.3.1.3. Signal transduction inhibitors 166
4.3.2. Biologic response modifiers 169
4.3.2.1. TNF-a inhibitors 169
4.3.2.2. IL-2 receptor inhibitors 173
4.3.2.3. Rituximab 173
4.3.2.4. Abatacept 173
4.3.2.5. IFN 174
5. Ongoing Clinical Trials and Potential Future Therapeutic Approaches 177
6. Conclusion 182
7. References 182
Chapter 6: Nanoparticles for Ocular Drug Delivery 197
1. Introduction 197
2. Liposomes 200
3. Polymeric Nanoparticles 204
4. Dendrimers 207
5. Inorganic Nanoparticles 212
6. Outlook 216
7. References 216
Index 225